

System Support

For

Context-Aware Computing

Habilitationsschrift zur Erlangung der

Venia Legendi in Informatik

vorgelegt von

Dr. phil. nat. Christian Robert Becker

aus Hanau

Institut für Parallele und Verteilte Systeme (IPVS)

Abteilung Verteilte Systeme

Fakultät Informatik, Elektrotechnik und Informationstechnik

Universität Stuttgart

Juni 2004

 1

Table of Content

1. INTRODUCTION 6

2. CONTEXT 10

2.1. Context and Context-Awareness 11

2.2. Classification of System Support for Context-Aware Computing 18

2.3. Dimensions 19

2.4. Classes 24

2.5. Requirements 27
2.5.1. Adaptation by application 27
2.5.2. Adaptation by System 33

2.6. Related Work 37
2.6.1. Adaptation by application – context management platforms 37
2.6.2. Smart Environments 41
2.6.3. Adaptation by System in Ad Hoc Networks 42

2.7. Contributions contained in this thesis 44

3. ON LOCATION MODELS FOR UBIQUITOUS COMPUTING 56

3.1. Introduction 56

3.2. System Model 57
3.2.1. Basic Properties of Coordinates 59
3.2.2. Geometric Coordinates 60
3.2.3. Symbolic Coordinates 60

3.3. Requirements for Location Models 61
3.3.1. Position Queries 61
3.3.2. Nearest Neighbor Queries 62
3.3.3. Navigation 63
3.3.4. Range Queries 64
3.3.5. Visualization 65
3.3.6. Requirements 65

3.4. Geometric Location Models 67

3.5. Symbolic Location Models 68
3.5.1. Set-based Model 68
3.5.2. Hierarchical Models 70
3.5.3. Graph-based Model 71
3.5.4. Combination of Graph-based and Set-based Symbolic Models 73
3.5.5. Summary 74

3.6. Hybrid Location Models 76
3.6.1. Subspaces 76
3.6.2. Partial Subspaces 77
3.6.3. Discussion 78

3.7. Summary and Classification of Existing Approaches 79

 2

3.7.1. Set-based Location Models 81
3.7.2. Graph-based Location Models 81
3.7.3. Hierarchical Location Models 82
3.7.4. Combined Symbolic Location Models 82
3.7.5. Hybrid Location Models 83

3.8. Conclusion 84

4. USENET-ON-THE-FLY - SUPPORTING LOCALITY OF
INFORMATION IN SPONTANEOUS NETWORKING ENVIRONMENTS 86

4.1. Introduction 86

4.2. System Model 89

4.3. Application Scenario 89

4.4. The Usenet-on-the-fly Prototype 90
4.4.1. Functionality 92
4.4.2. Architecture 93

4.5. Information Dissemination Protocol 95

4.6. Simulations 97

4.7. Simulation Model 98

4.8. Simulation Results 102

4.9. Discussion 105

4.10. Related Work 106

4.11. Conclusion and Outlook 107

5. A PROTOCOL FOR DATA DISSEMINATION IN FREQUENTLY
PARTITIONED MOBILE AD HOC NETWORKS 110

5.1. Introduction 110

5.2. System Model 112

5.3. Forwarding Strategies 113

5.4. Negotiation-based Ad hoc Data Dissemination Protocol: NADD 114
5.4.1. Data Structures 115
5.4.2. Protocol 116

5.5. Simulation 121
5.5.2. Replication Latency 122
5.5.3. Message Overhead 124

5.6. Related Work 125

5.7. Conclusion 127

6. FROM HOME TO WORLD: SUPPORTING CONTEXT-AWARE
APPLICATIONS THROUGH WORLD MODELS 128

 3

6.1. Introduction 128

6.2. Requirements 129
6.2.1. Scenario 130
6.2.2. Derived requirements 131
6.2.3. Context modeling 132

6.3. Related work 134

6.4. AHSS - A local architecture 136
6.4.1. Spatial model 136
6.4.2. System architecture 138
6.4.3. Experiences 140

6.5. Nexus - A global architecture 141
6.5.1. Platform architecture 144
6.5.2. Spatial model servers 144
6.5.3. Nexus nodes 145
6.5.4. Value added services 146

6.6. The NexusScout application 146

6.7. AHSS in Nexus 147
6.7.1. Conceptual integration 148
6.7.2. Technical integration 148
6.7.3. Experiences 149

6.8. Conclusion and future work 150

7. MIDDLEWARE AND APPLICATION ADAPTATION
REQUIREMENTS AND THEIR SUPPORT IN PERVASIVE COMPUTING
 152

7.1. Introduction 152

7.2. System model 153
7.2.1. Scenario 153
7.2.2. System Model 154

7.3. Requirements 156
7.3.1. Application adaptation requirements 156
7.3.2. System software adaptation requirements 157

7.4. BASE a Microbroker based Middleware 159

7.5. PCOM 161

7.6. Related Work 164
7.6.1. Middleware Systems 164
7.6.2. Component Systems and Pervasive Computing 165

7.7. Conclusion and Outlook 166

8. BASE - A MICRO-BROKER-BASED MIDDLEWARE FOR
PERVASIVE COMPUTING 168

8.1. Introduction 168

 4

8.2. Requirements 170

8.3. Related Work 172
8.3.1. Conventional Middleware Systems 172
8.3.2. Dynamically Reconfigurable Middleware 173
8.3.3. Middleware for Resource-Poor Devices 173
8.3.4. Middleware for Pervasive Computing 174

8.4. BASE 175
8.4.1. Design Rationale 175
8.4.2. BASE Architecture 178

8.5. Implementation Status and Evaluation 184
8.5.1. Implementation Status 185
8.5.2. Memory Size 185
8.5.3. Execution Performance Overhead 186

8.6. Conclusion and Future Work 188

9. PCOM – A COMPONENT SYSTEM FOR PERVASIVE COMPUTING
 190

9.1. Introduction 190

9.2. System Model 192
9.2.1. BASE. 193

9.3. Adaptation Models 193

9.4. Requirements 195

9.5. PCOM 196
9.5.1. Application Architecture 197
9.5.2. Components 197
9.5.3. Adaptation 202

9.6. Evaluation 205
9.6.1. Service Selection 206
9.6.2. Communication 210
9.6.3. Resource Overhead 212

9.7. Related Work 212

9.8. Conclusion 215

10. EXPERIENCES: MINIMALISM AND EXTENSIBILITY IN BASE 216

10.1. Introduction 216

10.2. BASE – A Micro-broker Based Middleware 218
10.2.1. Design Rationales 218
10.2.2. Architectural Overview 219

10.3. First Experiences 220

10.4. Porting and using BASE 221
10.4.1. Porting BASE 221
10.4.2. BASE as a Platform for Components 222

 5

10.5. Experiences 222
10.5.1. Technical Modifications 223
10.5.2. Conceptual Modifications 223
10.5.3. Lessons Learned 224

10.6. Conclusions 227

11. SUMMARY AND OUTLOOK 228

11.1. Contributions 230

11.2. Outlook 231

12. REFERENCES 234

13. PUBLICATIONS CONTAINED IN THIS THESIS 245

 6

1. Introduction
Pervasive Computing has been proposed over a decade ago.

Over the last years a new community has been formed which

strives to accomplish Weiser’s vision of disappearing

computers, which seamlessly interact providing users with

information and services at any time, any place. Pervasive

Computing belongs to the larger class of context‐aware

computing. This thesis provides a classification of system

support for context‐aware computing. Some fundamental

aspects of context‐aware computing, such as location models as

an underlying structure of context models and data

dissemination algorithms for ad hoc based systems are

presented. The focus of this thesis covers Peer‐to‐Peer

Pervasive Computing. After a discussion of requirements a

two tier approach that is based on a lightweight middleware for

establishing spontaneous groups in an ad hoc network and a

component system allowing automatic adaptation of

applications is presented.

“The most profound technologies are those that disappear” is perhaps the

most cited statement from Marc Weiser’s seminal paper “The Computer of

the 21st Century” [Wei91]. In his vision of Ubiquitous Computing Weiser

provides us with scenarios that have left their science fiction character due

to the rapid progress in technology. The miniaturization of computing

platforms, the proliferation of sensor systems, and the availability of short

range wireless communication technology already provides the basic

building blocks of Pervasive Computing. However, there are only few

commercial applications available. Modern cars integrate mobile phones

 7

seamlessly into their user control, e.g., use the board computer display

and control knobs on the steering wheel.

This effect can be partially explained by the initial lack of business models

and research prototypes that explored Pervasive Computing technology

by applying it to fancy scenarios which rarely showed evidence of use for

society or businesses. A prominent example of such scenarios is Weiser’s

coffee machine which automatically brews coffee to be ready when a

person awakes. However, there are more convincing Pervasive

Computing examples that clearly identify its relevance in research and in

its applications. Support of elderly people in their homes by monitoring

their body functions, dispensing medicine, notifying qualified personal in

case of unusual behavior or body functions can help senior citizens to stay

in their familiar environment leading to more comfort in their lives and

presumably a reduction in the health‐care costs. Resource management in

a smart factory can help to integrate the business processes into the

production flow at a fine granularity. Procurement systems can ensure

that the necessary resources are available, i.e., ordered as they are needed

without over‐stocking, as well as the production process itself can be

optimized on the base of current information captured by sensors in the

production plant along with the order data, the deadlines of cooperation

partners, the logistics, etc.

Although the benefits of Pervasive Computing technology exist and are

widely recognized, there are still open research questions to be solved.

First, Pervasive Computing systems react based on their context. Context

relates Pervasive Computing systems with the physical world. Users as

well as information captured by sensor platforms are used by these

systems to change their behavior. Thus, Pervasive Computing can be seen

as an important class of context‐aware systems. Second, interoperability

issues are made harder by the vast heterogeneity of devices with respect to

 8

their resources and their specialization. In addition to that, the integration

of sensor and computing platforms in everyday items will lead to a

number of devices in different possibly overlapping administrative

domains. New concepts with respect to the organization of systems, their

administration, and their deployment have to be developed.

This thesis contributes to several research questions in the domain of

context‐aware computing. In Chapter 2 we will classify support for

context‐aware computing and discuss requirements and related work. A

more elaborated presentation of the contribution of this thesis ends

Chapter 2. In Chapter 3 location models for Pervasive Computing are

discussed. A location model represents a common spatial structure of

context models and thus is of great importance in order to allow spatial

reasoning and interoperability between context models. Requirements on

location models are discussed based on a brief use case analysis of context‐

aware applications. Possible approaches to represent location models are

presented and classified according to their suitability to fulfill the

requirements and the involved modeling effort. Information

dissemination in an ad hoc network is discussed in Chapter 4 based on the

“Usenet‐On‐The‐Fly” application which provides users an information

service offering locally relevant information. Besides this novel application

a suitable protocol is presented and evaluated. An improvement of the

underlying protocol for ad hoc networks with frequent partitioning is

discussed in Chapter 5. An important question concerning the integration

of different context models is the focus of Chapter 6. The integration of a

context server for Georgia Tech’s Aware Home into the Nexus platform

and the consequences in concept and implementation are discussed.

Chapter 7 to 10 focus on support for Peer‐to‐Peer Pervasive Computing.

This class of context‐aware computing is challenged by the frequent

changes in an application’s execution environment. Support for

 9

adaptation has to be provided along with flexible middleware

infrastructures. Chapter 7 presents a more detailed requirement analysis.

Chapter 8 and 9 present a flexible middleware system (BASE) and a

lightweight component model (PCOM) allowing for automatic application

adaptation. Chapter 10 finally presents experiences from the port of BASE

to an embedded system and from the implementation of PCOM on top of

BASE. The thesis closes with an outlook to further research questions in

the domain of context‐aware computing.

 10

2. Context
This chapter introduces context as a concept to enable

applications to reason about and react to changes in the

physical world. Context definitions and the classification of

context into primary and secondary context are introduced

before system support for context‐aware computing is

classified and related work is presented. The contributions of

the following chapters are summarized.

Context‐aware systems have attracted researchers in the past years

starting from location‐aware computing. Early work considered context to

be [SAW94] related to the location of users, the people nearby, and

resources which can be accessed based on the spatial proximity.

Depending on the focus of research projects, further definitions of context

have been proposed. Projects related to Human Computer Interaction

focused on user’s activity or social environment, e.g., in order to adapt the

behavior of a cell‐phone [SBG99]. The user’s location was only of interest

as long as it could be used to derive information about his activity. The

progress in technology with respect to the miniaturization of computing

and sensing devices will lead to billions of information sources placed in

our physical world which will constantly report changes in the physical

world captured via sensors. This information is related to locations in the

physical world as well as to users. This is an integral part of context

concerning the locations as well as the users. Some existing information

spaces, e.g., the WWW, also provide information about physical entities.

Common to this information independent of its origin, i.e., sensed by

sensor platforms or provided by applications or information spaces, is the

relation between physical entities such as users or locations and virtual

entities, such as applications. The following definition is based on the

 11

discussion in [RBB03] and reflects this more general view on context

information.

2.1. Context and Context-Awareness

Definition Context: Context is the information which can be used to

characterize the situation of an entity. Entities are persons, locations, or

objects which are considered to be relevant for the behavior of an

application. The entity itself is regarded as part of its context.

It is interesting to see that an entity can be part of its context itself as well

as an entity can be interpreted different depending on the context. For an

example consider two applications dealing with trucks. A fleet

management system would keep track about the position, the freight, the

route of trucks along with other information, such as the trucks’

maintenance rate, the assigned driver etc. A navigation system installed in

the individual trucks would also consider the delivery routes but only for

the individual truck. Other information, such as traffic jam information, is

used to optimize the navigation between destinations.

From a context management perspective both applications may operate on

the same context information. The fleet management system may access

the context model in order to retrieve all trucks in a given area in order to

decide which truck a given tour should be assigned to. Individual trucks

or drivers may be queried for administrative issues. The car navigation

system as well accesses the context model in order to update information

as well as to query for individual data relating the truck and its current

position. The point in time is also crucial information for both

applications. The navigation system will take the current situation into

account. Prognosis of the traffic situation can be used to improve the route

planning. Thus, the navigation system will access context data based on

time (present and future). The fleet management system will also access

 12

information regarding the current time and the future for planning of

tours. In addition to that, history plays an important role in order to

account for transportation costs and for issuing invoices.

Based on the scenario above we can derive that context information is

accessed based on three major criteria:

▪ The identity of the entities

▪ The location of entities

▪ The time where the information is relevant

Because of the important role of identity, location, and time we refer to

these as primary context. The role of primary context in context

management obviously is the indexing of context information. Further

information of entities can be accessed once they are found using the

primary index. The additional context information, e.g., load of a truck, a

person’s email address, the vacancy of a taxi, are denoted as secondary

context. Possible combinations of accessing context information are

(location, time), (identity, time), or (identity, location, time). Note, that

time may be used implicitly, e.g., an index may only refer to a distinct

location. The time can then be interpreted as the current status of the

context information related with the index.

The notion of primary and secondary context does not imply the relevance

of context information from an application perspective. Some context –

aware applications exist where secondary context, such as a user’s activity,

may be of relevance. However, in order to access the context information

the primary context has to be used.

Context‐aware applications can make use of context in many ways. The

following definition captures common understanding of context‐aware

applications [DA99][RBB03][CK00].

 13

Definition Context‐Aware Application: an application is context‐aware if

it adapts its behavior depending on the context.

Based on this definition, four classes of context‐aware applications can be

isolated, which either select information or services, change their

presentation, or issue some action based on context, or tag information to

context:

▪ Context‐based selection: information and services which are used

by an application are selected based on context information, such as

a user’s preference, their physical proximity (the next printer) or

relevance to the user (public transport schedules from the next bus

stop).

▪ Context‐based presentation: the way which and how information is

presented to the user also depends on the context. A navigation

system may change the way information is displayed based on the

speed of traveling from a map to a direction based output using

arrows or to audio output only in order not to distract the user.

▪ Context‐based action: in contrast to context‐aware presentation

where a user is explicitly involved in the interaction with an

application context‐based action allows to automatically react to

changes in the context without prompting the user. Examples are

applications which automatically forward messages to the devices

in a user’s proximity, facility management systems which adjust

light and heating conditions to user preferences.

▪ Context‐based tagging: in contrast to selection, presentation, and

action, which lead to an immediate change in the behavior of an

application, tagging of information to context allows a later action

based on this information. This allows applications, such as Stick‐

Enotes [Pas97], GeoNotes [EPS+01], or Virtual Information Towers

 14

[LKR99]. These applications allow to associate information with

context, typically location and the id of user in case of personalized

information, and display this information to users when they are in

proximity of this location.

Examples of context‐aware applications can be found in a variety of

domains. We will present some examples of context‐aware applications in

visitor information systems, navigation, annotations, support in

workspaces, and smart environments.

Visitor Information Systems

Supporting mobile users with information about their spatial proximity is

explored in many projects. The CyberGuide [LKA+96] at GeorgiaTech has

explored a tour guide for visitor tours through their laboratories. An

extension to CyberGuide provided support for tours through downtown

Atlanta [AAH+97]. Users were provided with information about sights or

projects and could create a diary of their visit. The Guide project

[CDM+00a] developed a tourist guide for the city of Lancaster. Users are

provided with information about historic sights and could use additional

services, such as communication and restaurant reservation.

Navigation

The REAL project [BKW02] investigates adaptive navigation systems

where the information to pedestrians changes (e.g., from a map to an

arrow indicating the direction) depending on their speed of travel and the

display they use (head mounted display or a display integrated into a

bum bag).

 15

Annotations

Annotations combine two classes of context‐aware applications. First, an

annotation is made combining information with context, such as a location

where the information is of relevance or a user the information is

addressed to, or a combination. Context‐aware actions or presentations are

executed when the context the information is tagged to is observed, e.g., a

user enters a room where information for him is placed. The stick‐e Notes

System [Pas97] is a typical candidate in this class of applications. Virtual

Post‐Its can be tagged to context information and are displayed

accordingly. The VIT System [LKR99] is based on the metaphor of virtual

information towers which maintain information with relevance for a

distinct geographic area. ComMotion [MS00] incorporates time and

location as context in order to remind users of distinct tasks.

Support in Workspaces

Assisting the user in his daily workspace environment was investigated in

the Active Badge System [WHG92] and Active Bat System [HHS+99]

projects. The forwarding of incoming calls to the closest telephone to a

user or teleporting of user interfaces, where graphical user interfaces

“follow” the user to the next appropriate display. In the Netman project

[KSS+99] wearable computing technology was used to provide context

dependent information to service personal. The TEA project [STM00]

investigated context dependent configurations of mobile phones

depending on the context, such as a meeting taking place, the phone

located on a table or in a briefcase.

Smart Environments

Smart Environments augment a spatial restricted area, so‐called active or

smart spaces, with various facilities for interaction with users, such as

 16

wallscreens, ticker‐display, digitally enhanced whiteboards, tables with

integrated displays, etc. Additionally, devices carried by users are

integrated into such environments. In the Gaia project [RC00] applications

are mapped onto the devices available in such environments via

predefined mapping‐scripts and thus make use of the offered

functionality. Adaptation at runtime allows coping with changes in the

execution environments based on an application model that separates

model, view, and presenters. A different approach is taken by the

interactive workspaces projects (IROS [JFW02]) which aims at the

coupling of applications via an event heap. The integration and leaving of

devices and services is supported by the event heap which decouples the

different parts of an application. Context in such smart environments is

typically reflected by the location of devices and services by implicit

means. Devices in the same smart environment are considered to be of

relevance and made available. The spatial scope of the smart environment

defines its spatial context. Typical applications are tailored towards the

purpose of the physical space the smart environment is based upon, i.e.,

support for meetings and teaching.

The Aura project [GSS+02] is an exception here, since it aims at the

support of applications across different smart environments. The Aura

Context Information Services [JS03] provides context information about

users and locations as well as on devices and their network connections.

 17

Project Description Primary Context Class of Context

Awareness

Cyberguide Indoor guide identity, location selection

Guide Tourist guide location selection

Stick‐e Notes Virtual Post‐Its location, identity selection, action,

tagging

VIT Virtual

Information Towers

location, time selection

ComMotion Location‐based

reminder

location, identity selection, action

REAL Navigation location, identity presentation

Active Badge:

Telephone

Assistant

Forwarding of phone

calls

identity, location action

Active Bat:

Teleporting

Teleporting of user

interfaces

identity, location presentation,

action

TEA Adaptation of mobile

phones

identity presentation,

action

Netman Support for

maintenance staff

location selection

Gaia Smart Environment location selection,

presentation

iROS Smart Environment location selection,

presentation

Aura Smart Environment

spanning context

management

location, identity selection,

presentation,

action

Table 2.1: Examples of context‐aware applications

Table 2.1 summarizes the properties of the presented examples of context‐

aware applications. The individual way, in which the context information

is stored, retrieved, managed, and used by applications, is not discussed

so far. The next section classifies the system support for context‐aware

computing and discusses related work as well as the contributions

contained in this thesis.

 18

2.2. Classification of System Support for Context-Aware
Computing

A general model for the relation between the physical world and context‐

aware applications is depicted in Figure 2.1. Context information is

formed by the current state of an application as well as from the states as

they are present in the physical world, such as a user’s position, services in

the proximity of a user, etc. The context model as shown in Figure 2.1

separates applications from the process of sensor processing and context

fusion. Moreover, this allows a number of applications to share the

gathered context. Note, that this is a conceptual model and depending on

the underlying system, i.e., based on an infrastructure or ad hoc network,

and the way applications make use of the context information the

instances of this model may differ.

Physical
World

Context
Model

Applications

Sensors
(Fusion)

A
pp

lic
at

io
n

St
at

e

queryUpdate(id, value)

Update(id, value)

Figure 2.1: Context Model

For example, context can be managed by applications without providing

means for sharing. A number of such applications will manage their local

context models. Other applications may not build an explicit context

model but directly access sensor information and process the obtained

context information directly.

 19

In the remaining part of this chapter we assume context information to be

available via appropriate representations, such as a context model. We

classify the system support along the underlying system – infrastructure

or ad hoc – and along the support for application adaptation. Based on

these dimensions four classes of context‐aware computing are discussed

(cf. Table 2.2). Requirements on system support are derived and related

work is discussed. At the end of the chapter, the contributions of this

thesis are summarized.

The requirements on system support for these classes are presented

followed by the related work. The chapter closes with a discussion of the

contributions to the classes of system support for context‐aware

computing contained in the following chapters of this thesis.

Table 2.2: Classes of context‐aware computing

2.3. Dimensions

The following dimensions are introduced to classify system support for

context‐aware computing:

 Adaptation by System Adaptation by Application

Infrastructure Smart Environments

iROS, Gaia, one.world

Infrastructure‐based Context

Service

Aura CIS, Nexus, Context

Toolkit

Ad hoc Peer‐to‐Peer Pervasive

Computing

PCOM, P2PComp, MIT

Pebbles

Ad hoc based Context‐Services

Usenet on the Fly

RCSM, GLS, Nexus

 20

Infrastructure-based system

Services that are required by context‐aware computing form an

underlying infrastructure. Examples are context services as they are

provided by Aura [GSS+02] or Nexus [HKL+99] or smart environments,

such as iROS [JFW02] or Gaia [RC00]. Applications typically require

permanent access to the infrastructure.

Ad hoc system

In contrast to infrastructure‐based systems, where the connectivity to the

infrastructure is a prerequisite, ad hoc approaches do not require such

services. Devices are spontaneously connected – typically by some

wireless communication technology – and share their functionality or

information. Examples are information propagation, such as the Usenet‐

on‐the‐Fly [BBH02], or Peer‐to‐Peer based approaches to Pervasive

Computing, e.g., BASE [BSG+03] or PCOM [BHS+04].

Adaptation of applications has been recognized as a must for mobile

application in general [Sat96]. The taxonomy provided by Satyanarayanan

differentiates between no system support (laissez‐faire) and application

transparent adaptation. In the first case, applications have to decide which

adaptation actions should be taken without any system support. In the

course of this thesis we to refer to this class as adaptation by application,

since we do not assume system support for adaptation decisions, but

system support for accessing adaptation‐relevant parameters, i.e., context

information. The second case means, that the system adapts an application

transparently according to changes in the context. Thus, we further refer

to this class as adaptation by system.

 21

Adaptation by Application

Context‐aware applications adapt to changes in context. Based on a

context model (cf. Figure 2.1) an application can retrieve information

about context or gets signaled when a relevant context change has

happened. If the adaptation decision is taken by the application, each

relevant constellation of context parameters has to be reflected in the

application code.

Context Model Context Model

t

Application Application

Figure 2.2: Adaptation by application

The resulting architecture is depicted in Figure 2.2 where a change in the

underlying context is observed by the application based on a context

model. The change of the application behavior is directly reflected in the

application’s internal structure. The application is depicted as a flow

diagram, where the decisions in the flow are depending on the current

context. The selected branches of a decision are shown by a greyed box,

whereas the white boxes indicate, that a branch is not being taken.

Application programmers can design their applications to react to context

changes in the desired way with full control of the adaptation decision.

 22

There is no required application architecture or framework which may

restrict application programmers. On the other hand this means that every

change of context leading to an adaptation has to be reflected in the

application leading to an additional overhead in programming context‐

aware applications.

Examples for system support in this class are context services or

frameworks which supply context information to applications. The Nexus

platform [HKL+99] provides applications with context information

without assuming an application architecture so far. Applications query

context information or register spatial events in order to receive

notifications on a defined predicate on the context model. The context

toolkit [SDA99] does not maintain a context model but allows applications

to connect to sensors or entities which aggregate context information.

Based on this context information an application can choose whatever

action it takes to adapt.

Adaptation by System

The effort involved in dealing with changes in context has lead to another

class of system support, where the system analyzes the context and

triggers reconfigurations of the applications according to the context and

the application structure. The overall objective here is to relieve the

application programmer from explicitly programming adaptation

decisions.

 23

System Adaptation
Support

Context Model

System Adaptation
Support

Context Model

t

Application Application

Figure 2.3: Adaptation by system

Applications are composed from building blocks, which are configured by

the system according to the context and some other information that

allows to determine the correct configuration of an application with

respect to a given context. The building blocks of the application do not

adapt to context changes. Figure 2.3 depicts the situation where the

context change leads to a different configuration of the system. Again, the

greyed boxes indicate that a building block was selected in a configuration

and the white boxes depict building blocks not chosen.

Examples for this kind of system support can be found in smart

environments. The Gaia [RC00] programming model allows mapping an

application to a so‐called active space by supplying scripts which assign

parts of the application to devices and services available in an active

space. iROS [JFW02] supports building blocks with larger granularity.

Applications are composed of independent parts. The availability of an

external functionality is supported by requesting this service via an event

heap which dispatches the request to a suitable service. Applications are

only aware that a request may not be answered when no suitable service is

 24

present in the environment. Another example from spontaneous networks

based on ad hoc networks is PCOM [BHS+04], which supports fine

granular application adaptation by the system based on a component‐

based application model.

Note, that a combination of application and system supported application

adaptation is possible. A system could configure an application from

building blocks, where some of these building blocks could change their

behaviour in an application specific way, i.e., by reconfiguring themselves

based on context information.

2.4. Classes

Based on the introduced dimensions we can now briefly classify system

support for context‐aware computing along these dimensions. General

requirements on system support in these classes are presented along with

related work. The contributions contained in the following chapters of this

thesis are discussed with respect to the requirements and existing

approaches.

The introduced dimensions classify context‐aware computing along the

underlying system, e.g., based on an infrastructure or on ad hoc

networking, and the adaptation support for applications, i.e., the systems

adapts an application to context changes vs. the system offers the

necessary context information for an application, which can then adapt

itself.

The first two classes are characterized by their support for application

adaptation.

Infrastructure‐based adaptation by system: applications in this class are

automatically adapted by the system if relevant changes in the context

occur. Since the infrastructure already provides a comprehensive set of

services, temporarily present services and devices are integrated and the

 25

application execution is adapted in order to make use of this functionality.

Typical candidates in this class are smart environments which are tailored

towards a distinct application class in a spatial area augmented with

specialized computing devices, e.g., a meeting room, and supply a set of

services and devices as execution environment. Hence, applications face a

rather static set of predefined services and devices which can be extended,

e.g., by the integration of mobile devices user carry. Adaptation support

thus means that a given application has to be mapped onto the available

services and devices. Further adaptation support can provide means for

the integration of dynamically changing services and devices, such as

users’ mobile devices. In general, adaptation support requires knowledge

about the application structure and the execution environment in order to

allow the system to adapt the application.

Ad hoc adaptation by system: in contrast to infrastructure‐based

approaches the underlying ad hoc networks reveal a higher dynamics of

change in the execution environment. Due to user mobility and wireless

communication the services and devices available to an application can

change over time. Application adaptation support requires ‐ similar to

infrastructure‐based application adaptation by system ‐ knowledge about

the application architecture. The management of the spontaneous group

and available services and the resulting dynamism is the major difference

between the ad hoc and infrastructure‐based approaches. Examples in this

class are P2PComp [FHM+04] and 3PC [3PC] which allow the composition

of applications dynamically from the functionality available in a

spontaneous network based on ad hoc communication.

Infrastructure‐based adaptation by application: application adaptation

offers a higher flexibility than automated adaptation by the system, since

the application can choose its behaviour according to context. This means,

that the system support has to provide access to context information by

 26

the application. In contrast to application adaptation by the system the

applications are not bound to a given application architecture, since the

system does not adapt the application.

Typical examples are context management platforms, e.g., context

services, which maintain context information and offer query interfaces to

applications. The Nexus platform [HKL+99] and the Aura Context

Information Service [JS03] are examples for such context management

platforms.

Ad hoc adaptation by application: providing context information to

applications in ad hoc based environments in order to allow these to

control their adaptation decision is similar to infrastructure‐based

adaptation by application. The resource restrictions on the participating

mobile devices and the underlying network characteristics which lead to

network partitions result in different needs for organization. As a result,

the context information managed in such a setting differs from

infrastructure‐based context services. Typical examples are location

services for mobile ad hoc networks, e.g., GLS [LJD+00] and DREAM

[BCS+98], which only offer limited context information, i.e., the position of

mobile objects. The absence of a central component or infrastructure

requires appropriate dissemination mechanisms in order to disseminate

context information from the place where it occurs to the place where

applications request it, e.g., by data dissemination algorithms, such as

SPIN [HKB99] for connected networks with less frequent network

partitions or the one presented in [HBR03] which has been designed for

frequently partitioned networks. Applications which make use of the

context information are provided with an interface to the context

management and are shielded from the underlying protocols and data

management strategies.

 27

2.5. Requirements

The discussion of the classes of context‐aware computing support has

shown that adaptation by application, e.g., via context services, in general

decouple applications from the underlying system, i.e., infrastructure‐

based or ad hoc. However, further restrictions, such as limited memory of

mobile devices, influence the context data provided in its size or level of

detail. We will discuss the general requirements on context services

independent of the underlying system model.

Similar to context services, the support of adaptation by system share

many requirements independent of the underlying system model. The

underlying system model may shift priorities between requirements, e.g.,

adaptation becomes more important in settings with higher device

fluctuation, but in general the same requirements apply.

2.5.1. Adaptation by application

Adaptation by application is assisted by system support via context

services, which provide the necessary context information applications can

base their adaptation decision on.

General requirements context services have to fulfil are concerned with

the representation of context information, supported queries for

applications to access the context information, and the spatial layout

which determines the underlying model of the part of the physical world

reflected by the context model.

Context representation

Context representation obviously first depends on the context modeled.

Context can be classified along its sources which already determine

properties of context representation. Context information with low update

rates, such as street networks, building floor plans, or 3‐dimensional

models of buildings can form realistic models of the physical world. More

 28

dynamic context information, such as information obtained via sensors for

positioning or temperature, typically reflect a single aspect of the physical

world which is captured by a sensor. So far, there is no standardization

effort capturing context representation at its whole. However, for single

domains standards exist or are beginning to emerge. Road networks for

instance are available in different formats, such as the geographic data file

GDF 77 or ATKIS [VGH+02]. The OpenGIS consortium started to define

data emitted by sensors via SensorML [SensorML] an XML‐based

language capturing sensor properties such as the dimension, accuracy,

and spatial relevance.

Even if standards and suitable representation of context information

existed in each single domain, there are still open questions concerning the

integration into a common context model:

▪ Query languages and semantics: accessing context information in a

possibly application spanning way requires suitable languages

serving a broad range of applications. Service models such as push

and pull models should be supported. Indexing context

information along the primary context has to be supported (see

below).

▪ Multiple representations: if multiple applications and context

sources feed their data into a context model multiple

representations of an object may exist. The context model has to

provide concepts to deal with such phenomena, e.g., choosing one

representation, combining them, or prompting the user.

▪ Common semantic: the interpretation of context data across

applications requires a common semantic. Examples are a common

type schema or ontology.

▪ Context‐specific management: the management of highly dynamic

data, e.g., position information of mobile objects, requires different

 29

handling than that of stationary objects or objects with low update

rates, such as road networks. In addition to that, the organization of

a context model should allow for queries incorporating the primary

context, i.e., identity, location, and time.

In the following we will briefly discuss queries and service models of

context services and their spatial organisation before context models are

classified and existing approaches are discussed.

Queries

As noted before, queries to a context model should support the selection

of entities based on primary context as depicted in Figure 2.4. Depending

on the application requirements, not all queries have to be supported. If

access to context information of the past of future is not an issue, the

context models only store the current state reflecting the present time – or

the time where the context model has been captured ‐ based on state from

the physical world.

Figure 2.4: Queries to a context model

The service models supported should not only allow for queries in the

pull‐model but also allow for asynchronous communication. Spatial

events [BR04] are an example where applications are notified about

changes in the context and receive a notification. A spatial event is defined

by a predicate which operates on context data. This allows to raise actions

 30

based on changes in the context model which are typically triggered by

state changes in the physical world.

Spatial organisation

One important aspect of context information is related to location. This

includes the position of entities as well as the spatial relation to other

entities. Such relations cover the inclusion in a distinct area or range and

the distance to other entities. Typical queries a context management

platform should support with respect to location are according to [BD04]:

▪ Position: retrieve the position of an object. Examples are “where is

John”, “What is the position of printer PHP13”.

▪ Range: a number of objects which are located in a spatial range are

retrieved. Examples are “What objects are on Floor 2 of the

Computer Science Faculty Building” which includes all objects in

the rooms on the second floor as well.

▪ Nearest Neighbor: these queries offer a list of one or more objects

which are closest to the position of an object. Queries for the next

printer, restaurant, gas station thus become possible.

Although these queries at first seem simple and obviously necessary for a

variety of context‐aware applications, their efficient processing depends

on the underlying spatial structure and the involved coordinates by the

position information. Position information is obtained by positioning

systems which track mobile objects and report their position to a location

management system. In general, two kinds of coordinates are supported

by positioning systems:

▪ Geometric coordinates: represent points or areas in a metric space,

such as WGS 84 coordinates of GPS which represent the latitude,

longitude, and elevation above sea level of mobile objects. Using

geometric functions such as the Euclidian distance allows

 31

calculating distances and allows for nearest neighbor queries.

Overlaps of geometric figures can be used to specify ranges by their

geometric extension and determine whether ranges are included in

each other which allows for range queries.

▪ Symbolic coordinates: in contrast to geometric coordinates there is

no spatial relation offered by symbolic coordinates. Such

coordinates are represented by an identifier, such as a room

number or the ID of a cell or access point in wireless telephone or

local area networks. In order to allow spatial reasoning about

inclusion (for ranges) and distances (for nearest neighbors) explicit

information about the spatial relations between pairs of symbolic

coordinates has to be provided.

Location models are used to define spatial relations between locations. In

general, locations can be determined by a symbolic identifier but also by a

geometrically defined location. The latter allows expressing spatial

relations which are not covered by the underlying metric on geometric

coordinates. Consider a road network where people are bound to the

spatial restrictions of the physical world. A geometric distance may be

misleading, e.g., when a user has to cross a highway and another object

may be closer from a user’s perspective. Thus, location models are of use

for geometric coordinates as well.

Choosing a suitable location model for the spatial structure of a context

model is important for two reasons. First, the possible spatial queries

along the primary context location depend on the location model. Second,

the integration of two or more context models has to provide a mapping

from one location model into another in order to allow spatial queries

across the objects with possibly different location information provided by

different positioning system as basic coordinates or different spatial

relationships modeled in graphs or hierarchies.

 32

Influence of system model

The general requirements on context services so far did not take the

underlying system model into account. Clearly, the influence of the

involved end‐systems and their network connection affects the context

information that a given system can maintain. Resource‐restricted mobile

devices will not be able to provide highly detailed three‐dimensional

models of larger spatial areas. Therefore infrastructure‐based approaches

are more appropriate to handle context for larger scopes and with higher

complexity. However, an infrastructure‐based context service may only

serve a single house and thus scalability is not an issue there, e.g., the

Aware Home Spatial Model Server [LBB+04]. Other context services, such

as the Nexus platform, aim at potentially global scope context

management, where the scalable integration of new context servers is a

must as well as efficient query processing. If a context service allows for

the integration of new context servers, a common underlying context

model is required in order to integrate the context data. If such a platform

should be open to new context data, extensibility of the context types

stored and maintained is required.

In contrast to infrastructure‐based context services there are some natural

limitations in ad hoc systems which do not allow for larger scopes or

higher complexity of context data. The memory limitations of the typically

mobile and battery powered end systems along with the energy required

for communicating larger amounts of data allows only for restricted

context models, such as location information of mobile objects or some

aspects of the physical world, e.g., floating car data1. Requirements in such

settings are on suitable data organisation and data dissemination

1 Note that energy typically is not an issue when propagating floating car data between

vehicles.

 33

algorithms. Typical trade‐offs which have to be tuned to the operational

environments have to deal with the freshness and availability of

information versus the communication overhead of the underlying data

dissemination protocols.

2.5.2. Adaptation by System

Application adaptation by the system first needs some kind of application

knowledge in order to determine the possible configurations of an

application. Furthermore, resources required for these configurations have

to be managed and finally, adaptation decisions have to be made.

Applications in such settings combine the resources available in a spatial

area. Typical scenarios are smart environments, where rooms or buildings

are equipped with a central control which mediates the resources in the

environment, e.g., Gaia [RC00] or iROS [JFW02]. These projects reveal

following the characteristics:

▪ Service oriented: in contrast to context services, that provide

information about context, as they are addressed in adaptation by

application system support, adaptation by system addresses

applications composed of services. These services serve as building

blocks for the adaptation support of the system.

▪ Dynamic composition: the available services and information in an

execution environment are used by applications. Applications are

not considered to be self‐contained. Instead, they integrate available

services and information and typically require a distinct set in order

to get executed.

▪ Fluctuation of service availability: due to user (and thus device)

mobility and other factors, such as device power down on drained

batteries, the number of devices in an environment may change

unpredictably. Also, device capabilities like sensors may be

 34

temporarily unavailable, e.g., a GPS sensor stops operating when a

user enters a building.

▪ Spatial relevance: the information and services which are used by

an application typically only have relevance in the proximity of the

user. This kind of context‐awareness is reflected by the organization

of an execution environment, e.g., smart environments mediate

between applications and the services in a given spatial area. Ad

hoc systems reflect the spatial relevance by the organization of

services reachable via the underlying ad hoc network typically by

restricting communication between involved devices to one or

more hops.

▪ High number of devices/service: the integration of embedded

systems into nearly every object of our daily life leads to situations

where hundreds of services are available in a single room.

▪ Heterogeneity: the specialization of devices with respect to the

offered services, e.g., a powerful computer that only serves as

presentation service, and the miniaturization and thus restrictions

on computing power as well as memory along with other

resources, lead to an increased heterogeneity compared to classical

computing environments.

▪ Administrative domains: the pervasion of our daily environment

with pervasive computing nodes will lead to a multitude of

administrative domains which may overlap depending on the roles

the participating user fulfils. A janitor may access all relevant parts

of a facility management system whereas the employees of

competing companies in the same building will be restricted in

their access to the systems of their respective companies. A user

will seamlessly connect and disconnect to a variety of

administrative domains and use the services and information

 35

available to him while moving on through his work or recreational

day.

Based on these characteristics of application adaptation by system, which

are also common for the area of Pervasive Computing, we can derive the

following requirements on system support:

▪ Spontaneous networking: devices should allow the dynamic

networking with other devices. Especially, the integration of new

devices as well as the leaving of other devices has to be supported.

▪ Adaptation by system: the constant change of devices in the

execution environment leads to services entering and leaving the

environment as well. Hence, applications have to adapt to the

resources available in order to continue their execution when a

resource is no longer available or to improve the performance when

a better resource becomes available. The number of possible

combinations of resources in such dynamic settings along with the

complexity of programming adaptive applications leads to the

requirement of adaptation by system.

▪ Interoperability: the heterogeneity of devices will lead to a number

of interoperability protocols from sensor to complex application

specific protocols. In order to allow the seamless integration of all

of these devices interoperability protocols and bridging between

them is necessary. Additionally, the system software has to be

available on all devices or provide means for integrating devices

into the environment.

▪ Security: attacks on such systems can have severe impact not only

on the data stored but also on the physical environment. Motion

detectors can be used to check whether a house is occupied,

actuators can be tampered with and result in damage in the house –

consider a frozen heating system due to a vandalizing attack

 36

shutting down the system. Thus, environments build by adaptation

by system, such as Pervasive Computing environments, have to

provide means to secure the system in the presence of dynamic

integration of devices and restricted resources.

Influence of system model

System support for adaptation by system shares the same requirements

independent of the underlying system model. However, priorities of the

requirements shift depending on the system model. Spontaneous

networking is an issue in both cases. Infrastructure‐based approaches, e.g.,

smart environments, have to provide means to integrate devices

dynamically as well as to handle their exit. The fluctuation of services

available to an application in an ad hoc system will likely be higher than

in an infrastructure‐based approach. Thus adaptation becomes even more

important. This is made harder since the devices are typically mobile and

battery powered. The state for adaptation decisions, e.g., dependencies

between services or resource conflicts, is distributed among the devices in

a peer group formed by the underlying ad hoc network. Infrastructure‐

based approaches can gather the state at a central instance and complex

adaptation decisions can be placed on nodes with suitable computing

performance and most likely powered by a constant power source.

The class of applications in such settings also may differ. A smart

environment can be tailored to support distinct application classes, such as

a smart teaching room [JFW02]. Peer‐to‐Peer based applications typically

can only rely on more generic sets of services since their execution

environment can not be determined beforehand.

 37

2.6. Related Work

The related work is discussed for context management platforms first,

followed by smart environments and Peer‐to‐Peer based Pervasive

Computing.

2.6.1. Adaptation by application – context

management platforms

Context models and their corresponding management architectures can be

classified (cf. [RBB03]) along the dimensions of

▪ Spatial Scope: denotes the spatial area which is covered by the

context model. This area can range from rooms in a smart

environment over smart homes to global scope.

▪ Complexity of abstractions: refers to the level of detail and the

details which are provided by the context model. Complex model

could incorporate highly detailed 3D models of buildings whereas

simple 2D models are commonly used, e.g., in navigation systems.

▪ Dynamism: the rate in which updates to information in the context

model is supported typically depends on the provided complexity

and scope. Cell‐phone networks allow for high dynamism with

respect to the managed position of mobile users but rely on a rather

simple context model representing the position of users in terms of

the cells their mobile terminal is logged in.

 38

Figure 2.5: Classification of context models

Figure 2.5 depicts the three dimensions of the context model classification.

Already existing context models from research and industry are either

serving small areas with higher details and dynamics or larger areas but

only with limited dynamism or complexity. To the best of our knowledge,

only two projects so far address high detailed context information for

larger scopes, namely Nexus [HKL+99] at the Universität Stuttgart and

ContextWeaver at IBM Research [LSD+02].

Table 2.3 provides an overview of examples of context management

platforms. The Guide project [CDM+00a] realizes a tourist guide for the

city of Lancaster. The information is organized around locations which are

modeled by the Wireless LAN access point deployed in the city center.

The underlying context model is extensible in form of HTML extensions

which assign information to a distinct location.

The context information service [JS03] of the Aura project [GSS+02] relies

on the Aura context model which captures the relations (network

connection, physical space) between entities (devices, people) from the

computational and physical context, e.g., users and road networks in

contrast to printers and network connections. Based on a simple meta

model instances can be created and stored in a database. A SQL‐like

syntax for queries is provided.

 39

The location stack [HBB02] is an example for a specialized context model

which is created by combing different positioning systems and determines

the position of mobile objects by sensor fusion.

A rather simple programming and data model is offered by the context

toolkit [SDA99] which aims at capturing sensors and allowing the fusion

of sensor data by combining them in a fusion architecture. Applications

access context data by connecting to a so called context widget or

interpreter which represent access points to a context source or fusion

point. There is no explicit model supported and each application has to

model its context model based on the obtained sensor information.

The REAL project [BKW02] mainly aims at the investigation of multi‐

modal user interfaces. Since the focus is not on context management, the

underlying context model is not designed for extensibility. However,

complex context representations and large scope is supported although

the current architecture limits the scope by storing context information in

a local database.

The Nexus project [HKL+99] aims at large scale context management

supporting highly dynamic and complex context information. A

federation is used to combine context models into one global spatial world

model providing applications with a uniform view on the spatial world

model. A standard class schema provides a common semantics across the

federated context models. Besides context queries, spatial events are

supported as well as context‐aware communication, such as hoarding

[BMR04] and geocast [DR03]. A deeper discussion of Nexus is presented

in Chapter 6.

Recent research at IBM T.J. Watson addresses similar goals as Nexus.

However, there are only aspects published, such as requirements

[LSD+02], an event specification language [CLC+02], and an overall

architecture [CPW+02]. The context representation and the semantics are

 40

not predefined by the system allowing application specific context to be

managed.

Project Specialization Dynamic Complexity Scope

Guide Generic

HTML-like

object

structure

Extensible

models

Cell-based

granularity

City center

Aura CIS Generic in the

Aura context

model

Dynamic

(e.g., position

information)

Hybrid location

model (2D)

Not restricted

Location

Stack

Tailored

towards

location

management

Highly

dynamic

Uses (some)

complex models

for fusion

Not restricted

Context

Toolkit

Generic as

long as

widgets are

provided

Dynamic,

tailored

towards

sensor

integration

No underlying

model; mainly

sensor

abstraction

Not restricted

REAL Fixed models

for context

representation

Rather static Indoor: 3D;

Outdoor 2D

Models

Only restricted by

local database

Nexus Generic; an

extensible

class schema

models

semantics

Highly

dynamic

(sensor

integration)

plus static

objects

Hybrid 2D-2,5D

Models

Indoor, Outdoor;

targeted at global

scope

Table 2.3: Examples of context models

So far, we have discussed related work in infrastructure‐based systems.

There are so far only few examples for context services in ad hoc systems.

The Nexus project starts to explore context management in ad hoc

systems. Besides of that, there are mainly location services used for

routing protocols representing adaptation by application in ad hoc

systems, e.g., the Grid Location Service [LJD+00] or the location service of

 41

DREAM [BCS+98]. Another example is the Usenet‐on‐the‐fly [BBH02]

presented in Chapter 4, which manages information propagation with

spatial scope in an ad hoc network.

We will now present the related work in the dimension of adaptation by

system split into approaches relying on an infrastructure, i.e., smart

environments, and approaches in ad hoc based networks.

2.6.2. Smart Environments

Prominent examples for adaptation by system relying on an infrastructure

can be found in Pervasive Computing, where smart environments manage

the functionality of a distinct spatial area. The smart environment offers

basic services for devices to register their services with the SE and to look‐

up resources required for their execution. This is typically allowed

dynamically in order to support spontaneous networking. Interaction

between the devices without the SE is not supported. Although this allows

keeping the memory footprint on the participating devices small,

communication and interaction is always mediated via the SE. This may

lead to higher energy consumption than necessary if the device/service of

interest is nearby and to performance bottlenecks. The larger the spatial

area a SE controls gets the more devices interact. Scalability is an issue in

this domain. However, most existing approaches either focus on a

spatially restricted area – typically of room size – or support only a more

or less fixed set of services and thus restrict the possible traffic.

Examples for this domain are Aura [GSS+02], Gaia [RC00], iROS [JFW02]

to name a few representatives. In contrast to Aura the system model of

Gaia, and iROS mostly address room‐size smart environments.

Applications adapt initially to the services available in the SE. Further

 42

adaptation is supported on different levels. Gaia offers an application

model that is a variation of the model‐view‐controller pattern and

mediates between the state, the presentation, and the processing of an

application. Adaptation mechanisms can be applied to a coordinator

component which may react to resource changes. An initial mapping of an

application to a specific smart environment is provided by a scripting

language. iROS introduces a coarse grained application model where the

distributed parts of an application in a SE are basically self‐contained

applications that make use of additional functionality. A so called event‐

heap – a tuple space with an aging mechanism – allows applications to

request services. The requests are purged via the aging mechanism when

no suitable service is available.

Aura addresses context‐aware applications for larger spatial areas than the

aforementioned projects. A context information service [JS03] provides

information about the physical space and the users as well as the

computational entities and their network connection. Applications are

formed by tasks which capture the user’s intention and provide automatic

adaptation by the system based on the information of the context service.

The concrete evaluation of the user’s intention and the mapping onto tasks

is on‐going research.

2.6.3. Adaptation by System in Ad Hoc Networks

Ad hoc based system support with application adaptation by system leads

to Peer‐to‐Peer systems where nodes in the ad hoc network interact as

equal peers. Reflecting the asks of a smart environment in a Peer‐to‐Peer

(P2P) based organization means that there is no central control mediating

the discovery, composition, and execution of an application. This class of

systems seems promising, since the spatial relevance of information can be

easily reflected by the typically spatially restricted wireless

 43

communication. There is no need for central directories and

communication is not routed via a potential bottleneck. Interaction with

services being open to the public can be easily established on a Peer‐to‐

Peer base allowing users to access public services in different

administrative domains, e.g., a floor‐plan or indoor navigation system.

However, security is also an issue in Peer‐to‐Peer Pervasive Computing,

because there is no central control and many of the participating devices

may not be capable of executing powerful encryption algorithms because

of the involved effort in calculation.

To the best of our knowledge, there are only few projects contributing to

Peer‐to‐Peer Pervasive Computing. The MIT Pebbles project is addressing

a P2P based approach but requires a central instance to execute the

planning algorithms for the assignment of tasks to devices. However, the

project is still at an early stage [Pebbles] and the composition of an

application relies on more than local knowledge and a central evaluation

in order to map the application onto the devices in the P2P network. The

Reconfigurable Context‐Sensitive Middleware (RCSM) [YKW+02] is also

contributing to Peer‐to‐Peer Pervasive Computing. In contrast to the MIT

Pebbles, BASE [BSG+03] and PCOM [BHS+04], RCSM relies on a

specification of context information which is used for service specification

and selection. The work presented in [FHM+04] addresses similar

objectives as BASE and PCOM. However, the support for restricted

devices is limited since an existing component model (OSGi) is extended

for spontaneous networking. The support for reselecting components is

comparable to the adaptation of communication in BASE. Using

application knowledge represented in contracts like in PCOM is not

considered.

 44

To sum up, context‐aware computing has matured in the past years and a

variety of concepts and architectures are being explored in different

projects. However, there are to the best of our knowledge only few to none

projects addressing ad hoc based support with adaptation by system so

far, although this class of support for context‐aware computing seems

promising for a variety of reasons, e.g., the integration of applications into

smart environments as well as interaction between devices in the absence

of a smart environment. This thesis contributes in particular to this

research area.

2.7. Contributions contained in this thesis

The contributions of this thesis address several classes of system support

for context‐aware computing as depicted in Table 2.4. Chapter 3

contributes to systems supporting adaptation by application by providing

a thorough discussion about properties of location models, which are

required for the underlying spatial structure of context models. Chapter 4

and 5 address support for adaptation by application in ad hoc systems.

First, a novel application for information exchange in ad hoc networks is

presented along with the underlying data dissemination algorithm.

Second, an improvement of the underlying data dissemination algorithm

in order to support frequently partitioned networks is presented. The

integration of different context‐models is the focus of Chapter 6 where the

integration of Georgia Tech’s Aware Home context server into the Nexus

platform is described.

Chapter 7 to 10 address an important area of adaptation support by

system in ad hoc systems: Peer‐to‐Peer Pervasive Computing.

Requirements on system support, a middleware platform, a lightweight

component model, and experiences are the contributions of these chapters.

 45

In the remaining part of this chapter, the contributions of the following

chapters are presented in more detail.

Table 2.4: Contributions of this thesis

Chapter 3: On Location Models for Ubiquitous Computing

Location models play an important role for context services. The structure

of the context model has to support relations between locations in order to

allow for queries, such as position, nearest neighbor, and range queries.

This chapter first provides an overview of application requirements and

motivates why these kinds of queries have to be supported in order to

support context‐aware applications.

Properties of coordinates, symbolic as well as geometric, are discussed.

The main contribution of this chapter is the discussion of different models

for pure symbolic location models and the integration into hybrid location

models, i.e., combined models which allow geometric and symbolic

coordinates for the reference of locations. The discussed approaches to

location modeling are set‐based, graph‐based, and hierarchy‐based along

 Adaptation by System Adaptation by Application

Infrastructure Smart Environments

Infrastructure‐based Context

Service

Chapter 3

Chapter 6

Ad hoc Peer‐to‐Peer Pervasive

Computing

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Ad hoc based Context‐

Services

Chapter 3

Chapter 4

Chapter 5

 46

with their extension to hybrid location models by attributing locations

with geometric coordinates. The chapter also provides a classification of

possible approaches to location models and their assessment along the

criteria of supported queries and the involved modelling effort.

Chapter 4: Usenet-on-the-Fly: Supporting the Locality of

Information

Support of adaptation by application requires some kind of notion about

the relevance of information and services in order to allow applications to

choose appropriate services and information. One natural way to reflect

the local relevance of information is to restrict its dissemination to a

distinct scope. The underlying assumption is that users are more

interested in information and services nearby than in far‐away ones.

This chapter contributes a novel application making use of the underlying

ad hoc network characteristics. Information is exchanged between mobile

nodes, which form a mobile ad hoc network, whenever two nodes are

communication range. Users subscribe to information channels, similar to

the UseNet, and the application synchronizes the local databases with

nearby nodes. Such a system can be applied in many settings where

information is of interest but not worth connecting to an infrastructure,

such as a menu of the day of a restaurant or public transport schedules in

the vicinity of a transportation platform. The information is collected by

the underlying system and made available to the user by the application

interface. Filters can be used to configure channels and topics to be

synchronized.

The underlying three‐way‐handshake protocol is evaluated in order to

show the feasibility of the approach. A prototypical implementation of the

Usenet‐on‐the‐Fly prototype based on the underlying data dissemination

protocol is provided as well.

 47

Chapter 5: Data dissemination in Frequently Partitioned

MANETs

This chapter provides an enhancement of the data dissemination protocol

used for the Usenet‐on‐the‐Fly application in Chapter 4. The three way

handshake protocol presented in Chapter 4 negotiates all information

during its lifetime with other nodes. This can lead to a variety of problems

in mobile ad hoc networks. First, bandwidth is consumed to advertise

information to other nodes which already may have the information

blocking other nodes. Second, battery power is consumed for sending

advertisements. Since power is considered a precious resource in

MANETs, an optimization of the dissemination protocol was pursued.

Advertisement messages are split into three classes. The classes relate to

information depending on their freshness to the local node and their

popularity to other nodes. The first class consists of all messages received

until a distinct threshold in time. These messages are considered to be new

and should be propagated to neighboring nodes. The second class is build

from all messages beyond the threshold. They remain in the second class

as long as their popularity is high enough. The popularity is increased

whenever a neighboring node requests the data item after an

advertisement. Messages in this class age into the third class if there was

no request for a longer period of time. The third class of messages contains

the history of messages received. Based on different strategies, e.g.,

randomly or round‐robin, messages of this class are presented to

neighboring nodes. This can help to propagate information across network

partitions. If a message from this class gets requested by neighboring

nodes it may be put into the second class again due to its increased

popularity.

 48

Chapter 6: Frome Home to World – Supporting Context-Aware

Applications through World Models

Capturing and managing context information can be a time and cost

consuming task. Obviously, sharing context information is a way to

distribute the costs over multiple applications or at least to justify the

effort. So far, there are little experiences in combining context models and

assess where specific context models for a distinct domain can be reused

in other domains or at least allow for an integration.

An initial assessment from two perspectives of context management is

presented in Chapter 6. A context server from a smart environment

domain – the Georgia Tech’s Smart Home Spatial Server (AHSS) – was

integrated into the federation of the Nexus platform.

Nexus AHSS

Open Platform

Support for arbitrary context-aware

applications

Common semantics via standard class

schema

XML-based query and modeling language

Tailored toward Aware Home applications

No explicit semantic

Interoperability via the Internet Inter ORB

Protocol (IIOP)

Table 2.5: Objectives of Nexus and AHSS

Table 2.5 lists the different objectives of the AHSS in contrast to Nexus.

While Nexus was designed a priori to support arbitrary applications with

context information the AHSS was tailored to the needs of Aware Home

applications. A use‐case analysis showed that standard databases are

sufficient for the context information necessary in the smart home. A

spatial database was used to allow querying for location as primary index.

No explicit semantic was modeled, since the members of the Aware Home

project were assumed to keep track of the semantics of the individual

applications. In contrast to that the Nexus platform provides a common

class schema which provides a basic semantic across all context servers

 49

integrated in the federation. Extensibility of the so called standard class

schema allows application specific extensions.

The semantic modeling of the Nexus platform is represented in its context

modeling language (Augmented World Modeling Language, AWML) and

its query language (Augmented World Query Language, AWQL) as well.

The AHSS relies on SQL‐queries which are dispatched to the AHSS via

CORBA’s interoperability protocol IIOP.

The integration of the AHHS into the Nexus platform logically means to

register a context server that provides a spatial model for a distinct

geographic area (the Aware Home’s spatial extension) and provide all

context types which are provided. This enables the Nexus federation to

select context servers based on the geographic area and context types

requested by applications.

Technically, this resulted in mainly two changes with respect to the

integration of the context data and processing queries. A wrapper was

provided which parsed queries from the Nexus federation in AWQL and

mapped it onto the AHSS context model. Therefore, an integration of the

data provided by the AHSS into the common class schema was necessary.

The experiences gathered from this experiment showed, that the

integration of the AHHS into Nexus was possible without any changes in

Nexus at all. The necessary wrapping of the AHSS with respect to the

query processing and context model could be realized based on standard

components available for the Nexus platform. The only task which –

obviously – required a deeper understanding of the AHSS context model

was the integration of the context data stored in AHSS into the common

class schema. But if this task is done once, every extension in the AHSS’

context model becomes available for Nexus applications as well.

 50

Chapter 7: Middleware and Application Adaptation

Requirements and their Support in Pervasive Computing

The classification of system support for context‐aware computing has

shown that the area of adaptation by system in ad hoc settings is only

addressed by few projects so far. Chapter 7 identifies this research area

and provides application scenarios and a system model. Based on these,

requirements are derived and discussed with respect to their relation to

middleware support or application support.

Namely, applications have to adapt whenever a service or a local resource,

such as a GPS sensor, fluctuates in quality or availability. This leads to the

requirement of uniform programming abstractions in order to provide a

comprehensive framework for applications in order to adapt to these

changes. The requirements on system software thus contain a uniform

abstraction to applications for the access to remote services and local

resources as well. Monitoring of local resources and device and service

discovery has to be provided flexibly enough to support a variety of

transport protocols and service discovery protocols along with different

resource characteristics.

The most notable requirement stated is the decoupling of the

communication model of application and interoperability protocol. Nearly

all existing middleware platforms today reflect the communication pattern

of the application, e.g., Remote Procedure Call, in the corresponding

interoperability protocols, e.g., by using request‐/response‐messages over

a the same communication channel. The characteristics of ad hoc networks

impose problems here, since the spontaneous network connection

between peers can break during interaction. However, many mobile

devices are equipped with more than one communication module, e.g.,

infrared, Bluetooth, or 802.11. As long as there is one communication link

between two devices, communication can take place. This requires

 51

switching the communication link and potentially the protocol stack of the

interoperability protocol during an interaction, e.g., send a request via a

SOAP stack using 802.11 and receiving the response via an event‐based

protocol on Bluetooth. Obviously, the communication model of the

application stays a remote procedure call but the communication model of

the interoperability protocol changes during interaction. This requires a

flexible middleware architecture that provides advanced synchronization

mechanisms. This middleware is presented in the next chapter.

Chapter 8: BASE – A Micro-Broker based Middleware for

Pervasive Computing

As stated in Chapter 7, the area of adaptation by system in ad hoc systems

is little explored. Chapter 8 picks up the requirements from Chapter 7 and

presents a micro‐broker based approach for a flexible and extensible

middleware platform. The heterogeneity of devices with respect to their

resources leads to the first design goal of minimalism and extensibility, in

order to support resource‐restricted devices as well as to make use of

resources on more powerful devices. This is realized by using a micro‐

broker design. The micro‐broker only provides mechanisms to dispatch so

called invocations to corresponding plug‐ins, synchronize the invocations

according to the application communication model, and allow to install

and remove plug‐ins. This offers a small memory footprint, since only

required plug‐ins have to be installed. Additionally, the abstractions

provided to the application are the same for dispatching invocations to

device‐local resources as well as to transport plug‐ins which transmit an

invocation to a remote device. The design of the plug‐ins represents

transport plug‐ins as well as device resource plug‐ins as invocation

consuming entities. Possible results are sent back to the micro‐broker as

different invocations, indicating correspondence to the id of the prior

 52

invocation. This allows the micro‐broker to synchronize invocations

independent of the protocol used in the transport plug‐ins. Moreover, the

transport plug‐in receiving the first invocation can be different from the

one receiving the corresponding invocation, e.g., for a result. This allows

the system to adapt to the availability of communication protocols

between two devices without requiring the application to deal with the

resulting problems, e.g., messages losses or blocking calls.

BASE meets the requirements stated in Chapter 7. The memory footprint

of approximately 130 KBytes seems promising even on embedded

systems. However, the abstractions provided to the application

programmer require engineering adaptation support to single resources.

Hence, an adaptive application has to provide adaptation support based

on the resources it utilizes. Namely, a callback to handle unavailability has

to be provided and in case one or more resources fail or become available

the programmer has to provide logic in order to react accordingly. The

different levels an application can run on based on the resources available

are thus represented in the adaptation code. Clearly, this is no support for

adaptation by system. In order to provide higher abstractions for

application programmers, PCOM – a component system based on BASE –

was developed, which is presented in the next chapter.

Chapter 9: PCOM – A Component System for Pervasive

Computing

As mentioned above, BASE offers flexible support for interoperability in

ad hoc networks. Context is represented by the spatial proximity of

devices, which is reflected by their wireless communication. The

communication between peers in such a network is automatically adapted

in order to allow communication over arbitrary communication

technologies and protocols. The programming abstractions of BASE

 53

require application programmers to reflect the configurations of an

application explicitly in the code depending on the resources available in

the current execution environment.

PCOM was designed to ease the implementation of applications that

adapt to different configurations depending on the available resources.

The key concept in PCOM is to represent the dependencies between

components in an application explicitly. Based on this information the

system is enabled to provide means for adaptation, e.g., when a

component becomes unavailable another suitable component is searched

for and ‐ if available ‐ integrated into the application.

PCOM relies on the concept of a component container which manages the

lifetime of an application. An application is composed of components,

which may interact across device boundaries, but are atomic with respect

to their distribution, i.e., a component itself is executed in one container.

Components specify their dependencies to other components and to the

underlying computing platform via contracts. Contracts thus capture

required components and resources of the device a component is executed

on. An application is modeled starting from a root component along the

dependencies to components required for the execution. An application is

specified by the resulting tree of components along their dependencies.

PCOM containers are based on BASE and thus are able to discover

themselves and communicate. The containers exchange information about

the contracts they can offer to other containers based on the components

installed.

Adaptation in PCOM is supported by three means. When a contract

changes, i.e., a component contract breaks, a callback is called. In this

callback three different options can be taken. First, the component which

depended on the contract can stop its operation, breaking its contract, and

thus escalating the handling up the tree. Second, the component can

 54

choose to reselect the dependency to another component which is

automatically handled by the PCOM container, and third, a component

may choose to provide individual handling.

Together with BASE, PCOM provides system support for adaptation in

highly dynamic environments, as they are present in ad hoc based

environments, such as Peer‐to‐Peer Pervasive Computing.

Chapter 10 : Experiences – Extensibility and Flexibility in BASE

This chapter discusses experiences gathered when BASE was ported to a

small embedded Java microprocessor and during the design and

implementation of PCOM.

Initially, BASE was designed to work on resource‐restricted devices. Based

on the Java 2 Microedition the Connected Device Configuration (CDC)

was chosen. Although this configuration already restricts many features of

the Java programming environment, there are two features available that

are not supported on the even more restrictive Connected Limited Device

Configuration (CLDC), namely serialization and dynamic class loading.

The required changes during the port did not affect any conceptual design

decision. Dynamic class loading could be omitted by providing a

graphical editor to programmers to customize a BASE configuration.

Automatic loading of required plug‐ins is a feature which helps

programmers in dynamic and resource‐rich environments, but typical

devices running the CLDC are fixed with respect to their resources. Hence,

a static configuration can be provided. Object serialization is a powerful

concept that eases the exchange of objects across devices realizing

presentation layer issues. We are using a mechanism quite similar to the

serialization concept provided by Java. Each object has to provide a

serialization method which provides means to serialize the attributes of an

object.

 55

Even more convincing experiences were collected when designing PCOM

on top of BASE. There were no changes necessary in the implementation

or design of BASE. PCOM was realized as a service using the underlying

abstractions for service and resource usage as well as the signaling

mechanisms to indicate availability or unavailability of services and

resources. There are only two modifications made in BASE in order to

improve performance. The proxies for PCOM components directly inherit

from the corresponding BASE proxies in order to avoid a call through an

indirection layer. PCOM uses the BASE registries for remote devices in the

execution environment directly and not through the proxy. This also saves

one indirection through a proxy.

Most notable, the abstractions provided by PCOM could be realized in

about 30KBytes leading to an overall size of 160 KBytes for BASE and

PCOM.

 56

3. On Location Models for Ubiquitous Computing
Common queries regarding information processing in

ubiquitous computing are based on the location of physical

objects. No matter if the next printer, next restaurant, or

friend is searched for, a notion of distances between objects is

required. A search for all objects in a certain geographic area

requires the possibility to define spatial ranges and spatial

inclusion of locations. In this chapter we discuss general

properties of symbolic and geometric coordinates. Based on

that, we present an overview of existing location models

allowing for position, range, and nearest neighbor queries. The

location models are classified according to their suitability with

respect to the query processing and the involved modeling

effort along with other requirements. Besides an overview of

existing location models and approaches the classification of

location models with respect to application requirements can

assist developers in their design decisions.

3.1. Introduction

Location plays an important role in the domain of location‐aware and

context‐aware systems. Especially in the ubiquitous computing domain

location is commonly considered to be an important source of context

[Sch95] but not the only one [SBG99]. However, whenever applications or

users are interested in objects depending on their location or spatial

relationship location models are required in order to provide notions

about distances or ranges. This chapter presents an overview of possible

approaches, discusses existing work, and classifies the approaches and

existing work according to their suitability to allow for range and nearest

neighbor queries.

 57

Information about locations is presented in different formats. Geometric

coordinates as they are used by GPS refer to a point or geometric figure in

a multi‐dimensional space, typically a plane or a three‐dimensional space.

The topological properties of such a space allow the calculation of

distances between locations and their inclusion in other locations.

Symbolic coordinates on the other hand do not provide any reasoning

about their spatial properties (distance and inclusion) without any

additional information. Such coordinates are available via cell‐ids in

cellular networks, such as GSM or wireless LAN, as well as via other

positioning technologies, such as radio frequency tags (RF ids) or infrared

beacons.

Examples for the use of location information in applications are navigation

services or location‐based information systems, which select services

based on their spatial proximity, e.g., the nearest printer, or notify when

some events occur in the vicinity, e.g., a friend appears or an accident

happens.

In order to allow such applications based on symbolic coordinates, a

notion of spatial relations such as distance and inclusion is required. This

information has to be modeled explicitly in a location model.

In this chapter we will discuss general requirements on location

management and derive three types of queries – position, nearest

neighbor, and range ‐ which should be supported by location models. The

properties of symbolic coordinates are discussed in general. Based on

these properties different kinds of location models are discussed and

classified along their suitability to support the queries.

3.2. System Model

Our system model consists of three kinds of components (cf. Figure 3.1):

The location model is the central part of our system model. It stores

representations of static and mobile real world objects like representations

 58

of buildings and people, respectively. It is not the focus of this paper to

describe how these objects are managed by an infrastructure, but we

concentrate on the typical properties of the different kinds of location

models. Examples of such location models are the Nexus platform

[HKL+99, NGS+01], the context information server [JS03], or the guide

project [CDM+00b].

Location Model
-Positions of mobile objects
- topological informations

Applications

Position Updates

Position-, Range, Nearest Neighbor Queries
Navigation,Visualization Information

Figure 3.1: System model

Applications query the location model in order to carry out different tasks

like navigation (see next section). They also update the location model,

e.g., by inserting new objects into the model, deleting old objects, or by

altering existing objects whose state has changed. For the context of this

paper, we are interested in the different kinds of queries and tasks that are

carried out by these applications because they determine the internal

structure and organization of a location model. As will be shown later in

this paper, the suitability of a location model for distinct queries depends

on its internal organization. This is especially of interest, when a location

model is not tailored towards a single application or domain but should

manage information for a variety of applications and their potentially

diverging requirements.

 59

Positioning systems update position information of mobile objects like

persons or cars. The output of these systems also influences the location

model as we will see in the next section. However, the multitude and

variety of positioning systems and its discussion is beyond the scope of

this paper. For the remaining part of this paper we will assume that a

positioning system allows a mobile object or tracking system to issue a

position update with a coordinate identifying a location to the location

model. This is sufficient for the discussion of the properties of location

models. However, the interested reader can find an overview of different

positioning systems in [HB01]. Fusion aspects of different positioning

systems into a common location framework are presented in [HBB02]. In

the following, a brief overview of the properties of coordinates as they are

provided by current positioning systems is presented.

3.2.1. Basic Properties of Coordinates

A coordinate x is an identifier which specifies the position of an object with

respect to a given coordinate system. A coordinate system is a set X of

coordinates. Some examples for different kinds of coordinates and

coordinate systems are:

• Geographic coordinates in the WGS84, used by the GPS, are

expressed as triples containing the geographic longitude, latitude,

and the elevation above main sea level.

• The Active Bat System [WJH97] is a high‐resolution indoor

positioning system providing three‐dimensional coordinates – i.e.,

x, y, z value ‐ with respect to a local Cartesian reference system.

• The Active Badge System [WHG92] provides symbolic identifiers

for locations via infrared. Coordinates are the symbolic identifiers

of the fixed IR sensors registering the users’ active badges that

transmit a unique identifier.

 60

Two basic classes of coordinates can be identified from these examples:

geometric and symbolic coordinates.

3.2.2. Geometric Coordinates

Geometric coordinates define positions in the form of coordinate tuples

relative to a reference coordinate system. We further distinguish global

and local geometric coordinate systems. The World Geodetic System 1984

(WGS84) is a global reference system and thus can be used to define

coordinates anywhere on this planet, whereas the Cartesian coordinates of

the Active Bat System are typically only valid locally, e.g., in one room

equipped with such a system.

Geometric coordinates can be used to calculate the distance between two

geometrically defined positions. Through geometric operations it can also

be determined if two areas overlap, touch each other, or one area contains

the other, i.e., topological relations like spatial containment can be derived

from the geometry of objects. Hence, geometric coordinates already allow

simple spatial reasoning.

3.2.3. Symbolic Coordinates

Symbolic coordinates define positions in form of abstract symbols, e.g., the

sensor identifiers of the Active Badge system, or room and street names,

etc. In contrast to geometric coordinates, the distance between two

symbolic coordinates is not implicitly defined. Also topological relations

like spatial containment cannot be determined without further

information about the relationship between symbolic coordinates.

Symbolic location models provide this additional information on symbolic

coordinates.

 61

3.3. Requirements for Location Models

In order to derive requirements on location models and discuss their

properties with respect to the organization, we will motivate queries to

location models from the perspective of users and applications. Besides

position queries, which are obviously needed in location‐based

applications, the necessity of nearest neighbor and range queries is

motivated. This will serve as foundation of the later classification of

location models. The choice of a distinct location model will dependent on

the queries required by applications. Therefore, we have to consider these

queries and tasks in order to assess the functional requirements for

location models.

3.3.1. Position Queries

The determination of the positions of mobile and static objects like users,

buildings, bus stops, etc. is a common building block of location‐based

and context‐aware systems. The tasks described below cannot be carried

out without the known positions of objects. Therefore, all location models

contain this information, but they differ in the way it is represented.

The definition of a position requires some form of coordinates. Based on an

object’s position actions can be carried out, such as teleporting the user’s

interface [WJH97], controlling the input and output of applications to

arbitrary spaces in the physical environment via projection techniques

[PPL+03], or in industrial settings, such as a smart factory [BJR+03], the

positions of resources and tools can be monitored in a production

planning system. Such systems require a common interpretation of the

coordinates in a specific global coordinate system. Within moving objects,

such as trains, local reference systems can help to address objects, such as

travelers with respect to their compartment in the train and not their

absolute position to the ground.

 62

This shows that a general location model has to support different coordinate

reference systems, global and local ones.

Beside well‐known geometric coordinates, some positioning systems

provide symbolic coordinates, e.g., the cell id in a cell‐phone network or

identifiers of infrared beacons, and often these symbolic coordinates can

be interpreted more intuitively by users than geometric coordinates. Later

we will show, how simple symbolic location models can be set up

allowing for spatial reasoning with low modeling effort. Therefore, this

kind of coordinates has to be supported as well.

3.3.2. Nearest Neighbor Queries

A nearest neighbor query is the search for the n objects closest to a certain

position. For instance, a user can search for the nearest restaurant with

respect to his current position, or the next printer. Beside known object

positions, the definition of a distance function on the coordinates is required

for this type of queries. For geometric coordinates, the direct physical

distance between two positions can be calculated using well‐known

formulas like Pythagoras in Cartesian systems. If only symbolic

coordinates are modeled then the model must contain explicit definitions

of distances between these coordinates, e.g., to define the distance

between room number X and the printers in the rooms number Y and Z,

since symbolic coordinates do not contain a natural embedment into a

metric space.

There are other notions of distance that are often more relevant than the

direct physical distance. For instance, for a pedestrian it might be

impossible to cross a highway. Therefore, a restaurant across the highway

with a direct physical distance of 100 m might be farther away than a

restaurant with 200 m direct physical distance not located across this

highway. In these cases additional model information like the road

 63

network a user uses to get from location A to B has to be taken into

account. For such more complex nearest neighbor queries, this leads to

similar requirements as for navigational tasks described in the next

subsection, because “paths” between locations have to be found and their

“lengths” have to be compared.

To sum up, a notion of “distance” is required in many context‐aware or

location‐based systems. An explicit location model is required for

symbolic coordinates as they do not provide implicit distance functions.

Systems based on geometric coordinates can benefit from such a model as

well, as spatial restrictions can be modeled, e.g., road networks.

3.3.3. Navigation

Navigation systems become standard equipment in nowadays cars. Such

systems require a location model to find paths between locations. Possible

paths are defined by the transportation network (roads, train or bus

routes, etc.) and consist of several interconnected locations. This means, it

does not suffice to know the geometry e.g., of roads, but it is also

important to know how to get from one location to neighboring locations,

e.g., from one road segment to another road segment at a junction, and

finally to the destination. Therefore, the topological relation “connected to”

has to be modeled that describes these interconnections between

neighboring locations (cf. Figure 3.2).

s1 s2

s3

s4

s1 s2

s3

s4

connected to

length=150m

length=120m

length=80m
length=
200m

Figure 3.1: Road geometry (left) and road topology (right)

There are different kinds of navigational tasks, e.g., finding the shortest

path or the fastest path. Finding for instance a suitable path for a person in

 64

a wheelchair requires additional information about locations, e.g.,

staircases or elevators. Therefore different attributes need to be modeled

to implement these variants, e.g., the distance that has to be traveled to get

from one location to another location, the maximum allowed speed on a

road segment, the presence of stairs, which cannot be used with a

wheelchair, etc. Even highly dynamic information like the current traffic

situation on a road can be part of the model. In general, this means

modeling some kind of weight on path segments. The “length” of a path is

then calculated by summing up the weights of each path segment.

3.3.4. Range Queries

A range query returns all objects within a certain geographic area. It can

be used for instance to query the occupancy of a room as well as for a

check whether an evacuation plan is processed correctly, i.e., if a room is

empty before the fire doors are closed and sealed. Also, simple algorithms

for new types of communication can be implemented on the basis of range

queries, e.g., geocast [DR03], i.e., the sending of messages to receivers in a

certain geographic area. First, a range query can be used to determine all

receivers in the target area of the message. Secondly, the message is sent to

these receivers, e.g., using multiple unicast messages.

First of all, object positions have to be known to answer a range query.

Additionally, the topological relation “contains” has to be modeled, i.e., it

has to be defined whether a coordinate lies within a spatial area. For

geometric coordinates, this information can be derived from the known

geometry. But for symbolic coordinates, this relation has to be defined

explicitly. For instance, a model can define that the room 2.062 is on

(“within”) the second floor that in turn is part of (“within”) a certain

building, etc. Thus, querying for a larger area automatically includes all

objects from locations that lie within that area.

 65

3.3.5. Visualization

Drawing maps is one of the most obvious application of location models.

Maps can be used for many different tasks like positioning, navigation,

etc., which we have already described in the subsections above. A map

helps the user to execute these tasks manually or it is used to display the

results of these tasks if they are carried out automatically. All model

information introduced above can be visualized, but usually a map is

drawn, which requires a more or less detailed geometric representation of

these objects, depending on the desired level of detail (see below).

3.3.6. Requirements

From the use cases presented above, the following requirements for

location models can be derived. Note, that not all of these requirements

have to be fulfilled at the same time. However, being aware of the

application requirements is crucial in order to choose the appropriate

location model organization.

Based on position, nearest neighbor, and range queries it can be concluded

that a location model should provide:

• Object positions: Positions of objects have to be modeled in form of

coordinates. Supported coordinates and reference systems are

o Geometric and symbolic coordinates

o Multiple, local and global coordinate reference systems

• Distance function: Distances between spatial objects have to be

modeled. This can also be the “size” of a location, e.g., the length of

a road segment, which represents the distance one has to travel

when crossing this location in order to reach another location.

• Topological relations: The following topological relations between

spatial objects have to be modeled:

o spatial containment in order to allow range queries, and

 66

o spatially connected to for navigation services.

Furthermore, the position of objects alone is not sufficient for some

applications which also require the direction of a moving object or the

orientation of a user, e.g., in order to provide information about the

building a tourist looks at.

• Orientation: In addition to positions of mobile objects, the

orientation in the horizontal and/or vertical dimensions can be

supported.

These requirements have to be regarded in conjunction with the

requirement of minimal modeling effort. There are different factors that

influence the modeling effort:

• Accuracy: The model should describe the real world as accurately as

possible, i.e., the stored information should be consistent with the

real world. Accuracy is not a question of the model type but of how

the model is created and updated and of the dynamics of the

modeled objects: Highly dynamic objects require high update rates,

e.g., highly mobile objects will have to update their position

frequently to get accurate position information. These issues are not

the focus of this paper, and therefore accuracy will not be

considered any further.

• Level of detail: The level of detail describes the precision or

granularity of the model. Fine‐grained models describe locations

down to room level or below; coarse‐grained models stop at

buildings or larger. A flexible model allows both ends of the scale.

• Scope: The scope is the area covered by the model. Local models

may only describe one single room, whereas global models at the

other end of the scale describe locations all over the world.

The two last items are intimately connected. Highly detailed models

usually only describe small parts of the world, because they require high

 67

modeling effort; coarse‐grained models may have a larger scope

[RDD+03]. Also the architecture used to manage the model plays an

important role for the level of detail and scope. A federation of highly‐

detailed partial models with limited scope can be used to extend the scope

of the (federated) model and make highly detailed global models feasible

[NGS+01]. In this paper we do not consider how location models are

management, but we concentrate on the general properties of the different

kinds of location models. The following discussion first addresses location

models for geometric and symbolic coordinates. Then the integration of

geometric coordinates into symbolic location models leading to hybrid

location models is discussed. Based on this discussion a classification of

the general approaches is presented and existing work is classified.

3.4. Geometric Location Models

Geometric models describe locations by geometric figures. If not only

global coordinate systems are to be used but also local ones, the position

and orientation of local systems with respect to other local systems or the

global system has to be defined in order to translate coordinates of one

system to other systems.

On the basis of geometric coordinates the topological relation “contained

in” can be derived. In contrast to the containment relation, the ”connected

to” relation modeling e.g., doors connecting rooms cannot be derived from

location geometries. This relation has to be modeled explicitly. If this

information is modeled, it can be used to improve the notion of distances,

e.g., by incorporating the distance a user has to travel in contrast to the

direct distance reflected by the underlying geometry. However, it is also

reasonable for a geometric location model to store the spatial containment

relation explicitly since geometric operations are costly.

 68

3.5. Symbolic Location Models

In this section we describe different types of symbolic location models and

discuss their suitability for the different types of queries described in the

requirements section of this paper. Set‐based, hierarchical, and graph‐

based models are presented.

3.5.1. Set-based Model

A set L of symbolic coordinates forms the basis for the set‐based approach.

Locations comprising several symbolic coordinates are defined by sub‐sets

of the set L. As a simple example consider a building with several floors.

The set L consists of all room numbers of this building. The second floor as

shown in Figure 3.3 can be modeled by the set Lfloor2 = {2.002, 2.003, …,

2.067}. Further arbitrary locations may be defined, e.g., the locations A =

{2.002, 2.003} and B = {2.003, 2.005} in Figure 3.3.

Figure 3.3: Set‐based location model

This model can be used to determine overlapping locations and as a

special case of overlapping locations the containment relation by

calculating the intersection of two sets L1 and L2. If L1 ∩ L2 ≠ ∅, then L1 and

L2 overlap. If L1 ∩ L2 = L1, then L2 contains L1. Thus, this model can be used

for range queries where the range is defined by one set R of symbolic

coordinates, and all sub‐sets of R define locations within R.

 69

This model can also be used to express a simple qualitative notion of

distance between symbolic coordinates by modeling sets of “neighboring”

symbolic coordinates, which we call neighborhoods (by Lcon we denote the

set of neighborhoods). For instance the sets A and B in Figure 3.3 as well as

the set Lfloor2 defined above are such neighborhoods in Lcon. Distances

between the symbolic coordinates x, y and x, z are compared as follows:

)(),d(),d(212211con21 LLLzLxLyLxLLLzxyx ⊂→∈∧∈∧∈∧∈∈∀∃⇔<

That means, the two smallest neighborhoods containing x,y and x,z,

respectively, define the distance from x to y and x to z. Consider for

instance the three symbolic coordinates 2.002, 2.003, and 2.006. d(2.002,

2.003) < d(2.002, 2.006) because A (the smallest neighborhood that contains

2.002 and 2.003) is a proper subset of Lfloor (the smallest neighborhood that

contains 2.002 and 2.006 in our example). To achieve a fine distance

granularity, neighborhoods can be defined for each pair of directly

connected locations, e.g., rooms which are connected by a door. For

instance, the locations A and B introduced above are such locations.

Larger neighborhoods are defined recursively by joining smaller

neighborhoods which have non‐empty intersections, e.g., the

neighborhood C = A∪B. By modeling pairs of connected locations, also

possible paths can be derived. A negative effect of this approach is the

huge number of resulting sets and the involved modeling effort.

Beside this qualitative notion of distance, this approach does not permit to

define a quantitative notion of distance, e.g., to make statements like “the

distance between a and b is as long as the distance between c and d”.

Therefore, the support for queries related to spatial distances (e.g., nearest

neighbor queries and navigation) is limited.

In contrast to set‐based location models which do not contain explicit

relations between locations, the following two models, i.e., hierarchical

and graph‐based, model relations between locations.

 70

3.5.2. Hierarchical Models

Hierarchical models consist of a set of locations L. The locations are

ordered according to the spatial containment relation, i.e., a location l1 is

an ancestor of a location l2 (l1 > l2), if l2 is spatially contained in l1. If

locations do not overlap each other this leads to a tree‐based model [JS02].

If overlapping locations are to be modeled the more general lattice‐based

model is applicable where intersections of locations are modeled by

separate locations with more than one parent location [KEG93, DR03].

Figure 3.4 shows an example of such a lattice‐based model. The set of

locations L consists of the building B, the floors F1,…, Fm , two wings W1

and W2, and several rooms R1,…, Rn. The locations FiWj denote

intersections of the floor Fi and the wing Wj. Figure 3.4b also shows the

relationship of the hierarchical models to the set‐based approach.

Locations in the hierarchy can also be interpreted as sets of symbolic

coordinates. Overlapping locations are defined by the intersection of sets.

Therefore, hierarchical models can be seen as a special case of set‐based

models.

F1

F2

W2W1

R3R4

B

B={R ,1 R ,R ,R ,R }2 3 4 5

F =
{R ,R }

1

1 2

F =
{ R }

2

5R ,R ,3 4

W =
{R ,R }

1

3 4

W =
{R ,R ,R }

2

1 2 5

R =
{R }

1

1

R =
{R }

2

2

a) b)

R2

R5

R1

F W =
...

1 1 F W =
{R ,R }

1 2

1 2

F W =
{R }
2 2

5

F W =
{R , }

2 1

3 R4,

everywhere a bcontains
a

b

R =
{R }

3

3

R =
{R }

4

4

R =
{R }

5

5

Figure 3.4: Hierarchical lattice‐based location model

 71

Because the hierarchical models are based on the containment relation

they support range queries naturally. A range is defined by a location in

the hierarchy and the descendants of this location denote locations within

this range.

A simple notion of distance comparable to the one discussed in the

previous sub‐section can also be applied to hierarchical models:

Given three locations l1, l2, l3 ∈ L. Then d(l1, l2) < d(l1, l3), if sup({l1, l2}) <

sup({l1, l3}).

sup({l1, …,ln}) denotes the supremum (least upper bound) of a set of

locations. For instance, the two rooms R1 and R2 located on the same floor

and in the same wing in Figure 3.4 are considered to be closer to each

other than the rooms R2 and R5, which are only in the same wing but on

different floors (F1W2 = sup({R1,R2}) < sup({R2,R5}) = W2). In some situations

this interpretation of distance may be counter‐intuitive. If for instance a

short connection exists between R2 and R5, e.g., stairs, the R2 could be

closer to R5 than to some room located on the same floor and wing as R2.

Hierarchical models provide no means to model interconnections between

locations, and therefore this situation can not be handled adequately. As

for the set‐based approach, this notion of distance is also only qualitative.

3.5.3. Graph-based Model

In the graph‐based approach, symbolic coordinates define the vertices V of

a graph G = (V,E). An edge is added between two vertices if a direct

connection between corresponding locations exists. Edges or vertices can

be weighted to model distances between locations. Figure 3.5 shows an

 72

example of a graph‐based model for the already presented second floor of

a building. In this example the distance between two coordinates is just

the number of hops but with additional information a higher accuracy

could be achieved. [Dro03] gives a deeper discussion of this aspect of

graph‐based models.

Figure 3.5: Graph‐based model

From the construction of the graph it is already clear that a graph‐based

model supports the definition of the topological relation connected to as

well as the explicit definition of distances between symbolic coordinates. It

is therefore well‐suited for nearest neighbor queries as well as navigation.

For the latter the edges or nodes can be further attributed to model e.g.,

speed limits, vehicle restrictions, etc. [VHG+02].

For range queries first the range itself has to be defined, i.e., an area has to

be described within which we want to search for included objects. The

only locations which are explicitly defined in the graph‐based model are

the nodes of the graph, e.g., the rooms shown in the example above. This

is surely a very limited set of ranges. Because the graph‐based model

allows to define a distance between symbolic coordinates this distance can

be used to define ranges. That means, an object is in the area, if the

distance between its position and a reference location is at most the radius

of the area. In Figure 3.5 for instance the white locations are within the

 73

range defined by a reference location marked black and the radius 2, thus

all objects at these locations are within this range. What we are missing is

the possibility to explicitly define bigger locations comprising several

smaller locations, e.g., a whole floor, building, or even parts of a city. In

the next section we will show how this limitation can be overcome by

combining the different types of symbolic location models.

3.5.4. Combination of Graph-based and Set-based

Symbolic Models

Our discussion of the different location models has shown that for

symbolic coordinates the graph‐based approach supports queries based on

distance and the definition of connected locations well, whereas the set‐

based approach can be used for range queries with explicitly defined

locations like floors, building, etc. representing ranges. Therefore, a

combination of graph‐based and set‐based symbolic locations models can

be used to combine the benefits of both types of models.

The set‐based part of the combined symbolic location model consists of a

set of symbolic coordinates. Locations are sub‐sets of this set of locations,

e.g., representing rooms, floors, buildings, etc. This part of the model is

used for range queries as described in the section about set‐based models.

In the graph‐based part of the combined model, locations are connected by

edges if a connection between these locations exists in the real world. For

instance, two rooms will be connected in the graph, if there is a door

between these two rooms; two floors will be connected if stairs lead from

one floor to the other, etc. As mentioned in the previous section, edges can

also be weighted to model different distances. Figure 3.6 shows an

example of the resulting combined model.

 74

floor A.2

floor A.1floor B.1

floor B.2

floor B.3

room A.2.1

building Abuilding B
Figure 3.6: Combined symbolic location model

Besides the already mentioned support for different topological relations

and distances and the range and nearest neighbor queries based on this

information, this model shows another interesting feature. It allows to

generate views with different levels of detail. Figure 3.7 shows three

examples. The first example shows the rooms on one particular floor and

their connections. This view will be used if a very fine granularity is

required, e.g., if we are searching for the next printer. Figure 3.7b shows

only the floors of building A. Floor A.1 and A.2 are connected because

elements of Floor A.1 and A.2 have a connection – e.g., two hallways

connected by an elevator. Finally, Figure 3.7c depicts only buildings and

the paths between them. The latter could be used in a scenario where only

coarse‐grained location information suffices, and so it allows to generate

small models that cover large areas, e.g., a whole city district.

room A.2.1 floor A.2

floor A.1
building Abuilding B

a) b) c)
Figure 3.7: Levels of detail

3.5.5. Summary

We now summarize the properties of the different types of symbolic

location models presented in this section.

 75

symbolic

model type

supported

coordinate

types

modeling

effort2

distance

support

“connected

to” relation

support

containment

relation

support

set‐based symbolic high limited yes good

hierarchical symbolic low to

medium

very

limited

no good

graph‐

based

symbolic low to

medium

good to

very

good

yes limited

combined

(set‐based

& graph‐

based)

symbolic medium good to

very

good

yes good

Table 3.1: Properties of symbolic location models

We see that the graph‐based approach as well as the hierarchical models

support the containment relation well, making them suitable for range

queries. The graph‐based approach is well‐suited for all kinds of queries

where distance plays an important role, e.g., nearest neighbor queries and

navigation. The combined symbolic location model combines the benefits

of all other symbolic model types at the cost of higher modeling effort.

Still the accuracy of the combined model can be further improved by

adding geometric information. The next section presents different hybrid

models, which integrate symbolic and geometric information.

2 Modeling effort is always dependent on the granularity and scope of location

information as stated in the requirements section. Therefore, we give a range here.

 76

3.6. Hybrid Location Models

The combined symbolic location model presented in the previous section

shows how the benefits of set‐based and graph‐based models can be

integrated into a common symbolic model. There are two major

arguments for additionally adding geometric information to such a

symbolic model. First, geometric information can be used to achieve

higher accuracy and precision for all kinds of distance related queries.

Secondly, arbitrary geometric figures can be used for instance to define

ranges for nearest neighbor queries, whereas symbolically defined

locations are always restricted to a given structure.

We distinguish between two types of hybrid location models. The first

approach, which we call the sub‐space approach, stores geometric

information for every modeled location. The second approach only stores

geometric information for some locations, leading to partial subspaces.

3.6.1. Subspaces

The basis for this hybrid location model is a symbolic model like the

combined symbolic model presented in the previous section. Additionally,

the geometric extent of locations is stored in the location model. The

geometric extent can be either defined using a global reference system like

the WGS84 or local reference systems where coordinates are only valid

within a certain scope, e.g., in one building or room. Subspaces are formed

by embedding coordinate systems into other coordinate systems by

defining the position and orientation of embedded systems (a detailed

description of this embedding of subspaces can be found in [JS02]). With

this information, coordinates can be translated from one system to other

systems, and thus coordinates of different systems can be compared.

 77

room 2.1
geometric extent

(polygon)

SB

S2.1

Figure 3.8: Hybrid location model with subspaces

Figure 3.8 shows a simple example of a hybrid location model using

subspaces. The symbolic part of this model is based in a graph defining

the interconnections between the rooms on a certain floor. The extent of

every room is also modeled geometrically using the coordinate system SB

of the building B. Within room 2.1 a local coordinate system S2.1 is defined

that is embedded into the system of building B. The system of building B

in turn may be embedded into a global coordinate system. The known

geometry can be used to define precise distances between rooms.

3.6.2. Partial Subspaces

In contrast to the subspaces approach, the partial subspaces approach does

not assume that the geometric extent for every location is modeled, but

only for some locations. Figure 3.9 shows an example, where a geometric

location model exists for the outdoor domain, but within buildings

symbolic models are used. By linking geometric information to symbolic

locations, the symbolic building models can be embedded into the global

geometric model. The benefit of this integration becomes clear when we

consider a range query with a geometrically defined range, e.g., a polygon

drawn on a city plan. Users within a building may only know a symbolic

position like room 2.1 in building B. Through the known geometric extent

of the building, the user’s position can be approximated geometrically

with the geometry of the whole building. This approximated geometric

position can be compared to the geometrically defined range of the query,

and thus the query can be answered. Of course approximation has its

 78

limitations. For instance, using geometric areas within a building that is

only modeled symbolically first seems to makes no sense. But it remains

an interesting alternative that can be used to reduce modeling effort.

floor 2

floor 1

building B
geometric extent
of B (polygon)

Figure 3.9: Hybrid location model using partial subspaces

3.6.3. Discussion

A summary of the properties of the presented location models is shown in

Table 3.2. In contrast to the purely symbolic models presented in the

previous section, all hybrid models support geometric coordinates as well

as symbolic coordinates. By using geometric information, distances can be

modeled more accurately and precisely.

The spatial containment relationship does not need to be modeled

manually if the geometry of locations is known. This information can be

derived by using geometric operations. Still it makes sense to have a

model that stores the containment relation explicitly to allow for efficient

queries.

Geometric information can also be used to find out whether two locations

lie next to each other, but connections like doors or junctions can no be

derived from geometric information and therefore have to be modeled

explicitly as for the symbolic approaches.

Compared to the subspaces approach the modeling effort can be reduced

by using a partial subspace model where not every location is modeled

geometrically. Still a geometry can be associated with location by using

approximation.

 79

model

type

supported

coordinate

types

modeling

effort

distance

support

“connected

to” relation

support

containment

relation

support

subspaces symbolic,

geometric

high to

very high

very

good

yes (if

modeled

explicitly)

yes

partial

subspaces

symbolic,

geometric

high good to

very

good

yes (if

modeled

explicitly)

yes

Table 3.2: Properties of hybrid location models

3.7. Summary and Classification of Existing Approaches

This section briefly summarizes the properties of the different location

models presented so far. Existing work is classified along the classes of

location models.

Table 3.3 summarizes the classes of location models, their properties and

the existing work.

Since the discussion so far has shown that there is no location model

serving all requirements at a time with similar modeling effort, designers

of location management systems have to choose an appropriate structure

of the underlying location model. Especially, the trade‐off between

supported queries and the involved complexity of the location models has

to be taken into consideration.

Table 3.3 classifies the location models with respect to the supported

coordinate types (sym=symbolic, geom=geometric), the supported queries

(P=position, R=range, N=nearest neighbor), and the modeling effort.

Examples for projects using the location model class are listed as well and

are discussed in the following sub‐sections.

 80

supported

coordinates

supported

queries

sym geom P R N

modeling

effort

projects

set‐based

• Guide [CDM+00b]

• comMotion [MS01]

• QoSDREAM

[NC01]

• ActiveBadge

[WHG92]

• Open Distributed

Office [RLU94]

graph‐based 3

• Aware Home

[ODA01]

• MavHome

[RBB+03]

hierarchical

• MOOsburg

location model

[GSF+01]

• Semantic Spaces

[BS01]

combined

symbolic
 • Active Map [Sch95]

subspaces

(hybrid

model)

 4
• Jiang [JS02]

• Leonhardt [Leo98]

partial

subspaces

(hybrid

model)

• Nexus [BBR01,

DR03]

• Semantic Location

Model [HL04]

Table 3.3: Properties of location models and overview of existing implementations

3 “Range” defined by distance to reference location.

4 If the “connected to” relation is modeled.

 81

3.7.1. Set-based Location Models

Modeling symbolic locations as identifiers and mapping object ids to

location ids in location services has been widely adopted. The Guide

project identifies the locations of interest to tourists by the WaveLAN

access point id [CDM+00b]. The Active Badge system stores the identifier

of a user’s badge with the symbolic location where the badge has been

observed. Without defining further locations as ranges only position

queries can be processed with minimum modeling effort. However, an

extension of such systems allowing for overlapping sets of locations and

thus range queries has been used in the Open Distributed Office projects

[RLU94]. The modeling effort increases with the number of locations

introduced to the system. QoSDREAM [NC01] relies on a mapping of

location identifiers and object ids. By applying observers to sets of

locations, applications can be notified when a mobile object has been

observed in a set of locations. This provides means for range queries but

causes considerable effort, since the overlay of observers modeling spatial

inclusion has to be set up based on the basic sets.

3.7.2. Graph-based Location Models

This class of location models naturally provides means to model distance

making them suitable for all navigation oriented tasks. Applications can

be found in the domain of smart environments [ODA01, RBB+03].

Spatially scoped areas are modeled by the location users populate, e.g.,

floors and rooms, and a connection model defines connectivity and

distance. Navigation services incorporating the positions of individual

objects can be implemented that way. There is no direct notion of ranges.

Either a combined approach is taken modeling ranges as an overlay

structure – in the simplest case ranges are specified as sets of locations

 82

themselves – or ranges can be defined based on their extension, i.e., by a

reference location and the distance to this location.

3.7.3. Hierarchical Location Models

In contrast to graph‐based models, which reflect distance well but require

additional overhead to express ranges, hierarchical models are designed to

reflect the inclusion of locations. This allows to structure locations into a

hierarchy. It is noteworthy that although approaches such as EasyLiving

[BS01] or MOOsburg [GSF+01] only model the spatial inclusion between

locations other kinds of hierarchical relations can be modeled such as an

organizational structure. A company may structure its location into

development, marketing, research, and production. A distributed systems

development team – and its offices – may be organized to be nearer to the

distributed systems research team in a hierarchy than the theoretical

computer science research group in the offices nearby.

Ranges and their relations – spatially or with respect to other criteria such

as organizational relations – are well reflected in a hierarchy. Distances do

not come with a direct concept in such location models. One way to use a

hierarchy to compare distances between positions is to consider the

smallest locations in the hierarchy that contain these positions. That

means, positions grouped by smaller locations are considered to be closer

to each other than positions grouped by larger locations, e.g., two rooms

on the same floor can be said to be closer than two rooms where the

smallest common range is the building.

3.7.4. Combined Symbolic Location Models

An obvious approach combining the benefits of graph‐based and

hierarchical location models are combined symbolic location models, such

as those used in the Active Map [Sch95]. Either a common data structure is

applied that allows to reflect the inclusion relation as well as the

 83

connected‐to relation between locations such as in [BBR01], or two

different location models are maintained where one reflects the distances

and the other the ranges. Clearly, the expressiveness of such models

combines the benefits of both models but with a trade‐off with respect to

the modeling effort, which basically consists of the effort of creating two

location models. This effort is only justified when applications require

range and nearest neighbor queries. This will likely be the case when a

location model is set up to serve a number of applications, e.g., by

providing an application spanning context model.

3.7.5. Hybrid Location Models

Hybrid location models provide information about locations based on

symbolic and geometric coordinates, which are used to define the spatial

extent of locations.

Basically, all of the symbolic models above can be extended to a hybrid

model by annotating location with their spatial extent. A graph‐based

model may use this information to calculate the weight of connections or

rooms in order to provide more accurate distances. Since the effort of

obtaining spatial extensions of locations is rather high, some projects

consider a combined model as basis, e.g., [BBR01] and [HL04]. The effort

of annotating all locations in a location model with geometric information

can be used to map the symbolic coordinates into a global, geometric

reference systems realizing a subspaces approach [JS02]. If this is not

necessary, a partial subspace approach can be taken. Such approaches can

be realized either top‐down or bottom‐up. In [DR03] a top‐down approach

is taken that allows approximating the spatial extents of children in a

location hierarchy by the extents of their father nodes. A bottom‐up

approach would annotate the leafs in a location model and approximate

the spatial extents of a father node by the extents of its child nodes. The

 84

top‐down approach allows the integration of an area that is modeled by a

hierarchy of symbolic locations into a geometric model. The root of the

integrated hierarchy is exact with respect to the annotated spatial extent

whereas the approximation leads to some errors in the spatial extents

along the hierarchy. In contrast to that, the bottom‐up approach provides

the highest accuracy at the leafs. The modeling effort is great for this

approach if the hierarchy has many leaves. Clearly, it is application

dependent which approach should be taken under given requirements.

3.8. Conclusion

Modeling locations is crucial for most location‐based or context‐aware

applications. Location models provide means for spatial reasoning based

on coordinates, e.g., the determination whether a coordinate is within a

given range or which coordinates are nearby. Although geometric

coordinates already provide an implicit notion of distance and ranges,

location models allow to model the constraints of the physical world, e.g.,

road networks or floor plans. For symbolic coordinates like room or floor

numbers, a location model with explicitly modeled relations between

locations is essential to support queries beyond simple position queries.

The requirements of applications can be manifold. Since the structure of a

location model determines which kinds of spatial reasoning can be

processed, a number of location models may be appropriate. Beside the

relevant queries a location model has to support, especially the modeling

effort has to be taken into consideration when choosing a location model

for an application or a platform serving a number of applications. A

hybrid model managing geometric and symbolic coordinates supports all

kinds of location‐based queries very well but is at the same time the most

complex type of location model. Location models managing only symbolic

locations can be set up more easily. If, beside object positions, distance is

the only relevant information, a graph‐based symbolic model can be used,

 85

whereas range queries are supported very well by hierarchical symbolic

models. If higher accuracy is required only partially within limited areas, a

partial subspaces model, which augments a symbolic model partially with

geometric information, might be the right choice.

The discussion of location models in this chapter shows that there is no

location model which satisfies all identified requirements at a time with a

low modeling effort. Designers of context‐aware applications and systems

thus have to choose location models carefully with respect to the required

spatial reasoning and the involved modeling effort.

 86

4. Usenet-on-the-fly - supporting locality of information

in spontaneous networking environments

People on the move are typically interested in information with

respect to their proximity. Location‐based services in general

supply users with information about their proximity typically

relying on an infrastructure storing the information and

tracking the mobile objects, i.e., users. In this chapter we

present an approach for spontaneous, i.e., ad hoc, networks

inspired by the Usenet. Information is exchanged using a peer‐

to‐peer synchronization mechanism. The information is made

available through channels grouping related information. The

information propagation is solely based on spontaneously

connected devices not requiring any infrastructure. Our

prototype implementation shows the technical feasibility of our

approach, whereas simulation results show the applicability of

information diffusion in outdoor scenarios with a realistic

number of nodes, covering a city center.

4.1. Introduction

Location‐based services (LBS) gain popularity. While many commercial

approaches are tied to the cellular phone infrastructure, e.g.,

[GSM][LBS][Swiss], researchers address solutions for the indoor domain

[HHS+99][KOA+99][WJH97] and outdoor domain [CDM+00a][Pas97] or

both [HKL+99] based on their own infrastructure. Common to these

approaches is the necessity of an infrastructure storing location‐dependent

data and management of user positions.

The availability of small computing devices, e.g., Personal Digital

Assistants (PDAs) or cellular phones, equipped with short range radio

transmission technologies such as Bluetooth or IEEE 802.11 allows

 87

information exchange on a peer‐to‐peer basis whenever two devices are

within each other’s radio range. Additionally, information of the

environment can be captured from sensors equipped with similar radio

technology.

The overall focus of our research is to investigate what mechanisms are

needed to support applications for mobile users in a ubiquitous

computing environment using ad hoc communication. The goal is to

provide a foundation that allows users to successfully interact with other

users and their environment. This includes collecting and providing

information about the spatial context of the user.

A major problem in mobile ad hoc networks is the management and

dissemination of information. Since the mobile devices are restricted in

their resources, a complete replication of information will not be possible.

Information exchange should be restricted with respect to the spatial

scope of the information and the interests of the user. Another issue is the

multitude of available information: how can a user determine or specify

which information is interesting to him or her?

In this chapter, we present an approach for information dissemination

based on epidemic algorithms, i.e., diffusion. As one possible scenario,

imagine that it is Saturday night and a large number of young people are

walking around in the city center looking for some fun. What they really

want to know is what is currently going on: where are the cool parties, the

hip discos or the most popular bars. So the information needed depends

very much on the current context of the user, especially the location. The

distribution of the information can be asynchronous and possibly

anonymous, which fits well with our proposed diffusion‐based approach.

If cellular phones are equipped with short range radio technologies, such a

Bluetooth, they are the ideal devices for our scenario. Almost all young

people have cellular phones and use them frequently for writing SMS

 88

messages, especially in Europe. (The SMS Service allows the transmission

of short text messages between cellular phones using the cellular phone

infrastructure). So the general technology is well‐introduced, the only

difference being that the messages are exchanged using ad hoc

connections between devices in the proximity.

In order to structure the information exchanged between devices, the

information is grouped into channels according to subjects, similar to

newsgroups in the Usenet. Users can subscribe and unsubscribe to

channels. Information is only propagated in a distinct area with respect to

its locality. As a result, an easy‐to‐use application can provide users with

information about their proximity.

To show the technical feasibility of our concept, we have built a prototype

application. However, since the usefulness of our application can only be

determined based on a large user population and since the technology is

not yet widespread enough for a large‐scale usability study, we have

conducted a number of simulations to provide some evidence that the

diffusion‐based approach makes sense in the given context. An important

aspect of the simulation is the mobility of the users. Therefore, we need a

mobility model reflecting the characteristics of user mobility that may

have an influence on the diffusion. In this chapter we take two mobility

models and compare the results of the respective simulations: the random

waypoint model that is widely used for the evaluation of algorithms in ad

hoc networks and a graph‐based mobility model [THB+02] that takes the

possible user paths, i.e., streets, into account and is therefore more

realistic.

The structure of this chapter is as follows: In the next section we present

our general system model. Then we describe our application scenario,

focussing on the “Usenet‐on‐the‐fly” prototype, followed by a detailed

description of the underlying information dissemination protocol. After

 89

that we present simulations of the information dissemination protocol and

discuss their results. Following a discussion of related work, the chapter

concludes with an outlook on future work and a summary.

4.2. System Model

The system consists of mobile nodes users carry. Examples of such nodes

are devices like cellular phones or PDAs capable of short range radio

transmission. The communication between nodes occurs spontaneously,

i.e., whenever two devices are within radio range of each other, they

discover each other and can exchange information. Additionally, sensors

or info stations may provide local information of the environment to the

thereby formed mobile ad hoc network (MANET).

The information exchanged in such a MANET can differ widely and is

obviously application‐dependent. For the remainder of this paper we

consider information to be of local interest. Dishes of the day, temperature

of rooms, bus schedules are mostly relevant in the proximity of their real‐

life source. Since we do not assume any access to an infrastructure we

want to investigate, how peer‐to‐peer computing in such spontaneously

formed networks can be used for information dissemination.

We assume the nature of information to be “nice to have”. If some

information was critical to a user, the user would pay for an uplink to an

infrastructure, e.g., via wireless cell‐based communication.

4.3. Application Scenario

The application scenario we want to look at is concerned with the

propagation of information with a local scope in a MANET. We do not

consider multi‐hop messages, e.g., routing, here, but only dissemination of

information with multiple, previously unknown receivers. The

information, as mentioned before, is assumed to be locally relevant.

Hence, an information dissemination protocol has to discard the

 90

information when the scope of the information is left. Recipients of

information must be provided with a classification of the information in

order to decide, if they want to accept it and store it locally.

Due to the multitude of information and corresponding information

possible in such scenarios, we reduce the complexity by focussing on a

simple scenario. The aim is to provide an evaluation of diffusion‐based

information dissemination and demonstrate how information with local

relevance can be handled in such ad hoc scenarios.

The information in the context of this paper is represented as a message. A

message contains a source, which created the message, a topic, which

classifies the content of a message, and a body carrying the information of

the message.

Messages could represent sensor data, with the sensor ID as source, the

kind of sensor information, e.g., temperature or humidity as topic, and the

currently sensed value as content of the message. Another example could

be the provision of bus schedules, where the distinct bus station is the

information source and the topic would determine a transport schedule

with the message body containing the next bus departure. Moreover, users

could also provide information, e.g., rankings of restaurants or shop offers

and feed them into the system by creating messages. Actually, this

inspired our prototype application ‐ Usenet‐on‐the‐fly ‐ which is presented

in the next section. Following that, we explain the information

dissemination protocol in more detail and present some simulation

results.

4.4. The Usenet-on-the-fly Prototype

The Usenet provides users with the ability to subscribe to so‐called

newsgroups where they can read, post and reply to articles. The

newsgroups group articles with a distinct topic. It is considered rude in

the Usenet community to place articles in inappropriate groups ‐ being

 91

“off‐topic”. The Usenet does not rely on a centralized infrastructure.

Instead, servers providing “news” to users allow them to read, post and

reply to articles. This local news is propagated over news feeds to other

news servers which present these articles to their users, receive the replies

and postings and offer these as news feeds to other news servers.

The architecture of the Usenet originates from former times when many

computers were not permanently linked to each other as nowadays via the

Internet. However, this situation reflects the characteristics of an ad hoc

network where nodes are not permanently available but only when they

are in the vicinity of other nodes. The concept of categorizing information

by grouping them into newsgroups according to topics ‐ or in our

terminology: channels ‐ and peer‐to‐peer reconciliation of content matches

the needs of information propagation according to our requirements.

The data model of our Usenet‐on‐the‐fly is directly corresponding to the

messages as they were informally defined in the previous section:

• Message headers, i.e., the channel name, the subject and the sender

• Message content, i.e., the actual information

Scoping of the information is simply done by adding a hop count.

Thereby, the scope within which a message is presented to other nodes is

restricted, which, in most cases, automatically leads to a geographical

scoping.

 92

4.4.1. Functionality

Figure 4.1: Usenet on the fly user interface

Figure 4.1 shows the user interface of the Usenet‐on‐the‐fly prototype. The

prototype is realized as a Java application. We used notebooks and

Compaq iPaqs equipped with WaveLan cards as an evaluation platform.

A user can create channels and messages and open an existing channel to

retrieve messages. Figure 4.1 shows the dialog for creating a message. This

dialog combines the creation of a new message with the possible creation

of a new channel. Additional attributes, e.g., the priority, allow filtering of

messages in order to save bandwidth or space on the devices.

Users can subscribe to a topic, i.e., a channel, and receive all messages on

that channel. The local database containing the messages is updated

whenever another node is met. Both nodes negotiate about their channels

and contents and exchange the difference. New channels are presented to

the user who can subscribe to them or simply ignore them.

 93

When users on the move are visiting different places, only the information

concerning these places is offered in the channel. Information is scoped in

its lifetime by a time‐to‐live (TTL) as well as in its propagation scope by a

hop count. The message exchange is based on a single hop

communication, i.e., devices only communicate with other devices in their

transmission range. Hence, restricting the number of times a message can

be passed on between nodes leads to a geographical scoping.

As an example consider a user subscribing to “restaurant menu”, “bus

schedule”, and “restaurant recommendations”. The channel “restaurant

menu” will contain the dish of the day of the restaurants within a distinct

vicinity, depending on the hop count. Also, only the bus schedules of

nearby bus stops are presented in the “bus schedule” due to the scoping.

Not only stationary entities like restaurants or bus stops can create

messages. Other users can use the “restaurant recommendation” channel

to express their satisfaction about a particular restaurant. This information

is scoped with respect to its local lifetime and geographical scope as well.

4.4.2. Architecture

The Usenet‐on‐the‐fly prototype was built in a straightforward way.

Nodes maintain a small database where the channels and all messages are

stored. The database is regularly scanned and messages whose TTL has

expired are deleted. The user interface operates on the database and

allows the display of channels and their messages as well as the creation of

new messages and replies.

The content of local databases are synchronized with other nodes

whenever they are within their radio transmission range. First, the

channels are compared and new channels and messages are announced to

other nodes. Before offering a message, the hop count is considered. If the

 94

scope of a message has been reached, it is no longer propagated to other

nodes.

The resulting architecture is depicted in Figure 4.2. Central to the system is

the database where messages are stored in the corresponding channels.

The user interface accesses the database in order to display available

channels and on selection of channels the messages of the channel. The

user can create new messages and channels leading to new data in the

database.

The content of the database is propagated by a simple diffusion protocol.

We will describe the protocol in detail in the next section. For short: the

protocol announces locally available data to other nodes. These nodes can

request the information and store it in their databases. After a node has

propagated its database content, it switches the role and updates its

database by the advertised channels and messages of the other node. This

data reconciliation occurs whenever two nodes “meet”. To allow nodes to

continue exchanging data when they stay in communication range, they

can end their communication and then “rediscover“ each other.

The communication subsystem is built on top of a minimized servlet

container which offers the Simple Object Access Protocol (SOAP) for

message exchange. The SOAP standard is well‐suited for interoperability

between different platforms. However, it currently restricts us to unicast

communication, so we cannot take advantage of broadcast protocols that

are suitable for propagating data to a larger set of recipients.

The prototype has been built in Java. The platforms for evaluation were

notebooks and Compaq iPaqs, both equipped with WaveLan. It is

available for download from http://www.informatik.uni‐

stuttgart.de/ipvr/vs/de/people/haehnejg/#misc

 95

Diffusion Protocol

Graphical User Interface

Database

Figure 4.2: Usenet-On-The-Fly Architecture

4.5. Information Dissemination Protocol

The messages in the system are disseminated using a diffusion‐based

protocol that we call Channel and Message Diffusion Protocol with

Negotiation (CMDPN). The pseudo‐code of an algorithm implementing

that protocol on a given node is shown in Figure 4.3.

When a node A discovers another node B in its transmission range, it

sends an advertisement message listing all the channels (consisting of a

unique channel ID and a description of the channel topic) and the IDs of

the messages it currently has in its database. Node B then goes through

the advertised channels and checks, if it has seen them before. If not, the

user is given the channel description and is asked, if he or she wants to

subscribe to the new channel. Having updated the subscription informa‐

tion, Node B goes through the advertised message IDs pertaining to those

channels it has subscribed to. It creates a request message containing the

message IDs of the messages it does not have in its database yet. On

receiving the request from Node B, Node A collects the requested

messages and sends them to Node B, which updates its database

accordingly.

 96

TYPES

message_id: unique id
channel_id: unique id
topic: string
message_body: string

message: struct
 channel_id
 message_id
 message_body

VARIABLES
channel_topic = array[channel_id] of topic
message_ids = array[channel_id] of list of message_id
messages = array[message_id] of message
seen_channels = list of channel_id
subscribed_channels = list of channel_id

EVENT HANDLERS
ON_NODE_DISCOVER()
 Channel_ADV ca = empty list
 Message_ADV ma = empty list
 for each channel_id in subscribed_channels do
 append(ca, (channel_id, channel_topic[channel_id]))
 for each message_id in message_ids[channel_id] do
 append(ma,(channel_id , message_id))
 od
 od
 if not empty(ma) then
 send_message((ca, ma))

ON_RECEIVE_ADV((ca: Channel_ADV, ma: Message_ADV)):
 for each (channel_id, channel_topic) in ca do
 if channel_id not in seen_channels then
 append(seen_channels, channel.channel_id)
 if ask_user(channel_topic) then
 append(subscribed_channels, channel)

channel_topic[channel_id]:=
channel_topic

 fi
 fi
 od
 Message_REQ mr = empty
 for each (channel_id, message_id) in ma do
 if channel_id in subscribed_channels then
 if needed(message_id) then
 append(mr, message_id)
 od
 if not empty(mr) then
 send_message(mr)

ON_RECEIVE_REQ(mr: Message_REQ):
 Message_DATA md = empty
 for each message_id in mr do
 append(md, messages[message_id]))
 od
 if not empty(md) then send_message(md)

ON_RECEIVE_DATA(md: Message_DATA):
 for each message in md do
 if needed (message.message_id) then
 append(message_ids[message.channel_id],
 message_id)
 messages[message_id]:= message
 fi
 od

Figure 4.3: Channel and Message Diffusion Algorithm with Negotiation (CMDPN)

 97

Of course, the same protocol is applied in the other direction between

node B and node A

The CMDPN is a simple protocol for replicating Usenet‐style messages. Its

purpose is to minimize the exchange of unwanted messages, saving

bandwidth and energy, which are scarce resources for mobile devices

using wireless connections.

Further improvements could be:

• To further reduce the data that needs to be exchanged, the protocol

could be split up into two phases. In the first phase only the

channel information is exchanged. Then, in the second phase, only

the information about the messages pertaining to those channels a

node is subscribed to need to be exchanged.

• The actual messages could be exchanged according to user‐defined

priorities, which is especially helpful, if the devices are not within

communication range long enough to exchange all messages of

interest.

• A history of mobile nodes and the data which has recently been

exchanged with them could be kept to keep the message

advertisement messages small.

In the following section, we will present some simulations to evaluate the

effectiveness of the dissemination of messages to a population of nodes,

i.e., how many nodes have received a certain message in what period of

time.

4.6. Simulations

This section will describe the simulation context used for the evaluation of

the CMDPN protocol, as well as the results, including a discussion of the

results.

 98

Since, as a first step, we were mainly interested in the maximum

effectiveness of message dissemination, given a certain population of

nodes, we used simplified assumptions:

We assume that all nodes are interested in all the messages and that these

messages pertain to a single channel. We did neither restrict the hop

count, nor set a restrictive TTL, so the messages are distributed within the

whole area over the time of the simulation. To control the introduction of

messages into our system, so that we could more easily calculate the

spreading of information, we assume that the messages are introduced

into the system by special stationary „sensor nodes“, e.g., providing the

local temperature or introducing the meal of the day. Each of the sensor

nodes continuously provides the same single message to the mobile nodes

in its proximity.

The CMDPN protocol was simulated using our Java‐based CanuSim

simulator, which implements a simple MAC layer that prevents multiple

nodes from accessing the same wireless channel simultaneously. The main

advantage of our simulator is that the two mobility models we present in

the following can easily be integrated.

4.7. Simulation Model

The simulations were performed for an outdoor context using two

different mobility models. The first model is the so‐called random

waypoint model (RWP). This model is often used for the evaluation of

algorithms in the area of MANETs [BMJ+98] and originated in the

application area of rescue and disaster operations. In the RWP model a

mobile node chooses a random destination and a speed and then moves

directly to the destination using the given speed. The size of the area

covered was 2462 m x 1733 m, equivalent to the area of the city center

used later on.

 99

The second mobility model ‐ the graph‐based mobility model GBM

[THB+02][Ste02] ‐ assumes that mobile nodes do not move randomly, but

according to an infrastructure, e.g., road map or building layout. It models

the spatial environment as a graph. The example graph for our

simulations models a typical city center, as it can be found in Central

Europe. The model contains 115 locations on an area of 2462 m x 1733 m

interconnected with 150 edges. Figure 4 shows a sketch of the city graph

used.

In several scenarios different numbers of mobile nodes as well as sensor

nodes, each providing one piece of information, were placed randomly on

the graph. Destinations were chosen randomly out of the 115 locations in

the graph scenario or randomly in the RWP scenario. The mobile nodes

moved around at normal pedestrian speed, i.e., between 3 and 5 km/h.

Figure 4.4: City Center Graph

On reaching a destination, mobile nodes stayed there for 12 to 20 minutes,

representing pedestrians stopping at a shop or station, before choosing a

new random destination. The sensor nodes remained stationary,

broadcasting their sensor information to mobile nodes within transmission

range. The mobile nodes all used CMDPN as the protocol for message

 100

exchange. The time needed to discover a node in transmission range was

assumed to be between 2 and 3 seconds, which corresponds, for example,

to average Bluetooth discovery times [KL01]. All scenarios used a

transmission range of 75m.

The simulation runs were terminated when a certain level of information

spreading was reached. The information spreading is calculated by

where M denotes the set of mobile nodes and S denotes the set of sensor

nodes that each introduced a single message (500 bytes) into the system.

The function databasesize(m) sums up all the messages stored on the mobile

node m.

0

1

2

3

4

5

6

0 50 100 150 200 250

time in range [s]

pa
rt

 o
f c

on
ne

ct
io

ns
 [%

]

10m 40m 75m
Transmission

Range

Figure 4.5: Time in Communication Range Depending on the Transmission Range

between Mobile Nodes and Stationary Sensor Node

i s

databasesize m()
m M∈
∑

M S×
---=

 101

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200

time in range [s]

pa
rt

 o
f c

on
ne

ct
io

ns
 [%

]

10m 40m 75m
Transmission
 Range

Figure 4.6: Time in Communication Range Depending on the Transmission Range,

between Mobile Nodes

We have integrated the graph shown in Figure 4.4 into our simulator for

MANETs in order to simulate realistic mobility patterns of users. A first

interesting result concerning the relation between communication time

and transmission range is shown in Figure 4.5 and Figure 4.6. We placed

100 sensor nodes in the city center scenario and measured the average

time of communication between 1000 mobile nodes and the 100 sensor

nodes. The figures are based on a one hour simulation of the scenario.

Figure 4.5 shows the distribution of time mobile nodes are in

communication range with any sensor node. Assuming a communication

range of 75 meters most nodes have more than 50s per connection to

communicate, whereas 10m transmission range allows only less than 15s

for most connections.

Figure 4.6 shows the distribution of communication time between the

mobile nodes. Here the results are slightly worse for the 10m transmission

 102

range, since the mobility of nodes shortens the transmission time to 7

seconds, whereas for 75m most nodes still have more than 50s per

meeting. Information dissemination in such ad hoc networks has to be

aware of these small slots for communication, i.e., not relying on stable

routes and long‐term communication relations

4.8. Simulation Results

This subsection presents the simulation results of the aforementioned

diffusion algorithm based on random waypoint versus the graph‐based

mobility model.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1000 2000 3000 4000 5000 6000 7000

time [s]

in
fo

rm
at

io
n

sp
re

ad
in

g
 [%

]

100x100 200x100 500x100

Ratio Mobile
Nodes to
Sensor Nodes
Figure 4.7: Information Spreading over Time for Random Waypoint Movement with 100

Sensor Nodes

Figure 4.7 and Figure 4.8 present the simulation results for the RWP

scenario based on a transmission range of 75m. The simulations were run

 103

until 95% information spreading was reached, meaning that every mobile

node carried almost all the information disseminated by the sensor nodes.

The results show that a higher number of mobile nodes supports the

information spreading. Nevertheless even a small number of nodes leads

to a reasonably fast message replication considering the large area: 100

mobile nodes discovered 100 sensor nodes on an area of approximately 4

square kilometers reaching an information spreading of 95% in only little

more than two hours moving at pedestrian speed. A larger number of

mobile nodes (500) reaches the same amount of information spreading in

less than half an hour. Remember that 500 people in a city center is still a

fairly small number.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1000 2000 3000 4000 5000

time [s]

in
fo

rm
at

io
n

sp
re

ad
in

g
[%

]

100x1 200x1 500x1

Ratio Mobile
Nodes to Sensor
Nodes

 Figure 4.8: Information Spreading over Time for Random Waypoint Movement with One Sensor
Node

 104

Figure 4.9 shows the results of the simulations performed with the GBM

pattern. The obtained results show a significant improvement over the

results of the RWP pattern. The graph‐based simulations showed to be

approximately twice as fast until the information spreading of 95% was

reached. The major reason for this improvement is the fact that the mobile

nodes only move along the edges of the graph and do not occupy the

whole area as they do in the RWP model. Since the GBM pattern

represents our initial outdoor scenario better, we expect CMDPN to

behave towards those results in a “real world deployment”.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000 2500 3000

time [s]

in
fo

rm
at

io
n

sp
re

ad
in

g
[%

]

100x100 200x100 500x100

Ratio Mobile
Nodes to
Sensor Nodes

Figure 4.9: Information Spreading over Time for Graph Walk Movement with 100 Sensor

Nodes

A second set of simulations with only one sensor node was conducted to

investigate the effect of the spreading of a single information item. Figure

4.8 and Figure 4.10 show the results obtained with RWP and GBM pattern

respectively. The results show that, once the information has been picked

 105

up and passed on a few times, the steepest rise of the curve is reached.

This shows that the information is spread very quickly around its source

supporting the locality aspect of many information items in ubiquitous

computing.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000 2500 3000

time [s]

in
fo

rm
at

io
n

sp
re

ad
in

g
[%

]

100x1 200x1 500x1

Ratio Mobile Nodes to
Sensor Nodes

Figure 4.10: Information Spreading over Time for Graph Walk Movement with One

Sensor Node

4.9. Discussion

The simulation results show that, assuming realistic values for the

transmission range and the density of mobile nodes, the distribution of an

update in the vicinity of an information source is a matter of minutes.

Reaching an almost complete spreading of information can also be

achieved within less than an hour.

The difference between the simulation results based on different mobility

models shows the importance of using realistic mobility models in order

to get realistic simulation results.

 106

4.10. Related Work

Applications based on message exchange in infrastructure‐based systems

such as the Usenet have been used for a very long time. More recently,

peer‐to‐peer file sharing application like Gnutella [Kan01] have become

popular. However, as we are interested in systems based on ad hoc

networks with mobile nodes, we want to mostly restrict our discussion in

the following on systems fitting those characteristics.

In the area of collaborative wearable computing, the ad‐hoc exchange of

information between mobile users during chance encounters has been

investigated. Application scenarios including the exchange of tasks

between user agents [KSS+99] and the dissemination of trust information

[SKJ+00] have been simulated. In those scenarios the information

distributed is much more specialized than in ours and exchange of

information depends much more on the individual users themselves, even

though the underlying mechanisms are very similar.

Much work has been done on routing in MANETs, where messages

between sender and receiver are exchanged on [DGH+87] an unstable path

built of mobile nodes (see, for example, [PB94] or [Joh94]). Usually,

however, a fully connected path from the sender to the receiver is required

to be able to forward a message. In [VB00] a general routing protocol for

partially connected networks is discussed, which, similar to our approach,

uses the moving mobile nodes to relay messages. Their results show, that

such an approach is feasible, transmitting 100% of the messages in most

cases in reasonable time.

Recently, information diffusion has been discussed in the area of sensor

networks. There, information is exchanged between a number of

randomly placed non‐mobile nodes, which acquire a model of their

environment using built‐in sensing systems (e.g., for seismic data or

images). Algorithms in this area have to be able to cope with the failure of

 107

single sensors. Different variants of broadcast algorithms have been

discussed for such sensor networks with the goal of reducing bandwidth

and energy consumption [XWC02]. In [KHB99] a family of negotiation‐

based protocols for sensor networks, called SPIN, are discussed. It is

shown that they perform better regarding performance and energy

consumption than the more simple broadcast protocols.

More closely related to our approach regarding the dissemination of data

is the 7DS system [PS01]. Their underlying data model relies on a

hierarchy of web‐caches and the information can be accessed via a

client/server‐based approach from an infrastructure if available. If

network partitions occur, the mobile nodes rely on their cached data,

which can be updated similar to the diffusion algorithm that we have

presented here. Cooperation among the mobile nodes allows the access of

information in other caches. Queries trigger a diffusion process of data

through the mobile nodes which update their cache with the requested

information. The mobility model is a strict random waypoint model

neglecting spatial constraints. However, their objective relates to the

fragmented data storage. Replication of the data on every node and

restricting the coverage of the information dissemination, e.g., to an area

or a number of nodes, is not an issue there.

4.11. Conclusion and Outlook

In this chapter we have shown that the dissemination of data in large

MANETs is feasible. Simulation results show that information can be

spread among several hundred users in a city center scenario within

approximately 10 to 60 minutes from its initial creation at the sources. This

time interval is appropriate for many types of information that may be of

interest to a pedestrian walking through a city, such as information about

current events or specials on sale. A 1‐to‐many message exchange

application, like our Usenet‐style prototype for PDAs, can be implemented

 108

using devices and technologies which will soon be deployed among many

(millions of) users.

It can be concluded that information can be made available in MANETs

through the dissemination of messages using a diffusion algorithm. This

means that in a lot of cases it is not necessary to access an infrastructure in

order to obtain information concerning the current proximity.

After showing the general feasibility, there are still many questions that

remain unanswered. Our simulations show that the time it takes to

disseminate information among users varies depending on how the

mobile nodes, i.e., the users, move around. This strengthens the need for

realistic user mobility models in order to obtain a reliable performance

prediction of new systems prior to deployment.

More simulations are needed to show, if limiting the scope of the

information by hop counts successfully approximates the locality of

information as we expect. In any case, this solution gives only a very

coarse resolution of locality. A more sophisticated solution here is to

employ a more detailed world model [BBR01] and location sensors, e.g.,

GPS, to locate the mobile nodes. Then, the spatial scope of an information

could be specified directly and precisely, e.g., information could be

interesting for users on the same floor only, but not for those on the floor

below, yet the people there might be closer concerning the communication

if only distance is taken into account.

In our simulations we have assumed that every user is interested in all

channels, i.e., we completely replicated all messages. If we assume a large

variety of topics for channels in a real‐world system, it is evident that

complete replication does not work due to resource restricted devices on

the one hand and users that are not willing to carry unwanted information

on their devices on the other. A technical compromise is that every user

allots some portion of his systems memory and communication time for

 109

information that is not of (high) interest to him. The question here is: how

much is technically necessary for the system to work and how much are

users willing to contribute.

Since our system is based on the assumption that the number of

participants is large, the social situations in which a user sees a clear

benefit and therefore uses this interaction style has to be investigated.

This, we believe, can only be answered by appropriate user studies.

 110

5. A Protocol for Data Dissemination in Frequently

Partitioned Mobile Ad Hoc Networks
Distribution of data in mobile ad hoc networks is challenged

when the mobility of nodes leads to frequent topology changes.

Existing approaches so far address either the network

partitioning problem or are capable of handling large amounts

of data, but not both at the same time.

In this chapter a novel approach is presented which is based on

a negotiation scheme enhanced by an adaptive repetition strat‐

egy. Different strategies for the selection of repeated data are

presented and evaluated. Simulation results show a reduction

of data transfer volume compared to hyper‐flooding by 30 to

40% even in the presence of frequent network partitions.

5.1. Introduction

Mobile ad hoc networks (MANETs) are going to be a reality in the near

future with more and more mobile devices, e.g., PDAs or cell‐phones,

being equipped with short range radio technology, e.g., as Bluetooth or

802.11. In our daily environments such MANETs will not only contain the

mobile nodes which are typically carried by their users but also

incorporate devices being fixed in the infrastructure, such as sensors or

information provision points, e.g., info‐stations. Applications in such

environments can make use of the information being available through the

sensors and other nodes. Examples are tracking applications in production

plants capturing the location of production material and the state of

manufacturing machines, communication on a construction site, missions

from civil services, e.g., collaborative fire‐fighting, but also convenience

applications such as smart city/shopping guides.

111

Typically, information in such networks itself is spatially scoped, i.e., only

from interest within a distinct area nearby the information source. Sensor

networks, i.e., ad hoc networks with typically stationary nodes, can setup

links between information sources and sinks. Mobility challenges the

information dissemination in such networks, since network partitions

cannot be treated as errors because they happen regularly. In order to

supply applications on nodes with information of their environment a

robust mechanism to deliver data is needed. In order to increase

availability of data, replication is a candidate to achieve this goal with a

trade‐off to consistency.

In this chapter we present an algorithm for updating replicated data on

mobile nodes which is gathered by information provided by sensors. We

refer to such data as model‐data, since the sensor information provides a

model of real‐world’s state. The consistency of the replicated data is weak,

due to unpredictable network partitioning, aiming at delivering the most

current state of an information entity and not providing single‐copy

consistency. Current information shall replace older one and

inconsistencies are tolerated as long as the most current information will

finally be propagated. Using a hyper‐flooding [OT98] approach as the

foundation of a three‐way‐handshake protocol enables our protocol to

overcome network partitions. The negotiation of transferred data leads to

a significant reduction of the data transfer volume compared to plain

hyper‐flooding by 30 to 40%.

Next we will introduce the system model. After a discussion of existing

flooding techniques for data propagation in ad hoc networks our

algorithm is described. Performance results from simulations are

presented based on two scenarios before the discussion of related work

and an outlook to future work concludes the chapter.

 112

5.2. System Model

The system consists of two kinds of nodes: observer nodes and mobile

nodes. Observer nodes are equipped with a synchronized real‐time clock

(e.g., GPS clock) or an appropriate clock synchronisation algorithm

[Roem01], and sensors allowing to make observations in their proximity

that describe properties of the real world. Every observation represents a

state change of an object that has a unique object ID (oid), and has a time to

live (TTL) that depends on the type of observation. Each observation is

timestamped with tobs by the observer node to indicate when the

observation was made. Additional information (info) may be added by the

observer node to describe precisely what kind of state change was

observed, e.g., the position (state change described in info) of a person

(object) or the temperature inside a room. The tuple (oid, TTL, tobs, info) is

called meta‐data because it describes the „what and when“ of an

observation. The actual distinction of objects on the sensor level is not part

of this paper.

Mobile nodes maintain a local copy of the most recent state of all objects,

observed within a distinct area. The copies of state information on mobile

nodes form a replicated database. The replicated database maintains weak

consistency where mobile nodes may keep and use stale information, but

any update made to a local copy will add more recent information to the

database. The size of such a database is limited due to the locality of

information and the resource restrictions of the mobile devices.

The synchronized clocks of observer nodes are necessary to be able to

compare two or more independent observations of the same object

accurately. The high accuracy of, for example, GPS clocks of

approximately 360ns [GPS] is sufficient to distinguish many observations

made in the real world, e.g., people’s movements. It would, for example,

not be accurate enough to observe the direction of a light beam passing

113

two independent observer nodes equipped with a light sensor. In general

the accuracy needed is driven by the type of observations that need to be

made.

Mobile nodes use local real‐time‐clocks (RTC) to determine when the TTL

of an observation record expires. Those clocks do not have to be

synchronized, since they are only used to measure how long a record has

been kept locally. Assuming a typical clock skew of a simple hardware

RTC of 5 to 15 seconds per day [DALLAS], it would be sufficient to

synchronize a few times a day (e.g., when passing any observer node) in

order to correct the clock drift and to measure the time a record has been

kept accurately enough.

All nodes are equipped with a symmetrical short range RF communication

technology that offers a device discovery mechanism and allows two way

communication. The RF technology is used to locally broadcast messages,

i.e., every neighbor in the transmission range of the sender may receive

the message. Additionally, we assume that the MAC protocol follows a

CSMA/CA approach that detects collisions. Mobile nodes and observer

nodes thereby form a MANET which is assumed to be partitioned very

frequently due to short transmission ranges and the mobility of nodes.

5.3. Forwarding Strategies

For the task of distributing observations to mobile nodes a robust

forwarding mechanism is needed that can cope with the frequent topology

changes and network partitions in a MANET. The evaluation of flooding

in such environments [HOT+99] has shown that it provides a good basis

for distributing information in highly dynamic and sparsely populated

MANETs. Different possibilities for flooding have been proposed and

shall be briefely described here since they will be used for our algorithm

presented in Section 5.4.

 114

Plain Flooding: The basic version of flooding is a robust way to broadcast

information in a network. Every node forwards an incoming message

unless it has done so before or some knowledge of the network diameter is

available to add a maximum hop count to the message. Although this is

very reliable, plain flooding cannot cope with network partions or very

high mobility [HOT+99].

Selective Flooding and Gossiping: Selective flooding has been proposed

to reduce the number of messages in comparison to the plain flooding

approach. The general idea is that a node forwards a message only to a

subset of its neighbors [Tan96]. Gossiping is a variant of selective flooding

where the message is sent to a subset of neighbors that is chosen randomly

[HKB99]. This reduces the number of messages sent with the trade‐off of

being less robust, especially in networks with a low node density.

Selective flooding is based on plain flooding and thus does not cope with

network partitions.

Hyper Flooding is a modification of flooding proposed in [OT98]. It

allows nodes to forward a message more than once if the set of neighbors

changes within a given validity period of the message. This improves the

delivery performance over plain flooding in scenarios with frequent

topology changes (e.g., due to high mobility) and network partitions that

are rejoined within the validity period of the message.

5.4. Negotiation-based Ad hoc Data Dissemination
Protocol: NADD

This section describes an algorithm suitable for exchanging observation

data in MANETs with frequent topology changes. First, data structures

relevant to the algorithm are explained. Second, the algorithm itself is

described. Crucial to the algorithm is when and which data is (re‐)sent. A

deeper discussion of selection strategies of data to be resent is presented.

115

5.4.1. Data Structures

Every observer node stores an observation record for each object that is

currently within its observation range. An observation record contains the

following elements:

• Object ID (oid) of the observed object

• Time‐to‐live (TTL) of the observation

• Timestamp of the last observation of a state change (tobs)

• Information that indicates the replication progress of a record (d)

• Additional meta‐data (info)

• State of the observed object

The oid kept in the observation record is a unique identifier for a real‐

world object such as a room or a person. Additional meta‐data may be

added to describe in more detail what kind of information is represented

in the record, e.g., the temperature in a room or a person’s position. In the

context of this paper, different oids represent information about

distinguishable objects. The type of information represented is of no

further concern for this paper. The TTL is initialized by the observer node

and is continuously decremented by each node that holds a copy of the

record. Its initial value depends on the type of observation made (e.g., part

of the meta‐data) and is supplied by the observer node. The observation

time tobs is recorded by the observer node that has created the observation

record originally, i.e., that has actually made the observation. In case of

multiple observers of the same object nodes create different records about

the same object. These records can be ordered due to the assumption that

all observers have synchronized clocks. The precise description of d is

given in Section 5.4.2.2.

 116

5.4.2. Protocol

In the proposed protocol, messages are sent from a sender to all direct

neighbor nodes (local broadcast). The mechanism used to forward

observations is implemented using a three‐way‐handshake where

observations stored locally in a node’s database (DB) are advertised in ADV

messages, requested in REQ messages from nodes that do not have the

advertised information in their DB, and sent with DATA messages by the

advertising node as shown in Figure 5.1. Since the state information

provided by observer nodes may become large, this approach has the

advantage that state data is only exchanged if at least one neighbor node

requests it. Additionally, the three‐way‐handshake allows the

optimization of advertising many observation records in a single ADV

message.

latest repetition

out: AD V message

Local D B

Meta-data
late st r ep etit ion

in : RE Q m essa ge

L ocal D B

ou t: D ATA m essage

Loc al D B

Data1 Data2 Data3

Figure 5.1: Interaction pattern of a node while advertising

An ADV message contains multiple tuples (oid, tobs, TTL, d) describing

information available in the DB of a node. A REQ message contains

multiple tuples (oid, tobs) of observation records needed by a node in

response to an ADV message. A DATA message is a set of observation

records that have been requested by any neighbor. Figure 5.3 shows an

overview of the protocol in pseudo‐code.

5.4.2.1. Interaction Between Nodes

A new information entity, i.e., a new or updated observation record that

was either received by a mobile node or observed by an observer node, is

117

offered to all neighbors of such a node by sending an ADV message. Any

neighbor node may send a REQ message in return to indicate that it is

interested in some of the data. On receiving a REQ message, a node

broadcasts the corresponding state information. The protocol as described

so far uses plain flooding on top of a three‐way handshake. This results in

the disadvantages of not overcoming the boundaries of network partitions

as mentioned in Section 5.3. To disseminate information across partitions

an approach similar to hyper‐flooding is added: whenever a node

discovers a new neighbor, it is allowed to re‐advertise observations as long

as the TTL has not expired. The TTL is decremented continuously by each

node that holds a copy of an observation record. If the TTL equals 0, the

item is removed from the DB.

The number of items that can be advertised in a single ADV message is

limited to keep messages short and thus to reduce the probability of

collisions on the MAC layer. On the other hand, replication performance is

improved by letting a node send more than one ADV. In our algorithm

nodes may ask any node that replies to their ADV message with a request

to issue another ADV message. In the current implementation a node

always requests another ADV message with each REQ message sent. This

process stops if no items offered in an ADV message are requested or ‐

obviously ‐ when the two nodes leave each others communication range.

This mechanism is backed up by the creation of ADV messages if the set of

neighbors of a node does not change for a predefined period of time.

Figure 5.1 gives an overview of the basic interaction scheme.

5.4.2.2. Advertising Strategies

For a large number of different observations the size of each DB replica

will soon be large, making it impossible to advertise all observation

records in a single ADV message. Therefore an advertising node has to be

able to select a sub‐set of the data from its local DB when composing an

 118

ADV message. This leads to the problem of finding an appropriate

selection strategy that ensures a reliable overall replication process.

As a first approach we applied a strategy mix where information that has

never been advertised by a node is selected to be advertised first. If this

number is smaller than the number of items an ADV message can hold,

the remainder of the ADV message is filled with advertisements of data

that has already been sent based on a round‐robin strategy in the

database. This ensures that new data has priority over data that has

already been offered.

In a second class of strategies, we replaced the round‐robin selection with

a more sophisticated demand driven selection policy. When a new record is

created by an observer node, it is important to give priority to the

propagation of this record in order to support its replication. An

approximation for that property can be made locally on any node by

taking into account the number of data messages including the particular

record, that have already been sent by the node. A low number of such

messages indicates that not many replicas have been initiated by the node

and therefore priority has to be given to that record when sending

advertisements. On the other hand, this indicator is not sufficient when

the record has already been replicated on almost every node. In this

situation a node that received a copy of an almost completely replicated

record r late will prefer such a record over a record r’ that has been

replicated only a few times, since the number of data messages that

include r will soon be outrun by those that contained r’ and will hardly

increase. This is due to the fact that almost no other node will request r

and more nodes will request r’. To take this into account we keep the

difference d=#adv‐#data for every record r, where #adv is the number of

ADV messages sent that included r and #data is the number of DATA

messages. A large d indicates that the record has been advertised and only

119

relatively few requests were received that lead to DATA messages. A

small d indicates that an item has been requested regularly in response to

advertisements. To approximate the global replication progress of a

particular observation record, the value of d calculated by other nodes is

taken into account on the reception of every ADV and DATA message.

The node receiving such a message re‐calculates its own

dnew=(alpha*dold)+(1‐alpha)*dremote,

where dold is the previous local value for the observation and dremote is the

value for the same record on the node that sent the message. alpha is a

weight, with 0<alpha<1 that defines how much remote information is taken

into account.

latest
records

f*(k-n) (1-f)*(k-n)n

k

Selected from
subset L of DB

Selected from
subset H of DB

Figure 5.2: Structure of an ADV message for the demand driven selection strategy

Figure 5.2 shows the structure of an ADV message for the second selection

strategy determined by a tuple (k, f, g). The message can contain at most k

entries, where n are occupied by new information, just as in the round‐

robin selection strategy. The remainder is split into two parts, determined

by the fraction f with 0<f<1. The DB is split into two subsets L and H with

DB H L∪=() H L∩ ∅=()∧

L contains a fraction g of all records in the local DB such that d for all

records in L is smaller than the lowest d of any record in H. Records from L

and H are selected randomly (uniform distribution) to fill f*(k‐n) and (1‐

f)*(k‐n) slots in the ADV message respectively. If any subset contains less

messages, the remainder will be filled with information from the other set.

 120

5.4.2.3. Randomized Messages Transmission

To reduce the number of messages and to avoid broadcast storms

[NTC+99], randomization is used to delay messages before they are sent.

ADV messages issued by mobile nodes are delayed to avoid that a group

of nodes advertises the same observation at the same time and location.

REQ messages are delayed, because it is sufficient that one node requests

an observation, while other nodes can pick up the DATA message without

requesting it. DATA messages are delayed to avoid that many nodes

answer a REQ message. Delaying messages in the described way results in

a flavor of selective flooding, since not every node that receives a new

information entity re‐advertises it. Whenever the TTL of an observation

expires any node that holds it, drops it.

ON_NEW_DATA or ON_NEW_NEIGHBOR:
 a = prepareAdvMsg() // compose ADV message a from local DB
 schedule_for_send(a) // send within a randomized time interval
ON_RCV_ADV(m: AdvMsg):
 p = 1 // probability for ADV requesting
 r = prepareReqMsg(m, 1) // build REQ based on local DB and ADV diff
 if r contains at least one request then
 schedule_for_send(r) // send within a randomized time interval
ON_RCV_REQ(m: ReqMsg):
 d = prepareDataMsg(m) // prepare DATA based on incoming REQ
 schedule_for_send(d) // send within randomized time interval
 if m.sendAnotherAdv then // additional ADV prepared on demand
 a = prepareAdvMsg()
 schedule_for_send(a)
 fi
ON_RCV_DATA(m: DataMsg):
 store(m) // update local DB with requested data
ON_IDLE: // send messages from send buffer
 if first_item(fifo_send_queue).send_time <= current_time
 then
 send_and_remove(first_item(fifo_send_queue))
 fi
schedule_for_send(m: msg) // send buffer with randomized schedule
 rnd = random_int(k*msg_time, 2*k*msg_time)
 if isempty(fifo_send_queue) then
 append(fifo_send_queue, {current_time+rnd, m})
 else
 append(fifo_send_queue, {last_queue_time+rnd, m})
 fi

Figure 5.3: Pseudo‐code of our NADD

121

5.5. Simulation

The proposed algorithm was tested in simulations to evaluate its

performance with respect to replication latency, i.e., the time until a

certain fraction of the data is replicated on all nodes, and the message

overhead imposed by the algorithm.

In order to compare the discussed selection strategies, optimal selection is

simulated. Nodes only advertise data that is missing in the database of

other nodes. This ensures maximum efficiency in the data exchange,

which is only influenced by the mobility of the nodes and the underlying

communication technology.

5.5.1.1. Simulation Environment

The simulations were done using a discrete time‐step approach. At the

MAC layer a simple carrier sense, collision avoidance mechanism

(CSMA/CA) prohibits one node to send if it is within the radio range of

another node that is already sending. In this case the message is scheduled

to be resent later. If retransmission fails for the third time the message is

dropped. If both senders are out of each others radio range, simultaneous

transmissions are allowed, though the message does not reach receivers in

the intersection of both ranges. If two or more senders start sending

simultaneously, again messages in the intersection of any two radio

ranges are extinguished and do not reach their receivers. ADV and REQ

messages have a size of 32 bytes per item advertised or requested. DATA

messages have a size of 512 bytes per item transfered. The transmission

speed is 128 kbit/s with 10 m transmission range. Mobile nodes follow the

random waypoint mobility pattern [BMJ+98] with a pedestrian speed of 3‐

5 km/h and intermediate stays of 72‐120 seconds. Observer nodes are

placed in a regular grid and remain stationary during a simulation run.

The total area simulated is 100 m by 100 m to represent a large building.

 122

Scenario Strategy Max.
ADV size

Remark

RR-6 round-robin 6
RR-12 round-robin 12

SEL-6 selection 6 alpha=0.5, f=0.65,
g=0.5, k=6

SEL-12 selection 12 alpha=0.5, f=0.65,
g=0.5, k=12

OPT-6 optimal knowledge 6

OPT-12 optimal knowledge 12

Table 5.1: Scenario Overview

In all scenarios observers can advertise at most 6 or 12 observation records

per ADV message. This represents a message size of 224 (=32+6*32) or 416

bytes for ADV and REQ messages and a maximum of 3104 (=32+6*512) or

6176 bytes for DATA messages, respectively. Thereby messages for

advertisements and requests are short to keep the probability of collisions

low. The TTL of all observation records is set to a value that does not

invalidate the item during the time of the simulation. All updates were

done by the observer nodes at the start of the simulation. Future

investigation will have to evaluate the effect of temporally overlapping

replication processes.

All scenarios contain 10 mobile nodes and 9 observer nodes. Each observer

node makes 80 observations, resulting in a database size of 720

observation records. The scenarios vary in the selection strategy chosen for

advertisements and the maximum number of entries in an ADV message.

All simulations were run for 3600 seconds. Table 5.1 gives an overview of

the scenarios evaluated.

5.5.2. Replication Latency

This section presents the growth of the database copies carried on mobile

nodes over time. The results of Figure 5.4 show the replication latency for

the scenarios where at most 6 items can be advertised in an ADV message.

With the optimal strategy OPT‐6 it takes approximately 800 seconds to

perform a complete replication on all nodes. This result solely influenced

123

by the mobility of the mobile nodes, since each advertising node is

assumed to know the contents of the database of the node it is offering

data to. The round‐robin strategy RR‐6 uses a simple advertising schedule

that only depends on what has locally been advertised before. This results

in a very slow propagation, because the advertising behavior of other

nodes is not taken into account at all. The demand driven strategy SEL‐6

shows improvements over the round‐robin strategy and results in a faster

data replication, especially in the time span where 40% to 80% of the data

is replicated.

Compared to the results described above, the scenario SEL‐12, which uses

12 entries per ADV message shows a significantly faster growth of the

database copies in the time span where 60% to 95% of the data has been

replicated on each node. The optimal scenario OPT‐12 shows the same

behavior as its counterpart OPT‐6, because it is also only limited by the

mobility of the nodes. The round‐robin strategy shows about the same

replication latency in both cases, but varies in the message overhead as

described in the next section

0

0,2

0,4

0,6

0,8

1

0 500000 1000000 1500000 2000000 2500000 3000000

time / msec

av
g.

 lo
ca

l d
b

si
ze

 (r
el

.)

RR-06 SEL-06 OPT-06

Figure 5.4: Average replication latency with ADV size 6

 124

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 500000 1000000 1500000 2000000 2500000 3000000

time / msec

av
g.

 lo
ca

l d
b

si
ze

 (r
el

.)

RR-12 SEL-12 OPT-12

Figure 5.5: Average replication latency with ADV size 12

5.5.3. Message Overhead

This section discusses the message overhead imposed by our protocol. The

results of Table 5.2 give an overview of the average number of messages

and their total size per node sent by each node in the different scenarios.

The message sizes show the average transfer volume per node divided

into ADV, REQ, and DATA volume sent. Here the messages sent have

been weighted according to their size, where one ADV or REQ entry has

32 bytes, and one DATA item has 512 bytes. Each message has a constant

overhead of 32 bytes. It has been assumed that every message includes the

maximum of 6 or 12 entries. The optimal strategy has the lowest message

overhead, since it only advertises data if necessary. It does not show the

same results for ADV, REQ, and DATA messages since messages can be

lost due to collision on the MAC layer and the mobility of nodes. The

round‐robin strategy needs about twice as many ADV messages

compared to OPT. Many of those messages do not contain data that is

needed and therefore only little more REQ messages are sent compared to

OPT. The SEL strategy has the highest message overhead because many

ADV messages contain information that is requested and therefore

additional ADV messages are triggered. On the other hand this strategy

shows a very good replication latency, as stated above.

125

Table 5.2 shows how much transfer volume would have been needed if,

instead of the three‐way‐handshake, only DATA messages would have

been used to propagate the observation records (i.e., in a hyper‐flooding

approach without negotiation). The advantage of the three‐way‐

handshake over the plain data message approach with respect to transfer

volume is 30‐40% (see Table 5.2 and Table 5.3).

 Num
ADV

Num
REQ

Num
DATA

Size
ADV

Size
REQ

Size
DATA

Total
size

RR-6 225 83 88 50kB 18kB 269kB 337kB

SEL-6 497 241 247 110kB 54kB 768kB 932kB

OPT-6 101 70 75 22kB 15kB 233kB 270kB

RR-12 168 47 50 70kB 19kB 340kB 429kB

SEL-12 377 181 176 157kB 75kB 1091kB 1323kB

OPT-12 54 37 38 22kB 15kB 237kB 274kB

Table 5.2: Message overhead in number and size of messages

Assumed transfer volume using DATA
instead of ADV messages

Num
DATA

Vol/ kB

RR-6 225 682

SEL-6 497 1506

OPT-6 101 306

RR-12 168 1013

SEL-12 377 2273

OPT-12 54 325

Table 5.3: Transfer volume with DATA messages only

5.6. Related Work

The SPIN protocol family [HKB99] uses a a three‐way‐handshake protocol

similar to our protocol. SPIN addresses sensor networks, i.e., ad hoc

networks with stationary nodes. Since it does not take temporary network

partitions into account and therefore does not deal with the resulting

problem of choosing a selection strategy the advertisement of data will

only work in environments with low node mobility.

 126

In various situations it has been proved that flooding is a robust

mechanism to distribute information to all nodes in MANETs. In

[HOT+99] flooding has been evaluated as a basis for multicast protocols in

MANETs. Hyper‐flooding has been proposed as a method to overcome

network partitions in ad hoc multicast routing if, besides other

parameters, the TTL for a message and the approximate network diameter

are known [OT98]. In our protocol, the replicated model data already has

a TTL included in its meta‐data. The diameter of the network is not

needed because nodes can decide to drop information solely based on the

TTL, since model data is assumed to be valid for a long period of time in

comparison to messages used in routing protocols. Additionally, our

protocol does not perform hyper‐flooding on a per‐message basis but on

the basis of a three‐way‐handshake, where advertisements are hyper‐

flooded by re‐advertisements according to the selection strategies.

In [VB00] an epidemic protocol was introduced to solve the routing

problem in a partially connected network. They use a similar mechanism

to exchange information between two neighbor nodes. However, their

goal is to deliver messages to any node without establishing a route

between sender and receiver and not the replication of model data. The

data considered is typically short‐lived, i.e., if routing of a message fails a

retransmission is issued.

A combination of so called rumor‐mongering and anti‐entropy is used in

[DGH+87] to replicate information in databases in wired networks. In our

protocol, we combine new information and, if free space is available in an

ADV messages, older information. This results in a partial anti‐entropy

session, because some differences between hosts are resolved with new in‐

formation first (i.e., rumors) and older information (i.e., part of the anti‐

entropy).

127

In [XWC00] the distance between any two versions of a data item and the

communication cost is used as the basis for a cost model in order to

determine the estimated benefit of forwarding the data. In this approach it

is necessary that every node has a notion of „distance“ which depends on

the semantics of the data. The authors also make the assumption that only

a single node updates a particular object.

5.7. Conclusion

We presented a protocol for information dissemination in mobile ad hoc

networks. The protocol replicates information stored in local databases of

nodes. In order to reduce the data transfer volume, negotiation is used to

advertise and request data among mobile nodes. Network partitions, as

they appear due to node mobility or low node density, can be tolerated

since data is advertised more than once. The selection strategy that

determines which data is re‐advertised, influences the performance of the

protocol with respect to the propagation latency and the data transfer

volume. The demand driven selection policy shows a reduction of the data

transfer volume by 30 to 40% compared to a plain hyper‐flooding

approach which does not use negotiation. The replication latency

performs nearly optimal till 80% replication of the data is achieved and

slows down for the last 20%.

So far, we have investigated the impact of different data selection

strategies on replication latency and message overhead. In future work,

we will investigate what parameters can be used to adjust the hyper‐

flooding nature of advertisements, e.g., depending on the node density, in

order to achieve further reduction of advertisement messages in dense

networks. Mobility models of mobile nodes have impact on the

performance of routing protocols [THB+02]. We will examine the impact

of mobility models on our protocol and the improvements that can be

made if such knowledge is exploited.

 128

6. From Home To World: Supporting Context-Aware

Applications through World Models
In the vision of pervasive computing smart everyday objects

communicate and cooperate to provide services and

information to users. Interoperability between devices and

applications not only requires common protocols but also

common context management. In this chapter we discuss

requirements on the context management based on the Georgia

Techʹs Aware Home environment and the global context

management perspective of the Nexus project. Our experiences

with integrating the Aware Home Spatial Service into the

Nexus platform show how federation concepts and a common

context model can provide applications with uniform context

information in different administrative and application

domains.

6.1. Introduction

Pervasive computing has drawn increasing attention of researchers in the

past years. As a result, a multitude of applications has been developed.

These applications cover different domains, such as tourist guides

[CDM+00a],[AAH+97] indoor information systems [Cooltown],[CKW01]

and smart environments, e.g., the Georgia Tech Aware Home [KOA+99],

to name a few. A variety of supporting infrastructures have been

proposed, which facilitate the development of applications. However,

these infrastructures mostly address a distinct application domain, such as

context processing based on sensors [SDA99] or providing application‐

specific context [STM00], [CDM+00a].

However, one cannot deploy any of the above‐mentioned applications and

expect them to cooperate or share resources. Also, when new services,

129

hardware or environmental information such as maps become available to

an application, other existing applications can not automatically use them.

Interaction between different applications based on their context, e.g.,

identity, location, or state, is not possible if they do not rely on a common

representation of this context.

In this chapter we discuss the requirements on application‐independent

context management in order to provide a platform where applications

can seamlessly share their context. Two approaches for such platforms are

presented. One addresses the context management in the scope of a smart

home environment based on the Georgia Techʹs Aware Home project

[AAH+97] while the other approach addresses global context management

from the perspective of the Nexus project [HKL+99]. We have integrated

both approaches and discuss our experiences regarding the context

representation. Crucial to the integration of both approaches is a common

context model and a federation concept for the local context management.

The chapter is structured as follows. First we motivate the requirements

on context management to achieve interoperability based on typical

applications in a smart home environment. Following to that, the related

work is presented. In section 6.4 and section 6.5, we describe the context

management for the Aware Home and the Nexus platform. An assessment

of context modeling and the platform integration is given in section 6.6

based on the integration of the Aware Home Spatial Service into the

Nexus platform. Finally, we close with a summary and outline future

work.

6.2. Requirements

In this section we derive requirements based on a scenario and discuss

what follows from that for context modeling.

 130

6.2.1. Scenario

Consider the following scenario: You have a home that can sense what its

inhabitants are doing, adapt to them and support them with their task;

e.g., the Smart Intercom allows you to reach every other person in the

house ‐ regardless of where he or she is located. So if you are in the

basement, it is possible to say ʺHouse, I want to talk to Thomasʺ. The

house then would localize Thomas, check if it is currently acceptable to

contact him or if he is occupied otherwise, and then create an audio

connection to him using the closest available audio interface device. This

could be the phone on his desk or the speakers and microphones in the

room.

Now you want to add another application to your home: A smart

doorbell. Depending on whom a visitor is here to see, the Smart Bell finds

the respective person and notifies her that a visitor is waiting at the door.

Then it routes a video feed from the entrance area to the wall display

closest to that position. Now you can decide whether the visitor should be

let in. It is also possible to identify the visitor and to register him with the

intercom system and other systems of the house.

Also, you want to add a smart alarm system. Because the house knows the

identities and the locations of its inhabitants, it can continuously monitor

whether unauthorized persons are in the house and notify the authorities

accordingly. Then it would provide the authorities with information about

the situation within your house ‐ e.g., the layout of the house, where the

inhabitants and where the intruders are located.

In the remainder of this section, we discuss requirements for the data

model of these applications and for the infrastructure that supports them.

131

6.2.2. Derived requirements

Based on the scenario we derive requirements regarding the information

model, information access, consistency, the abstraction from resources,

and interoperability.

Information Model:

The applications in the scenario need certain information to fulfill their

tasks. Mobile objects, such as users with their identity and position, and

stationary objects, such as furniture or input/output devices, are relevant

for context‐aware applications. These objects have to be managed with

respect to their spatial environment, e.g., the floor plan of a smart house or

the layout of a city center. Additional attributes of these objects, such as

user preferences or a functionality description, can be used by

applications. The information model should be easily extensible, since new

applications are likely to require additional or specialized objects.

Information Access:

Applications access the information in the information model through

queries, predicates, and functions operating on the information model.

Queries are used to access objects via their identity or their current

location, e.g., a range or a neighborhood. The interpretation of a range or a

neighborhood requires spatial knowledge which has to be provided by the

underlying information model. Spatial predicates are constantly evaluated

and signal distinct correlations between mobile and stationary objects to

an application, e.g., a user entering a room or a certain user meeting

another user. Applications can modify information in the information

model via updates.

Consistency:

The information about people, house and resources, e.g., as gathered

through sensor systems in the infrastructure, has to be maintained and

kept consistent among all applications. If real world objects or resources

 132

are moved or removed, the information in the infrastructure has to be

updated.

Abstraction from Resources:

The variety of possible information sources and services, such as sensors,

actuators, and user interfaces, should be transparent to applications. A

layer of abstraction should be provided to facilitate the easy change of

resources, such as upgrading a positioning system. Newly integrated

resources should be made available to applications.

Interoperability:

One of the main requirements for the infrastructure is interoperability in

three dimensions. First, interoperability between resources, e.g., the audio

speakers should be able to work with the TV to display the video feed of

the Smart Doorbell. Secondly, applications that communicate using

information or resources: e.g., the Smart Doorbell inserts a new ʺpersonʺ

into the house and the Smart Intercom should be able to use this

information. Thirdly, the interoperability between applications: e.g., the

Smart Doorbell notifies the Smart Intercom that it has to use the audio

speakers to signal into the room.

6.2.3. Context modeling

The information model as discussed in the previous section is concerned

with context data. A number of different definitions for context exist, e.g.,

[CK00][DA99]. Our view on context is similar to the definition presented

in [DA99]: Context is the information which can be used to characterize the

situation of an entity. Entities are people, locations, or objects which are

considered to be relevant for the behavior of an application. The entity itself is

regarded as part of its context.

When context is stored in a context model it is necessary that applications

can access it. As the examples have shown, applications typically consider

133

information about a distinct location or an entity, e.g., a user or object.

Hence, such a model must allow for access to context information based

on location and the identity of objects. Additionally, context models can

incorporate the time dimension, i.e., capture history or provide a

prognosis. In general, a combination of either identity and time or location

and time is needed to access context information in a meaningful way.

However, time can also be defined implicitly as the current point in time.

Based on the selection of objects via identity, location, and time further

information, such as the activity of a user or the state of an object, can be

derived. Using location as index imposes new challenges on the

representation of the index and its processing. The underlying spatial

structure has to be reflected in the index.

A variety of different location models exist, which can be classified as

topographical, topological, or hybrid models. Topographical models use

geometry to model space. They model the spatial entities as geometric

shapes that are placed within a coordinate system. The relations between

the entities, e.g., which entities are next to each other, are implicitly

defined by their location. Topological models describe the relations

between spatial objects explicitly without localizing them in a coordinate

system. Hybrid models combine the localization of the spatial entities

within a coordinate system with the explicit modeling of their relations.

The complexity of the models differs widely, e.g., regarding the level of

detail and the available functionality. Common tasks are querying for

objects within a distinct area as well as determining the nearest object with

respect to a given position. Hence, the context model requires a spatial

structure. Since our context models take the spatial structure of the real

world as their basis, we also call them world models.

 134

6.3. Related work

Context‐aware applications have attracted the interest of researchers over

the past years. A number of different applications have been developed

exploring different application domains. Tourist guides, e.g., Guide

[CDM+00a] or CyBARguide [AAH+97], provide information to mobile

users about typically stationary objects in their vicinity, such as distinct

sights. Indoor information systems, e.g., Cyberguide [AAH+97], ETH

World [ETH], or conference room reservation [CKW01], provide similar

services in the indoor domain.

Another class of pervasive computing applications presents location‐

dependent information to users. Virtual Information Towers [LKR99]

provide information for a distinct area through posters, while Stick E‐

Notes [Pas97] and Geo‐Notes [EPS+01] offer a Post‐It metaphor allowing

users to leave messages at a distinct location. These systems typically are

not concerned with the relations between different mobile objects, e.g.,

users, and they only require simple spatial models. Abstraction from

resources is typically not necessary, since the information is not captured

via sensors and actuators are not supported. Interoperability is typically

not an issue in such systems.

For another class of applications, an underlying spatial model is required.

The Teleporting project [HHS+99] requires a spatial model in order to

redirect output to the devices that are closest to users. Similar to that, the

Family Intercom [NKO+01] also requires spatial knowledge. While the

Family Intercom does not intend to share its spatial model, the Teleporting

project has developed a platform which provides a data model linked to

locations obtained via fine‐grained location and spatial monitoring

systems. This platform already meets some of our requirements, but its

scalability is targeted at larger buildings. There is no given structure of

data objects though, leading to reduced interoperability.

135

The Context Information Service (CIS [JS03]) of the Aura project [GSS+02]

also aims at providing context information. The underlying location

model is based on a mapping onto geometric coordinates [JS02] thus not

allowing purely symbolic coordinates. The information model is targeted

at technical information of the network and its entities, such as printers or

bandwidth, and reflects their properties via meta data. The location of

people is also provided. This centralized architecture is limited to building

size scalability although caching techniques provide improved

performance.

Other kinds of infrastructure are targeted at distinct domains. The Context

Toolkit [SDA99] provides abstractions to integrate various sensor devices

and facilitates sensor fusion. Guide [CDM+00a] also provides an

infrastructure which enables classes of applications from the navigation or

outdoor domain to rely on an extensible data model. However, the

location model is cell‐based and depends on the communication

infrastructure.

Most of the above‐mentioned approaches do not allow for flexible

integration of different spatial models. Such spatial information is

represented by location models, reflects application requirements, and

depends on the modeled environment [BBR02]. Easy Living [BMK+00] is

targeted at the indoor domain and provides an infrastructure for spatial

access to information similar to QoSDream [NC01]. Abstractions of

hardware providing context information or a common data model are not

addressed by either approach.

As we have seen, there are a variety of different approaches which address

some of the requirements derived in Section 2. A comprehensive solution

is still missing. In particular, the scalability of the infrastructure and

interoperability of applications are still open research questions. The

 136

answers to these questions are crucial to provide users with applications

which operate in varying environments.

6.4. AHSS - A local architecture

We have designed and implemented a context management infrastructure,

the Aware Home Spatial Service (AHSS), at the Georgia Tech Aware

Home, based on the requirements presented in section 6.2 and the

feedback from the developers at the Aware Home. One of their main

requirements for developing applications was flexibility. As their research

environment is very dynamic, they did not want to be obstructed by too

inflexible frameworks and standards, preferring direct interaction and

agreement between developers instead. Scalability, on the other hand, is

not such a big issue for prototype applications in the Aware Home.

Therefore, the Aware Home Spatial Service is targeted at small to mid‐size

smart home environments.

The ʺintelligenceʺ in such settings is usually not concentrated in mobile

devices like PDAs, cellular phones or wearable computers. It is typically in

stationary systems in the house that serve the area of the house. In the

smart home we are considering, a variety of platforms are in use. The

main language for most systems in our setting is Java. Some application

areas like computer vision necessitate the use of other languages like C or

C++.

6.4.1. Spatial model

The AHSS spatial model defines and implements a standardized way to

model context information structured along the dimension of space. This

spatial model is topological, similar to the one proposed in [BBR02] that

we have adapted and extended by topographic aspects.

137

Figure 6.1: AHSS conceptual view

As shown in Figure 6.1, the spatial model represents context information

from the real world. All applications can use the same spatial model. The

model consists of a graph, with locations as vertices and relations as

edges. Locations describe relevant spatial objects, rooms, furniture or even

people. An AHSS Location has an ID that is unique within the spatial

model, a type that is associated with it, some standard attributes and an

optional spatial attribute. This spatial attribute can be a point, a line, a

polygon or any other geometry type specified in the OpenGIS standard

[OpenGIS]. It represents the topographic aspect of the model. For

example, it is possible to attach the shape of a room (i.e., its geometry) to

the Location representing it. Spatial attributes provide a variety of spatial

operations like union, intersection etc. Furthermore, Locations are

extensible. Applications can add arbitrary attributes with application‐

specific semantics.

Locations are connected by relations, to allow modeling of explicit spatial

relations. They have a type and a weight that can be used to model

distances that are not geometric: two rooms might be very close from a

geometric point of view, but if there is a wall between them, or a door that

can only be used in case of an emergency, they may in fact be very far

apart.

Also, locations are organized within levels of detail (LOD) that structure

the spatial model hierarchically. This is important because not every

application needs to deal with the model on the same level of detail. One

 138

application might only need the coordinates of a house, while another

application might need more detailed information, e.g., the layout of the

rooms in the house. Figure 6.2 illustrates this. On every Location, it is

possible to generalize (get the equivalent Location on a lower LOD) or

specialize (get the gateway Location on a higher LOD). For example,

generalizing the kitchen would yield the first floor, specializing the first

floor could yield the staircase.

Figure 6.2: Levels of detail in the AHSS spatial model

6.4.2. System architecture

If multiple applications are concurrently using the same spatial model, the

model has to be kept consistent among those applications. The AHSS uses

a centralized approach to accomplish this ‐ the Spatial Server, that stores

the current spatial model (see Figure 6.3). This centralization allows us to

keep the architecture of the system relatively simple. However, it should

be noted that a centralized design is not required by our spatial model.

Sharing and consistency of our model could also be provided by a

distributed infrastructure.

139

The spatial server has to store a potentially large amount of information

that has a spatial component in a persistent way. Instead of implementing

a proprietary data storage, we rely on a database system. As we have seen

in section 6.2.3, the information we are dealing with is structured by space.

Therefore, the AHSS spatial server uses a spatially‐enabled database. This

allows us to model the spatial components of our data much more

naturally. It also improves query performance because many spatial

databases support spatial indexing. There is a variety of commercial

spatially‐enabled databases available (e.g., IBMʹs Spatial Extender for DB2

or Oracle Locator), but those products tend to have a large footprint and

are generally expensive. We decided to use the open source database

PostGIS [PostGIS], a spatially enabled version of PostgreSQL.

Figure 6.3: Architecture of the AHSS

The communication between the spatial server and its clients utilizes IIOP.

This allows Java clients the access via RMI/IIOP, while other clients, e.g.,

written in C++, can use CORBA. Using RMI‐IIOP callbacks, the

infrastructure also offers an event concept. Applications can define events

on locations in the spatial model. Other applications can then subscribe to

those events, and get notified when the events are triggered.

 140

6.4.3. Experiences

The Aware Home Spatial Service provides a simple infrastructure to

model context information that is structured along the dimension of space.

It allows us to store spatial information in a central infrastructure and to

reuse it across multiple applications. Applications can exchange

information through the spatial model and they can notify each other

using events.

As shown in Table 6.1 AHSS meets our requirements as they were

introduced in Section 6.2.

Requirements
Requirement Realization
Information

Model
Support for location and identity as indexes - allows queries for stationary and
mobile objects based on the spatial layout of the smart home.

Information
Access

The spatial layout of the AHSS allows the calculation of spatial relations, e.g.,
the distance between two objects. Querying and updating of information is
supported by the database.

Consistency The centralized architecture of the AHSS provides a consistent view on the
modeled information.

Abstraction from
Resources

Since applications only rely on the information stored in the AHSS the
information source, e.g., a sensor device or a fusion of sensor data, as provided
by the Context Toolkit [SDA99], is shielded from the information consumer.
Resource discovery is automatically provided by processing queries on the
database which is constantly updated.

Interoperability
Applications sharing information stored in the AHSS rely on the same
information model and thus become interoperable. However, the AHSS does
not define any interoperability protocol between applications themselves.

Table 6.1: Requirements

Although all of our requirements are met, there are some issues worth

noting. The AHSS does not rely on an explicit model of the context

information that is managed. Different instances of an AHSS, as they can

occur in different administrative settings, will therefore not automatically

become interoperable. Hence, the interoperability of application gets

restricted to a distinct information model of the underlying AHSS.

However, the AHSS is a suitable platform for local context management.

In the next section we discuss a global context management architecture.

A common context model allows the integration of different local context

141

models into a federated, global context management platform. In Section 6

we show how AHSS can be integrated into such a global context model.

6.5. Nexus - A global architecture

If we want to extend the scope of interoperable, context‐aware

applications beyond a closed environment like a single home, we need a

common context model that is suitable for a wide range of context‐aware

applications. To achieve this goal, we need to address two major

challenges: modeling standards (how can A understand what B models)

and infrastructure (how can such a huge model be managed efficiently).

Since no single person or corporation will model the entire world in detail,

our approach in the Nexus project at the University of Stuttgart is to

investigate how context‐aware applications can be supported by the

federation of local context models. Hence, the infrastructure should allow

for the integration of context models from different providers.

The federation of different context models from a variety of providers

requires a common information model which states the type and structure

of information objects as well as the access to the objects, i.e., a unified

model of object identities and the location model.

For the Nexus platform, the information model is called Augmented

World Model. The Augmented World Model is a global object‐based

ontology that defines how context information can be shared between

applications and data providers. It contains real world objects like rooms,

sensors, streets or persons as well as virtual objects like Virtual

Information Towers (VIT) [LKR99] or virtual Post‐Its [Pas97] that are used

to represent digital information in the world. The Augmented World

Model is not stored explicitly. Instead, it is a federated, global view on all

compliant local context models. Those local models are called augmented

areas (AA) (see Figure 6.4). An AA has a certain extent that describes the

geographical area in which its objects reside. There is no restriction on the

 142

size or the number of objects an AA can host. AAs can overlap or model

the same real world entity. The Augmented World Model is the federated,

global view on all Augmented Areas. An application does not need to

know from which AA the context information comes, and it can use data

that is combined from different AAs. This federation is only possible

because the AAs rely on a common data schema called the Standard Class

Schema (SCS).

Figure 6.4: Augmented Areas

The SCS defines the types and attributes of objects of the Augmented

World. These are ordered in a hierarchical ʺis‐aʺ relationship (inheritance).

In Figure 6.5, you can see an excerpt from the top levels of the SCS:

dataobject is the root that defines a unique object identifier and locator for

each object called the Nexus Object Locator (NOL). Objects of the type

spatialobject all have a geographical position and optionally an extent.

Because the spatial context is our primary index and therefore is crucial to

performance, we distinguish between static and mobile objects.

While static objects seldom change their location and therefore can be

managed in a single AA, mobile objects move around and cross the

borders of AAs which leads to handovers. In total, the SCS defines about

250 classes or types for context‐aware data objects. We have designed that

model by doing a use case analysis on different applications [NM01]. An

AA provides the attribute, the type and the meaning of the attributes of its

objects.

143

Figure 6.5: Excerpt from the top part of the Standard Class Schema

To provide extensibility, any data provider can define an Extended Class

Schema (ECS). The classes of the ECS are derived from appropriate classes

of the SCS. For example, if somebody wants to integrate LivingRoom

objects into an AA, then she can extend the SCS type Room with the

necessary additional attributes (see Figure 6.6). An advanced LivingRoom

application can now access this information, whereas normal applications

knowing only the SCS could treat the object as its parent class Room.

Figure 6.6: Standard and extended class schema

 144

6.5.1. Platform architecture

Figure 6.7: Architecture of the Nexus platform

As we have seen, a global context model like the Augmented World

Model is feasible if independent providers can build their local models

based on a flexible standard and make them available to a federation that

integrates all local models into a global view. Now we will describe an

open infrastructure that is able to manage the Nexus Augmented World

Model. As depicted in Figure 6.7, the Nexus Platform is built in three tiers:

the service tier contains data and service providers for Augmented Area

models. The federation tier integrates the AAs and supports value added

services on the Augmented World Model. Applications are located in the

application tier and use the services of the federation.

6.5.2. Spatial model servers

Spatial Model Servers (SpaSes) host Augmented Areas. Objects are

modeled in AWML (Augmented World Modeling Language) and queried

using a simple spatial query language called AWQL (Augmented World

Query Language), which is used to specify the objects of interest and to

145

filter the attributes. AWQL supports spatial predicates (overlaps, inside)

and nearest neighbor queries as well as data manipulation (insert, update,

delete). AWML and AWQL are both XML languages. Note that AWQL is

not an XML query language like XQuery ‐ AWQL is suitable for spatial

objects, not for hierarchical XML documents.

Depending on what kind of context information a SpaSe provides, the

implementation of the spatial server which processes the AWQL/AWML

can differ to a large degree. For static objects and large‐scale spatial

models, we use a full‐grown database with a spatial extension (IBM DB2

7.1 + Spatial Extender). AWQL can be easily transformed to SQL by an

XSLT style sheet. Mobile objects are managed by the Location Service

[LR02]. Because position data is highly dynamic and does not need to be

persistent, main memory data structures are better suited for this task. The

Location Service consists of hierarchically structured servers that manage

objects within a certain area. When the object moves out of this area,

handovers are performed.

6.5.3. Nexus nodes

The Nexus nodes in Figure 6.7 mediate between Nexus applications and

Nexus services. They are responsible for distributing queries to different

data providers and for composing the results, thus providing the

Augmented World Model for the applications. The nodes do not store

persistent data, a fact that allows replicating them for load balancing.

For query distribution and service discovery, a Nexus node uses the Area

Service Register (ASR). This service is a directory of the available

augmented areas and stores the address of the server, the available object

types and the extent to the AA. The Nexus node computes the targeted

region and the object types of the application query and queries the ASR

to find out which Spatial Model Servers cover the requested region and

 146

store objects of the requested types. Then the node distributes the query to

the relevant data providers named by the ASR and merges their results.

More details about the federation tier can be found in [NGS+01].

6.5.4. Value added services

In addition to the query functionality, every Nexus node supports value‐

added services. They use the federated context model to implement

advanced services and have their own interface. In Figure 6.7, you can see

three different value‐added services of the Nexus platform: the event

service monitors spatial events, combining basic events into more complex

events. This allows the processing of spatial predicates, such as ʺtwo of my

friends meetʺ. The map service provides maps based on a selected area

and the navigation service provides a navigation route from a starting

point to an endpoint.

6.6. The NexusScout application

In this section we briefly describe NexusScout, a location‐based

application that runs on the Nexus platform. It is based on the Virtual

Information Tower application [LKR99]. We have added several advanced

functionalities that show the power of the platform and are useful for

mobile, context‐aware applications. NexusScout runs on a notebook and

we have also just ported it to a PDA. It uses WLAN for wireless

communication. Outdoor positioning is done via GPS, while indoor

positioning uses infrared beacons.

The NexusScout provides maps to users showing their position. Virtual

Information Towers (VIT) provide information (web pages) that is

relevant at the given location. Based on the Nexus Augmented World

Model nearest‐neighbor queries for objects, e.g., restaurants, are possible.

The integration of the navigation and map services allows to use the

147

Neuxs as navigation system as well as register spatial predicates, e.g.,

ʺnotify me when my colleague enters the buildingʺ.

Figure 6.8: Screenshot of the NexuScout

6.7. AHSS in Nexus

As we have seen in Section 6.4.3, a local context model like AHSS is

suitable for small‐ to mid‐size home environments, where flexibility is

very important to quickly develop and evaluate prototype applications,

and where developers can easily interact and agree on the modeling.

However, if we have applications for which the context is to be shared

over larger areas and possibly multiple administrative domains, e.g.,

multiple aware homes, the AHSS is no longer sufficient, as it does not

provide the necessary scalability and agreements between developers on

how the world should be modeled. Our approach to mitigate this problem

is to integrate AHSS into our Augmented World Model.

 148

6.7.1. Conceptual integration

We decided to integrate AHSS into Nexus as a spatial server. This way, an

area which is served by AHSS appears to be an Augmented Area to the

Nexus federation. The major challenge is to integrate the concepts of

Nexus and AHSS. The integration does not have to be complete: While

AHSS needs to support all the concepts of Nexus in order to function as

part of a Nexus federation, the reverse is not necessary. In our approach,

we map Nexus objects to AHSS Locations. Basic attributes of Nexus

attributes like the object id and the type are mapped to their AHSS

counterparts. Nexus attributes that have no standardized AHSS

counterpart are mapped to extended AHSS attributes. We are now going

to describe the changes we have made to AHSS in order to integrate it into

Nexus.

6.7.2. Technical integration

To work as part of a federation, the AHSS spatial server has to perform

several tasks. First, it needs to register with the Nexus Area Service

Register to give the federation the information it needs to dispatch the

queries. It has to specify which area the spatial server covers, and which

Nexus object types it provides. The Nexus federation queries the spatial

servers by using AWQL. Thus we had to implement an AWQL interface to

Nexus which processes the query and update operations against the AHSS

data. Also, the Nexus Federation expects the replies in AWML format.

Therefore the AWQL interface has to map the AHSS Locations to Nexus

objects, and then has to serialize them into AWML. AWQL queries specify

the class schemata the client understands. The replies have to contain only

objects that conform to these class schemata. Also, if a Nexus client queries

e.g., for BuildingElements, objects of descendants of BuildingElement that

match the query have to be returned. So it is necessary for AHSS to know

149

the Augmented World Model (AWM), the Standard Class Schema plus

appropriate Extended Class Schemas, which are both modeled in XML.

We have therefore added an AWM interpreter which reads the

appropriate AWM specified in the query. It then handles the AWM

inheritance hierarchy issues of the query and strips the resulting AHSS

Locations of all attributes which are not part of the class schema. If a

Nexus application is interested in getting all the spatial objects with all

their attributes from the infrastructure, it can specify that the results

should conform to the ʺGenericʺ class schema. Then all AHSS Location

attributes are returned. Figure 6.9 gives an overview of the necessary

changes to the AHSS architecture.

6.7.3. Experiences

The integration of AHSS into the Nexus federation provides various

advantages. First of all, AHSS becomes part of the Nexus federated world

model. Nexus applications can then use context information that is stored

within the AHSS. This makes it possible to use existing Nexus applications

with the AHSS. For example, the NexusScout can use AHSS without any

modifications. Also, Nexus applications can store their context

information into the AHSS. This information can further enrich the context

model which AHSS applications can access. The local AHSS interfaces are

still available, so local applications can access AHSS either through the

local interfaces or through the Nexus AWQL interface.

This approach makes it possible to use simple, specialized infrastructures

to support local applications, while using the Nexus federation to support

greater scalability needs. The context model of each specialized

infrastructure has to support topographic modeling and has to be flexible

enough to store the attributes which are required by Nexus.

 150

Figure 6.9: The extended AHSS architecture

6.8. Conclusion and future work

In this chapter we have shown that shared context models are a suitable

basis for building context‐aware applications that operate in the same

environment and rely on the same context information. We have

presented the Aware Home Spatial Service (AHSS) that was designed for

a single smart home environment. For context management on a global

scale, we have developed the Nexus platform that federates different

context models based on a common standard for modeling objects and a

topographic modeling of space. Finally, we have shown how an existing

local spatial model like AHSS can be integrated into the Nexus platform.

The current version of the extensible Nexus standard class schema is only

the first step towards defining a common standard for context models in

general. The integration of further application models currently used in

smart environments will lead to a better understanding of world models

and how to build them. To support further classes of applications we have

to go beyond modeling sensor information as model data and integrate

hardware abstractions and discovery mechanisms into our model, e.g.,

provide access to standardized interfaces for complex actuators and

sensors like cameras. So far the Nexus platform has focused on providing

efficient and scalable access to two dimensional topographical world

models. In the future, we will investigate complex three dimensional

151

models and also full‐fledged support for topological models. Federating

different models modeling the same real world objects ensures internal

consistency of the model information. Consistency between the model and

the real world is also an important focus of our future research.

For a more widespread use of world models in smart environments tools

for creating such models have to be developed. Having larger smart

environments allows more useful evaluations in real world situations. We

plan to investigate security, privacy and acceptability issues in such

settings.

 152

7. Middleware and Application Adaptation

Requirements and their Support in Pervasive

Computing
Pervasive computing environments are characterized by an

additional heterogeneity compared to existing computing in‐

frastructures. Devices ranging from small embedded systems

to fullfledged computers are connected via spontaneously

formed networks. In this chapter we analyze requirements of

applications and system software to cope with the dynamically

changing execution environment. Based on our microbroker‐

based middleware BASE a component framework for pervasive

computing supporting application adaptation is proposed.

7.1. Introduction

In the recent past, middleware platforms have been the target of

researchers in order to provide flexibility with respect to the configuration

of the middleware itself. Requirements on such reconfigurable

middleware systems arose mainly from the domain of Quality of Service

(QoS) management. Different application requirements on non‐functional

aspects, such as QoS, lead to mechanisms of the middleware to ensure a

distinct QoS property.

The vision of ubiquitous or pervasive computing adds new complexity.

Our everyday environment becomes populated with smart everyday

items. That is, processors are integrated into the environment and allow to

access information related to the real world as well as to control distinct

functionality. The end systems in such scenarios are far more

heterogeneous than in classical computing environments. Sensors will

only need limited computing and communication capabilities and other

devices will be dedicated to a single purpose, i.e., a presentation system in

153

a video projector might contain a fullfledged computer but its software is

specialized for presentation management. Besides the involved devices,

the communication technology will differ as well, ranging from infrared

connections over radio links to computers connected via static links. The

resulting network topologies will frequently change due to user and

device mobility. Information and services available are bound to the

location of the device, e.g., temperature information or a presentation

system of a far away place are typically less interesting than those

available nearby.

As a result, the requirements on adaptation and configuration of the

underlying middleware as well as those from the applications change

compared to those requirements already present in classical middleware

systems. In this chapter we will present an example scenario, derive and

motivate requirements on middleware configuration support and

application adaptation. Our approach to support these requirements via a

microbroker based middleware – BASE – and a component model based

on an application framework is then presented. After a discussion of

related work the chapter closes with a summary and outlook on future

work.

7.2. System model

This section will first present a pervasive computing scenario and two

possible applications before the system model is defined.

7.2.1. Scenario

Let us consider a scenario as it is common in the envisioned pervasive

computing systems. Present in such a scenario are embedded and

specialized devices, e.g., sensors providing information about

temperature, position of users or specialized systems, such as the before

mentioned presentation system. All these devices are equipped with

 154

wireless communication. Along with these stationary devices, mobile

devices which are typically carried by users are present. Such devices

could be handheld devices, such as personal digital assistants (PDAs) or

cell phones, but in the future there might be smart clothes as well. The

computing environments of today will not vanish or be substituted by

these devices but complement such systems. In order to motivate the use

of such environments to applications two possible applications are

sketched:

Support of senior citizens: in order to support the life of the elderly in

their home, their body functions and positions might be captured and

evaluated at a designated home server. If a change in the health condition

occurs, information how to behave is presented through audio or video

devices in the room where the person currently is located. In serious

health conditions an ambulance is called and provided with the health

status of the person.

Office support: the status of rooms and objects could be monitored by

sensors and propagated into the vicinity. Users nearby are thus provided

with environmental information as well as vacancies of meeting rooms etc.

Additionally, locally available services become accessible when a user is

nearby, e.g., a presentation system is only of use, when the user is in the

same room to make use of its output.

Before we will derive requirements from these scenarios the underlying

system model will be presented.

7.2.2. System Model

Pervasive computing environments can be classified by the involved

devices and the network characteristics. Furthermore, applications depend

on the abstractions provided by the underlying operating system or

middleware – which is referred to as system software. We will briefly

155

sketch the characteristics of these three topics in the remainder of this

subsection.

7.2.2.1. Devices.

As stated above, devices range from sensors over specialized systems to

full fledged computers and mobile devices. Besides their processing and

storage properties – which may differ widely – devices provide different

capabilities which can be used by applications running on these devices.

Examples are sensors, e.g., temperature as well as positioning, display or

input capabilities, or some controlling capability, such as dimming the

light or adjusting the blind of a window.

The availability of a device capability might be restricted in space and

time. A GPS sensor is not likely to work within a building and at night

sensors based on daylight will stop operating.

7.2.2.2. Network.

The wireless connections between the devices differ with respect to the

underlying technology and their characteristics. The most profound

difference to classical computing environments is the spontaneous nature

of such networks, which are formed by nodes which are temporarily in

each others communication range. Obstacles, user mobility, and power

saving are common events which lead to a reconfiguration of a

spontaneous network.

As a result, services located on a device that is not in the current

spontaneous network of a client, are not available. This prevents the usage

of centralized lookup or trading services. During the interaction with a

service, the device providing the service might leave the network. Since

devices can be equipped with different network interfaces, spontaneous

networks will overlap, i.e., some devices might be reachable via more than

one network interface at a time.

 156

7.2.2.3. System software.

The support of system software clearly may differ widely. Specialized

operating systems for embedded devices, common operating systems with

middleware support, or completely proprietary solutions are present.

From an application point of view, the abstractions how to interact with

remote services – a typical middleware responsibility – and how to access

device capabilities, which is an operating system task, are important in

order to be comprehensive and yet easy to use.

Another relevant issue in distributed systems in general is interoperability

which is typically achieved by relying on interoperability protocols.

Interoperability protocols reflect the communication model of the

application as it is supported by a middleware. Remote method

invocations are reflected by request/response messages while events can

be realized by oneway messages containing the event. Requirements on

the underlying transport, such as an error‐free connection‐oriented

channel, lead to a restricted usage if only oneway communication – via an

optical link, or connection‐less communication – is available.

7.3. Requirements

In this section we will derive requirements on the adaptation of

applications and its support by system software and component models.

Applications are considered to be executed in a distributed way.

Standalone applications could require adaptation support as well, e.g.,

when a device capability becomes unavailable (a GPS sensor indoor), but

these kinds of adaptation requirements are a subset of the more general

ones of distributed applications.

7.3.1. Application adaptation requirements

Applications in a spontaneous networking environment have to cope

with:

157

Changing service and device capability availability: With devices

becoming available their services should be used by an application. As

well, if a service becomes unavailable, an alternative service should be

selected. This will only work, if applications are composed of services with

clear dependencies. If alternative levels of an application are defined

which require different services the application can continue as long as at

least on set of services is available. Clearly, this cannot be supported by

the middleware alone but requires an appropriate framework for

applications. The same mechanisms can be used to address fluctuating

sensor availability on a device.

Different abstractions for programming of device capabilities:

Middleware and operating system abstractions for remote services and

device capabilities are typically different, e.g., proxy objects vs. system

calls. This hardens adaptation, since the switch of a local to a remote

device capability cannot be done with the same programming interface.

7.3.2. System software adaptation requirements

System software in a spontaneous networking environment has to

support:

Device lookup and service discovery for spontaneous networks: The

device lookup depends on the underlying network characteristics and

thus requires distinct lookup mechanisms for each supported network

interface. Additionally, services might require distinct interoperability

protocols which also depend on the network interface and hence the

service lookup will have to take this into account. The detection of lost

devices and thus the unavailability of all services in use on that devices

have to be signalled to the application or an application framework.

Flexible protocol support and selection: If a network interface looses its

connection to another device, communication should be upheld if other

 158

network interfaces can provide a communication channel. Switching

between different interoperability protocols over networks with different

characteristics however requires adaptation if the underlying transport

does not fullfil requirements of the interoperability protocol, e.g., IIOP

requires connection‐oriented error‐free/signalling communication.

Decoupling of application communication model and interoperability

communication model: In order to allow different communication links

for outgoing and incoming messages, the application communication

model, e.g., RPC or events, should be kept independent from the

communication model of the possible interoperability protocols. For

example this allows communication over infrared via sending out a

request as an event and receiving the reply as a reply message over an

RPC interoperability protocol based on TCP and IEEE 802.11.

Uniform abstraction for device capabilities and services: This allows

applications to access remote capabilities in the same way as local ones.

Moreover, a uniform abstraction to access services and device capabilities

allows to mask the heterogeneity of devices.

Flexible integration of adaptation mechanisms: Since different

application requirements will need support through mechanisms, e.g., to

migrate a component to a remote host to increase the application

performance or to migrate it to the local node in order to save energy,

different mechanisms should be easily integrated, configured, and used

either directly by an application above the system software or by an

application framework.

A system software offering the above mentioned support is not sufficient

to help application programmers to conquer the heterogeneity and

dynamics of pervasive computing environments. Instead of programming

towards middleware mechanisms and selecting distinct mechanisms

manually, application programmers should rely on high level policies

159

which will result in combinations of mechanisms of the system software.

Examples for such policies are ’EnergySaving’, leading to fostering local

execution of application components and restricting radio communication

that is costly in terms of energy, or ’IncreasingAvailability’, which would

make extensive use of remote services in order to allow the application

execution – as a tradeoff to energy.

What is needed in addition to a middleware supporting the requirements

stated above is an application framework that will provide benign

abstractions for choosing appropriate adaptation policies. In order to

support such a framework, we have developed a microbroker‐based

middleware, BASE [BSG+03], which meets these requirements. Currently

we are developing a component system based on BASE which will allow

the specification of component dependencies.

In the following we will sketch the design of BASE and the component

system, which we are currently developing.

7.4. BASE a Microbroker based Middleware

Our middleware BASE is intended to be a minimal platform suitable for

small embedded systems but extensible to make use of abstractions

available on resource‐rich environments. BASE provides application

programmers with suitable abstractions to conquer the heterogeneity in

pervasive computing environments. Another objective of BASE is to form

a foundation for an adaptation supporting component framework. We

will briefly sketch the overall architecture of BASE. More detailed

information is available in [BSG+03].

The major design decision in BASE was to choose a microbroker design.

Device capabilities as well as local and remote services are uniformly

accessible via invocation objects, which carry the target object, method‐

name, parameters, and a service context indication special handling of the

invocation, such as QoS parameters. The microbroker takes incoming

 160

invocations and dispatches them to either a local service via a skeleton, a

remote service via a transport module which connects the local and

remote device, or to a device‐local device capability. Hence, remote device

capabilities can be accessed as services as well.

Invocation objects can be created manually or – if a service provides a stub

object – through a proxy (stub object) as conventional middleware systems

typically provide. The microbroker is responsible for synchronizing the

caller and issue invocations and receive possible replies as well as an

invocation. This allows the application to choose different communication

models, such as remote procedure calls (RPC), deferred synchronous

RPCs, or events via stub objects. Furthermore, the utilization of different

interoperability protocols becomes possible. Interoperability protocols

typically reflect the applications communication model. However, since

the microbroker maps the application communication model to an

exchange of invocation objects, different protocols can be used as long as

they accept an invocation object and transfer it. Using the same

interoperability protocol for outgoing and incoming invocations is not

necessary, since the microbroker keeps track of expected responses

(modelled as incovations as well). A scenario where a node uses two

communication technologies for the outgoing request and the incoming

reply is depicted in Figure 7.1.

BASE allows the integration of transport plugins during runtime. The

dynamic invocation creation along with local service registries provide a

simple reflection mechanism.

The BASE prototype has been implemented in Java, making it suitable for

a variety of Java‐enabled embedded systems, e.g., mobile phones or the

TINIBoard. A minimal configuration of BASE requires 130 KBytes of

memory. Due to buffer usage this can increase to a maximum of about 400

KBytes. Still, this makes BASE suitable for many small embedded Java‐

161

based systems. The extensibility of the microbroker allows the integration

of features available on resource‐rich computing environments.

7.5. PCOM

The functionality provided by BASE offers a basic abstraction to ease

application development. Still, additional mechanisms on top of BASE are

needed to enable the automatic adaptation of applications during runtime

in order to react to the changing availability of services or device

capabilities according to the current application execution policy, e.g., to

minimize the energy usage or to maximize the dependability of an

application.

.

Figure 7.1. Request/response interaction in BASE

 162

To achieve this, we propose an application model based on a component

system (named PCOM). The application model specifies the architectural

building blocks (modeled by components) and their interdependencies

(modeled by contracts between components). At runtime, this

specification is mapped to a concrete set of component instances where all

mandatory contracts are fulfilled. Hence, PCOMcomponents offer a

distinct functionality via contractually specified interfaces (following the

definition of [Szy98]). The functional properties of the contract are

modelled in the interface itself whereas additional properties, e.g.,

dependency on another component, QoS requirements, or behavioral

contracts via preand postconditions, are explicitly modelled as contract

types. This concept has been proposed in the realm of traditional

component systems, e.g., [BJP+99, WBG+01]. Contract types are templates

for contract instances as well as the components are templates for

component instances. When components are instantiated, contract types

are mapped to concrete contracts which either offer the desired property,

e.g., negotiate a distinct QoS property or bind to another component, or

indicate a contract violation. An application is modelled via a special

component (the so‐called application anchor) which specifies the set of

necessary subcomponents. These components depend on each other

according to the specified contract types.

Figure 6.2. Health monitoring application in PCOM.

163

A simplified example for this is given in Figure 6.2. Here, a health

monitoring application is shown, which outputs information and advices

whenever a suitable display is in the vicinity. This application is formed

by its application anchor and three subcomponent instances:

The health monitoring component is used to retrieve sensor information

such as blood pressure, pulse, etc.

The presentation system component is responsible for presenting advices for

certain health conditions, e.g., to calm down, take a distinct kind of

medicine, on a display nearby.

The application logic component depends on these two components. It

receives sensor information from the health monitoring component and

derives advices, which it sends to the presentation system component. For

simplicity, only the dependency between the application logic and the

presentation component is shown. It is modelled as a contract which

requires distinct size and resolution of the presentation system.

Additionally, a policy regarding energy consumption is shown, which is

assigned to the application.

The application specification has to be mapped to instances on devices

which realize the components. The different components are mapped to

specific services residing on potentially different devices. Contracts

between components have to be negotiated when a binding is established.

For an example, before using or acquiring the display component a

negotiation ensures that the resolution and size fullfil the contract.

The policy specifying the energy consumption is taken into account by the

underlying framework when tasks that need a lot of energy, e.g.,

performing calculations or accessing remote components, are executed.

The policies lead to configurations of the underlying BASE which will

enforce them, e.g., in selecting the transport requiring the least energy.

 164

The mapping of application policies, the contracts, and the binding of

components deployed across different devices shall be provided by the

framework. Currently, we have implemented BASE and designed the

above sketched application model. Our next steps involve the design of

the underlying framework as well as the mapping of contracts and

policies to the services and mechanisms provided by BASE.

The overall framework will allow adaptation of applications by activating

those applications where the application anchor contract is satisfied. That

is, all dependencies of the applications can be fullfilled according to the

application policies and contracts involved. Adaptation is supported by

the mechanisms of the underlying middleware and the selection of

alternative contracts. The execution context of an application is

determined by the services available on nearby devices and the associated

component instances from the application specification.

7.6. Related Work

7.6.1. Middleware Systems

In the past, a multitude of different middleware systems has been

developed (e.g., [OMG02a, SunRMI]) shielding application programmers

not only from distribution of services but also different operating systems

or hardware architectures. Conventional middleware systems are

designed for mostly stable environments, in which service unavailability

can be treated as an error, making these systems unsuitable for

spontaneous networking environments.

The latter can be achieved by extending conventional middleware systems

to dynamically reconfigurable middleware systems (e.g., [BG00, BCR+00,

RKC01]), which are able to adapt their behavior at runtime, e.g., how

marshalling is done. Still, most existing reconfigurable middleware

165

systems concentrate on powerful reconfiguration interfaces and not on

supporting small, resource‐poor devices.

The resource restrictions of such devices prohibit the application of a full‐

fledged middleware system. One way to address this is to restrict existing

systems and provide only a functional subset (e.g., [OMG02b, RSC+99])

leading to different programming models or a subset of available

interoperability protocols. Another option is to structure the middleware

in multiple components, such that unnecessary functionality can be

excluded from the middleware dynamically. One example is the

Universally Interoperable Core (UIC) [RKC01]. Like BASE, UIC is based

on a microkernel that can be dynamically extended to interact with

different existing middleware solutions. However, different

communication models or different protocols for outgoing and incoming

messages are not supported.

7.6.2. Component Systems and Pervasive

Computing

Component systems strive for independence of software components from

underlying platform properties in order to allow their reuse. One way to

achieve this is to model explicit context dependencies, e.g., via contracts

between components or contracts between the component container, such

as in J2EE [SunJ2EE]. Typically, the inter‐component contracts can be

negotiated and various solutions exist, to ease the integration into the

application framework, such as the aspect‐oriented programming

paradigm [BG00, BA01]. While such approaches can be appropriately used

to handle the inter‐component contracts the component container contract

typically relies on a fixed common abstraction, making it unfeasible for

pervasive computing environments where the container contract can

change.

 166

In the realm of ubiquitous computing the first approaches for component

based systems are emerging. While Pebbles [Oxygen] is at a stage where it

is hard to judge which requirements will be met, the Aura project

[CGS+02] proposes a component framework similar to ours. The resource

dependency of the Aura system is not addressed by the underlying

middleware but by hand tailored resource monitors. Hence, only a

comprehensive support of adaptation at the application layer, not on the

middleware layer, is intended. Similar to Aura, One.world [GAB+00] and

the Gaia system [RC00] shift the complexity of applicication adaptation to

the programmer. Support of the underlying middleware is only provided

with respect to communication issues.

7.7. Conclusion and Outlook

Pervasive computing environments differ from existing ones in the

increasing heterogeneity of devices and networks. The spontaneous

networking leads to situations, which are treated as errors in classical

computing, but require distinct precautions since they can happen

regularly. Based on typical scenarios we have derived a system model for

pervasive computing and the support from system software and

application adaptation. We have presented an extensible middleware

platform which already provides basic abstractions to ease application

development. The automatic adaptation of applications should be

supported by a component model based on a framework. The basic

abstractions of our middleware BASE can be used to build a framework

for a component model. A contract concept is not only used to specify

required properties for component interaction but also to indicate

application configurations leading to a component‐based application

model. Adaptation of application is reduced to validating required

contracts and activating applications where all contracts are fullfiled.

Contract enforcement and mechanisms to adapt are provided by BASE.

167

Currently, we have designed and implemented BASE. We are building

prototypes for applications using BASE in order to gain experience on

how the framework can support our application model. In the next steps

of our work we will aim at completing the framework.

 168

8. BASE - A Micro-broker-based Middleware For

Pervasive Computing
Pervasive computing environments add a multitude of

additional devices to our current computing landscapes.

Specialized embedded systems provide sensor information

about the real world or offer a distinct functionality, e.g.,

presentation on a “smart wall”. Spontaneous networking leads

to constantly changing availability of services. This requires

middleware support to ease application development.

Additionally, we argue that an extensible middleware platform

covering small embedded systems to full‐fledged desktop

computers is needed. Such a middleware should provide easy‐

to‐use abstractions to access remote services and device‐specific

capabilities. We present a micro‐broker‐based approach which

meets these requirements by allowing uniform access to device

capabilities and services through proxies and the integration of

different interoperability protocols. A minimum configuration

of the middleware can be executed on embedded systems.

Resource‐rich execution environments are supported by the

extensibility of the middleware.

8.1. Introduction

Existing middleware platforms are characterized by their precautions to

overcome heterogeneity of computer systems with respect to the hardware

platforms and programming languages. However, the computer systems

on which applications are executed are mostly homogeneous according to

their processing and storage capabilities. The vision of ubiquitous or per‐

vasive computing [Wei91] creates a world populated not only by

computers as we know them today but also with sensors and smart

169

“everyday items”. The heterogeneity added by these smart things is

characterized by an additional property: the embedded systems integrated

in the environment are typically tailored to distinct purposes. Hence, not

only processing and storage capabilities differ widely but local device

capabilities, such as different sensor types for temperature, pressure or

positioning, are also device‐specific. Communication between the different

end‐systems can take place over different kinds of network interfaces,

such as infrared communication or radio links, e.g., Bluetooth or IEEE

802.11, and additionally via different interoperability protocols, such as

IIOP, RMI, or simple event‐based protocols.

The availability of resources, remote ones as well as local ones, can change

over time, due to network connectivity as well as sensor‐specific

properties, e.g., it is unlikely that a GPS‐based positioning system will

work indoors.

In order to provide application programmers with support for conquering

the additional complexity in pervasive computing environments, we have

developed a micro‐broker‐based middleware. Our middleware will serve

as a foundation for applications as well as component systems, hence the

name BASE. Key features of BASE are the uniform access to remote

services and device‐specific capabilities, the decoupling of the application

communication model and the underlying interoperability protocols, and

its dynamic extensibility supporting the range of devices from sensors to

full‐fledged computers.

The chapter is structured as follows. Next, we will motivate the

requirements for such a middleware and introduce an example scenario.

Existing approaches are classified and discussed in the related work

section before we will sketch the overall design rationale of our approach

BASE. Some implementation details of BASE and an evaluation will be

 170

presented before we close the chapter with a conclusion and outlook on

future work.

8.2. Requirements

In order to clarify our system model and derive our requirements, we

want to sketch a small scenario. In a future “pervasive computing world”,

a building, e.g., an office, contains a huge number of highly specialized

and therefore very heterogeneous computing devices. While some of them

are stationary, e.g., placed in a room, others are carried by users, e.g., as

wearable computers. Devices range from small embedded sensors to

classic stand‐alone computers. Clearly, the resources and capabilities of

such devices differ widely, due to cost and size restrictions. Note, that the

capabilities of a mobile device can also change dynamically. As an

example, a GPS‐sensor will stop functioning when entering a building. To

summarize, a pervasive computing environment consists of a multitude of

heterogeneous devices, both stationary and mobile, with different and

dynamically changing capabilities and specific ways to access them.

One essential device capability is the ability to communicate and interact

with other devices. This is achieved by forming spontaneous networks

with changing members due to the communication range. Following

[KF02] we prefer to use the term ’spontaneous’ instead of ’ad‐hoc’ as ad‐

hoc tends to be restricted to specific lower level functionality like routing.

The network interfaces used are highly heterogeneous ranging from

infrared communication over radio links to wired connections.

Interoperability protocols are tailored to specific requirements as well, e.g.,

a sensor does not need to implement a complex interoperability protocol

but can simply emit its data periodically as events. To summarize, devices

interact by forming spontaneous networks using different network

interfaces and interoperability protocols. Membership in these networks is

171

temporary and network related properties like communication cost and

bandwidth change dynamically.

Distributed applications in this scenario are structured into application

objects, or services, interacting with each other. Services in turn use device

capabilities or further services, which are provided by either the local

device, or by remote interaction with other devices. From the application’s

point of view, one of the main challenges is to use services and capabilities

with changing availability. As we have seen, this is true for local, e.g.,

GPS, as well as remote cases, e.g., due to reachability. In addition, even a

service that is both functional and reachable can become unavailable. Take

for example a presentation system integrated into a video projector. If the

user leaves the room, the presentation system becomes unavailable,

because the user cannot see its output anymore.

Existing middleware platforms typically address portability of

applications via standardized interfaces for remote service interaction,

e.g., via stub and skeleton objects, and interoperability of applications

across different middleware platforms via interoperability protocols. We

derive three additional requirements:

1. Uniform programming interface: while classical middleware

addresses uniform access to remote services the additional heterogeneity

of specialized device capabilities requires similar abstractions, e.g., proxy

objects, in order to access different device capabilites in a uniform way

independent of the underlying platform.

2. Flexible protocol support: the service model of a middleware, e.g.,

remote procedure call or events, is typically reflected in its underlying

interoperability protocol, e.g., using request/response messages or

emitting event messages. The devices and systems in the above‐mentioned

scenario would need the integration of a variety of such service models

which are reflected by their correspondent interoperability models. A

 172

decoupling of the service model from the interoperability model used by

the middleware can help to bridge these interoperability domains.

Additionally, this allows different communication paths for the incoming

and outgoing messages. As an example think about two devices

communicating via infrared in order to save energy. If the infrared link

breaks due to obstacles or distance and a wireless radio link still exists,

communication can continue. This can be either achieved by providing

one interoperability protocol over different network interfaces or by the

abstraction of different interoperability protocols which allows flexible

usage of existing technologies.

3. Tailorable: To be useable on all kinds of devices found in future

scenarios, the middleware has to be tailorable to the device at hand, a

sensor device as well as a mainframe. The core functionality should be

small enough to be executed on a sensor platform, but easily extensible to

use the capabilities of resource richer devices.

Nowadays middleware platforms already provide high abstractions for

programming distributed systems. Some platforms are already targeted to

the above mentioned scenarios. The next section will discuss related work

before we will present our approach.

8.3. Related Work

8.3.1. Conventional Middleware Systems

Device heterogeneity is not a unique characteristic of pervasive

computing, but can be found in conventional systems, too. Different

middleware systems like CORBA [OMG02b], Java RMI [SunRMI] or

DCOM [EE98] have been developed to provide a homogeneous access to

remote entities independent of e.g., operating systems or hardware

architectures. Typically, these middleware systems try to provide as much

173

functionality as possible, which leads to very complex and resource

consuming systems, that are not suitable for small devices. Approaches to

solve this problem exist and are discussed below. Conventional

middleware systems are designed for mostly stable network

environments, in which service unavailability is a rare event and can be

treated as an error.

8.3.2. Dynamically Reconfigurable Middleware

Extending conventional middleware systems to dynamically

reconfigurable middleware systems (e.g., [BG00], [BCA+01], [BCR+00],

[Led99], [RKC99], [RKC01]) enables such middleware to adapt its

behavior at runtime to different environments and application

requirements, e.g., how marshalling is done. Still, different

communication models or different protocols for outgoing and incoming

messages are typically not supported. As one exception, the Rover toolkit

[JTK97] provides this functionality for its queued RPC (QRPC) concept,

layered on top of different transport protocols. However, Rover only

supports the QRPC and addresses potentially disconnected access to an

infrastructure and not spontaneous networking.

A further difference from BASE is that most existing reconfigurable

middleware systems concentrate on powerful reconfiguration interfaces

and not on supporting small, resource‐poor devices. A notable exception

to this is UIC [RKC01], which is discussed below.

8.3.3. Middleware for Resource-Poor Devices

The resource restrictions on mobile devices prohibit the application of a

full‐fledged middleware system. One way to address this is to restrict

existing systems and provide only a functional subset (e.g., [OMG02a],

[RSC+99], [TAO]) leading to different programming models or a subset of

available interoperability protocols. Another option is to structure the

 174

middleware in multiple components, such that unnecessary functionality

can be excluded from the middleware dynamically. One example is the

Universally Interoperable Core (UIC) [RKC01]. UIC is based on a micro‐

kernel that can be dynamically extended to interact with different existing

middleware solutions. Still, the used protocol stack is determined before

the start of the interaction and cannot be switched between request and

reply as in BASE and abstractions are only provided for remote services.

8.3.4. Middleware for Pervasive Computing

Most pervasive computing middleware systems (e.g., [ACH+01],

[CPW+99], [Moz98], [RC00]) try to establish some kind of integrated,

preinstalled technical infrastructure in a physical area, e.g., a room or

building, often called an intelligent environment (IE), in which the user

and his/her mobile devices are integrated on‐the‐fly when entering the

area. The IE offers a huge variety of different capabilities and middleware

services that can be used, once the device of the user is integrated.

As an example, the goal of the Gaia system [RC00] is to enhance physical

spaces with computers to ActiveSpaces. Gaia provides an infrastructure to

spontaneously connect devices offering or using services registered in

Gaia. To integrate existing systems, like CORBA, interaction between

application objects is done via the Unified Object Bus [RC01], which is

layered on top of these systems. As essential system services, such as

discovery and lookup, are provided by the Gaia infrastructure, mobile

devices cannot cooperate autonomously without the infrastructure.

In contrast to this, we aim at supporting the cooperation of nearby

devices, i.e., using only temporarily available hardware and software

capabilities of nearby devices, independent of the presence of an external

infrastructure. An infrastructure, such as an IE, may be included into a

spontaneous network as temporarily available services, but the other way

175

round ‐ without the infrastructure ‐ spontaneous networking requires

additional support.

8.4. BASE

Before we describe the architecture and implementation of BASE, we first

want to motivate our design rationale.

8.4.1. Design Rationale

One key idea behind BASE is the uniform abstraction of services as well as

device capabilities via proxies as the application programming interface.

Consequently, the middleware delivers requests to either device services

in the middleware or transport protocols. Allowing different

communication models with respect to the transactional pattern

(request/response, event, synchronous, asynchronous, etc.) results in the

middleware to provide the synchronization independent of the under‐

lying protocols. Our approach is inspired by micro‐kernels as they were

introduced into the realm of operating systems (e.g., [RJO+89], [TKR+91])

and had some first applications in the middleware area as well (e.g.,

[PR00], [RKC01]). Only minimal functionality, i.e., accepting and

dispatching requests (so‐called invocations), is located in the micro‐broker.

Interoperability protocols as well as object lifecycle management can be

added as additional services, realized as plug‐ins.

The micro‐broker accepts requests represented as so‐called invocation

objects. In the following, we will refer to the invocation object when

talking about an invocation. An invocation is composed of a source and a

target address, an operation with parameters, and additional information

concerning the handling of the invocation. The micro‐broker dispatches

the invocation to either a local service, a local device capability or a

transport plug‐in, which transports the invocation to a remote micro‐

broker. Transports which receive an invocation or a reply to a previous

 176

invocation – also represented by an invocation – submit them to the micro‐

broker to initiate the dispatching to the corresponding local service or

device capability. Invocations can be either generated by proxies,

representing a service or a device capability, or manually by the

application programmer, e.g., like the request object in the dynamic

invocation interface in CORBA [OMG02b]. Figure 8.1 depicts the micro‐

broker in a typical setting, where invocations are dispatched to (a) device

capabilities and (b) transport plug‐ins for the remote processing on other

nodes. Remote service interaction follows the same pattern and is depicted

in Figure 8.4.

Let us briefly argue why we have chosen this approach. Clearly, the

requirement for uniform access of device capabilities as well as remote

services can be easily established by our approach.

(a) accessing a local device capability (b) accessing a remote device capability

Figure 8.1: Local and remote capability usage.

The micro‐broker allows the flexible integration of new transport plug‐ins

and device capabilities by simply registering a new entity which accepts

an invocation. This allows to provide access to all features available on

resource‐rich computer systems. The minimal functionality of the micro‐

broker itself allows the deployment of the middleware on resource‐poor

devices as well. To sum up, the uniform programming abstraction is

provided by the service abstraction for remote service access and device

capabilities. Together with the extensibility of the micro‐broker this fullfils

177

the first and third requirement that we have identified. The micro‐broker

allows in‐ and out‐going messages over different transport protocols that

can be dynamically loaded and configured through the invocation

abstraction, which satisfies the second requirement. Although our

implementation does not rely on reflection, the dynamic composable

invocations along with the service registries provide means for reflection

about services registered with the middleware.

The prototype of BASE is implemented in Java but relies only on features

available in the Java Microedition. This allows the deployment on small

Java‐based embedded systems (e.g., [Loo01]) or specialized Java

processors (e.g., [JStamp]). The proliferation of end‐systems besides

classical computers capable of executing Java, such as cell‐phones or

PDAs, and the aforementioned embedded systems make Java a suitable

starting point providing a uniform abstraction for our middleware.

The benefit of our micro‐broker approach compared to existing

middleware platforms is the minimal footprint needed for a basic

configuration which qualifies it for small embedded systems as well as the

extensibility providing the means to use features of more sophisticated

computers. The configurability that reflective middleware typically

provides is also supported by BASE. A major difference to existing

middleware platforms is the support of different communication models,

such as RPC or events with different synchronization semantics, by the

micro‐broker, which allows these communication models over a variety of

different interoperability protocols. Typically, the main communication

model of a middleware is reflected in its interoperability protocols, e.g.,

CORBA’s IIOP reflects the RPC by request/response messages. The BASE

micro‐broker only requires a transport plug‐in to marshal and send an

invocation. If responses are expected they may be received by any other

transport plug‐in.

 178

8.4.2. BASE Architecture

Figure 8.2 depicts the overall architecture of BASE. Four layers are

involved. The micro‐broker is the central part of the system, consisting of

the invocation broker and two registries for local services and devices

which can currently be reached.

The micro‐broker accepts invocations which are either manually

assembled or generated by a stub‐call. Additionally, an invocation can be

used to access the registries for service lookups.

Figure 8.2: BASE architecture.

The plug‐in layer maintains plug‐ins which represent the entities capable

of receiving invocations. Examples for plug‐ins are transport protocols or

encapsulations of device capabilities, such as sensor systems like

positioning or temperature, or other services depending on the device, like

input/output capabilities such as printing or video projection. Plug‐ins

typically involve interaction with the underlying operating system or

directly with the hardware to offer access to a device capability or

transport. The invocation broker accesses the plug‐ins via invocations.

Thus the underlying platform is encapsulated by the plug‐ins. The device

179

capability layer represents the device platform by its supported hardware

and software.

In the remainder of this section the layers sketched above are discussed in

more detail starting with invocations, the invocation broker, registries,

stubs and skeletons, and the plug‐in layer.

8.4.2.1. Invocation

Invocations are similar to dynamic invocation interface requests in

CORBA. Figure 8.3 shows the elements of an invocation. Naturally, an

invocation is represented as an object. Device and service IDs are used to

denote a sender and receiver of an invocation. Services are given unique

IDs that are local to a device. This ID is combined with a unique device ID

to form a globally unique ID. The message IDs are needed for

synchronization issues and are described in the paragraph discussing the

invocation broker. A service context field allows the specification of

additional parameters that indicate properties relevant to the processing

of the invocation in the middleware such as synchronization issues or

Quality of Service parameters. Basically, the context is a name‐value list

where parameters can be added freely. The payload contains the

operations and parameters. In the case of event‐based communication no

receiver needs to be specified and the operation denotes the event‐type on

which applications can subscribe. The parameters then carry additional

information of the event. In point‐to‐point communication the operations

and parameters are interpreted as a remote method invocation.

Figure 8.3: Invocation object structure.

 180

8.4.2.2. Invocation Broker

Central to the system core, the invocation broker realizes the core

functionality of the micro‐broker. Invocations are accepted and

dispatched. In order to separate the control flow between application and

the processing of an invocation in a plug‐in, a thread pool is maintained.

Incoming calls are entered into the invocation table, assigned a message

ID in order to identify parallel invocations of the same client. The context

field contains, among other information, the communication model, i.e.,

synchronity and transactional pattern (request‐response/event) of the

invocation. Depending on the communication model, the invocation

broker blocks the incoming thread in case of a synchronous invocation. A

new thread from the thread‐pool is taken and the delivery of the

invocation to the responsible plug‐in (see below) is executed. After the

plug‐in has processed the invocation by either a local action, e.g.,

retrieving a sensor data, or a remote action, i.e., marshalling and sending

the request to a remote peer, the thread returns and is added to the

threadpool again. In case of a remote processing, an invocation may be

sent back to the initial caller. The invocation broker receives the invocation

from a plug‐in for remote interaction, which may be different from the one

that has processed the outgoing invocation, as shown in Figure 8.4.

181

request:

response:

Figure 8.4: Request / response in BASE.

The invocation carries the target object and its message ID. If a message ID

is contained in the receiver field of the invocation, this indicates that a

caller is either blocked or awaiting an asynchronous delivery of the

invocation. In case of a blocked call the waiting thread is freed and the

invocation is provided as return. In the asynchronous case the invocation

broker takes a thread from the thread‐pool and calls up the application

through a callback. In this case the message ID is used to designate the

application callback registered at the invocation broker.

Notice that the explicit handling of synchronization depending on the

communication model retrieved from the service context is a major design

decision in BASE. This decouples the communication model from the

underlying interoperability protocols. A request/response based

communication model can be realized over two event‐protocols as well as

an event can be sent as a single request in an RPC‐based interoperability

protocol. An interaction can take place over different transport plug‐ins

for out‐going and incoming invocations.

 182

So far, BASE only supports a limited number of communication models,

but an extension to different synchronization models, see e.g., [OMG98],

can easily be established with the underlying concept.

In order to determine the target of an invocation or to provide applications

with service lookup two registries are maintained and described below.

8.4.2.3. Service and Device Registry

The service registry maintains all locally available services on a device.

Services ‐ as mentioned before ‐can be either application objects offering a

service or device capabilities. Applications can query for available services

by either specifying a name or the functional properties, i.e., the interface.

Hence, a simple name and trading service is provided. Due to the nature

of spontaneous networks, the availability of a lookup service cannot be

assumed. The device registry maintains a list of all currently reachable

devices and the transport plug‐ins which provide the access to another

device. If multiple transport plug‐ins are possible for the same device,

they are also entered into the list. This allows for a simple service lookup

in the vicinity of a device. If a service request cannot be fullfilled locally,

registries of nearby devices are queried and the result presented to the

application.

The information of the device registry is also used by the invocation

broker in order to determine which transport plug‐in should be used.

First, without any further information, any of the available transport plug‐

ins can be used. As long as there is a connection between two devices, i.e.,

the device is listed in the device registry and at least one transport plug‐in

is provided, invocations can be exchanged. Notice, that even if the

transport plug‐in by which a request invocation has been sent becomes

unavailable replies can be received, if another transport plug‐in exists. The

service context sent with an invocation can be used to control the selection

of specific transport plug‐ins, e.g., in order to save energy or require a

183

distinct bandwidth. We plan to extend this concept by strategies which

will provide application‐specific selection of transport plug‐ins according

to policies, e.g., energy awareness.

Although the current implementation of the service and device lookup is

rather simple, the underlying concept is designed to be extensible

allowing the integration of other lookup mechanisms, e.g., Jini [Wal99]

and UPnP [Mic00].

8.4.2.4. Stubs and Skeletons

A common abstraction in middleware systems are local proxies for remote

entities providing local access for application objects ‐ stubs representing

the remote service to clients and skeletons issuing local calls to services. In

BASE, stubs and skeletons rely on the invocation abstraction. Stubs

generate invocations upon method calls and skeletons generate local

method calls upon a received invocation. Notice, that the generation of an

invocation does not result in the marshalling of the parameters. This is a

responsibility of the transport plug‐ins. Invocations are used here to

provide a common concept for interaction with the micro‐broker.

Applications can, however, omit the use of stubs and skeletons and com‐

pose and interpret invocations directly.

In contrast to systems like Jini [Wal99], where stub and skeleton can

include a service specific protocol stack this is not provided in BASE.

Instead a service specific protocol would be realized as a transport plug‐in

and thus become re‐usable for other services as well.

8.4.2.5. Plug-In Manager

The plug‐in layer is essential for the abstraction BASE presents to an

application developer. Plat‐form‐specific capabilites, e.g., device

capabilities and transports, are represented as plug‐ins and become

accessable to the application programmer as services. The plug‐in

manager allows the dynamic loading and integration of new plug‐ins.

 184

Device capabilities are registered at the local service registry, and

transport protocols at the invocation broker itself.

Plug‐ins provide an abstraction of device‐specific resources. Depending on

the platform interface that allows the access of the device capability layer

they can be portable among devices. Thus, an application on top of BASE

will only interact via invocations, either dynamically constructed or

generated by stubs, with device‐specific capabilites.

Transport plug‐ins are responsible for accepting an invocation, marshal it,

and transmit it as a protocol data unit to a remote peer, which then

constructs an invocation by demarshalling it. The simplest transport plug‐

in would use object serialization to marshal an invocation into a byte‐

buffer and send the buffer via a transport protocol, e.g., TCP/IP. Other

transport plug‐ins could rely on existing interoperability protocols and

marshal and represent the invocation accordingly, e.g., map it to a request‐

message in IIOP and marshal the parameter by CDR, which allows

interoperability with CORBA‐based systems.

As long as the context of an invocation does not require a distinct

transport plug‐in, the invocation broker may use any transport plug‐in to

send an invocation to a remote device. The device registry maintains a list

of all currently available transport plug‐ins to a specific device. Hence,

communication can take place as long as at least one transport plug‐in

allows the communication.

8.5. Implementation Status and Evaluation

This section will present the current status of our prototype

implementation and discuss memory size and execution performance

measurements.

185

8.5.1. Implementation Status

Our prototype has been implemented in Java to rely on its platform‐

independence. Although, for small devices C or C++ would seem to be a

better choice at first, we found that Java allows us to run our middleware

on a multitude of different devices, if the used Java features, like

reflection, etc. are carefully restricted. A Tini minicomputer for example

can execute only a subset of Java Version 1.1. Other devices, like smart

phones or PDAs are limited to the Java Microedition [SunJ2ME].

So far, our prototype implements the basic concepts. Namely the

invocation broker, the service and the device registry are implemented.

The invocation broker handles different synchronization concepts and the

service context is used to indicate the synchronization of RPC calls. For

synchronous invocations, stub and skeleton support is implemented. Two

transport plug‐ins are realized so far, one based on the Java standard

serialization mechanism on top of TCP/IP and a second based on Java

RMI. Others are under way. The plug‐in manager is implemented and

allows the dynamic and static configuration of a BASE system.

8.5.2. Memory Size

The memory footprint of a minimal BASE configuration is crucial in order

to allow the installation on small or embedded devices. We have

measured the memory footprint of such a configuration, containing the

micro‐broker (invocation broker and registries) plus a TCP‐based

transport plug‐in. The measurements where done using the IBM J9

implementation of the Java Microedition, more specifically the Java

Microedition with the Connected Device Configuration and the

Foundation Profile. First, in order to determine the memory footprint

without additional dynamic memory consumption, i.e., BASE in idle

mode, we use the Windows Task‐Manager, as suggested in [Wk00]. In this

 186

mode 132 KByte are used. During runtime, when invocations are

exchanged, the system uses up to 420 KBytes, which was measured using

the J‐Sprint profiler [JSprint].

8.5.3. Execution Performance Overhead

To measure the execution performance overhead introduced by the

additional communication via the BASE micro‐broker, we compared a

BASE configuration sending invocations via a Java RMI transport plug‐in

with a pure Java RMI‐based system. The measurements were conducted

for a synchronous RPC communication by transmitting invocations for an

operation testOperation, that takes a single string input parameter and

returns immediately. The string size was either 0 or 1000 characters. This

was done for local as well as remote invocations. The results are shown in

Figure 8.5 and Figure 8.6. Each value given is the average of 12750

measurements. Measurement was done in 50 rounds with roundnumber

×10 invocations per round, leading to a total number of ∑10 ×i = 12750;

i=1..50 measurements.

Figure 8.5: Local communication performance.

187

8.5.3.1. Local Invocations.

In the local case, BASE is clearly faster than RMI. This is due to the fact,

that RMI in this case uses the loop‐back interface including the RMI and

TCP protocol stack while the BASE micro‐broker forwards the call directly

to the service skeleton and does not use the RMI‐based transport plug‐in

at all.

8.5.3.2. Remote Invocations

In the remote case, BASE introduces an additional performance overhead

of about 20%. Taking into account the creation of invocations from the

stub objects and their interpretation by the skeletons, this seems

acceptable. However, the absolute end‐to‐end latency measured for BASE

is about 4 ms per remote invocation with a string size of 1000, which is

rather long. Therefore, we did some additional measurements to compare

this to the end‐to‐end latency of pure RMI, i.e., calling the remote

operation directly through RMI without marshalling the invocation object.

The pure RMI call only needed about 0,95 ms or 25% of the time BASE

needed. This is due to the fact that we have used the standard Java object

serialization mechanism in our prototypical RMI plug‐in to marshal the

invocation object. Note, that this is not a problem of the micro‐broker

itself, but of the current RMI plug‐in implementation. Currently, other

transport plug‐ins are under development to overcome this performance

bottleneck.

 188

Figure 8.6: Remote communication performance.

8.6. Conclusion and Future Work

We have presented the concept and design of BASE, a flexible middleware

supporting the additional requirements of pervasive computing

environments. Based on a micro‐broker design, BASE allows minimal

installations on embedded devices or specialized platforms as well as the

integration of features available on resource‐rich devices, such as personal

computers. Application programmers can rely on a uniform abstraction to

access remote and local services as well as device‐specific capabilities.

Thus BASE supports the portability of applications across heterogeneous

devices. The middleware shields applications from the multitude of

different communication technologies and interoperability protocols by

separating the communication model of the application and the

interoperability protocols used. This allows the usage of nearly arbitrary

interoperability protocols.

The current implementation status of BASE is promising. Currently we are

adding further support for different interoperability protocols and port

BASE to some specialized devices. Further experience will be gained from

189

doing prototypical implementations of pervasive computing applications

in our lab.

Using BASE as a middleware already will ease the design and

implementation of applications. In further research directions we want to

design a component system based on BASE that will support the

adaptation of applications due to their execution environment. BASE will

be extended by mechanisms to enforce adaptation strategies in the

component framework, such as migration or service selection strategies.

The extensibility of the micro‐broker approach seems to be a good BASE

here.

 190

9. PCOM – A Component System for Pervasive

Computing

Applications in the Pervasive Computing domain are

challenged by the dynamism in which their execution

environment changes, e.g., due to user mobility. As a result,

applications have to adapt to changes regarding their required

resources. In this chapter we present PCOM, a component

system for Pervasive Computing. PCOM offers application

programmers a high‐level programming abstraction which

captures the dependencies between components using

contracts. The resulting application architecture is a tree

formed by components and their dependencies. PCOM

supports automatic adaptation in cases where the execution

environment changes to the better or to the worse. User

supplied as well as system provided strategies take users out of

the control loop while offering flexible adaptation control.

9.1. Introduction

Pervasive Computing is characterized by the interaction of a multitude of

highly heterogeneous devices, ranging from powerful general‐purpose

servers located in the infrastructure, to tiny mobile sensors, integrated in

everyday objects. Devices are connected to each other on‐the‐fly using

wireless communication technologies like Bluetooth, IEEE 802.11 or IrDA

and share their functionality. A sensor could for instance use a nearby

display to present its data to the user.

Developing and executing applications in such environments is a non‐

trivial task. Apart from the device heterogeneity, the hardware and

software resources, i.e., devices and services, available to an application

are highly dynamic, due to factors like user mobility, fluctuating network

191

connectivity or changing physical context. This forces applications to

adapt themselves constantly to their ever‐changing execution

environments. User‐interaction, e.g., for adaptation control or

administrative tasks, should be minimized, thus removing the user from

the control loop [WPT03].

To ease application adaptation, we have developed BASE, a flexible

middleware for Pervasive Computing environments (see e.g., [BSG+03] for

details). It provides adaptation support on the communication level by

dynamically (re‐) selecting communication protocol stacks, even for

currently running interactions.

BASE offers no support for adaptation at higher levels, e.g., by

automatically reselecting services and devices. Therefore, we have

designed and developed PCOM, a light‐weight component system on top

of BASE. PCOM allows the specification of distributed applications that

are made up of components with explicit dependencies modeled using

contracts. An application can be executed if all of its components can be

executed – either local or remote – meaning that all dependencies between

components can be fulfilled. In order to automatically choose alternatives

if multiple suitable components are available, strategies are employed.

This allows adaptation without prompting the user. The main

contribution of this chapter is the definition and evaluation of this light‐

weight component system for strategy‐based adaptation in spontaneously

networked Pervasive Computing environments.

The remainder of the chapter is structured as follows. Next, we will

present our system model and briefly sketch BASE. Models for application

adaptation are discussed in section 9.3. The requirements on application

adaptation, especially those that are not fulfilled by BASE, are derived in

section 9.4. Section 9.5 presents the architecture of PCOM, its application

model and the mechanisms that enable adaptation. As an indication for

 192

the validity of our approach, an evaluation of PCOM, including a

comparison of application adaptation in BASE and PCOM is given in

section 9.6. After discussing related work in section 9.7, we conclude the

chapter and provide an outlook on future work in section 9.8.

9.2. System Model

Our work focuses on spontaneously networked Pervasive Computing

environments in which devices are connected on‐the‐fly, typically using

some kind of wireless technology. Such environments are highly dynamic.

Connections between devices are not permanent, the topology of the

network is constantly changing, and there is no central or coordinating

element. We do not assume the presence of a smart environment like Gaia

[RC00], Aura [GSS+02] or iROS [JFW02]. Although such an infrastructure

could be available at certain times, devices cannot rely on it.

In our system model communication and thus interaction is restricted to

devices that are currently reachable by the network (e.g., due to

communication technology). As a result, systems in these environments

are inherently location‐aware as communication is typically spatially

limited. The devices have different specializations and resource

limitations. Besides resource‐poor and specialized devices such as sensor

nodes, resource‐poor general purpose devices could be present, e.g.,

PDAs. Also resource rich‐devices can either provide a general purpose

platform or they can provide single services such as a presentation system.

Due to the lack of a central or coordinating element, applications are

dynamically composed of services provided by devices that are part of the

currently reachable environment. As an example, consider an instant

messaging application that requires an input service such as a keyboard or

a touch screen to write messages and an output service to display

messages, e.g., a monitor, a video projector or an audio channel. During

193

start up, the application scans the current environment for available

services and connects to suitable instances. At execution time, the

application uses the services and adapts to changes regarding their

availability or quality. Possible adaptations could include for instance the

reselection of the output service whenever it becomes unavailable.

9.2.1. BASE.

 In order to provide basic support for services that enable such

applications, we have developed BASE. BASE is written in Java using the

Java 2 Micro Edition with the Connected Limited Device Configuration

(CLDC). It assists application programmers by providing mechanisms for

device discovery and service registration that can be used to locate and

access local as well as remote device capabilities and services. Since the

availability of services and capabilities can fluctuate in spontaneously

networked environments, BASE provides a simple signaling mechanism

to determine their availability. Communication protocols and device

capabilities can be extended flexibly, since BASE is structured as an

extensible micro‐broker. This allows the middleware to run on resource‐

poor devices and benefit from resource‐rich devices. In the context of this

work, BASE is used as underlying communication middleware, offering

communication and discovery on a wide range of devices. More

information on BASE can be found in [BSG+03] and [BS03b].

9.3. Adaptation Models

To provide application adaptation support for Pervasive Computing

systems, three main levels of support can be distinguished. This

classification is similar to the one given in [OGT+99].

Manual adaptation: here, adaptation is done by the end user. If an

adaptation is performed, the system presents different choices and the

 194

user selects the most appropriate one. For the instant messenger described

previously, this means that the user has to explicitly select the output or

input service used by the application, whenever a used service becomes

unavailable or a new service is discovered. Clearly, this is time‐consuming

and irritating, especially for environments with a high level of dynamism

and a large number of different devices and services.

Application‐specific automatic adaptation: to lessen the involvement of

users, application adaptation should be executed with as little user

interaction as possible. This can be realized by shifting the adaptation

decision into the application. As a result, the system must support

adaptation by signaling changes in the environment and the application

programmer has to explicitly handle resource availability on a per‐

resource base, leading to complex and error‐prone adaptation routines.

Regarding the instant messenger scenario the programmer must provide

routines that reselect the input and output service whenever the used

services become unavailable. Such a reselection may be necessary at any

point during the usage of a service. Therefore, the code of the application

will be cross‐cut by adaptation routines that are effectively reducing its

readability and maintainability.

Generic automatic adaptation: at the highest level of support, application

adaptation is done without stressing users or application programmers.

The programmer only specifies the functional and non‐functional

properties of services required by the application and the user controls the

adaptation process by stating adaptation goals. Thereafter, the system

monitors service availability and selects the optimal services. The

programmer of an instant messenger simply specifies the parameters of

the input and output service, e.g., minimum screen resolution, and the

user defines the adaptation preferences, e.g., highest available resolution.

At runtime, the system automatically tries to find services with an

195

acceptable quality. In cases where multiple services fulfill the requirement,

the system performs the selection based on the preferences of the user.

9.4. Requirements

BASE offers generic automatic adaptation support at the communication

layer. With PCOM we aim at providing further generic adaptation

support at the application layer. PCOM should enable application

programmers to extend the system with application‐specific adaptation

logic if needed. This enables a rather straight forward specification of

application dependencies along with standard adaptation strategies

resulting in a simple core system which can be customized to the needs of

an application programmer. From these objectives the following

requirements can be derived:

Application specification: applications should be specified in terms of

their required services. Services should clearly denote their dependencies

to other services and the platform. Non‐functional properties of the

dependencies should be explicitly stated. The composition of an

application from services should allow the specification of alternatives in

order to support the system to automate adaptation decisions.

Service monitoring: the system has to monitor the availability of services

in order to detect currently used services that change their non‐functional

properties or become unavailable as well as to detect new services.

Strategy based adaptation: the system has to provide means for automatic

adaptation of an application. If alternatives of services are present in the

current execution environment, strategies decide which service to select.

Besides standard strategies, e.g., to optimize energy consumption, user‐

defined policies should be integrated. At the core of adaptation, the

application lifecycle and the lifecycle of single services have to be

managed.

 196

Minimalism and extensibility: to meet the resource heterogeneity of

Pervasive Computing the resulting system has to be minimal with respect

to required resources, e.g., processing power and memory, and it has to be

extensible to exploit the advantages of resource‐rich devices.

9.5. PCOM

Figure 9.1: PCOM Architecture

In the following we will present our component system PCOM (see Figure

9.1). PCOM provides a distributed application model and supports

automatic application adaptation based on signaling mechanisms and

adaptation strategies. Applications are composed of interacting entities,

so‐called components, which dependencies are explicitly specified as

contracts. The PCOM container hosts components, manages their

dependencies, and thus acts as a distributed execution environment for

applications. Each container defines a remote container interface that

exports locally available components by their contracts and allows remote

containers to negotiate new contracts and access the components. To reuse

the communication and discovery capabilities of our middleware BASE,

the container is implemented as a single service on top of BASE. As a

197

result, a container is automatically capable of detecting and using other

containers.

In the following we will further describe our application model and

present components along with their contracts. After that, we discuss

application adaptation in PCOM and its realization.

9.5.1. Application Architecture

Applications in PCOM are composed of components, that interact with

each other in order to fulfill their dependencies. Components are atomic

with respect to their distribution but can rely on local or remote

components, resulting in a distributed application architecture.

An application is modeled as a tree of components and their dependencies

where the root component (the so‐called application anchor) identifies the

application. The application tree reflects the dependencies between

components where the successors of a component identify its

dependencies in order to fulfill the service. PCOM uses a tree as

application model, because arbitrary graphs cause several complications.

For instance, the multiple use of the same component requires merging

probably conflicting requirements. As another example, cycles of the

graph could cause infinite loops during the composition of applications.

The life cycle of an application is reflected by the life cycle of its

application anchor. Next, we will explain components in more detail,

including the modeling of dependencies via contracts and their life cycle.

9.5.2. Components

Components in PCOM are units of composition with contractually

specified interfaces and explicit context dependencies. PCOM’s

components enclose contracts that describe their offered functionality and

requirements regarding the platform and other components. Components

are atomic with respect to distribution and may use other components in

 198

order to provide their service. Note that PCOM does not regulate the

granularity of components. Therefore, the granularity could range from

single functionalities to complete applications.

9.5.2.1. Contracts.

Contracts consist of two distinct parts: The first part specifies the

corresponding component’s requirements on the executing platform, e.g.,

required libraries or memory. The second part specifies the functionality

provided by the component and its dependencies on other components. A

dependency between two components has a direction and reflects the fact

that one component either requires certain service interfaces (pull) or

listens to some events provided by another component (push). Thus,

PCOM supports push and pull communication models between

components.

In order to describe dependencies, contracts in PCOM specify the service

interfaces and the events that are offered and required by a component.

Along the syntactical interface specification of events and services that

define a functional dependency, non‐functional parameters can be added

to express further properties, such as a screen‐size, energy consumption or

performance related parameters. In contrast to the functional specification

that is known at compile time, non‐functional parameters can vary at

runtime and might depend on the offer of components that are used to

satisfy the dependencies. Thus, non‐functional parameters can be either

static or dynamic.

At runtime, contracts in PCOM are represented as object graphs. To ease

the specification of these graphs, we use a compiler to transform an XML

document into code that creates the desired structure. This representation

is used for the comparison of offers and requirements. By applying them,

it is possible to determine whether the offer of one component can be used

199

to satisfy the requirements of another component. Due to the possibly

large number of comparison operators that is needed to support arbitrary

non‐functional parameters, the underlying object model provides only a

small set of operators that can be extended by application programmers.

Figure 9.2: Exemplary Contracts

 200

9.5.2.2. Example.

Figure 9.2 shows XML‐based contract specifications for an exemplary

instant messenger component and a keyboard component. First, we will

have a look at the messenger’s contract. It specifies that the messenger

component does not offer any service to other components (a) and that it

depends on an input component offering a given service interface and

event type (b). Additionally, the messenger’s contract states the non‐

functional requirement that the input component’s language must be

English (b). Next, the platform dependency declares, that the messenger

must be executed by a container that has at least 10 Kbytes of free memory

and provides a CLDC (c). The last section of the contract contains

information about the component’s internals used by the container (d).

In contrast to the messenger’s contract, the keyboard component’s contract

specifies an offer that consists of two interfaces and two events (e).

Additionally, the offer also contains non‐functional attributes that describe

the available keys and the supported language. Apart from the

requirements on the platform (f) the keyboard does not have any

requirements. Again, the last section of the contract contains information

about the component implementation (g).

At runtime, these XML‐based contracts are transformed into an object

model that allows matching the instant messenger component’s

requirements with the offer of the keyboard component. As the keyboard

offers all required functional and non‐functional features, it can be used to

satisfy the messenger’s dependency. After the components have been

combined at runtime (h), the instant messenger component is capable of

placing calls to the interface provided by the keyboard component (i) and

the keyboard component can send the requested event to the instant

messenger (j). The additional interface (k) and event (l) of the keyboard

component will never be used.

201

9.5.2.3. Component Lifecycle

 To consistently embed components into applications, the container

defines and manages the lifecycle of components. Conceptually, this

lifecycle consists of the two states STARTED and STOPPED. The state

transitions are controlled by the container. The container loads a

component by first loading the object graph that represents its contract. It

then determines whether it can fulfill the component’s requirements

towards the platform. If they can be satisfied, the container adds the

contract to the set of exported contracts. Initially the component rests in

the STOPPED state. Once a component is about to be embedded into an

application, the container tries to resolve and initialize the component’s

dependencies by selecting suitable components to fulfill them. This initial

resolution of dependencies can be seen as a special case of adaptation. A

more detailed description of the selection process is given in subsection

9.5.3. After all dependencies are fulfilled, the container triggers a transition

to the STARTED state. In this state, the component provides its

functionality and the container provides signaling and adaptation

support. When the state changes to STOPPED, the container releases all

resources held by the component.

9.5.2.4. Contract Exchange and Negotiation

As soon as a component is about to be executed, the container has to

determine whether its dependencies – both, functional and non‐functional

– can be satisfied. In order to find components that can potentially be used

to satisfy a dependency, the container sends the contract that contains the

requirements to the containers available in the environment. These

containers reply with the contractual offers of their components that could

fulfill the requirements.

 202

As mentioned earlier, there are non‐functional parameters that a

component cannot determine without knowing the components that are

used to satisfy its dependencies. In order to determine such parameters,

PCOM containers also support a negotiation phase that recursively

determines the non‐functional parameters of a component without

starting it. To enable this, containers rely on so‐called factories that are

representatives for locally installed components. Factories provide the

capability to determine the actual value of a non‐functional parameter

based on the set of components that is currently available. While PCOM

provides a simple standard factory, application programmers can provide

component‐specific factories by declaring them in the component

contract’s implementation section (see Figure 9.2 (d)).

The algorithm for contract negotiation is a post‐order traversal of the tree

of matching offers and requirements, where factories implement the

functionality that determines the values of non‐functional parameters

from the available offers.

9.5.3. Adaptation

In ever‐changing environments, component‐based applications have to

deal with fluctuating availability and quality of components. Changes

regarding the availability and quality of components can either have a

positive or a negative impact on the application. This means that the

quality of a used component’s functionality can either increase or decrease

during the execution. Also, used components might become unavailable

and new components that could deliver a required functionality might be

discovered at any time.

In order to adapt to fluctuations, a component has to have means of

detecting changes with respect to quality and availability of other

components that either depend on or are required by the component.

203

PCOM defines three signaling mechanisms that detect changes regarding

availability and quality.

9.5.3.1. Signaling Mechanisms

 The first signaling mechanism is targeted at the availability of used

components. Whenever a used component becomes unavailable, a so‐

called communication listener is notified. Application programmers can

register communication listeners for every dependency of a component.

As PCOM uses a soft‐state lease mechanism to maintain the dependencies

between components, the detection of an unavailable component is either

a result of an unsuccessful call placed by the using component or by a

heart‐beat message sent by the runtime system.

The second mechanism detects the availability of new components. In

order to receive notifications about components that could potentially be

used to replace a currently used component, programmers can define

discovery listeners for each dependency. Whenever BASE detects a new

device, PCOM checks whether the device hosts an instance of PCOM. If a

new instance is discovered, PCOM determines whether the new

components could be used to replace a dependency of a locally executed

component. The comparison of the requirements of a running component

and the offer of a newly discovered component is solely based on the static

parameters of the offer, significantly reducing the discovery overhead.

Once a discovery listener is called, an adaptation strategy can decide, if a

full negotiation of the dynamic parameters should be done. Hence,

negotiation is performed only if an application may profit from a

component change.

The last signaling mechanism provided by PCOM aims at fluctuations in

the quality provided by a component. As mentioned above, non‐

functional parameters can change over time. Therefore, PCOM allows

 204

application programmers to specify contract listeners that are notified

whenever a parameter changes.

9.5.3.2. Options for Adaptation

Application programmers can use the described signaling mechanisms as

hooks to specify their own actions for adaptation or use system provided

mechanisms. PCOM offers two generic mechanisms: execution

discontinuation and component reselection. Application programmers are

provided with means to implement further options, e.g., modifying

contracts or retransmitting messages in case of a transient network

partitioning.

The first generic adaptation mechanism is simply the discontinuation of

an executed component. Whenever an executed component is no longer

able to provide its functionality, it can stop its execution. This will result in

an event that is received by the communication listener of the using

component. With respect to the application model defined by PCOM, this

means that a problem in a component is escalated to the next, i.e., higher,

level of the tree. The escalation continues until a component resolves the

conflict by either reselecting a component (see below) or applying a user‐

defined strategy. If the escalation leads to the discontinuation of the

application anchor, the execution of the application stops.

The second generic mechanism supports the reselection of components at

runtime. This is enabled by two features. First, components specify their

dependencies explicitly which allows matching a contractually specified

requirement and its corresponding offer. Second, PCOM allows the

definition of strategies that prioritize possible components based on user

preferences. Therefore, if a component initiates the reselection of a certain

dependency, PCOM can automatically determine the possible

replacements that match the programmer’s requirements. If there are

several possible replacements, a user defined strategy is applied to select

205

the best replacement according to the user’s current selection goals.

Clearly, a simple reselection will only be possible if the corresponding

component is stateless. For stateful components, the application

programmer still has to provide additional routines that establish the

desired state. Nevertheless, the programmer does not have to implement

the reselection algorithm and can use the signaling mechanisms to add an

application‐specific adaptation routine.

So far we have seen, how PCOM allows for generic application adaptation

support via predefined as well as user‐supplied strategies. The container

realizing PCOM’s runtime system resides on top of BASE, our middleware

for Pervasive Computing. In the next section we will compare the

abstractions provided by PCOM with the support BASE offers. The

additional overhead for communication and application adaptation is

presented based on measurements.

9.6. Evaluation

As stated in Section 9.4 the main requirements on PCOM are application

specification and support for strategy‐based adaptation. In PCOM these

requirements are realized through components with contractually

specified dependencies. As shown in Section 9.5.3, a crucial task for

adaptation is the (re‐)selection of services. Therefore, we will evaluate the

service selection in PCOM and BASE. We compare the necessary tasks of a

programmer and the assistance for service selection provided by PCOM

and BASE. Next, the time needed for service selection is presented which

includes contract evaluation, communication, and component

instantiation. Finally, the additional requirements of PCOM regarding

remote communication, memory, and computing power are discussed.

 206

9.6.1. Service Selection

Selecting a service that will be used by an application comprises two

fundamental tasks. First of all, an application has to determine the set of

services that is available in a given environment. Thereafter, it has to

determine the suitability of each service and select the best service

possible.

Figure 9.3: Component Selection in PCOM

To allow determining the suitability, BASE and PCOM support non‐

functional parameters that allow a more detailed description of services.

207

The suitability of a service could recursively depend on the suitability of

the services used by it. As mentioned earlier, PCOM supports negotiation

of dynamic parameters to model such dependencies. But since BASE does

not deal with dynamic parameters, we restricted all parameters used

during the evaluation to parameters that are static and thus, do not

require negotiation.

Figure 9.3 shows the units of PCOM that are involved in the component

selection process. An application programmer specifies the requirements

of a component using a contract (a). At runtime, PCOM provides the

application programmer with a handle for each component requested by

the contract. Using this handle, a programmer can simply initiate the (re‐)

selection by calling the rebind‐method (b). Typically, this method will be

called within one of the listeners discussed above. When a reselection is

initiated, PCOM uses contract matching to find suitable components and it

uses a strategy to prioritize possible replacements (c). The distinction

between contract and strategy separates the requirements that must be

met to ensure the desired component behavior from user preferences.

Notice, that (a) and (b) are supplied by a programmer, while (c) is a

configurable and thus re‐usable strategy that is integrated in the system.

Figure 9.4 shows how a similar behavior can be implemented using BASE.

An application programmer provides a selection routine for the required

service that specifies its properties and priorities (d). Whenever a

reselection must take place, the application calls this routine (e). In

contrast to PCOM, the selection routine provided by the application

programmer encapsulates both, service requirements and preferences.

 208

Figure 9.4: Service Selection in BASE

The comparison of these two implementations shows that ‐ from an

application programmer’s point of view ‐ using a service in BASE is more

complex than using a component in PCOM. While application

programmers in BASE have to provide the functionality for searching and

selecting required services, programmers in PCOM are provided with

handles that hide the details of this selection. Instead of providing the

specific algorithm that searches and prioritizes components, they simply

specify the parameters that denote application‐specific requirements and

thus, they do not have to reason about user preferences. This means an

additional flexibility which would be hard to achieve in a BASE

implementation. Note that other, more complex features like contract

209

negotiation or PCOM’s signaling mechanisms are even harder to

implement on top of BASE because of the lack of dynamic attributes.

0

20

40

60

80

100

120

140

160

1 2 3 4 5

number of neighbors

m
se

c
pe

r r
eb

in
d

BASE
PCOM

Figure 9.5: Component vs. Service Selection

Clearly, the extraction of functionality for selection causes an additional

performance overhead. To quantify the impact on performance, we

measured the time for a reselection in PCOM and in BASE. Figure 9.5

shows the average time for reselecting a service respectively a component

(using the strategies and algorithms described in Figure 9.3/9.4) in cases

where suitable components (or services in BASE) were available on 1 to 5

remote systems. The measurements have been conducted on PCs

(Pentium III/600MHZ) connected with a 100 MBit network in order to

show the fundamental effort without experiencing additional delays, such

as Bluetooth discovery. The numbers shown in Figure 9.5 are the result of

measuring 10 independent runs with 100 reselections each and varying the

number of devices offering services (BASE) and containers (PCOM). To

reduce fluctuations as far as possible, we disabled Java’s just‐in‐time

compiler. The remaining fluctuations were below 10 percent of the

 210

average time of a run and are most likely side‐effects of the operating

system’s scheduler and Java’s built‐in garbage collector.

The total selection time is determined by the time for obtaining offers from

neighbors, choosing an offer, and instantiating the chosen service or

component. While the time for obtaining offers and choosing an offer

increases linearly with the number of neighbors the instantiation of the

chosen offer is constant. The measurements in Figure 5 show that,

although reselection in PCOM is slower than in BASE, the relative

overhead decreases with the number of neighbors. This is due to the

higher cost for instantiating a PCOM component compared to a BASE

service. The absolute overhead for a selection of approximately 30 ms

however, is unlikely to be a bottleneck for realistic applications.

In addition to these measurements on resource‐rich devices we have

performed experiments on a JStamp embedded system5 connected by a

19200 baud serial line. The average selection time was 3300 ms, which still

may not impose serious problems, since a constant change of an

application configuration, such as switching a monitor, will be annoying

to the user.

In summary, comparing service and component selection shows that

separating requirements and preferences using contracts and strategies is

not for free. Although the overhead is noticeable, we believe that the

gained flexibility is worth the performance penalty.

9.6.2. Communication

In order to compare the communication performance in BASE and PCOM,

we measured the cost for a single message transfer using both systems.

Our measurements showed that PCOM basically does not induce

overhead on calls between components as it does not introduce

5 http://www.jstamp.com

211

indirections in the dispatch chain. This in turn is a result of carefully

integrating proxies and skeletons of BASE and PCOM.

In terms of general communication overhead, three mechanisms

introduced by PCOM require additional remote communication. In

contrast to services in BASE, components in PCOM use a soft‐state

protocol to detect the (un‐)availability of components. This protocol

transparently exchanges additional keep‐alive messages if no other

messages have been exchanged during a lease period. These messages

represent an additional communication overhead for components that

communicate infrequently. The second mechanism that introduces new

messages is the discovery listener as it retrieves relevant contracts from

devices that have been newly discovered. The last mechanism that

requires additional remote communication is the contract listener. It

creates a message for every modification of an offer or a requirement that

is specified in a contract.

Clearly, all three mechanisms do not only create overhead, but do also

provide necessary features. It is conceivable that realistic applications in

dynamic environments must rely on soft‐state protocols to reduce the

amount of wastefully reserved resources. Similarly, components that have

changing requirements or offers need to communicate them. Finally,

optimization of executed applications requires notification about changes

that could have positive impact.

Obviously, all three mechanisms could also be implemented in the

application space, but it is questionable whether the possible performance

benefit would outweigh the memory and engineering overhead of

implementing all mechanisms within each component.

 212

9.6.3. Resource Overhead

Apart from the cost of single mechanisms, PCOM has additional memory

and processing requirements. In terms of memory usage, PCOM adds 30‐

40KB on top of 90‐120KB required by BASE, resulting in a total memory

usage of 120‐160KB. With respect to processing, component instantiation

and contract evaluation as well as all three mechanisms described in the

previous section lead to increased requirements. The overhead for

comparing contracts and instantiating components has already been

discussed in the comparison of service and component selection. The

processing requirements for the other mechanisms vary heavily

depending on the applications and the environment and thus are hard to

quantify.

In summary, the evaluation shows that the application of PCOM is not for

free, but our results are promising. Compared to the baseline memory

requirements of BASE, PCOM adds only little additional overhead. With

respect to communication, the requirements do not change. Although the

reselection overhead is more noticeable, we believe the gained flexibility is

worth the cost.

9.7. Related Work

We will discuss related work in the areas of component systems,

architectures for adaptation and evolution as well as recoverable

computing, and pervasive computing.

Component Systems: Szyperski defines components as units of

composition with contractually specified interfaces and explicit context

dependencies only along with other properties [Szy98]. This definition

conforms to our definition introduced in section 9.5. Existing component

systems, e.g., CORBA CCM [OMG02c], Enterprise Java Beans [SunEJB],

213

conform to this definition by introducing container abstractions to

decouple components from the underlying platform and by providing – at

least functional – contracts between components via interfaces. Such

systems typically provide persistency and transactional behavior and are

targeted at enterprise software rather than on resource constrained and

dynamic environments, such as Pervasive Computing.

Adaptation Architectures and Recoverable Computing: The self

configuration of software is addressed by a number of projects in the

research area of application architectures. In contrast to our work, these

projects typically consider adaptation to be a rather rare event, caused by

errors or changes in the software’s mission.

The Weaves approach [OGT+99] provides a general graph structure to

model component dependencies. This leads to complex algorithms and

additional specifications to support adaptation decisions. Therefore, this

approach is too heavy‐weight for resource poor devices and frequent

adaptations.

The recursive restartability approach [PBB+02], proposed in the domain of

recoverable computing, uses a tree‐based application model quite similar

to the PCOM model. Still, this model is specifically designed to allow the

restart of failing components. The partitioning of the application follows

the encapsulation of restartable units – not units of composition – and the

only supported adaptation is a component re‐instantiation. PCOMs

application model is different in that it models the functional and non‐

functional properties of inter‐component dependencies.

Pervasive Computing: The necessity of application adaptation is realized

by a variety of projects that differ widely in their support for adaptation

and the abstractions provided to application programmers. The system

model considered is often based on smart environments, providing a set of

services, such as lookup and persistent storage to devices that connect

 214

temporarily or permanently to the smart environment. In contrast to this,

our system model does not assume connectivity to a smart environment

but spontaneous connectivity to devices in the vicinity.

The iROS [JFW02] application model consists of atomic application parts

which communicate via an event heap, realized as a tuple space. The event

heap decouples distributed parts of an application. If functionality is not

present, the request in the event heap is purged using an aging

mechanism. Adaptation of applications is implicit, as functionality is only

presented to the user if the application receives an answer to its request in

the event heap.

One.world [GAB+00] is also based on a tuple space to allow communication

between distributed parts of an application via events. Applications are

composed of nested environments. Environments isolate applications

from each other and serve as containers for persistent data. Conquering

failure and selective availability is supported by providing mechanisms

for application‐specific automatic adaptation, such as migration or

checkpointing along with persistent storage. Generic automatic adaptation

is not supported.

Gaia [RC00] provides an application model based on a generalized model

view controller pattern. An abstract definition of required functionality is

mapped to the services available in a distinct smart environment (an

active space). A coordinator component ensures that the application is

executed as long as their integral parts are available. Adaptation is mainly

considered to happen when a user moves to another active space and the

matching of non‐functional parameters is solely used to create a mapping

between them.

The application model of Aura [GSS+02] provides a high level, user

oriented task scheduler. Like PCOM, Aura aims at providing generic

automatic adaptation support, but assumes a variety of services, e.g.,

215

remote communication, distributed file system, between remote Aura

environments. PCOM is intended for environments, where this cannot be

assured.

9.8. Conclusion

In this chapter we have presented PCOM, a light‐weight component

system supporting strategy‐based adaptation in spontaneous networked

Pervasive Computing environments. Using PCOM, application

programmers rely on a component abstraction where interdependencies

are contractually specified. The resulting application architecture is used

for strategy‐based adaptation of applications. Our results so far are

promising. Based on our middleware BASE, PCOM adds only little

memory overhead and basically no runtime overhead on communication.

Overhead is introduced by the instantiation of components resulting in

higher reselection time. However, this overhead decreases with the

number of involved nodes. We conclude that providing a component

abstraction along with generic adaptation support is possible with

reasonable overhead even for resource‐restricted devices.

Besides evaluating PCOM on a variety of different devices and

communications technologies in our lab, we are currently evaluating

PCOM’s abstractions by developing further and more complex

applications. From the gained experiences, we expect to identify

additional generic adaptation mechanisms. Furthermore, we are working

on generic adaptation mechanisms that will allow the reselection of

stateful components. In the near future different adaptation strategies will

be developed and evaluated using our system.

 216

10. Experiences: Minimalism and Extensibility in BASE
In the vision of Ubiquitous Computing everyday objects

become smart. Technically, this requires some sort of

processing and communication technology. We have designed

and implemented a middleware for spontaneous networking in

Ubiquitous Computing environments. The major objectives

were minimalism and extensibility in order to deploy the

middleware on a variety of devices ranging from sensor nodes

to classical general purpose computers. In this chapter we will

assess the taken approach based on two follow‐up projects: the

port of BASE to a small embedded system and the design and

implementation of a component system on top of BASE. While

the fundamental concepts and design principles of BASE have

proven to be solid, both projects provided insights that led to

minor conceptual and major technical changes.

10.1. Introduction

Ubiquitous Computing (UC) [Wei91] envisions spontaneous interaction of

computerized devices in order to achieve complex goals and support

people’s tasks. As in ordinary distributed system settings, interaction is

achieved through the exchange of data and therefore is based on

mechanisms that enable communication of computer systems. Support for

communication in UC environments faces challenges that go beyond those

of systems in static environments. Apart from the heterogeneity of devices

which, to some degree, can also be found in ordinary distributed systems,

UC is based on networks that form spontaneously and change

dynamically. The mobility of devices makes it inevitable, that devices

integrate in their ever‐changing surrounding networks in order to utilize

the functionality provided by them.

217

Resulting from the need to enable communication between heterogeneous

computer systems in dynamic environments, a number of infrastructures

have been proposed. These infrastructures are designed to provide an

easy and efficient way of building and executing applications for

ubiquitous computer systems. Depending on the degree of device mobility

anticipated, they can be classified into two categories. The first category of

infrastructures is based on the concept of smart environments. Prominent

examples are Gaia [RC00], Aura [GSS+02] and iROS [JFW02]. They

provide means to integrate small, mobile devices into relatively heavy

weight environments with the immense processing power and storage

capacities of today’s desktop systems. The second category of

infrastructures is targeted at supporting mobile devices with limited

resources without relying on the processing power or storage capacity of

the environment. Two representatives of this category are RCSM

[YKW+02] and BASE [BSG+03], a middleware that supports spontaneous

communication between devices. BASE has been designed to support a

wide range of devices from sensor platforms to general purpose

computers. Its micro‐broker architecture allows the creation of a portable

system with minimal hardware requirements, but it makes extension

mechanisms inevitable in order to optimally utilize the capabilities of

different devices.

In this chapter we present our experiences with porting BASE to a JStamp

processor [Systronix], a Java‐based embedded system supporting only the

Java 2 Micro Edition [SunJ2ME] in the Connected Limited Device

Configuration (CLDC). Further experiences where gained when we

designed and implemented a component system for UC on top of BASE.

Our experiences so far are promising. Both projects together enabled a first

evaluation of minimalism and extensibility of BASE and led to

 218

optimizations regarding the internal mechanisms and external

abstractions provided by this middleware.

The remainder of this chapter is structured as follows. Next, we will

present an overview of BASE’s architecture. Section three briefly describes

the projects that led to the experiences described in this paper. In the forth

section we will discuss the problems that we have encountered, their

solutions and lessons learned. Section five summarizes and concludes the

chapter.

10.2. BASE – A Micro-broker Based Middleware

In order to understand the approach taken during the design of BASE’s

architecture, it is necessary to explain the underlying requirements and

design rationales. As a complete description would go beyond the scope

of this chapter, and can be found in Chapter 7. We only present a brief

overview before presenting the architecture. A more detailed presentation

of BASE can be found in [BS03a] and Chapter 8.

10.2.1. Design Rationales

BASE was designed to fulfill three major requirements. First, application

programmers should be provided with a uniform programming interface for

accessing device capabilities, like a GPS receiver, and application objects,

both, local and remote ones. This allows transparently switching

functionality at runtime or more general, adapting to changes in the

availability of functionality in a uniform way, e.g., by switching to a

remote location service once the GPS receiver stops operating indoors.

Therefore, in BASE, a service abstraction is provided to the application

programmer to access device capabilities and application objects.

Second, the variety of different devices will likely lead to a number of

different interoperability protocols with different communication models,

e.g., events, remote procedure calls (RPC), etc. These should be decoupled

219

by the middleware from the application communication model. This allows for

example using an event‐based interoperability protocol to deliver

request/response messages of an RPC.

Last but not least, the middleware should be minimal and tailorable. This

allows the installation on resource restricted devices, e.g., sensors, as well

as using resources on more powerful devices, such as presentation

systems or desktop computers.

Figure 10.1. BASE Architecture

10.2.2. Architectural Overview

The architecture of BASE is depicted in figure 10.1. BASE offers

application programmers a static (SII) and a dynamic invocation interface

(DII). For the SII, stubs and skeletons are generated by a compiler and are

used to map a method call to/from a so‐called invocation object. If the DII

is used, the application composes invocation objects directly. Invocation

objects are Java objects, containing the unmarshalled invocation parts, like

method name and parameters as well as further information on how to

thread the invocation, e.g., which synchronization pattern should be used.

While marshalling typically is a stub/skeleton responsibility, it was

omitted on this layer and pushed down to the transport plug‐ins to give

 220

the middleware maximum flexibility in choosing a suitable

interoperability protocol at runtime.

In the system core layer, the invocation broker is responsible for delivering

the invocation to either a local device capability or a remote service by

choosing an appropriate plug‐in. The invocation broker relies on

information from the service registry (local services) and the device

registry (currently reachable devices and the corresponding transport

plug‐ins) in order to dispatch an invocation. Since plug‐ins can realize

arbitrary protocols the invocation broker has to synchronize the

invocation according to the application programming model and the

underlying plug‐in.

Plug‐ins can be dynamically loaded and thus allow the extensibility of the

middleware. The invocation broker follows the micro‐kernel philosophy

by only offering minimal functionality, i.e., how to find a service

responsible for the invocation, dispatch it, and synchronize the invocation

according to the application communication model. Thus, we call it a

micro‐broker.

Since all plug‐ins, i.e., for device discovery, device capability, and

transports rely on the same interface, i.e., handle invocations, applications

can use the same programming interface (SII, DII) to access them. As stubs

and skeletons do not provide any marshalling functionality, transport

plug‐ins have to ensure the marshalling of parameters and construction of

interoperability protocol messages.

10.3. First Experiences

The first prototype of BASE was developed using an IBM J9

implementation of the Java 2 Micro Edition with the Connected Device

Configuration (CDC). The CDC omits a variety of features from the

Standard Edition, e.g., reflection, while others, such as object serialization,

are present. Initial measurements [BSG+03] showed a reasonable small

221

memory footprint of about 130 Kbytes but also that the initial marshalling

resulted in two to three times overhead compared to Java RMI. This

overhead mostly resulted from the naïve approach taken, i.e., serializing

an invocation object with Java’s object serialization.

10.4. Porting and using BASE

After the initial prototypical implementation that built upon the J2ME

CDC platform, we started two projects related to BASE. One project

ported BASE from its original platform the JStamp. The other project

aimed at the development of a component system on top of BASE. The

combined experiences created a picture that allowed an initial evaluation

of both, the internal structure and the external abstractions.

10.4.1. Porting BASE

Although BASE is targeted at systems of all sizes we decided not to deal

with all complexities that arise from the application of extremely restricted

platforms during the development of the first prototype. Therefore, we

did not build upon the most restricted platform defined by the J2ME

specification. Instead we used the CDC, since it has a range of advanced

features that allowed us to speed up the initial development. These

features included for instance, JVM support for object serialization and

dynamic class loading. The typical hardware that provides CDC sized

runtime environments are high‐end personal digital assistants or TV set‐

top boxes. Clearly, UC aims at devices that are even smaller. Therefore, we

began to port BASE to the CLDC shortly after the first prototype was built

successfully. The CLDC is targeted at devices including low‐end personal

digital assistants and embedded processors. Porting BASE required two

tasks. First, we had to remove or reconstruct all convenient features that

were solely available on CDC enabled systems. Second, we had to build

platform specific transport and discovery plug‐ins, since the JStamp

 222

processor did not support our existing IP‐based transport and discovery

plug‐ins. Both tasks together gave us a chance to evaluate the internal

structures when porting BASE to other platforms.

10.4.2. BASE as a Platform for Components

BASE aims at abstracting from platform specifics, but it leaves application

programmers with only basic support, when dealing with fluctuating

availability of local and remote services. As these fluctuations are inherent

in mobile ad hoc networks, code of stable applications is necessarily

tangled with code that manages dependencies on functionality provided

by services. Since this kind of tangled code raises the complexity of

application development, we decided to automate dependency

management by the middleware using a component abstraction. The

resulting component system used BASE as means of communication.

Since we did not want to change the main mechanism and abstractions

provided by BASE during its development, the component system can be

seen as an application built on top of BASE. Therefore, this project enabled

us to evaluate BASE’s external structures that are used during application

development.

10.5. Experiences

Before we present the lessons learned from conducting the port and the

development of a component system, we will describe the resulting

modifications to BASE. The modifications can be divided into two classes

depending on their effects. The first class has been foreseeable and did not

have conceptual impact. The second class is more interesting as it affects

the fundamental concepts of BASE.

223

10.5.1. Technical Modifications

The additional restrictions imposed by the CLDC led to technical issues

that could be resolved in a straight forward manner. Most noteworthy we

were facing the following difficulties:

Class loading: the initial version of BASE made use of dynamic class

loading in order to locate and execute plug‐ins and services at runtime. As

dynamic class loading is very restricted by the CLDC, we had to reduce

this flexibility. Instead of dynamic class loading we modified BASE to use

linked classes. We simplified the resulting more complex configuration

process by providing a graphical configuration tool that generates desired

configurations.

Object serialization: the CLDC does not provide means for serialization of

objects. Since plug‐ins are responsible for the marshalling, the first

prototype of BASE simply serialized the invocation object. As mentioned

before, this resulted in an unnecessary overhead and additionally, it was

not possible on the CLDC. Our solution to this problem is straight

forward. Via a serialization interface the marshalling code can access the

object’s state and write/read it to/from an output/input stream. We will

later describe a solution for a more flexible and performance oriented

plug‐in structure.

10.5.2. Conceptual Modifications

BASE’s plug‐in concept offers a rather coarse grained structure currently

including marshalling, interoperability, discovery, and transport layer

abstractions. As the JStamp did not support our existing transport and

discovery plug‐ins, we had to develop new plug‐ins. Although developing

plug‐ins is a fairly simple undertaking, due to their coarse grained

structure, we were not able to reuse much of the existing code. Along with

the marshalling performance mentioned earlier and current activities for

 224

QoS management, we have to conclude that the plug‐in concept so far

provides suitable abstractions to interface to the micro‐broker but requires

additional structuring into an interoperability framework. Optimized

marshalling code for distinct interfaces, service discovery, as well as

transport layer related issues, e.g., SSL encryption, can be integrated via

interceptors offering a simple configuration and re‐use of these elements

in other plug‐ins.

Apart from the technical modification described earlier, the inability to

load classes dynamically also led to conceptual changes. Just like JINI

[Edw99] services, BASE services were designed to provide stubs for their

clients. The automated delivery of stubs allows service‐instance specific

stubs and skeletons, but it relies on the ability to load classes dynamically.

Porting BASE led to the conclusion that, due to its overall architecture,

service‐instance specific stubs and skeletons are an unnecessary feature.

With respect to JINI services, loadable stubs are the only way to support

flexible communication mechanisms. While BASE decouples stubs from

the specifics of the transport and interoperability layers, JINI’s stubs cut

right through all communication layers. Therefore, JINI clients have to use

the stub provided by the service. Otherwise they will not be able to create

valid requests. The only functionality provided by BASE’s stubs is the

creation of Invocations. Encoding and transmission of data is handled by

plug‐ins. As a result, clients are able to include stubs for all services that

they might use. The fact that BASE does not need service‐instance specific

stubs and skeletons results in a leaner ServiceRegistry.

10.5.3. Lessons Learned

From conducting both projects we learned a lot about the design decisions

made during the initial development of BASE. A very obvious lesson that

can be learned is that porting a Java‐based system is not always as simple

225

as some people claim. Although Java is usually considered to be a

platform independent language, switching to a more restricted J2ME

configuration can lead to costs that are comparable to the costs of porting

platform dependent programs. Both, the lack of object serialization and

dynamic class loading required the design of new mechanisms to achieve

a similar level of convenience.

Apart from the platform related issues, the conceptual modifications

provided two interesting insights. First, we learned that it is possible to

use our plug‐in concept to successfully build plug‐ins for small devices. At

the same time, we discovered that the granularity of the plug‐in layer is

not yet satisfactory. Therefore we have to conclude that the plug‐in

concept offers the required extensibility, but it needs a more sophisticated

structure to increase reuse of existing code and to provide improved

support for developers.

The second modification showed that the plug‐in architecture allows

removing service specific stubs and skeletons without loss of functionality.

The extensibility provided by BASE’s plug‐in layer is sufficient to achieve

at least the same degree of flexibility as systems like JINI.

The previously discussed lessons can be derived directly from

modifications, but there are also lessons learned that result from keeping

existing concepts. For example, one interesting feature of BASE that did

not change during the projects is its reflection mechanism. In contrast to

the Standard Edition, J2ME does not support reflection. However, in the

presence of dynamic invocation creation and appropriate means to specify

services and their interfaces via the service registry, a simple reflection

mechanism is provided by BASE. It was an ongoing discussion in the team

whether to aim for general reflection, i.e., storing signatures and class‐

relations in the service registry, or only providing interface names and the

class‐hierarchy information. So far, we have chosen the latter approach

 226

without experiencing any restrictions. Our component system provides

more powerful concepts for interface description and exploration

including non‐functional parameters and hence we decided to keep BASE

minimal.

Another and probably the most important lesson that we have learned is

also a result of not changing anything. During the development of the

component system, there was no need to modify BASE. All necessary

additions were implemented in the application layer. Only two extensions

were integrated directly into BASE. First, components managed by the

component system use stubs and skeletons that inherit from the original

stubs and skeletons provided by BASE. This enables a faster dispatch of

messages since there is no additional indirection in the dispatch chain.

Second, some of the functionality provided by the Registries is accessed

directly in order to remove indirections that might have negative impact

on the performance of the system. Note, that these design decisions are

performance optimizations. We could have done everything in the

application layer (although this would have led to a much slower system).

This brings us to the conclusion that BASE provides suitable abstractions

for implementing applications as well as high‐level infrastructures.

The successful development of the component system also raised

questions. Our preliminary evaluation indicates that the overhead caused

by a carefully designed component system is reasonably small compared

with the initial cost of using BASE. The current version of BASE requires

90KB. Through the usage of the component system, these requirements are

increased by 30KB. Considering target systems like the JStamp that have

at least 1MB of memory, we are currently considering whether it makes

sense to completely abandon the service abstraction and use components

instead. But at the moment it is too early to fully assess all consequences of

such a move.

227

10.6. Conclusions

In this chapter we have presented our experiences with conducting two

projects that build upon BASE. While the internal structures have

undergone technical and conceptual modifications, the external structures

stayed remarkably stable. The conceptual modifications led to a follow up

project, in which we began to design an improved plug‐in layer to

overcome the described deficiencies. Furthermore, we were able to

successfully port BASE to a new set of target devices and to utilize it for a

larger application. This success is encouraging and it shows that BASE is

not only suited for smaller devices, but also that it can be used as

infrastructure for applications as well as for further high‐level

abstractions. We are highly confident that the minimalism of our micro‐

broker approach together with the extensibility of its plug‐in architecture

will prove to be adequate for UC environments.

BASE and the component system are freely available to research

institutions and can be downloaded at http://www.3pc.info.

 228

11. Summary and Outlook
The proliferation of sensor technology and the miniaturization of

computing devices already provide the foundations to capture the

physical world’s state. Integrating this state into applications allows

presenting information and selecting services based on the physical

world’s state. Applications thus become context‐aware. First examples of

context‐aware applications are already available on the market. Car

navigation systems are based on road maps providing a model of the

physical world. Integrating dynamic information, such as the current

traffic information, allows the routing function to avoid traffic jams.

Application scenarios for context‐aware computing span all domains

where human users interact with computer systems. Context‐aware

tourist guides, reminder services, home automation are examples for such

application systems. Certain domains can clearly benefit from context‐

aware computing technology. Support for senior citizens could consists of

body monitoring in order to ensure that help is called if some critical state

is monitored. A smart pill dispenser can keep track of the correct medicine

to be taken. Offering the latest health information plus a history to a

physician in case of an emergency can help to provide the best‐possible

medical care. But not only human‐centered computing can benefit from

context‐aware computing. A smart factory could track the position and

state of tools and resources in order to integrate it into its resource

management. This allows balancing stocking of resources and tools versus

possible production downtimes due to their unavailability.

Context as a concept reflects all information that relates to the situation of

entities relevant for applications and users. Applications can use context

information by different means. If the context is stored in a context model

and the application provides the precautions for adaptation to context

changes we refer to this class of system support as adaptation by application.

229

Such context models are typically realized as context services which allow

storing context information obtained by sensors, the application, or the

user. Applications interface to such context services by using query

languages in order to retrieve or modify context information. Based on

such context models applications can select information and services

depending on the context, change their presentation, issue some action, or

allow to tag information to context. Context services can be designed for a

single application, an application domain, or aim at generic context

management. The underlying system models influence the context

management. Infrastructure‐based approaches can rely on one or a

number of services offering the context information to applications.

Applications thus have to access the infrastructure whenever context

information is required. Another possible approach is based on ad hoc

communication. Mobile devices are connected by wireless communication

technology and form a spontaneous network. The unpredictable topology

changes and the resulting network partitions prevent the management of

context in a single service. Context information can be managed on a peer‐

to‐peer‐based fashion where mobile devices manage their context locally

and exchange information with other devices. Location services for mobile

ad hoc networks are examples of context information that is maintained

collaboratively among mobile devices.

In contrast to context services which provide applications only with

information about context but do not provide any support for application

adaptation, support for adaptation by system exists as well. Applications are

automatically configured depending on the available information and

services. Spatial proximity as a major context information can be reflected

either by a spatially restricted resource management or by using ad hoc

communication. In the first case, which is common for smart

environments, the management of a spatial area is provided by an

 230

infrastructure. The smart environments controls the integration and

leaving of devices and mediates the interaction. Applications are mapped

onto the available services. The relevance of information and services is

reflected by being available through the smart environment which only

manages a spatially restricted area, e.g., a meeting room or a smart home.

Spatial relevance of information and services is naturally reflected in

spontaneous networks based on mobile ad hoc networks. The

communication between devices is based on wireless communication and

thus devices in direct communication range are considered to be in

proximity. In contrast to smart environments there is no central control

provided by an infrastructure. This requires the system support to

discover available services and information for each participating device

and to adapt applications accordingly.

11.1. Contributions

This thesis provides a general discussion about system support for

context‐aware computing. A classification of system support along the

dimensions of the underlying system model, i.e., ad hoc or infrastructure,

and the system support for application adaptation, i.e., by system or by

application, is given and structures this research area.

Specific contributions are made to the domains of support for adaptation

by application. Location models as a basic structure of context models are

presented and classified according to their suitability for supporting

position, range, and nearest neighbour queries. The domain of context

services in ad hoc systems is addressed by the Usenet‐on‐the‐fly. This

application allows users or applications to specify filters on information,

which is exchanged between mobile devices in a mobile ad hoc network.

The local relevance of information is reflected by the dissemination

algorithm that propagates information between devices whenever they are

in communication range. An improved version of this algorithm is

231

provided which allows scheduling the advertisement of messages based

on their popularity. Another contribution to the field of context services

are the experiences gained from the integration of a local context server for

Georgia Tech’s Aware Home into the Nexus platform.

The research area of Peer‐to‐Peer Pervasive Computing – support for

adaptation by system in an ad hoc setting – is covered in the remaining

part of this thesis. First, a requirement analysis of this class of system

support is given. Second, a flexible middleware platform that allows for

spontaneous cooperation in Peer‐to‐Peer ad hoc systems is introduced. A

micro‐broker design allows minimal installation but also flexible

extensibility. Third, the support for application adaptation by system is

addressed by a component system. Based on the middleware a

component‐based application model is designed. The container managing

the components can automatically adapt to resource changes because of

the explicit dependencies modelled in the component’s contracts. Fourth,

the experiences of porting the middleware to resource restricted devices

and building the component container close the thesis showing the

feasibility of the introduced concepts.

11.2. Outlook

Context‐aware computing already starts to become available in products,

such as navigation systems. The integration of sensor and computing

platforms as embedded systems into everyday objects as a trend can also

be observed. The next challenges in context management are common

context models allowing applications to share and reason about context.

Standardized query languages along with the context models are required

to share the costs of gathering and managing context.

Context‐aware applications react to the changes in the physical world

along with other context information, such as user preferences. As a result,

these applications will change their behaviour over time with the context

 232

information. The potentially high number of context information and the

resulting combinations require applications to either neglect relevant

context information or to deal with this information. Clearly, this

complicates the task of developing and maintaining context‐aware

applications. In an ideal case, application programmers are provided with

means to specify the variations in an application’s behaviour and the

system support automatically configures the application depending on the

current context. A similar situation can be found in Peer‐to‐Peer Pervasive

Computing. The fluctuation of services and resources in general will

require constant adaptation of application to the ever‐changing execution

environment. If the application programmer is assisted by higher level

support, such as a contract‐based application model, e.g., the one

provided by PCOM, the system performs constant self‐configuration.

Classical computer systems are also challenged by the number of involved

components. The complexity of such systems leads to high effort for fault‐

isolation and configuration. The vision of Autonomic Computing aims at

self‐organizing, self‐healing, and self‐optimizing systems. The similarity of

objectives of Autonomic and Pervasive Computing – as discussed in

[WPT03] ‐ leads to the questions how the concepts for adaptation and

specification of applications can be transferred between these domains.

Clearly, the system models differ. Systems considered by Autonomic

Computing are of higher complexity and changes, such as errors or

reconfigurations, are happening on a lower rate than in Pervasive

Computing. The core problem, that a system has to adapt to a variety of

potentially unknown changes, however, stays the same.

With basic technology being available, the vision of Pervasive Computing

can become reality. Research challenges ahead do not only affect core

computer science disciplines but also business cases for the deployment of

233

such systems as well as the social implications of a world populated with

sensing, computing, and communication capabilities.

 234

12. References
[3PC] Peer‐to‐Peer Pervasive Computing Project (3PC): http://www.3pc.info

[AAH+97] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton “Cyberguide: A

mobile context‐aware tour guide”, Wireless Networks 3(5) (1997) 421‐433

[ACH+01] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, A. Hopper,

“Implementing a Sentient Computing System”, IEEE Computer Magazine, vol. 34,

no. 8, pp. 50‐56, August 2001

[BA01] L. Bergmans and M. Aksit “Composing crosscutting concerns using composition

filters”, Communications of the ACM, 44(10), Oct. 2001.

[BBH02] C. Becker, M. Bauer, J. Hähner “Usenet on the fly ‐ supporting the locality of

information in spontaneous networking environments”, Workshop on Ad hoc

Communications and Collaboration in Ubiquitous Computing Environments in

conjunction with ACM Conference on CSCW 2002, New Orleans/USA, 2002

[BBR01] M. Bauer, C. Becker, K. Rothermel “Location Models from the Perspective of

Context‐Aware Applications and Mobile Ad Hoc Networks”, Workshop on Location

Modeling for Ubiquitous Computing, UBICOMP 2001, Atlanta, 2001.

[BBR02] M. Bauer, C. Becker, K. Rothermel “Location Models from the Perspective of

Context‐Aware Applications and Mobile Ad Hoc Networks”, Personal and

Ubiquitous Computing. Vol. 6(5‐6). S. 322‐328, London: Springer‐Verlag (2002)

[BCA+01] G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran‐Limon, T.

Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski, “The Design

and Implementation of Open ORB version 2”. IEEE Distributed Systems Online

Journal, vol. 2, no. 6, 2001

[BCR+00] G. S. Blair, G. Coulson, P. Robin, M. Papathomas, “An Architecture for Next

Generation Middleware”, Proceedings of Middleware 2000, Lake District, UK, 2000

[BCS+98] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward “A distance routing

effect algorithm for mobility (DREAM)” In Proceedings of the Fourth Annual

ACM/IEEE International Conference on Mobile Computing and Networking,

MobiComʹ98, Dallas, TX, 1998.

[BD04] C. Becker, F. Dürr “On Location Models for Ubiquitous Computing” accepted for

publication in Personal and Ubiquitous Computing, Springer, 2004

[BG00] C. Becker and K. Geihs, “Generic QoS‐Support for CORBA”, Proceedings of the 5th

IEEE Symposium on Computers and Communications (ISCCʹ2000) Antibes, France,

2000

[BHS+04] C. Becker, M. Handte, G. Schiele, K. Rothermel “PCOM ‐ A Component System for

Pervasive Computing“, In Proceedings 2nd IEEE International Conference on

Pervasive Computing and Communication (PerCom 04), Orlando, USA, 2004

235

[BJP+99] A. Beugnard, J.M. Jezequel, N. Plouzeau, and D. Watkins “Making components

contract aware” IEEE Computer, 13(7), July 1999.

[BJR+03] M. Bauer, L. Jendoubi, K. Rothermel, E. Westkämper “Grundlagen ubiquitärer

Systeme und deren Anwendung in der Smart Factory“ Industrie Management –

Zeitschrift für industrielle Geschäftsprozesse, 19(6), 2003

[BKW02] J. Baus, A. Krüger, W. Wahlster “A resource‐adaptive mobile navigation system” In

Proccedings of International Conference on Intelligent User Interfaces, San Francisco,

2002

[BMJ+98] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, J. Jetcheva “A Performance Comparison

of Multi‐Hop Wireless Ad Hoc Network Routing Protocols“, Proceedings of the

Fourth Annual ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom’98), Dallas, Texas, 1998.

[BMK+00] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer “EasyLiving: Technologies for

Intelligent Environments” Handheld and Ubiquitous Computing (HUC), Bristol, UK,

2000

[BMR04] S. Bürklen, P. Marrón, K. Rothermel “An Enhanced Hoarding Approach Based on

Graph Analysis” In Proceedings of the 5th IEEE International Conference on Mobile

Data Management (MDM 2004); Berkeley, California, USA, 2004

[BR04] Bauer, Martin; Rothermel, Kurt: “How to Observe Real‐World Events through a

Distributed World Model” In: to appear in: Proceedings of the Tenth International

Conference on Parallel and Distributed Systems 2004 (ICPADS 2004);Newport Beach,

California, July 7‐9, 2004

[BS01] B. Brumitt, S. Shafer “Topological World Modeling Using Semantic Spaces”, In

Proceedings of the Workshop on Location Modeling for Ubiquitous Computing,

Atlanta, Georgia, USA, Sep 2001

[BS03a] C. Becker, G. Schiele “BASE: A Minimal yet Extensible Platform for Pervasive

Computing”, International Conference on Tales of the Disappearing Computer,

Santorin, Greece, 2003

[BS03b] C. Becker, G. Schiele “Middleware and Application Adaptation Requirements and

their Support in Pervasive Computing”, 3rd International Workshop on Distributed

Auto‐adaptive and Reconfigurable Systems (DARES) at ICDCS, pp. 98‐103, May 19‐

22, Providence, USA, 2003

[BSG+03] C. Becker, G. Schiele, H. Gubbels, K. Rothermel “BASE ‐ A Micro‐broker‐based

Middleware For Pervasive Computing”, Proceedings of the 1st IEEE International

Conference on Pervasive Computing and Communication, pp. 443‐451, Fort Worth,

USA, March 2003

[CDM+00a] K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou “Developing a Context‐

aware Electronic Tourist Guide: Some Issues and Experiences”, Proceedings of CHI

2000, Netherlands (2000)

 236

[CDM+00b] K. Cheverst, N. Davies, K. Mitchell, and A. Friday “Experiences of developing and

deploying a context‐aware tourist guide: the GUIDE project”, In Proceedings of the

6th Annual International Conference on Mobile Computing and Networking, Boston,

Massachusetts, 2000, 20‐31

[CGS+02] S.W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel, P. Steenkiste, and N. Hu

“Software architecturebased adaptation for pervasive systems”, In International

Conference on Architecture of Computing Systems (ARCS’02): Trends in Network

and Pervasive Computing, Apr. 2002.

[CK00] G. Chen, D. Kotz “A Survey of Context‐Aware Mobile Computing Research”,

Dartmouth Computer Science Technical Report TR2000‐381, Dartmouth College

(2000)

[CKW01] W. S. Conner, L. Krishnamurthy, R. Want “Making Everyday Life Easier Using

Dense Sensor Networks”, In Proceedings of UBICOMP 2001, Atlanta, USA (2001)

[CLC+02] N. H. Cohen, H. Lei, P. Castro, J. S. Davis II, A. Purakayastha “Composing Pervasive

Data Using iQL” 4th IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA 2002), Callicoon, New York, 2002

[Cooltown] Cooltown, http://www.cooltown.com/cooltownhome/index.asp

[CPW+02] N. H. Cohen, A. Purakayastha, L. Wong, D. L. Yeh “iQueue: a pervasive data‐

composition framework” 3rd International Conference on Mobile Data Management,

Singapore, 2002

[CPW+99] M.H. Coen, B. Phillips, N. Warshawsky, L. Wiesman, S. Peters, P. Finin, “Meeting the

Computational Needs of Intelligent Environments: The Metaglue System”,

Proceedings of the 1st International Workshop Managing Interactions in Smart

Environments (MANSEʹ99), Dublin, Ireland, pp. 201‐212, December 1999

[DA99] A. Dey, G. Abowd “Towards a better understanding of context and context‐

awareness”, Georgia Tech GVU Technical Report, GIT‐GVU‐99‐22 (1999)

[DALLAS] Accuracy of RTC: http://dbserv.maxim‐ic.com/appnotes.cfm/appnote_number/632

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.

Swinehart, D. Terry “Epidemic Algorithms for Replicated Database Maintenace”, In

Proceedings of the 6th ACM Symposium on Principles of Distributed Computing,

pp. 1‐12, 1987.

[DR03] F. Dürr, K. Rothermel “On a Location Model for Fine‐Grained Geocast”, In

Proceedings of the Fifth International Conference on Ubiquitous Computing

(UbiComp 2003), Seattle, WA, Oct 2003, 18‐35

[Dro03] T. Drosdol: Unterstützung symbolischer Koordinaten im Lokationsmanagement;

Diploma thesis, University of Stuttgart, 2003

[Edw99] W. K. Edwards “Core JINI” The SUN Microsystems Press Java Series, Prentice Hall,

1999

[EE98] G. Eddon, H. Eddon “Inside Distributed Com”, Microsoft Press, February 1998

237

[EPS+01] F. Espinoza, P. Person, A. Sandin, H. Nyström, E. Cacciatore, M. Bylund “GeoNotes:

Social and Navigational Aspects”, In Proceedings of UBICOMP 2001, Atlanta, USA

(2001)

[ETH] ETH World, http://www.ethworld.ethz.ch

[FHM+04] A. Ferscha, M. Hechinger, R. Mayrhofer, R. Oberhauser ”A Light‐Weight Component

Model for Peer‐to‐Peer Application” In the 24th IEEE International Conference on

Distributed Computing Systems Workshops, Tokyo, Japan, 2004

[GAB+00] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. “A system architecture for

pervasive computing”, In Proceedings of the 9th ACM SIGOPS European Workshop,

pp. 177‐182, Denmark, September 2000.

[GPS] Information GPS: http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

[GSF+01] C. H. Ganoe, W. A. Schafer, U. Farooq, J. M. Carroll “An Analysis of Location Models

for MOOsburg”, In Proceedings of the Workshop on Location Modeling for

Ubiquitous Computing, Atlanta, Georgia, USA, Sep 2001

[GSM] GSM World. Location‐based Services.

http://www.gsmworld.com/technology/applications/location.shtml

[GSS+02] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste “Project Aura: Towards

Distraction‐Free Pervasive Computing”, IEEE Pervasive Computing, special issue on

ʺIntegrated Pervasive Computing Environmentsʺ, Volume 1, Number 2, (Apr‐Jun

2002) 22‐31

[HB01] J. Hightower and G. Borriello “Location systems for ubiquitous computing”, IEEE

Computer 34(8), 2001, 57‐66

[HBB02] J. Hightower, B. Brumitt, and G. Borriello “The Location Stack: A Layered Model for

Location in Ubiquitous Computing”, In Proceedings of the 4th IEEE Workshop on

Mobile Computing Systems & Applications (WMCSA 2002), Callicoon, NY, 2002, 22‐

28

[HBR03] J. Hähner, C. Becker, and K. Rothermel “A Protocol for Data Dissemination in

Frequently Partitioned Mobile Ad Hoc Networks“, In Proceedings of the IEEE

Symposium on Computers and Communications (ISCC 2003), Antalya/Turkey, 2003

[HHS+99] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster “The anatomy of a context‐

aware application”, In Proceedings fifth annual International Conference on Mobile

Computing and Networking (MobiCom’99), Seattle, WA

[HKB99] W.R. Heinzelman, J. Kulik, H. Balakrishnan “Adaptive Protocols for Information

Dissemination in Wireless Sensor Networks“,In Proceedings fifth annual

International Conference on Mobile Computing and Networking (MobiCom’99),

Seattle, WA

[HKL+99] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, M. Schwehm “Next Century

Challenges: Nexus ‐ An Open Global Infrastructure for Spatial‐Aware Applications”,

 238

Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile

Computing and Networking (MobiComʹ99), Seattle, Washington, WA

[HL04] H. Hu and D. L. Lee “Semantic Location Modeling for Location Navigation in Mobile

Environments”, In Proceeding of the IEEE International Conference on Mobile Data

Management, Berkeley, California, USA, Jan 2004

[HOT+99] C. Ho, K. Obraczka, G. Tsudik, K. Viswanath “Flooding for Reliable Multicast in

Multi‐Hop Ad Hoc Networks“, Proceedings of MobiCom Workshop on Discrete

Algorithms and Methods for Mobility (DialM’99), 1999.

[JFW02] B. Johanson, A. Fox, T. Winograd, “The Interactive Workspaces Project: Experiences

with Ubiquitous Computing Rooms”, IEEE Pervasive Computing, vol. 1, no. 2, pp.

67‐74, April‐June 2002

[Joh94] D. Johnson “Routing in Ad Hoc Networks of Mobile Hosts”, In Proceedings of the

Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, USA,

1994.

[JS02] C. Jiang, P. Steenkiste “A hybrid location model with a computable location identifier

for ubiquitous computing”, In Proceedings of the Fourth International Conference on

Ubiquitous Computing (UbiComp 2002), Goteborg, Sweden, 2002, 246‐263

[JS03] G. Judd, P. Steenkiste “Providing Contextual Information to Pervasive Computing

Applications”, In Proceedings of IEEE International Conference on Pervasive

Computing and Communications (PerCom), 2003, 133‐142

[JSprint] J‐Sprint Homepage, http://www.j‐sprint.com/

[JStamp] JStamp Homepage, http://jstamp.systronix.com/index.htm

[JTK97] A.D. Joseph, J.A. Tauber, and M.F. Kaashoek, “Mobile Computing with the Rover

Toolkit”, IEEE Transactions on Computers: Special issue on Mobile Computing, vol.

46, no. 3, pp. 337‐352, March 1997

[Kan01] G. Kan ”Gnutella” In Peer‐to‐Peer: Harnessing the Power of Disruptive

Technologies, Andy Oram (ed.), O’Reilly, March 2001.

[KEG93] W. Kainz, M. J. Egenhofer, I. Greasley “Modeling spatial relations and operations

with partially ordered sets” International Journal of Geographic Information Systems

7(3), 1993, 215‐229

[KF02] T. Kindberg, A. Fox, “System Software for Ubiquitous Computing”, IEEE pervasive

computing, vol. 1, no. 1, pp. 70‐81, January‐March 2002

[KHB99] J. Kulik, W. Heinzelman, H. Balakrishnan “Negotiation‐based protocols for

disseminating information in wireless sensor networks”, In Proceedings of the Fifth

Annual ACM/IEEE International Conference on Mobile Computing and Networking,

Seattle, WA, USA, 1999.

[KL01] O. Kasten, M. Langheinrich “First Experience with Bluetooth in the Smart‐Its

Distributed Sensor Networks”, Workshop on Ubiquitous Computing and

239

Communication. In Proceedings of 10th International Conference on Parallel Archi‐

tectures and Compilation Techniques (PACT’01), Barcelona Spain, 2001.

[KMP99] G. Karumanchi, S. Muralidharan, R. Prakash “Information Dissemination in

Partitionable Mobile Ad Hoc Networks“, Proceedings of 18th IEEE Symposium on

Reliable Distributed Systems, 1999.

[KOA+99] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt, T. Starner,

W. Newstetter “The Aware Home: A Living Laboratory for Ubiquitous Computing

Research”, In Proceedings of the Second International Workshop on Cooperative

Buildings ‐ CoBuild’99, 1999

[KSS+99] G. Kortuem, J. Schneider, J. Suruda, S. Fickas, Z. Segall “When Cyborgs Meet:

Building Communities of Cooperating Wearable Agents”, In Proceedings Third

International Symposium on Wearable Computers (ISWCʹ99), San Francisco, CA,

USA, 1999.

[LBB+04] O. Lehman, M. Bauer, C. Becker, D. Nicklas “From Home to World: Supporting

Context‐Aware Applications through World‐Models“, In 2nd IEEE International

Conference on Pervasive Computing and Communication (PerCom 04), Orlando,

USA, 2004

[LBS] LBS Portal, http://www.lbsportal.com/

[Led99] T. Ledoux, “OpenCorba: A Reflective Open Broker”, Proceedings of the 2nd

International Conference on Reflection (Reflectionʹ99), pp. 197‐214, Saint‐Malo,

France, 1999

[Leo98] U. Leonhardt “Supporting location‐awareness in open distributed systems”, PhD

thesis, Imperial College London, Department of Computing, 1998

[LJD+00] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, R. Morris “A Scalable Location

Service for Geographic Ad hoc Routing” in Proceedings Sixth Annual ACM/IEEE

International Conference on Mobile Computing and Networking (MobiComʹ00),

Boston, USA

[LKA+96] S. Long, R. Kooper, G. D. Abowd, C. G. Atkeson “Rapid prototyping of mobile

context‐aware applications: the Cyberguide case study” In Proceedings of the second

annual International Conference on Mobile Computing and Networking, White

Plains, NY, 1996

[LKR99] A. Leonhardi, U. Kubach, K. Rothermel “Virtual Information Towers ‐ A metaphor

for intuitive, location‐aware information access in a mobile environment” In

Proceedings of third International Symposium on Wearable Computers, San

Francisco, CA (1999) 15‐20

[LSD+02] H. Lei, D. M. Sow, J. S. Davis II, G. Banavar, M. R. Ebling ”The design and

applications of a context service” Mobile Computing and Communications Review 6,

No. 4, October 2002

 240

[Loo01] D. Loomis, The TINI(tm) Specification and Developerʹs Guide, Addison‐Wesley, June

2001

[LR02] A. Leonhardi, K. Rothermel “Architecture of a Large‐scale Location Service”, In

Proceedings of the 22nd Int. Conf. on Distributed Computing Systems (ICDCS 2002),

Vienna, Austria (2002) 465‐466

[Mic00] Microsoft Corporation, Universal Plug and Play Device Architecture, Version 1.0,

http://www.upnp.org/download/ UPnPDA10_20000613.htm, June, 2000

[Moz98] M. Mozer, “The Neural Network House: An Environment that Adapts to its

Inhabitants”, AAAI Spring Symposium, Stanford, pp. 110114, March 1998

[MS00] N. Marmasse, C. Schmandt “Location‐aware information delivery with commotion”

In Proceedings of the second International Symposium on Handheld and Ubiquitous

Computing (HUC), Bristol, UK, 2000

[MS01] N. Marmasse, C. Schmandt “Location Modeling” In Proceedings of the Workshop on

Location Modeling for Ubiquitous Computing, Atlanta, Georgia, USA, Sep 2001

[NC01] H. Naguib, G. Coulouris “Location Information Management” In Proceedings of the

3rd International Conference on Ubiquitous Computing (UbiComp 2001), Atlanta,

Georgia, USA, Sep 2001

[NGS+01] D. Nicklas, M. Großmann, T. Schwarz, and S. Volz “A Model‐Based, Open

Architecture for Mobile, Spatially Aware Applications”, In Proceedings of the 7th

International Symposium on Spatial and Temporal Databases (SSTD 2001), Redondo

Beach, CA, USA, Jul 2001

[NKO+01] K. Nagel, C. D. Kidd, T. OʹConnell, A. Dey, G. D. Abowd, ”The Family Intercom:

Developing a Context‐Aware Audio Communication System” G. D. Abowd, B.

Brumitt, S. A. N. Shafer (Eds): Ubicomp 2001, LNCS 2201, Springer‐Verlag Berlin

Heidelberg (2001), 176‐183

[NM01] D. Nicklas, B. Mitschang “The Nexus Augmented World Model: An Extensible

Approach for Mobile, Spatially‐Aware Applications”, In Proceedings of the 7th Int.

Conf. on Object‐Oriented Information Systems (2001)

[NTC+99] S.‐Y. Ni, Y.‐C. Tseng, Y.‐S Chen, J.‐P. Sheu “The Broadcast Storm Problem in a Mobile

Ad Hoc Network“, Proceedings of the Fifth Annual International Conference on

Mobile Computing and Networking (MobiComʹ99), 1999.

[ODA01] T. O’Connel, P. Jensen, A. Dey, and G. Abowd: Location in the Aware Home; In

Proceedings of the Workshop on Location Modeling for Ubiquitous Computing,

Atlanta, Georgia, USA, Sep 2001

[OGT+99] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A.

Quilici, D.S. Rosenblum, A.L. Wolf, “An Architecture‐Based Approach to Self‐

Adaptive Software”, IEEE Intelligent Systems, vol. 14, no. 3, pp. 54‐62, May‐June

1999

[OMG98] Object Management Group, CORBA Messaging, report orbos/98‐05‐06, 1998

241

[OMG02a] Object Management Group, Minimum CORBA Specification, Revision 1.0. August

2002

[OMG02b] Object Management Group, The Common Object Request Broker: Architecture and

Specification, Revision 3.0. July 2002

[OMG02c] Object Management Group (OMG), “CORBA Component Model V3.0”, formal/2002‐

06‐65, 2002

[OpenGIS] Open GIS Consortium Inc.: OpenGIS Simple Features Specification for SQL,

<http://www.opengis.org/techno/specs/99‐049.pdf>

[OT98] K. Obraczka, G. Tsudik “Multicast Routing Issues in Ad Hoc Networks“,

Proceedings of the IEEE International Conference on Universal Personal

Communication (ICUPC’98), 1998.

[Oxygen] Oxygen System Group Homepage. http://o2s.lcs.mit.edu/.

[Pas97] J. Pascoe “The Stick‐e Note Architecture: Extending the Interface Beyond the User”,

In Proceedings of the International Conference on Intelligent User Interfaces. Editors,

Moore, J., Edmonds, E., and Puerta, A., pp. 261‐264, 1997

[PB94] C. E. Perkins, P. Bhagwat “Highly Dynamic Destination‐Sequenced Distance Vector

Routing (DSDV) for Mobile Computers”, In Proceedings of ACM SIGCOMMʹ94,

London, UK, pp. 234‐244, 1994.

[PBB+02] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,

A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J.

Traupman, N. Treuhaft, “Recovery‐Oriented Computing (ROC): Motivation,

Definition, Techniques, and Case Studies”, UC Berkeley Computer Science Technical

Report UCB//CSD‐02‐1175, March 2002

[Pebbles] http://www.cag.lcs.mit.edu/~umar/publications/pebbles‐abstract.pdf

[PostGIS] PostGIS, <http://postgis.refractions.net>

[PPL+03] G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen, M. Podlaseck, H. Chen, N. Sukaviriya

”Steerable Interfaces for Pervasive Computing Spaces”, In Proceedings of IEEE

International Conference on Pervasive Computing and Communications (PerCom),

2003, 315 322

[PR00] A. Puder, K. Roemer, MICO: An Open Source CORBA Implementation, 3rd edition,

Morgan Kaufmann Publishers, March 2000

[PS01] M. Papadopuli, H. Schulzrinne ”Effects of power conservation, wireless coverage

and cooperation on data dissemination among mobile devices”, In Proceedings of

MobiHoc 2001, Long Beach, USA, 2001.

[RBB03] K. Rothermel, M. Bauer, C. Becker ”Digitale Weltmodelle – Grundlage

kontextbezogener Systeme“, in Total Vernetzt, Ed. F. Mattern, Springer, 2003

[RBB+03] A. Roy, S. K. D. Bhaumik, A. Bhattacharya, K. Basu, D. J. Cook, and S. K. Das

“Location Aware Resource Management in Smart Homes”, In Proceeding of the First

 242

IEEE International Conference on Pervasive Computing and Communications

(PerCom ʹ03), Fort Worth, USA, Mar 2003

[RC00] M. Román and R.H. Campbell, “GAIA: Enabling Active Spaces”, Proceedings of the

9th ACM SIGOPS European Workshop, pp. 229‐234, Kolding, Denmark, September

2000

[RC01] M. Román and R.H. Campbell, “Unified Object Bus: Providing Support for Dynamic

Management of Heterogeneous Components”, Technical Report UIUCDCS‐R‐2001‐

2222 UILU‐ENG‐2001‐1729, Universiy of Illinois at Urbana‐Champaign, 2001

[RDD+03] K. Rothermel, D. Dudkowski, F. Dürr, M. Bauer, C. Becker “Ubiquitous Computing –

More than Computing Anytime Anyplace”, In Proceedings of the 49th

Photogrammetric Week, Stuttgart, Germany, Sep 2003

[RJO+89] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, M. Jones, “Mach: A

System Software kernel”, Proceedings of the 34th Computer Society International

Conference (COMPCON 89), San Francisco, CA, February 1989

[RKC99] M. Román, F. Kon and R.H. Campbell, “Design and Implementation of Runtime

Reflection in Communication Middleware: The DynamicTAO Case”, Proceedings of

the 1999 ICDCS Workshop on Electronic Commerce and Web‐Based Applications,

pp. 122‐127, Los Alamitos, CA, 1999

[RKC01] M. Román, F. Kon, and R.H. Campbell, “Reflective Middleware: From Your Desk to

Your Hand”, IEEE Distributed Systems Online Journal, Special Issue on Reflective

Middleware, July 2001

[RLU94] M. Rizzo, P. Linington, I. Utting “Integration of Location Services in the Open

Distributed Office”, Technical Report 12/94, University of Kent, Canterbury, UK,

1994

[RMK+00] M. Román, D. Mickunas, F. Kon, R.H. Campbell, “LegORB and Ubiquitous CORBA”,

IFIP/ACM Middlewareʹ2000 Workshop on Reflective Middleware, NY, April 2000

[Roem01] Römer, K.: „Time Synchronization in Ad Hoc Networks“, Proceedings of the ACM

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’01), 2001.

[RSC+99] M. Román, A. Singhai, D. Carvalho, C. Hess, R.H. Campbell, “Integrating PDAs into

Distributed Systems: 2K and PalmORB”, International Symposium on Handheld and

Ubiquitous Computing (HUCʹ99), Karlsruhe, Germany, September 1999

[Sat96] M. Satyanarayanan “Fundamental Challenges in Mobile Computing” in Proceedings

15th ACM Symposium on Principles of Distributed Computing, Philadelphia, USA,

1996

[SAW94] B. N. Schilit, N. A., Roy Want “Context‐Aware Computing Applications“ IEEE

Workshop on Mobile Computing Systems and Applications, 1994

[SBG99] A. Schmidt, M. Beigl, and H.‐W. Gellersen “There is more to context than location”,

Computers and Graphics 23(6), 1999, 893‐901

243

[Sch95] W. N. Schilit “A System Architecture for Context‐Aware Mobile Computing” PhD

thesis, Columbia University, 1995

[SDA99] D. Salber, A. Dey, G. Abowd, G.: The Context Toolkit: Aiding the Development of

Context‐Enabled Applications. Proceedings of CHI (1999)

[SensorML] Open GIS Consortium Inc.: SensorML http://www.opengis.org/docs/02‐026r4.pdf

[SKJ+00] J. Schneider, G. Kortuem, I. Jager, S. Fickas, Z. Segall “Disseminating Trust

Information in Wearable Communities”, In Proceedings of the 2nd International

Symposium on Handheld and Ubiquitous Computing (HUC2K), Bristol, UK, 2000.

[Ste02] I. Stepanov “Integrating Realistic Mobility Models In Mobile Ad Hoc Network

Simulation”, Diploma Thesis No. 1989, in English, Department of Computer Science,

University if Stuttgart, 2002. Available at ftp://ftp.informatik.uni‐stuttgart.de/

pub/library/medoc.ustuttgart_fi/DIP‐1989/DIP‐1989.pdf.

[STM00] A. Schmidt, A. Takaluoma, J. Mäntyjärvi “Context‐aware telephony over WAP”, In

Personal Technologies 4 (4) (2000) 225‐229

[SunEJB] SUN Microsystems, “Enterprise Java Beans Specification”,

http://java.sun.com/products/ejb/docs.html, 2003

[SunJ2EE] Sun Microsystems. Java 2 platform, enterprise edition. http://java.sun.com/j2ee.

[SunJ2ME] Java Micro Edition Homepage, http://java.sun.com/j2me/

[SunRMI] Java Remote Method Invocation Specification. Revision 1.8, Sun Microsystems,

available online: http://java.sun.com/j2se/1.4/docs/ guide/rmi/index.html, 2002

[Swiss] Swisscom. Go Mobile.

http://www.gomobile.ch/static/en/community/community_web_public.htm

[Systronix] Systronix Inc home page, http://www.jstamp.com/

[Szy98] C. Szyperski “Component Software Beyond ObjectOriented Programming”,

AddisonWesley, 2nd edition, 1998.

[Tan96] A. Tanenbaum “Computer Networks ‐ Third Edition“, Prentice Hall, 1996.

[TAO] D.C. Schmidt, Minimum TAO.

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/docs/minimumTAO.html

[THB+02] J. Tian., J. Hähner, C. Becker, I. Stepanov, K. Rothermel “Graph based Mobility

Model for Mobile ad‐hoc Network Simulation”, In Proceedings of the 35th Annual

Simulation Symposium (ANNSS35), San Diego, USA, 2002.

[TKR+91] A.S. Tanenbaum, M.F. Kaashoek, R. van Renesse, and H. Bal, “The Amoeba

Distributed Operating System‐A Status Report”, Computer Communications, vol. 14,

no. 6, pp. 324‐335, July/August 1991

[VB00] A. Vahdat, D. Becker “Epidemic Routing for Partially Connected Ad Hoc Networks”,

Technical Report CS‐200006, Duke University, USA, 2000.

[VGH+02] S. Volz, M. Großmann, N. Hönle, D. Nicklas, T. Schwarz „Integration mehrfach

repräsentierter Straßendaten für eine föderierte Navigation“, In it+ti,

Informationstechnik und Technische Informatik 5, 2002

 244

[Wal99] J. Waldo, “The Jini Architecture for network‐centric computing”, Communications of

the ACM, vol. 42, no. 7, pp. 76‐82, July 1999

[WBG+01] T. Weis, C. Becker, K. Geihs, N. Plouzeau „An UML metamodel for contract aware

components”, In Proceedings of UML 2001, 2001.

[Wei91] M. Weiser, “The computer for the 21st century”, Scientific American, vol. 265, no. 3,

pp. 94‐104, September 1991

[WHG92] R. Want, A. Hopper, and J.Gibbons “The Active Badge Location System”, In ACM

Transactions on Information Systems 10, 1992, 91‐102

[WJH97] A. Ward, A. Jones, A. Hopper “A new location technique for the active office”, IEEE

Personal Communications 4(5), 1997, 42‐47

[WK00] S. Wilson, J. Kesselman “Java Platform Performance: Strategies and Tactics”,

Addison‐Wesley, May 2000

[Wor95] M. F. Worboys “GIS: A Computing Perspective”, Taylor & Francis, London, UK,

1995.

[WPT03] R. Want, T. Pering, D. Tennenhouse, “Comparing Autonomic and Proactive

Computing”, IBM Systems Journal, vol. 42, no. 1, pp. 129‐135, January 2003

[XWC02] B. Xu, O. Wolfson, S. Chamberlain “Spatially Distributed Databases on Sensors”, In

Proceedings of the 8th ACM Symposium on Advances in Geographic Information

Systems, Washington DC, USA, pp. 153‐160, 2000.

[YKW+02] S. S. Yau, F. Karim, Y. Wang, B. Wang, S. K. S. Gupta “Reconfigurable Context‐

Sensitive Middleware for Pervasive Computing”, IEEE Pervasive Computing, vol.1,

no.3, pp.33‐40, 2002

245

13. Publications contained in this thesis

Chapter 3: C. Becker, F. Dürr “On Location Models for Ubiquitous
Computing“, accepted for Personal and Ubiquitous Computing, Springer

Chapter 4: C. Becker, M. Bauer, J. Hähner “Usenet on the fly ‐ supporting the
locality of information in spontaneous networking environments”, Workshop
on Ad hoc Communications and Collaboration in Ubiquitous Computing
Environments in conjunction with ACM Conference on CSCW 2002, New
Orleans/USA, 2002

Chapter 5: J. Hähner, C. Becker, and K. Rothermel “A Protocol for Data
Dissemination in Frequently Partitioned Mobile Ad Hoc Networks“, In
Proceedings of the IEEE Symposium on Computers and Communications
(ISCC 2003), Antalya/Turkey, 2003

Chapter 6: O. Lehman, M. Bauer, C. Becker, D. Nicklas “From Home to World:
Supporting Context‐Aware Applications through World‐Models“, In
Proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communication (PerCom 04), Orlando, USA, 2004

Chapter 7: C. Becker, G. Schiele “Application Adaption Requirements and
their Support in Pervasive Computing“ In Proceedings of the 3rd International
Workshop on Distributed Auto‐adaptive and Reconfigurable Systems, ICDCS
2003, Providence/USA, 2003

Chapter 8: C. Becker, G. Schiele, H. Gubbels, K. Rothermel “BASE ‐ a Micro‐
broker‐based Middleware for Pervasive Computing“ In Proceedings of the
IEEE International Conference on Pervasive Computing and Communication
(PerCom 2003), Fort Worth/USA, 2003

Chapter 9: C. Becker, M. Handte, G. Schiele, K. Rothermel “PCOM ‐ A
Component System for Pervasive Computing“, In Proceedings of the 2nd IEEE
International Conference on Pervasive Computing and Communication
(PerCom 04), Orlando, USA, 2004

Chapter 10: M. Handte, C. Becker, G. Schiele “Experiences: Extensibility and
Flexibility in BASE” Workshop System Support for Ubiquitous Computing
(UbiSys) at UbiComp, Seattle/USA, 2003

