System Support
For

Context-Aware Computing

Habilitationsschrift zur Erlangung der

Venia Legendi in Informatik

vorgelegt von
Dr. phil. nat. Christian Robert Becker

aus Hanau

Institut fiir Parallele und Verteilte Systeme (IPVS)
Abteilung Verteilte Systeme
Fakultat Informatik, Elektrotechnik und Informationstechnik

Universitat Stuttgart

Juni 2004

Table of Content

1. INTRODUCTION

2. CONTEXT
2.1. Context and Context-Awareness

2.2. Classification of System Support for Context-Aware Computing

2.3. Dimensions
2.4. Classes
2.5. Requirements

2.5.1. Adaptation by application
2.5.2. Adaptation by System

2.6. Related Work
2.6.1. Adaptation by application — context management platforms
2.6.2. Smart Environments
2.6.3. Adaptation by System in Ad Hoc Networks

2.7. Contributions contained in this thesis

3. ON LOCATION MODELS FOR UBIQUITOUS COMPUTING

3.1 Introduction

3.2 System Model
3.2.1. Basic Properties of Coordinates
3.2.2. Geometric Coordinates
3.2.3. Symbolic Coordinates

3.3. Requirements for Location Models
3.3.1. Position Queries
3.3.2. Nearest Neighbor Queries
3.3.3. Navigation
3.3.4. Range Queries
3.3.5. Visualization
3.3.6. Requirements

3.4, Geometric Location Models

3.5. Symbolic Location Models
3.5.1. Set-based Model
3.5.2. Hierarchical Models
3.5.3. Graph-based Model
3.5.4. Combination of Graph-based and Set-based Symbolic Models
3.5.5. Summary

3.6. Hybrid Location Models
3.6.1. Subspaces
3.6.2. Partial Subspaces
3.6.3. Discussion

3.7. Summary and Classification of Existing Approaches

10
11
18
19
24

27
27
33

37
37
41
42

44

56
56

57
59
60
60

61
61
62
63
64
65
65

67

68
68
70
71
73
74

76
76
77
78

79

3.7.1. Set-based Location Models 81

3.7.2. Graph-based Location Models 81
3.7.3. Hierarchical Location Models 82
3.7.4. Combined Symbolic Location Models 82
3.7.5. Hybrid Location Models 83
3.8. Conclusion 84

4. USENET-ON-THE-FLY - SUPPORTING LOCALITY OF
INFORMATION IN SPONTANEOUS NETWORKING ENVIRONMENTS86

4.1. Introduction 86
4.2, System Model 89
4.3. Application Scenario 89
4.4. The Usenet-on-the-fly Prototype 90

4.4.1. Functionality 92

4.4.2. Architecture 93
4.5, Information Dissemination Protocol 95
4.6. Simulations 97
4.7. Simulation Model 98
4.8. Simulation Results 102
4.9. Discussion 105
4.10. Related Work 106
4.11. Conclusion and Outlook 107

5. A PROTOCOL FOR DATA DISSEMINATION IN FREQUENTLY

PARTITIONED MOBILE AD HOC NETWORKS 110
5.1. Introduction 110
5.2. System Model 112
5.3. Forwarding Strategies 113
5.4. Negotiation-based Ad hoc Data Dissemination Protocol: NADD 114
5.4.1. Data Structures 115
5.4.2. Protocol 116
5.5. Simulation 121
5.5.2. Replication Latency 122
5.5.3. Message Overhead 124
5.6. Related Work 125
5.7. Conclusion 127

6. FROM HOME TO WORLD: SUPPORTING CONTEXT-AWARE
APPLICATIONS THROUGH WORLD MODELS 128

2

6.1. Introduction

6.2. Requirements
6.2.1. Scenario
6.2.2. Derived requirements
6.2.3. Context modeling

6.3. Related work

6.4. AHSS - A local architecture
6.4.1. Spatial model
6.4.2. System architecture
6.4.3. Experiences

6.5. Nexus - A global architecture
6.5.1. Platform architecture
6.5.2. Spatial model servers
6.5.3. Nexus nodes
6.5.4. Value added services

6.6. The NexusScout application
6.7. AHSS in Nexus
6.7.1. Conceptual integration
6.7.2. Technical integration
6.7.3. Experiences

6.8. Conclusion and future work

7. MIDDLEWARE AND APPLICATION ADAPTATION

128

129
130
131
132

134

136
136
138
140

141
144
144
145
146

146
147
148
148
149

150

REQUIREMENTS AND THEIR SUPPORT IN PERVASIVE COMPUTING

152

7.1. Introduction
7.2. System model

7.2.1. Scenario

7.2.2. System Model
7.3. Requirements

7.3.1. Application adaptation requirements

7.3.2. System software adaptation requirements
7.4. BASE a Microbroker based Middleware
7.5. PCOM
7.6. Related Work

7.6.1. Middleware Systems

7.6.2. Component Systems and Pervasive Computing

7.7. Conclusion and Outlook

8. BASE - A MICRO-BROKER-BASED MIDDLEWARE FOR
PERVASIVE COMPUTING

8.1. Introduction

152
153
153
154
156
156
157
159
161
164
164
165

166

168

168

8.2. Requirements

8.3. Related Work
8.3.1. Conventional Middleware Systems
8.3.2. Dynamically Reconfigurable Middleware
8.3.3. Middleware for Resource-Poor Devices
8.3.4. Middleware for Pervasive Computing

8.4. BASE
8.4.1. Design Rationale
8.4.2. BASE Architecture

8.5. Implementation Status and Evaluation
8.5.1. Implementation Status
8.5.2. Memory Size
8.5.3. Execution Performance Overhead

8.6. Conclusion and Future Work

170

172
172
173
173
174

175
175
178

184
185
185
186

188

9. PCOM - A COMPONENT SYSTEM FOR PERVASIVE COMPUTING

190

9.1. Introduction

9.2 System Model
9.2.1. BASE.

9.3. Adaptation Models
9.4. Requirements
9.5. PCOM
9.5.1. Application Architecture
9.5.2. Components
9.5.3. Adaptation
9.6. Evaluation
9.6.1. Service Selection
9.6.2. Communication
9.6.3. Resource Overhead
9.7. Related Work

9.8. Conclusion

190

192
193

193
195
196
197
197
202
205
206
210
212
212

215

10. EXPERIENCES: MINIMALISM AND EXTENSIBILITY IN BASE216

10.1. Introduction

10.2. BASE — A Micro-broker Based Middleware

10.2.1. Design Rationales
10.2.2. Architectural Overview

10.3. First Experiences
10.4. Porting and using BASE

10.4.1. Porting BASE
10.4.2. BASE as a Platform for Components

216

218
218
219

220
221

221
222

10.5. Experiences 222

10.5.1. Technical Modifications 223
10.5.2. Conceptual Modifications 223
10.5.3. Lessons Learned 224
10.6. Conclusions 227
11. SUMMARY AND OUTLOOK 228
11.1. Contributions 230
11.2. Outlook 231
12. REFERENCES 234
13. PUBLICATIONS CONTAINED IN THIS THESIS 245

1. Introduction
Pervasive Computing has been proposed over a decade ago.
Ower the last years a new community has been formed which
strives to accomplish Weiser’s wvision of disappearing
computers, which seamlessly interact providing users with
information and services at any time, any place. Pervasive
Computing belongs to the larger class of context-aware
computing. This thesis provides a classification of system
support for context-aware computing. Some fundamental
aspects of context-aware computing, such as location models as
an underlying structure of context models and data
dissemination algorithms for ad hoc based systems are
presented. The focus of this thesis covers Peer-to-Peer
Pervasive Computing. After a discussion of requirements a
two tier approach that is based on a lightweight middleware for
establishing spontaneous groups in an ad hoc network and a
component system allowing automatic adaptation of

applications is presented.

“The most profound technologies are those that disappear” is perhaps the
most cited statement from Marc Weiser’s seminal paper “The Computer of
the 21%t Century” [Wei91]. In his vision of Ubiquitous Computing Weiser
provides us with scenarios that have left their science fiction character due
to the rapid progress in technology. The miniaturization of computing
platforms, the proliferation of sensor systems, and the availability of short
range wireless communication technology already provides the basic
building blocks of Pervasive Computing. However, there are only few

commercial applications available. Modern cars integrate mobile phones

seamlessly into their user control, e.g., use the board computer display
and control knobs on the steering wheel.

This effect can be partially explained by the initial lack of business models
and research prototypes that explored Pervasive Computing technology
by applying it to fancy scenarios which rarely showed evidence of use for
society or businesses. A prominent example of such scenarios is Weiser’s
coffee machine which automatically brews coffee to be ready when a
person awakes. However, there are more convincing Pervasive
Computing examples that clearly identify its relevance in research and in
its applications. Support of elderly people in their homes by monitoring
their body functions, dispensing medicine, notifying qualified personal in
case of unusual behavior or body functions can help senior citizens to stay
in their familiar environment leading to more comfort in their lives and
presumably a reduction in the health-care costs. Resource management in
a smart factory can help to integrate the business processes into the
production flow at a fine granularity. Procurement systems can ensure
that the necessary resources are available, i.e., ordered as they are needed
without over-stocking, as well as the production process itself can be
optimized on the base of current information captured by sensors in the
production plant along with the order data, the deadlines of cooperation
partners, the logistics, etc.

Although the benefits of Pervasive Computing technology exist and are
widely recognized, there are still open research questions to be solved.
First, Pervasive Computing systems react based on their context. Context
relates Pervasive Computing systems with the physical world. Users as
well as information captured by sensor platforms are used by these
systems to change their behavior. Thus, Pervasive Computing can be seen
as an important class of context-aware systems. Second, interoperability

issues are made harder by the vast heterogeneity of devices with respect to

7

their resources and their specialization. In addition to that, the integration
of sensor and computing platforms in everyday items will lead to a
number of devices in different possibly overlapping administrative
domains. New concepts with respect to the organization of systems, their
administration, and their deployment have to be developed.

This thesis contributes to several research questions in the domain of
context-aware computing. In Chapter 2 we will classify support for
context-aware computing and discuss requirements and related work. A
more elaborated presentation of the contribution of this thesis ends
Chapter 2. In Chapter 3 location models for Pervasive Computing are
discussed. A location model represents a common spatial structure of
context models and thus is of great importance in order to allow spatial
reasoning and interoperability between context models. Requirements on
location models are discussed based on a brief use case analysis of context-
aware applications. Possible approaches to represent location models are
presented and classified according to their suitability to fulfill the
requirements and the involved modeling effort. Information
dissemination in an ad hoc network is discussed in Chapter 4 based on the
“Usenet-On-The-Fly” application which provides users an information
service offering locally relevant information. Besides this novel application
a suitable protocol is presented and evaluated. An improvement of the
underlying protocol for ad hoc networks with frequent partitioning is
discussed in Chapter 5. An important question concerning the integration
of different context models is the focus of Chapter 6. The integration of a
context server for Georgia Tech’s Aware Home into the Nexus platform
and the consequences in concept and implementation are discussed.
Chapter 7 to 10 focus on support for Peer-to-Peer Pervasive Computing.
This class of context-aware computing is challenged by the frequent

changes in an application’s execution environment. Support for

8

adaptation has to be provided along with flexible middleware
infrastructures. Chapter 7 presents a more detailed requirement analysis.
Chapter 8 and 9 present a flexible middleware system (BASE) and a
lightweight component model (PCOM) allowing for automatic application
adaptation. Chapter 10 finally presents experiences from the port of BASE
to an embedded system and from the implementation of PCOM on top of
BASE. The thesis closes with an outlook to further research questions in

the domain of context-aware computing.

2.Context

This chapter introduces context as a concept to enable
applications to reason about and react to changes in the
physical world. Context definitions and the classification of
context into primary and secondary context are introduced
before system support for context-aware computing is
classified and related work is presented. The contributions of

the following chapters are summarized.

Context-aware systems have attracted researchers in the past years
starting from location-aware computing. Early work considered context to
be [SAW94] related to the location of users, the people nearby, and
resources which can be accessed based on the spatial proximity.
Depending on the focus of research projects, further definitions of context
have been proposed. Projects related to Human Computer Interaction
focused on user’s activity or social environment, e.g., in order to adapt the
behavior of a cell-phone [SBG99]. The user’s location was only of interest
as long as it could be used to derive information about his activity. The
progress in technology with respect to the miniaturization of computing
and sensing devices will lead to billions of information sources placed in
our physical world which will constantly report changes in the physical
world captured via sensors. This information is related to locations in the
physical world as well as to users. This is an integral part of context
concerning the locations as well as the users. Some existing information
spaces, e.g., the WWW, also provide information about physical entities.
Common to this information independent of its origin, i.e., sensed by
sensor platforms or provided by applications or information spaces, is the
relation between physical entities such as users or locations and virtual

entities, such as applications. The following definition is based on the

10

discussion in [RBB03] and reflects this more general view on context

information.

2.1. Context and Context-Awareness

Definition Context: Context is the information which can be used to
characterize the situation of an entity. Entities are persons, locations, or
objects which are considered to be relevant for the behavior of an

application. The entity itself is regarded as part of its context.

It is interesting to see that an entity can be part of its context itself as well
as an entity can be interpreted different depending on the context. For an
example consider two applications dealing with trucks. A fleet
management system would keep track about the position, the freight, the
route of trucks along with other information, such as the trucks’
maintenance rate, the assigned driver etc. A navigation system installed in
the individual trucks would also consider the delivery routes but only for
the individual truck. Other information, such as traffic jam information, is
used to optimize the navigation between destinations.

From a context management perspective both applications may operate on
the same context information. The fleet management system may access
the context model in order to retrieve all trucks in a given area in order to
decide which truck a given tour should be assigned to. Individual trucks
or drivers may be queried for administrative issues. The car navigation
system as well accesses the context model in order to update information
as well as to query for individual data relating the truck and its current
position. The point in time is also crucial information for both
applications. The navigation system will take the current situation into
account. Prognosis of the traffic situation can be used to improve the route
planning. Thus, the navigation system will access context data based on

time (present and future). The fleet management system will also access
11

information regarding the current time and the future for planning of
tours. In addition to that, history plays an important role in order to
account for transportation costs and for issuing invoices.
Based on the scenario above we can derive that context information is
accessed based on three major criteria:

= The identity of the entities

* The location of entities

» The time where the information is relevant
Because of the important role of identity, location, and time we refer to
these as primary context. The role of primary context in context
management obviously is the indexing of context information. Further
information of entities can be accessed once they are found using the
primary index. The additional context information, e.g., load of a truck, a
person’s email address, the vacancy of a taxi, are denoted as secondary
context. Possible combinations of accessing context information are
(location, time), (identity, time), or (identity, location, time). Note, that
time may be used implicitly, e.g., an index may only refer to a distinct
location. The time can then be interpreted as the current status of the
context information related with the index.
The notion of primary and secondary context does not imply the relevance
of context information from an application perspective. Some context —
aware applications exist where secondary context, such as a user’s activity,
may be of relevance. However, in order to access the context information
the primary context has to be used.
Context-aware applications can make use of context in many ways. The
following definition captures common understanding of context-aware

applications [DA99][RBB03][CKO00].

12

Definition Context-Aware Application: an application is context-aware if

it adapts its behavior depending on the context.

Based on this definition, four classes of context-aware applications can be

isolated, which either select information or services, change their

presentation, or issue some action based on context, or tag information to

context:

Context-based selection: information and services which are used
by an application are selected based on context information, such as
a user’s preference, their physical proximity (the next printer) or
relevance to the user (public transport schedules from the next bus
stop).

Context-based presentation: the way which and how information is
presented to the user also depends on the context. A navigation
system may change the way information is displayed based on the
speed of traveling from a map to a direction based output using
arrows or to audio output only in order not to distract the user.
Context-based action: in contrast to context-aware presentation
where a user is explicitly involved in the interaction with an
application context-based action allows to automatically react to
changes in the context without prompting the user. Examples are
applications which automatically forward messages to the devices
in a user’s proximity, facility management systems which adjust
light and heating conditions to user preferences.

Context-based tagging: in contrast to selection, presentation, and
action, which lead to an immediate change in the behavior of an
application, tagging of information to context allows a later action
based on this information. This allows applications, such as Stick-

Enotes [Pas97], GeoNotes [EPS+01], or Virtual Information Towers

13

[LKR99]. These applications allow to associate information with
context, typically location and the id of user in case of personalized
information, and display this information to users when they are in

proximity of this location.

Examples of context-aware applications can be found in a variety of
domains. We will present some examples of context-aware applications in
visitor information systems, navigation, annotations, support in

workspaces, and smart environments.
Visitor Information Systems

Supporting mobile users with information about their spatial proximity is
explored in many projects. The CyberGuide [LKA+96] at GeorgiaTech has
explored a tour guide for visitor tours through their laboratories. An
extension to CyberGuide provided support for tours through downtown
Atlanta [AAH+97]. Users were provided with information about sights or
projects and could create a diary of their visit. The Guide project
[CDM+00a] developed a tourist guide for the city of Lancaster. Users are
provided with information about historic sights and could use additional

services, such as communication and restaurant reservation.
Navigation

The REAL project [BKWO02] investigates adaptive navigation systems
where the information to pedestrians changes (e.g., from a map to an
arrow indicating the direction) depending on their speed of travel and the
display they use (head mounted display or a display integrated into a

bum bag).

14

Annotations

Annotations combine two classes of context-aware applications. First, an
annotation is made combining information with context, such as a location
where the information is of relevance or a user the information is
addressed to, or a combination. Context-aware actions or presentations are
executed when the context the information is tagged to is observed, e.g., a
user enters a room where information for him is placed. The stick-e Notes
System [Pas97] is a typical candidate in this class of applications. Virtual
Post-Its can be tagged to context information and are displayed
accordingly. The VIT System [LKR99] is based on the metaphor of virtual
information towers which maintain information with relevance for a
distinct geographic area. ComMotion [MS00] incorporates time and

location as context in order to remind users of distinct tasks.
Support in Workspaces

Assisting the user in his daily workspace environment was investigated in
the Active Badge System [WHG92] and Active Bat System [HHS+99]
projects. The forwarding of incoming calls to the closest telephone to a
user or teleporting of user interfaces, where graphical user interfaces
“follow” the user to the next appropriate display. In the Netman project
[KSS+99] wearable computing technology was used to provide context
dependent information to service personal. The TEA project [STMO00]
investigated context dependent configurations of mobile phones
depending on the context, such as a meeting taking place, the phone

located on a table or in a briefcase.
Smart Environments

Smart Environments augment a spatial restricted area, so-called active or

smart spaces, with various facilities for interaction with users, such as

15

wallscreens, ticker-display, digitally enhanced whiteboards, tables with
integrated displays, etc. Additionally, devices carried by users are
integrated into such environments. In the Gaia project [RC00] applications
are mapped onto the devices available in such environments via
predefined mapping-scripts and thus make wuse of the offered
functionality. Adaptation at runtime allows coping with changes in the
execution environments based on an application model that separates
model, view, and presenters. A different approach is taken by the
interactive workspaces projects (IROS [JFWO02]) which aims at the
coupling of applications via an event heap. The integration and leaving of
devices and services is supported by the event heap which decouples the
different parts of an application. Context in such smart environments is
typically reflected by the location of devices and services by implicit
means. Devices in the same smart environment are considered to be of
relevance and made available. The spatial scope of the smart environment
defines its spatial context. Typical applications are tailored towards the
purpose of the physical space the smart environment is based upon, i.e.,
support for meetings and teaching.

The Aura project [GSS+02] is an exception here, since it aims at the
support of applications across different smart environments. The Aura
Context Information Services [JSO3] provides context information about

users and locations as well as on devices and their network connections.

16

Project Description Primary Context Class of Context
Awareness
Cyberguide Indoor guide identity, location | selection
Guide Tourist guide location selection
Stick-e Notes Virtual Post-Its location, identity selection, action,
tagging
VIT Virtual location, time selection
Information Towers
ComMotion Location-based location, identity selection, action
reminder
REAL Navigation location, identity presentation
Active Badge: | Forwarding of phone | identity, location action
Telephone calls
Assistant
Active Bat: | Teleporting of user | identity, location | presentation,
Teleporting interfaces action
TEA Adaptation of mobile | identity presentation,
phones action
Netman Support for location selection
maintenance staff
Gaia Smart Environment location selection,
presentation
iROS Smart Environment location selection,
presentation
Aura Smart Environment location, identity selection,
spanning context presentation,
management action

Table 2.1: Examples of context-aware applications

Table 2.1 summarizes the properties of the presented examples of context-
aware applications. The individual way, in which the context information
is stored, retrieved, managed, and used by applications, is not discussed
so far. The next section classifies the system support for context-aware
computing and discusses related work as well as the contributions

contained in this thesis.

17

2.2. Classification of System Support for Context-Aware
Computing

A general model for the relation between the physical world and context-
aware applications is depicted in Figure 2.1. Context information is
formed by the current state of an application as well as from the states as
they are present in the physical world, such as a user’s position, services in
the proximity of a user, etc. The context model as shown in Figure 2.1
separates applications from the process of sensor processing and context
fusion. Moreover, this allows a number of applications to share the
gathered context. Note, that this is a conceptual model and depending on
the underlying system, i.e., based on an infrastructure or ad hoc network,
and the way applications make use of the context information the

instances of this model may differ.

Update(id, value) query

Application

Context
Model

Update(id, value)
c@) ’ O’ % Physical
o0 World

Figure 2.1: Context Model

(uoisny)
SI0SuUsaS

For example, context can be managed by applications without providing
means for sharing. A number of such applications will manage their local
context models. Other applications may not build an explicit context
model but directly access sensor information and process the obtained

context information directly.

18

In the remaining part of this chapter we assume context information to be
available via appropriate representations, such as a context model. We
classify the system support along the underlying system - infrastructure
or ad hoc — and along the support for application adaptation. Based on
these dimensions four classes of context-aware computing are discussed
(cf. Table 2.2). Requirements on system support are derived and related
work is discussed. At the end of the chapter, the contributions of this
thesis are summarized.

The requirements on system support for these classes are presented
followed by the related work. The chapter closes with a discussion of the
contributions to the classes of system support for context-aware

computing contained in the following chapters of this thesis.

Adaptation by System Adaptation by Application
Infrastructure | Smart Environments Infrastructure-based Context
iROS, Gaia, one.world Service

Aura CIS, Nexus, Context

Toolkit
Ad hoc Peer-to-Peer Pervasive | Ad hoc based Context-Services
Computing Usenet on the Fly

PCOM, P2PComp, MIT | RCSM, GLS, Nexus
Pebbles

Table 2.2: Classes of context-aware computing

2.3. Dimensions

The following dimensions are introduced to classify system support for

context-aware computing;:

19

Infrastructure-based system

Services that are required by context-aware computing form an
underlying infrastructure. Examples are context services as they are
provided by Aura [GS5+02] or Nexus [HKL+99] or smart environments,
such as iROS [JFW02] or Gaia [RCO00]. Applications typically require

permanent access to the infrastructure.
Ad hoc system

In contrast to infrastructure-based systems, where the connectivity to the
infrastructure is a prerequisite, ad hoc approaches do not require such
services. Devices are spontaneously connected - typically by some
wireless communication technology — and share their functionality or
information. Examples are information propagation, such as the Usenet-
on-the-Fly [BBHO02], or Peer-to-Peer based approaches to Pervasive
Computing, e.g., BASE [BSG+03] or PCOM [BHS+04].

Adaptation of applications has been recognized as a must for mobile
application in general [Sat96]. The taxonomy provided by Satyanarayanan
differentiates between no system support (laissez-faire) and application
transparent adaptation. In the first case, applications have to decide which
adaptation actions should be taken without any system support. In the
course of this thesis we to refer to this class as adaptation by application,
since we do not assume system support for adaptation decisions, but
system support for accessing adaptation-relevant parameters, i.e., context
information. The second case means, that the system adapts an application
transparently according to changes in the context. Thus, we further refer

to this class as adaptation by system.

20

Adaptation by Application

Context-aware applications adapt to changes in context. Based on a
context model (cf. Figure 2.1) an application can retrieve information
about context or gets signaled when a relevant context change has
happened. If the adaptation decision is taken by the application, each
relevant constellation of context parameters has to be reflected in the
application code.

Application Application

Context Model Context Model

eyt ™E e

Figure 2.2: Adaptation by application

The resulting architecture is depicted in Figure 2.2 where a change in the
underlying context is observed by the application based on a context
model. The change of the application behavior is directly reflected in the
application’s internal structure. The application is depicted as a flow
diagram, where the decisions in the flow are depending on the current
context. The selected branches of a decision are shown by a greyed box,
whereas the white boxes indicate, that a branch is not being taken.
Application programmers can design their applications to react to context

changes in the desired way with full control of the adaptation decision.

21

There is no required application architecture or framework which may
restrict application programmers. On the other hand this means that every
change of context leading to an adaptation has to be reflected in the
application leading to an additional overhead in programming context-
aware applications.

Examples for system support in this class are context services or
frameworks which supply context information to applications. The Nexus
platform [HKL+99] provides applications with context information
without assuming an application architecture so far. Applications query
context information or register spatial events in order to receive
notifications on a defined predicate on the context model. The context
toolkit [SDA99] does not maintain a context model but allows applications
to connect to sensors or entities which aggregate context information.
Based on this context information an application can choose whatever

action it takes to adapt.
Adaptation by System

The effort involved in dealing with changes in context has lead to another
class of system support, where the system analyzes the context and
triggers reconfigurations of the applications according to the context and
the application structure. The overall objective here is to relieve the
application programmer from explicitly programming adaptation

decisions.

22

Application Application

|

L]

System Adaptation System Adaptation
Support Support
Context Model Context Model

\ l
e =& e

Figure 2.3: Adaptation by system

Applications are composed from building blocks, which are configured by
the system according to the context and some other information that
allows to determine the correct configuration of an application with
respect to a given context. The building blocks of the application do not
adapt to context changes. Figure 2.3 depicts the situation where the
context change leads to a different configuration of the system. Again, the
greyed boxes indicate that a building block was selected in a configuration
and the white boxes depict building blocks not chosen.

Examples for this kind of system support can be found in smart
environments. The Gaia [RC00] programming model allows mapping an
application to a so-called active space by supplying scripts which assign
parts of the application to devices and services available in an active
space. iROS [JFWO02] supports building blocks with larger granularity.
Applications are composed of independent parts. The availability of an
external functionality is supported by requesting this service via an event
heap which dispatches the request to a suitable service. Applications are

only aware that a request may not be answered when no suitable service is

23

present in the environment. Another example from spontaneous networks
based on ad hoc networks is PCOM [BHS+04], which supports fine
granular application adaptation by the system based on a component-

based application model.

Note, that a combination of application and system supported application
adaptation is possible. A system could configure an application from
building blocks, where some of these building blocks could change their
behaviour in an application specific way, i.e., by reconfiguring themselves

based on context information.

2.4, Classes

Based on the introduced dimensions we can now briefly classify system
support for context-aware computing along these dimensions. General
requirements on system support in these classes are presented along with
related work. The contributions contained in the following chapters of this
thesis are discussed with respect to the requirements and existing
approaches.

The introduced dimensions classify context-aware computing along the
underlying system, e.g., based on an infrastructure or on ad hoc
networking, and the adaptation support for applications, i.e., the systems
adapts an application to context changes vs. the system offers the
necessary context information for an application, which can then adapt
itself.

The first two classes are characterized by their support for application
adaptation.

Infrastructure-based adaptation by system: applications in this class are
automatically adapted by the system if relevant changes in the context
occur. Since the infrastructure already provides a comprehensive set of

services, temporarily present services and devices are integrated and the
24

application execution is adapted in order to make use of this functionality.
Typical candidates in this class are smart environments which are tailored
towards a distinct application class in a spatial area augmented with
specialized computing devices, e.g., a meeting room, and supply a set of
services and devices as execution environment. Hence, applications face a
rather static set of predefined services and devices which can be extended,
e.g., by the integration of mobile devices user carry. Adaptation support
thus means that a given application has to be mapped onto the available
services and devices. Further adaptation support can provide means for
the integration of dynamically changing services and devices, such as
users’ mobile devices. In general, adaptation support requires knowledge
about the application structure and the execution environment in order to
allow the system to adapt the application.

Ad hoc adaptation by system: in contrast to infrastructure-based
approaches the underlying ad hoc networks reveal a higher dynamics of
change in the execution environment. Due to user mobility and wireless
communication the services and devices available to an application can
change over time. Application adaptation support requires - similar to
infrastructure-based application adaptation by system - knowledge about
the application architecture. The management of the spontaneous group
and available services and the resulting dynamism is the major difference
between the ad hoc and infrastructure-based approaches. Examples in this
class are P2PComp [FHM+04] and 3PC [3PC] which allow the composition
of applications dynamically from the functionality available in a
spontaneous network based on ad hoc communication.
Infrastructure-based adaptation by application: application adaptation
offers a higher flexibility than automated adaptation by the system, since
the application can choose its behaviour according to context. This means,

that the system support has to provide access to context information by

25

the application. In contrast to application adaptation by the system the
applications are not bound to a given application architecture, since the
system does not adapt the application.

Typical examples are context management platforms, e.g., context
services, which maintain context information and offer query interfaces to
applications. The Nexus platform [HKL+99] and the Aura Context
Information Service [JS03] are examples for such context management
platforms.

Ad hoc adaptation by application: providing context information to
applications in ad hoc based environments in order to allow these to
control their adaptation decision is similar to infrastructure-based
adaptation by application. The resource restrictions on the participating
mobile devices and the underlying network characteristics which lead to
network partitions result in different needs for organization. As a result,
the context information managed in such a setting differs from
infrastructure-based context services. Typical examples are location
services for mobile ad hoc networks, e.g., GLS [L]JD+00] and DREAM
[BCS+98], which only offer limited context information, i.e., the position of
mobile objects. The absence of a central component or infrastructure
requires appropriate dissemination mechanisms in order to disseminate
context information from the place where it occurs to the place where
applications request it, e.g., by data dissemination algorithms, such as
SPIN [HKB99] for connected networks with less frequent network
partitions or the one presented in [HBR03] which has been designed for
frequently partitioned networks. Applications which make use of the
context information are provided with an interface to the context
management and are shielded from the underlying protocols and data

management strategies.

26

2.5. Requirements

The discussion of the classes of context-aware computing support has
shown that adaptation by application, e.g., via context services, in general
decouple applications from the underlying system, i.e., infrastructure-
based or ad hoc. However, further restrictions, such as limited memory of
mobile devices, influence the context data provided in its size or level of
detail. We will discuss the general requirements on context services
independent of the underlying system model.

Similar to context services, the support of adaptation by system share
many requirements independent of the underlying system model. The
underlying system model may shift priorities between requirements, e.g.,
adaptation becomes more important in settings with higher device

fluctuation, but in general the same requirements apply.

2.5.1. Adaptation by application

Adaptation by application is assisted by system support via context
services, which provide the necessary context information applications can
base their adaptation decision on.

General requirements context services have to fulfil are concerned with
the representation of context information, supported queries for
applications to access the context information, and the spatial layout
which determines the underlying model of the part of the physical world

reflected by the context model.

Context representation

Context representation obviously first depends on the context modeled.
Context can be classified along its sources which already determine
properties of context representation. Context information with low update
rates, such as street networks, building floor plans, or 3-dimensional

models of buildings can form realistic models of the physical world. More
27

dynamic context information, such as information obtained via sensors for
positioning or temperature, typically reflect a single aspect of the physical
world which is captured by a sensor. So far, there is no standardization
effort capturing context representation at its whole. However, for single
domains standards exist or are beginning to emerge. Road networks for
instance are available in different formats, such as the geographic data file
GDF 77 or ATKIS [VGH+02]. The OpenGIS consortium started to define
data emitted by sensors via SensorML [SensorML] an XML-based
language capturing sensor properties such as the dimension, accuracy,
and spatial relevance.

Even if standards and suitable representation of context information
existed in each single domain, there are still open questions concerning the
integration into a common context model:

* Query languages and semantics: accessing context information in a
possibly application spanning way requires suitable languages
serving a broad range of applications. Service models such as push
and pull models should be supported. Indexing context
information along the primary context has to be supported (see
below).

* Multiple representations: if multiple applications and context
sources feed their data into a context model multiple
representations of an object may exist. The context model has to
provide concepts to deal with such phenomena, e.g., choosing one
representation, combining them, or prompting the user.

 Common semantic: the interpretation of context data across
applications requires a common semantic. Examples are a common
type schema or ontology.

» Context-specific management: the management of highly dynamic

data, e.g., position information of mobile objects, requires different

28

handling than that of stationary objects or objects with low update
rates, such as road networks. In addition to that, the organization of
a context model should allow for queries incorporating the primary
context, i.e., identity, location, and time.
In the following we will briefly discuss queries and service models of
context services and their spatial organisation before context models are

classified and existing approaches are discussed.

Queries

As noted before, queries to a context model should support the selection
of entities based on primary context as depicted in Figure 2.4. Depending
on the application requirements, not all queries have to be supported. If
access to context information of the past of future is not an issue, the
context models only store the current state reflecting the present time — or
the time where the context model has been captured - based on state from

the physical world.

‘ Smith _ Anderson!

bundmg X \ / room 38.01

A
/& 7 é Future
Present —» | March 27, 2000

T

Context

‘ ‘ ‘ Time t

>

Which people have attended the meeting
in room 38.01 on March 20, 20007?

Figure 2.4: Queries to a context model

The service models supported should not only allow for queries in the
pull-model but also allow for asynchronous communication. Spatial
events [BR04] are an example where applications are notified about
changes in the context and receive a notification. A spatial event is defined

by a predicate which operates on context data. This allows to raise actions
29

based on changes in the context model which are typically triggered by

state changes in the physical world.

Spatial organisation

One important aspect of context information is related to location. This
includes the position of entities as well as the spatial relation to other
entities. Such relations cover the inclusion in a distinct area or range and
the distance to other entities. Typical queries a context management
platform should support with respect to location are according to [BD04]:

= Position: retrieve the position of an object. Examples are “where is
John”, “What is the position of printer PHP13”.

* Range: a number of objects which are located in a spatial range are
retrieved. Examples are “What objects are on Floor 2 of the
Computer Science Faculty Building” which includes all objects in
the rooms on the second floor as well.

= Nearest Neighbor: these queries offer a list of one or more objects
which are closest to the position of an object. Queries for the next
printer, restaurant, gas station thus become possible.

Although these queries at first seem simple and obviously necessary for a
variety of context-aware applications, their efficient processing depends
on the underlying spatial structure and the involved coordinates by the
position information. Position information is obtained by positioning
systems which track mobile objects and report their position to a location
management system. In general, two kinds of coordinates are supported
by positioning systems:

» Geometric coordinates: represent points or areas in a metric space,
such as WGS 84 coordinates of GPS which represent the latitude,
longitude, and elevation above sea level of mobile objects. Using

geometric functions such as the Euclidian distance allows

30

calculating distances and allows for nearest neighbor queries.
Overlaps of geometric figures can be used to specify ranges by their
geometric extension and determine whether ranges are included in
each other which allows for range queries.
= Symbolic coordinates: in contrast to geometric coordinates there is
no spatial relation offered by symbolic coordinates. Such
coordinates are represented by an identifier, such as a room
number or the ID of a cell or access point in wireless telephone or
local area networks. In order to allow spatial reasoning about
inclusion (for ranges) and distances (for nearest neighbors) explicit
information about the spatial relations between pairs of symbolic
coordinates has to be provided.
Location models are used to define spatial relations between locations. In
general, locations can be determined by a symbolic identifier but also by a
geometrically defined location. The Ilatter allows expressing spatial
relations which are not covered by the underlying metric on geometric
coordinates. Consider a road network where people are bound to the
spatial restrictions of the physical world. A geometric distance may be
misleading, e.g., when a user has to cross a highway and another object
may be closer from a user’s perspective. Thus, location models are of use
for geometric coordinates as well.
Choosing a suitable location model for the spatial structure of a context
model is important for two reasons. First, the possible spatial queries
along the primary context location depend on the location model. Second,
the integration of two or more context models has to provide a mapping
from one location model into another in order to allow spatial queries
across the objects with possibly different location information provided by
different positioning system as basic coordinates or different spatial

relationships modeled in graphs or hierarchies.

31

Influence of system model

The general requirements on context services so far did not take the
underlying system model into account. Clearly, the influence of the
involved end-systems and their network connection affects the context
information that a given system can maintain. Resource-restricted mobile
devices will not be able to provide highly detailed three-dimensional
models of larger spatial areas. Therefore infrastructure-based approaches
are more appropriate to handle context for larger scopes and with higher
complexity. However, an infrastructure-based context service may only
serve a single house and thus scalability is not an issue there, e.g., the
Aware Home Spatial Model Server [LBB+04]. Other context services, such
as the Nexus platform, aim at potentially global scope context
management, where the scalable integration of new context servers is a
must as well as efficient query processing. If a context service allows for
the integration of new context servers, a common underlying context
model is required in order to integrate the context data. If such a platform
should be open to new context data, extensibility of the context types
stored and maintained is required.

In contrast to infrastructure-based context services there are some natural
limitations in ad hoc systems which do not allow for larger scopes or
higher complexity of context data. The memory limitations of the typically
mobile and battery powered end systems along with the energy required
for communicating larger amounts of data allows only for restricted
context models, such as location information of mobile objects or some
aspects of the physical world, e.g., floating car datal. Requirements in such

settings are on suitable data organisation and data dissemination

T Note that energy typically is not an issue when propagating floating car data between

vehicles.

32

algorithms. Typical trade-offs which have to be tuned to the operational
environments have to deal with the freshness and availability of
information versus the communication overhead of the underlying data

dissemination protocols.

2.5.2. Adaptation by System

Application adaptation by the system first needs some kind of application
knowledge in order to determine the possible configurations of an
application. Furthermore, resources required for these configurations have
to be managed and finally, adaptation decisions have to be made.
Applications in such settings combine the resources available in a spatial
area. Typical scenarios are smart environments, where rooms or buildings
are equipped with a central control which mediates the resources in the
environment, e.g.,, Gaia [RC00] or iROS [JFWO02]. These projects reveal
following the characteristics:

= Service oriented: in contrast to context services, that provide
information about context, as they are addressed in adaptation by
application system support, adaptation by system addresses
applications composed of services. These services serve as building
blocks for the adaptation support of the system.

* Dynamic composition: the available services and information in an
execution environment are used by applications. Applications are
not considered to be self-contained. Instead, they integrate available
services and information and typically require a distinct set in order
to get executed.

* Fluctuation of service availability: due to user (and thus device)
mobility and other factors, such as device power down on drained
batteries, the number of devices in an environment may change

unpredictably. Also, device capabilities like sensors may be

33

34

temporarily unavailable, e.g., a GPS sensor stops operating when a
user enters a building.

Spatial relevance: the information and services which are used by
an application typically only have relevance in the proximity of the
user. This kind of context-awareness is reflected by the organization
of an execution environment, e.g., smart environments mediate
between applications and the services in a given spatial area. Ad
hoc systems reflect the spatial relevance by the organization of
services reachable via the underlying ad hoc network typically by
restricting communication between involved devices to one or
more hops.

High number of devices/service: the integration of embedded
systems into nearly every object of our daily life leads to situations
where hundreds of services are available in a single room.
Heterogeneity: the specialization of devices with respect to the
offered services, e.g., a powerful computer that only serves as
presentation service, and the miniaturization and thus restrictions
on computing power as well as memory along with other
resources, lead to an increased heterogeneity compared to classical
computing environments.

Administrative domains: the pervasion of our daily environment
with pervasive computing nodes will lead to a multitude of
administrative domains which may overlap depending on the roles
the participating user fulfils. A janitor may access all relevant parts
of a facility management system whereas the employees of
competing companies in the same building will be restricted in
their access to the systems of their respective companies. A user
will seamlessly connect and disconnect to a variety of

administrative domains and use the services and information

available to him while moving on through his work or recreational

day.

Based on these characteristics of application adaptation by system, which

are also common for the area of Pervasive Computing, we can derive the

following requirements on system support:

Spontaneous networking: devices should allow the dynamic
networking with other devices. Especially, the integration of new
devices as well as the leaving of other devices has to be supported.
Adaptation by system: the constant change of devices in the
execution environment leads to services entering and leaving the
environment as well. Hence, applications have to adapt to the
resources available in order to continue their execution when a
resource is no longer available or to improve the performance when
a better resource becomes available. The number of possible
combinations of resources in such dynamic settings along with the
complexity of programming adaptive applications leads to the
requirement of adaptation by system.

Interoperability: the heterogeneity of devices will lead to a number
of interoperability protocols from sensor to complex application
specific protocols. In order to allow the seamless integration of all
of these devices interoperability protocols and bridging between
them is necessary. Additionally, the system software has to be
available on all devices or provide means for integrating devices
into the environment.

Security: attacks on such systems can have severe impact not only
on the data stored but also on the physical environment. Motion
detectors can be used to check whether a house is occupied,
actuators can be tampered with and result in damage in the house -

consider a frozen heating system due to a vandalizing attack

35

shutting down the system. Thus, environments build by adaptation
by system, such as Pervasive Computing environments, have to
provide means to secure the system in the presence of dynamic

integration of devices and restricted resources.

Influence of system model

System support for adaptation by system shares the same requirements
independent of the underlying system model. However, priorities of the
requirements shift depending on the system model. Spontaneous
networking is an issue in both cases. Infrastructure-based approaches, e.g.,
smart environments, have to provide means to integrate devices
dynamically as well as to handle their exit. The fluctuation of services
available to an application in an ad hoc system will likely be higher than
in an infrastructure-based approach. Thus adaptation becomes even more
important. This is made harder since the devices are typically mobile and
battery powered. The state for adaptation decisions, e.g., dependencies
between services or resource conflicts, is distributed among the devices in
a peer group formed by the underlying ad hoc network. Infrastructure-
based approaches can gather the state at a central instance and complex
adaptation decisions can be placed on nodes with suitable computing
performance and most likely powered by a constant power source.

The class of applications in such settings also may differ. A smart
environment can be tailored to support distinct application classes, such as
a smart teaching room [JEW02]. Peer-to-Peer based applications typically
can only rely on more generic sets of services since their execution

environment can not be determined beforehand.

36

2.6. Related Work

The related work is discussed for context management platforms first,
followed by smart environments and Peer-to-Peer based Pervasive

Computing.

2.6.1. Adaptation by application — context

management platforms

Context models and their corresponding management architectures can be
classified (cf. [RBB03]) along the dimensions of

= Spatial Scope: denotes the spatial area which is covered by the
context model. This area can range from rooms in a smart
environment over smart homes to global scope.

= Complexity of abstractions: refers to the level of detail and the
details which are provided by the context model. Complex model
could incorporate highly detailed 3D models of buildings whereas
simple 2D models are commonly used, e.g., in navigation systems.

* Dynamism: the rate in which updates to information in the context
model is supported typically depends on the provided complexity
and scope. Cell-phone networks allow for high dynamism with
respect to the managed position of mobile users but rely on a rather
simple context model representing the position of users in terms of

the cells their mobile terminal is logged in.

37

/ « small areas
: « higher dynamics
» medium complexity

--/

— Guide, Cyberguide,
Stick-e-Notes

* larger areas
» medium dynamics
* low complexity

: telematic services

(Passo, Tegaron)

complexity of
abstraction

low

low dynamics high

Figure 2.5: Classification of context models

Figure 2.5 depicts the three dimensions of the context model classification.
Already existing context models from research and industry are either
serving small areas with higher details and dynamics or larger areas but
only with limited dynamism or complexity. To the best of our knowledge,
only two projects so far address high detailed context information for
larger scopes, namely Nexus [HKL+99] at the Universitat Stuttgart and
ContextWeaver at IBM Research [LSD+02].

Table 2.3 provides an overview of examples of context management
platforms. The Guide project [CDM+00a] realizes a tourist guide for the
city of Lancaster. The information is organized around locations which are
modeled by the Wireless LAN access point deployed in the city center.
The underlying context model is extensible in form of HTML extensions
which assign information to a distinct location.

The context information service [JS03] of the Aura project [GSS+02] relies
on the Aura context model which captures the relations (network
connection, physical space) between entities (devices, people) from the
computational and physical context, e.g., users and road networks in
contrast to printers and network connections. Based on a simple meta
model instances can be created and stored in a database. A SQL-like

syntax for queries is provided.

38

The location stack [HBBO02] is an example for a specialized context model
which is created by combing different positioning systems and determines
the position of mobile objects by sensor fusion.

A rather simple programming and data model is offered by the context
toolkit [SDA99] which aims at capturing sensors and allowing the fusion
of sensor data by combining them in a fusion architecture. Applications
access context data by connecting to a so called context widget or
interpreter which represent access points to a context source or fusion
point. There is no explicit model supported and each application has to
model its context model based on the obtained sensor information.

The REAL project [BKW02] mainly aims at the investigation of multi-
modal user interfaces. Since the focus is not on context management, the
underlying context model is not designed for extensibility. However,
complex context representations and large scope is supported although
the current architecture limits the scope by storing context information in
a local database.

The Nexus project [HKL+99] aims at large scale context management
supporting highly dynamic and complex context information. A
federation is used to combine context models into one global spatial world
model providing applications with a uniform view on the spatial world
model. A standard class schema provides a common semantics across the
federated context models. Besides context queries, spatial events are
supported as well as context-aware communication, such as hoarding
[BMRO04] and geocast [DR03]. A deeper discussion of Nexus is presented
in Chapter 6.

Recent research at IBM T.J. Watson addresses similar goals as Nexus.
However, there are only aspects published, such as requirements
[LSD+02], an event specification language [CLC+02], and an overall

architecture [CPW+02]. The context representation and the semantics are

39

not predefined by the system allowing application specific context to be

managed.
Project Specialization |Dynamic Complexity Scope
Guide Generic Extensible |Cell-based City center
HTML-like models granularity
object
structure
Aura CIS Generic in the |Dynamic Hybrid location [Not restricted
Aura context |(e.g., position|model (2D)
model information)
Location Tailored Highly Uses (some) Not restricted
Stack towards dynamic complex models
location for fusion
management
Context Generic as Dynamic, No underlying |Not restricted
Toolkit long as tailored model; mainly
widgets are [towards sensor
provided sensor abstraction
integration
REAL Fixed models [Rather static |Indoor: 3D; Only restricted by
for context Outdoor 2D local database
representation |Models
Nexus Generic; an |Highly Hybrid 2D-2,5D [Indoor, Outdoor;
extensible dynamic Models targeted at global
class schema [(sensor scope
models integration)
semantics plus static
objects

Table 2.3: Examples of context models

So far, we have discussed related work in infrastructure-based systems.
There are so far only few examples for context services in ad hoc systems.
The Nexus project starts to explore context management in ad hoc
systems. Besides of that, there are mainly location services used for
routing protocols representing adaptation by application in ad hoc

systems, e.g., the Grid Location Service [L]JD+00] or the location service of

40

DREAM [BCS5+98]. Another example is the Usenet-on-the-fly [BBH02]
presented in Chapter 4, which manages information propagation with

spatial scope in an ad hoc network.

We will now present the related work in the dimension of adaptation by
system split into approaches relying on an infrastructure, i.e,, smart

environments, and approaches in ad hoc based networks.

2.6.2. Smart Environments

Prominent examples for adaptation by system relying on an infrastructure
can be found in Pervasive Computing, where smart environments manage
the functionality of a distinct spatial area. The smart environment offers
basic services for devices to register their services with the SE and to look-
up resources required for their execution. This is typically allowed
dynamically in order to support spontaneous networking. Interaction
between the devices without the SE is not supported. Although this allows
keeping the memory footprint on the participating devices small,
communication and interaction is always mediated via the SE. This may
lead to higher energy consumption than necessary if the device/service of
interest is nearby and to performance bottlenecks. The larger the spatial
area a SE controls gets the more devices interact. Scalability is an issue in
this domain. However, most existing approaches either focus on a
spatially restricted area — typically of room size — or support only a more
or less fixed set of services and thus restrict the possible traffic.

Examples for this domain are Aura [GS5+02], Gaia [RCO00], iROS [JFW02]
to name a few representatives. In contrast to Aura the system model of
Gaia, and iROS mostly address room-size smart environments.

Applications adapt initially to the services available in the SE. Further

41

adaptation is supported on different levels. Gaia offers an application
model that is a variation of the model-view-controller pattern and
mediates between the state, the presentation, and the processing of an
application. Adaptation mechanisms can be applied to a coordinator
component which may react to resource changes. An initial mapping of an
application to a specific smart environment is provided by a scripting
language. iROS introduces a coarse grained application model where the
distributed parts of an application in a SE are basically self-contained
applications that make use of additional functionality. A so called event-
heap — a tuple space with an aging mechanism — allows applications to
request services. The requests are purged via the aging mechanism when
no suitable service is available.

Aura addresses context-aware applications for larger spatial areas than the
aforementioned projects. A context information service [JS03] provides
information about the physical space and the users as well as the
computational entities and their network connection. Applications are
formed by tasks which capture the user’s intention and provide automatic
adaptation by the system based on the information of the context service.
The concrete evaluation of the user’s intention and the mapping onto tasks

is on-going research.

2.6.3. Adaptation by System in Ad Hoc Networks

Ad hoc based system support with application adaptation by system leads
to Peer-to-Peer systems where nodes in the ad hoc network interact as
equal peers. Reflecting the asks of a smart environment in a Peer-to-Peer
(P2P) based organization means that there is no central control mediating
the discovery, composition, and execution of an application. This class of
systems seems promising, since the spatial relevance of information can be

easily reflected by the typically spatially restricted wireless

42

communication. There is no need for central directories and
communication is not routed via a potential bottleneck. Interaction with
services being open to the public can be easily established on a Peer-to-
Peer base allowing wusers to access public services in different
administrative domains, e.g., a floor-plan or indoor navigation system.
However, security is also an issue in Peer-to-Peer Pervasive Computing,
because there is no central control and many of the participating devices
may not be capable of executing powerful encryption algorithms because
of the involved effort in calculation.

To the best of our knowledge, there are only few projects contributing to
Peer-to-Peer Pervasive Computing. The MIT Pebbles project is addressing
a P2P based approach but requires a central instance to execute the
planning algorithms for the assignment of tasks to devices. However, the
project is still at an early stage [Pebbles] and the composition of an
application relies on more than local knowledge and a central evaluation
in order to map the application onto the devices in the P2P network. The
Reconfigurable Context-Sensitive Middleware (RCSM) [YKW+02] is also
contributing to Peer-to-Peer Pervasive Computing. In contrast to the MIT
Pebbles, BASE [BSG+03] and PCOM [BHS+04], RCSM relies on a
specification of context information which is used for service specification
and selection. The work presented in [FHM+04] addresses similar
objectives as BASE and PCOM. However, the support for restricted
devices is limited since an existing component model (OSGi) is extended
for spontaneous networking. The support for reselecting components is
comparable to the adaptation of communication in BASE. Using
application knowledge represented in contracts like in PCOM is not

considered.

43

To sum up, context-aware computing has matured in the past years and a
variety of concepts and architectures are being explored in different
projects. However, there are to the best of our knowledge only few to none
projects addressing ad hoc based support with adaptation by system so
far, although this class of support for context-aware computing seems
promising for a variety of reasons, e.g., the integration of applications into
smart environments as well as interaction between devices in the absence
of a smart environment. This thesis contributes in particular to this

research area.

2.7. Contributions contained in this thesis

The contributions of this thesis address several classes of system support
for context-aware computing as depicted in Table 2.4. Chapter 3
contributes to systems supporting adaptation by application by providing
a thorough discussion about properties of location models, which are
required for the underlying spatial structure of context models. Chapter 4
and 5 address support for adaptation by application in ad hoc systems.
First, a novel application for information exchange in ad hoc networks is
presented along with the underlying data dissemination algorithm.
Second, an improvement of the underlying data dissemination algorithm
in order to support frequently partitioned networks is presented. The
integration of different context-models is the focus of Chapter 6 where the
integration of Georgia Tech’s Aware Home context server into the Nexus
platform is described.

Chapter 7 to 10 address an important area of adaptation support by
system in ad hoc systems: Peer-to-Peer Pervasive Computing.
Requirements on system support, a middleware platform, a lightweight

component model, and experiences are the contributions of these chapters.

44

In the remaining part of this chapter, the contributions of the following

chapters are presented in more detail.

Adaptation by System Adaptation by Application
Infrastructure Smart Environments Infrastructure-based Context
Service
Chapter 3
Chapter 6
Ad hoc Peer-to-Peer Pervasive | Ad hoc based Context-
Computing Services
Chapter 7 Chapter 3
Chapter 8 Chapter 4
Chapter 9 Chapter 5
Chapter 10

Table 2.4: Contributions of this thesis

Chapter 3: On Location Models for Ubiquitous Computing

Location models play an important role for context services. The structure
of the context model has to support relations between locations in order to
allow for queries, such as position, nearest neighbor, and range queries.
This chapter first provides an overview of application requirements and
motivates why these kinds of queries have to be supported in order to
support context-aware applications.

Properties of coordinates, symbolic as well as geometric, are discussed.
The main contribution of this chapter is the discussion of different models
for pure symbolic location models and the integration into hybrid location
models, i.e, combined models which allow geometric and symbolic
coordinates for the reference of locations. The discussed approaches to

location modeling are set-based, graph-based, and hierarchy-based along

45

with their extension to hybrid location models by attributing locations
with geometric coordinates. The chapter also provides a classification of
possible approaches to location models and their assessment along the

criteria of supported queries and the involved modelling effort.

Chapter 4: Usenet-on-the-Fly: Supporting the Locality of

Information

Support of adaptation by application requires some kind of notion about
the relevance of information and services in order to allow applications to
choose appropriate services and information. One natural way to reflect
the local relevance of information is to restrict its dissemination to a
distinct scope. The underlying assumption is that users are more
interested in information and services nearby than in far-away ones.

This chapter contributes a novel application making use of the underlying
ad hoc network characteristics. Information is exchanged between mobile
nodes, which form a mobile ad hoc network, whenever two nodes are
communication range. Users subscribe to information channels, similar to
the UseNet, and the application synchronizes the local databases with
nearby nodes. Such a system can be applied in many settings where
information is of interest but not worth connecting to an infrastructure,
such as a menu of the day of a restaurant or public transport schedules in
the vicinity of a transportation platform. The information is collected by
the underlying system and made available to the user by the application
interface. Filters can be used to configure channels and topics to be
synchronized.

The underlying three-way-handshake protocol is evaluated in order to
show the feasibility of the approach. A prototypical implementation of the
Usenet-on-the-Fly prototype based on the underlying data dissemination

protocol is provided as well.

46

Chapter 5: Data dissemination in Frequently Partitioned
MANETs

This chapter provides an enhancement of the data dissemination protocol
used for the Usenet-on-the-Fly application in Chapter 4. The three way
handshake protocol presented in Chapter 4 negotiates all information
during its lifetime with other nodes. This can lead to a variety of problems
in mobile ad hoc networks. First, bandwidth is consumed to advertise
information to other nodes which already may have the information
blocking other nodes. Second, battery power is consumed for sending
advertisements. Since power is considered a precious resource in
MANETSs, an optimization of the dissemination protocol was pursued.

Advertisement messages are split into three classes. The classes relate to
information depending on their freshness to the local node and their
popularity to other nodes. The first class consists of all messages received
until a distinct threshold in time. These messages are considered to be new
and should be propagated to neighboring nodes. The second class is build
from all messages beyond the threshold. They remain in the second class
as long as their popularity is high enough. The popularity is increased
whenever a neighboring node requests the data item after an
advertisement. Messages in this class age into the third class if there was
no request for a longer period of time. The third class of messages contains
the history of messages received. Based on different strategies, e.g.,
randomly or round-robin, messages of this class are presented to
neighboring nodes. This can help to propagate information across network
partitions. If a message from this class gets requested by neighboring
nodes it may be put into the second class again due to its increased

popularity.

47

Chapter 6: Frome Home to World — Supporting Context-Aware
Applications through World Models

Capturing and managing context information can be a time and cost
consuming task. Obviously, sharing context information is a way to
distribute the costs over multiple applications or at least to justify the
effort. So far, there are little experiences in combining context models and
assess where specific context models for a distinct domain can be reused
in other domains or at least allow for an integration.

An initial assessment from two perspectives of context management is
presented in Chapter 6. A context server from a smart environment
domain — the Georgia Tech’s Smart Home Spatial Server (AHSS) — was

integrated into the federation of the Nexus platform.

Nexus AHSS

Open Platform Tailored toward Aware Home applications
Support for arbitrary context-aware | No explicit semantic

applications Interoperability via the Internet Inter ORB
Common semantics via standard class | Protocol (IIOP)

schema

XML-based query and modeling language

Table 2.5: Objectives of Nexus and AHSS

Table 2.5 lists the different objectives of the AHSS in contrast to Nexus.
While Nexus was designed a priori to support arbitrary applications with
context information the AHSS was tailored to the needs of Aware Home
applications. A use-case analysis showed that standard databases are
sufficient for the context information necessary in the smart home. A
spatial database was used to allow querying for location as primary index.
No explicit semantic was modeled, since the members of the Aware Home
project were assumed to keep track of the semantics of the individual
applications. In contrast to that the Nexus platform provides a common

class schema which provides a basic semantic across all context servers

48

integrated in the federation. Extensibility of the so called standard class
schema allows application specific extensions.

The semantic modeling of the Nexus platform is represented in its context
modeling language (Augmented World Modeling Language, AWML) and
its query language (Augmented World Query Language, AWQL) as well.
The AHSS relies on SQL-queries which are dispatched to the AHSS via
CORBA'’s interoperability protocol IIOP.

The integration of the AHHS into the Nexus platform logically means to
register a context server that provides a spatial model for a distinct
geographic area (the Aware Home’s spatial extension) and provide all
context types which are provided. This enables the Nexus federation to
select context servers based on the geographic area and context types
requested by applications.

Technically, this resulted in mainly two changes with respect to the
integration of the context data and processing queries. A wrapper was
provided which parsed queries from the Nexus federation in AWQL and
mapped it onto the AHSS context model. Therefore, an integration of the
data provided by the AHSS into the common class schema was necessary.
The experiences gathered from this experiment showed, that the
integration of the AHHS into Nexus was possible without any changes in
Nexus at all. The necessary wrapping of the AHSS with respect to the
query processing and context model could be realized based on standard
components available for the Nexus platform. The only task which -
obviously — required a deeper understanding of the AHSS context model
was the integration of the context data stored in AHSS into the common
class schema. But if this task is done once, every extension in the AHSS’

context model becomes available for Nexus applications as well.

49

Chapter 7: Middleware and Application Adaptation

Requirements and their Support in Pervasive Computing

The classification of system support for context-aware computing has
shown that the area of adaptation by system in ad hoc settings is only
addressed by few projects so far. Chapter 7 identifies this research area
and provides application scenarios and a system model. Based on these,
requirements are derived and discussed with respect to their relation to
middleware support or application support.

Namely, applications have to adapt whenever a service or a local resource,
such as a GPS sensor, fluctuates in quality or availability. This leads to the
requirement of uniform programming abstractions in order to provide a
comprehensive framework for applications in order to adapt to these
changes. The requirements on system software thus contain a uniform
abstraction to applications for the access to remote services and local
resources as well. Monitoring of local resources and device and service
discovery has to be provided flexibly enough to support a variety of
transport protocols and service discovery protocols along with different
resource characteristics.

The most notable requirement stated is the decoupling of the
communication model of application and interoperability protocol. Nearly
all existing middleware platforms today reflect the communication pattern
of the application, e.g., Remote Procedure Call, in the corresponding
interoperability protocols, e.g., by using request-/response-messages over
a the same communication channel. The characteristics of ad hoc networks
impose problems here, since the spontaneous network connection
between peers can break during interaction. However, many mobile
devices are equipped with more than one communication module, e.g.,
infrared, Bluetooth, or 802.11. As long as there is one communication link

between two devices, communication can take place. This requires
50

switching the communication link and potentially the protocol stack of the
interoperability protocol during an interaction, e.g., send a request via a
SOAP stack using 802.11 and receiving the response via an event-based
protocol on Bluetooth. Obviously, the communication model of the
application stays a remote procedure call but the communication model of
the interoperability protocol changes during interaction. This requires a
flexible middleware architecture that provides advanced synchronization

mechanisms. This middleware is presented in the next chapter.

Chapter 8: BASE - A Micro-Broker based Middleware for

Pervasive Computing

As stated in Chapter 7, the area of adaptation by system in ad hoc systems
is little explored. Chapter 8 picks up the requirements from Chapter 7 and
presents a micro-broker based approach for a flexible and extensible
middleware platform. The heterogeneity of devices with respect to their
resources leads to the first design goal of minimalism and extensibility, in
order to support resource-restricted devices as well as to make use of
resources on more powerful devices. This is realized by using a micro-
broker design. The micro-broker only provides mechanisms to dispatch so
called invocations to corresponding plug-ins, synchronize the invocations
according to the application communication model, and allow to install
and remove plug-ins. This offers a small memory footprint, since only
required plug-ins have to be installed. Additionally, the abstractions
provided to the application are the same for dispatching invocations to
device-local resources as well as to transport plug-ins which transmit an
invocation to a remote device. The design of the plug-ins represents
transport plug-ins as well as device resource plug-ins as invocation
consuming entities. Possible results are sent back to the micro-broker as

different invocations, indicating correspondence to the id of the prior

51

invocation. This allows the micro-broker to synchronize invocations
independent of the protocol used in the transport plug-ins. Moreover, the
transport plug-in receiving the first invocation can be different from the
one receiving the corresponding invocation, e.g., for a result. This allows
the system to adapt to the availability of communication protocols
between two devices without requiring the application to deal with the
resulting problems, e.g., messages losses or blocking calls.

BASE meets the requirements stated in Chapter 7. The memory footprint
of approximately 130 KBytes seems promising even on embedded
systems. However, the abstractions provided to the application
programmer require engineering adaptation support to single resources.
Hence, an adaptive application has to provide adaptation support based
on the resources it utilizes. Namely, a callback to handle unavailability has
to be provided and in case one or more resources fail or become available
the programmer has to provide logic in order to react accordingly. The
different levels an application can run on based on the resources available
are thus represented in the adaptation code. Clearly, this is no support for
adaptation by system. In order to provide higher abstractions for
application programmers, PCOM - a component system based on BASE -

was developed, which is presented in the next chapter.

Chapter 9: PCOM — A Component System for Pervasive
Computing

As mentioned above, BASE offers flexible support for interoperability in
ad hoc networks. Context is represented by the spatial proximity of
devices, which is reflected by their wireless communication. The
communication between peers in such a network is automatically adapted
in order to allow communication over arbitrary communication

technologies and protocols. The programming abstractions of BASE

52

require application programmers to reflect the configurations of an
application explicitly in the code depending on the resources available in
the current execution environment.

PCOM was designed to ease the implementation of applications that
adapt to different configurations depending on the available resources.
The key concept in PCOM is to represent the dependencies between
components in an application explicitly. Based on this information the
system is enabled to provide means for adaptation, e.g., when a
component becomes unavailable another suitable component is searched
for and - if available - integrated into the application.

PCOM relies on the concept of a component container which manages the
lifetime of an application. An application is composed of components,
which may interact across device boundaries, but are atomic with respect
to their distribution, i.e., a component itself is executed in one container.
Components specify their dependencies to other components and to the
underlying computing platform via contracts. Contracts thus capture
required components and resources of the device a component is executed
on. An application is modeled starting from a root component along the
dependencies to components required for the execution. An application is
specified by the resulting tree of components along their dependencies.
PCOM containers are based on BASE and thus are able to discover
themselves and communicate. The containers exchange information about
the contracts they can offer to other containers based on the components
installed.

Adaptation in PCOM is supported by three means. When a contract
changes, i.e., a component contract breaks, a callback is called. In this
callback three different options can be taken. First, the component which
depended on the contract can stop its operation, breaking its contract, and

thus escalating the handling up the tree. Second, the component can

53

choose to reselect the dependency to another component which is
automatically handled by the PCOM container, and third, a component
may choose to provide individual handling.

Together with BASE, PCOM provides system support for adaptation in
highly dynamic environments, as they are present in ad hoc based

environments, such as Peer-to-Peer Pervasive Computing.
Chapter 10 : Experiences — Extensibility and Flexibility in BASE

This chapter discusses experiences gathered when BASE was ported to a
small embedded Java microprocessor and during the design and
implementation of PCOM.

Initially, BASE was designed to work on resource-restricted devices. Based
on the Java 2 Microedition the Connected Device Configuration (CDC)
was chosen. Although this configuration already restricts many features of
the Java programming environment, there are two features available that
are not supported on the even more restrictive Connected Limited Device
Configuration (CLDC), namely serialization and dynamic class loading.
The required changes during the port did not affect any conceptual design
decision. Dynamic class loading could be omitted by providing a
graphical editor to programmers to customize a BASE configuration.
Automatic loading of required plug-ins is a feature which helps
programmers in dynamic and resource-rich environments, but typical
devices running the CLDC are fixed with respect to their resources. Hence,
a static configuration can be provided. Object serialization is a powerful
concept that eases the exchange of objects across devices realizing
presentation layer issues. We are using a mechanism quite similar to the
serialization concept provided by Java. Each object has to provide a
serialization method which provides means to serialize the attributes of an

object.

54

Even more convincing experiences were collected when designing PCOM
on top of BASE. There were no changes necessary in the implementation
or design of BASE. PCOM was realized as a service using the underlying
abstractions for service and resource usage as well as the signaling
mechanisms to indicate availability or unavailability of services and
resources. There are only two modifications made in BASE in order to
improve performance. The proxies for PCOM components directly inherit
from the corresponding BASE proxies in order to avoid a call through an
indirection layer. PCOM uses the BASE registries for remote devices in the
execution environment directly and not through the proxy. This also saves
one indirection through a proxy.

Most notable, the abstractions provided by PCOM could be realized in
about 30KBytes leading to an overall size of 160 KBytes for BASE and
PCOM.

55

3.0n Location Models for Ubiquitous Computing
Common queries regarding information processing in
ubiquitous computing are based on the location of physical
objects. No matter if the next printer, next restaurant, or
friend is searched for, a notion of distances between objects is
required. A search for all objects in a certain geographic area
requires the possibility to define spatial ranges and spatial
inclusion of locations. In this chapter we discuss general
properties of symbolic and geometric coordinates. Based on
that, we present an overview of existing location models
allowing for position, range, and nearest neighbor queries. The
location models are classified according to their suitability with
respect to the query processing and the involved modeling
effort along with other requirements. Besides an overview of
existing location models and approaches the classification of
location models with respect to application requirements can

assist developers in their design decisions.

3.1. Introduction

Location plays an important role in the domain of location-aware and
context-aware systems. Especially in the ubiquitous computing domain
location is commonly considered to be an important source of context
[Sch95] but not the only one [SBG99]. However, whenever applications or
users are interested in objects depending on their location or spatial
relationship location models are required in order to provide notions
about distances or ranges. This chapter presents an overview of possible
approaches, discusses existing work, and classifies the approaches and
existing work according to their suitability to allow for range and nearest

neighbor queries.

56

Information about locations is presented in different formats. Geometric
coordinates as they are used by GPS refer to a point or geometric figure in
a multi-dimensional space, typically a plane or a three-dimensional space.
The topological properties of such a space allow the calculation of
distances between locations and their inclusion in other locations.
Symbolic coordinates on the other hand do not provide any reasoning
about their spatial properties (distance and inclusion) without any
additional information. Such coordinates are available via cell-ids in
cellular networks, such as GSM or wireless LAN, as well as via other
positioning technologies, such as radio frequency tags (RF ids) or infrared
beacons.

Examples for the use of location information in applications are navigation
services or location-based information systems, which select services
based on their spatial proximity, e.g., the nearest printer, or notify when
some events occur in the vicinity, e.g., a friend appears or an accident
happens.

In order to allow such applications based on symbolic coordinates, a
notion of spatial relations such as distance and inclusion is required. This
information has to be modeled explicitly in a location model.

In this chapter we will discuss general requirements on location
management and derive three types of queries — position, nearest
neighbor, and range - which should be supported by location models. The
properties of symbolic coordinates are discussed in general. Based on
these properties different kinds of location models are discussed and

classified along their suitability to support the queries.

3.2. System Model

Our system model consists of three kinds of components (cf. Figure 3.1):
The location model is the central part of our system model. It stores

representations of static and mobile real world objects like representations
57

of buildings and people, respectively. It is not the focus of this paper to
describe how these objects are managed by an infrastructure, but we
concentrate on the typical properties of the different kinds of location
models. Examples of such location models are the Nexus platform
[HKL+99, NGS+01], the context information server [JS03], or the guide
project [CDM+00b].

Applications

Position-, Range, Nearest Neighbor Queries
Navigation,Visualization Information

Location Model
-Positions of mobile objects
- topological informations

Position Updates|

O a=m BIY

x>

)

Figure 3.1: System model

Applications query the location model in order to carry out different tasks
like navigation (see next section). They also update the location model,
e.g., by inserting new objects into the model, deleting old objects, or by
altering existing objects whose state has changed. For the context of this
paper, we are interested in the different kinds of queries and tasks that are
carried out by these applications because they determine the internal
structure and organization of a location model. As will be shown later in
this paper, the suitability of a location model for distinct queries depends
on its internal organization. This is especially of interest, when a location
model is not tailored towards a single application or domain but should
manage information for a variety of applications and their potentially

diverging requirements.
58

Positioning systems update position information of mobile objects like
persons or cars. The output of these systems also influences the location
model as we will see in the next section. However, the multitude and
variety of positioning systems and its discussion is beyond the scope of
this paper. For the remaining part of this paper we will assume that a
positioning system allows a mobile object or tracking system to issue a
position update with a coordinate identifying a location to the location
model. This is sufficient for the discussion of the properties of location
models. However, the interested reader can find an overview of different
positioning systems in [HBO1]. Fusion aspects of different positioning
systems into a common location framework are presented in [HBB02]. In
the following, a brief overview of the properties of coordinates as they are

provided by current positioning systems is presented.

3.2.1. Basic Properties of Coordinates

A coordinate x is an identifier which specifies the position of an object with
respect to a given coordinate system. A coordinate system is a set X of
coordinates. Some examples for different kinds of coordinates and
coordinate systems are:

e Geographic coordinates in the WGS84, used by the GPS, are
expressed as triples containing the geographic longitude, latitude,
and the elevation above main sea level.

e The Active Bat System [WJH97] is a high-resolution indoor
positioning system providing three-dimensional coordinates —i.e.,
X, y, z value - with respect to a local Cartesian reference system.

e The Active Badge System [WHG92] provides symbolic identifiers
for locations via infrared. Coordinates are the symbolic identifiers
of the fixed IR sensors registering the users’ active badges that

transmit a unique identifier.

59

Two basic classes of coordinates can be identified from these examples:

geometric and symbolic coordinates.

3.2.2. Geometric Coordinates

Geometric coordinates define positions in the form of coordinate tuples
relative to a reference coordinate system. We further distinguish global
and local geometric coordinate systems. The World Geodetic System 1984
(WGS84) is a global reference system and thus can be used to define
coordinates anywhere on this planet, whereas the Cartesian coordinates of
the Active Bat System are typically only valid locally, e.g., in one room
equipped with such a system.

Geometric coordinates can be used to calculate the distance between two
geometrically defined positions. Through geometric operations it can also
be determined if two areas overlap, touch each other, or one area contains
the other, i.e., topological relations like spatial containment can be derived
from the geometry of objects. Hence, geometric coordinates already allow

simple spatial reasoning.

3.2.3. Symbolic Coordinates

Symbolic coordinates define positions in form of abstract symbols, e.g., the
sensor identifiers of the Active Badge system, or room and street names,
etc. In contrast to geometric coordinates, the distance between two
symbolic coordinates is not implicitly defined. Also topological relations
like spatial containment cannot be determined without further
information about the relationship between symbolic coordinates.
Symbolic location models provide this additional information on symbolic

coordinates.

60

3.3. Requirements for Location Models

In order to derive requirements on location models and discuss their
properties with respect to the organization, we will motivate queries to
location models from the perspective of users and applications. Besides
position queries, which are obviously needed in location-based
applications, the necessity of nearest neighbor and range queries is
motivated. This will serve as foundation of the later classification of
location models. The choice of a distinct location model will dependent on
the queries required by applications. Therefore, we have to consider these
queries and tasks in order to assess the functional requirements for

location models.

3.3.1. Position Queries

The determination of the positions of mobile and static objects like users,
buildings, bus stops, etc. is a common building block of location-based
and context-aware systems. The tasks described below cannot be carried
out without the known positions of objects. Therefore, all location models
contain this information, but they differ in the way it is represented.

The definition of a position requires some form of coordinates. Based on an
object’s position actions can be carried out, such as teleporting the user’s
interface [WJH97], controlling the input and output of applications to
arbitrary spaces in the physical environment via projection techniques
[PPL+03], or in industrial settings, such as a smart factory [BJR+03], the
positions of resources and tools can be monitored in a production
planning system. Such systems require a common interpretation of the
coordinates in a specific global coordinate system. Within moving objects,
such as trains, local reference systems can help to address objects, such as
travelers with respect to their compartment in the train and not their

absolute position to the ground.

61

This shows that a general location model has to support different coordinate
reference systems, global and local ones.

Beside well-known geometric coordinates, some positioning systems
provide symbolic coordinates, e.g., the cell id in a cell-phone network or
identifiers of infrared beacons, and often these symbolic coordinates can
be interpreted more intuitively by users than geometric coordinates. Later
we will show, how simple symbolic location models can be set up
allowing for spatial reasoning with low modeling effort. Therefore, this

kind of coordinates has to be supported as well.

3.3.2. Nearest Neighbor Queries

A nearest neighbor query is the search for the n objects closest to a certain
position. For instance, a user can search for the nearest restaurant with
respect to his current position, or the next printer. Beside known object
positions, the definition of a distance function on the coordinates is required
for this type of queries. For geometric coordinates, the direct physical
distance between two positions can be calculated using well-known
formulas like Pythagoras in Cartesian systems. If only symbolic
coordinates are modeled then the model must contain explicit definitions
of distances between these coordinates, e.g., to define the distance
between room number X and the printers in the rooms number Y and Z,
since symbolic coordinates do not contain a natural embedment into a
metric space.

There are other notions of distance that are often more relevant than the
direct physical distance. For instance, for a pedestrian it might be
impossible to cross a highway. Therefore, a restaurant across the highway
with a direct physical distance of 100 m might be farther away than a
restaurant with 200 m direct physical distance not located across this

highway. In these cases additional model information like the road

62

network a user uses to get from location A to B has to be taken into
account. For such more complex nearest neighbor queries, this leads to
similar requirements as for navigational tasks described in the next
subsection, because “paths” between locations have to be found and their
“lengths” have to be compared.

To sum up, a notion of “distance” is required in many context-aware or
location-based systems. An explicit location model is required for
symbolic coordinates as they do not provide implicit distance functions.
Systems based on geometric coordinates can benefit from such a model as

well, as spatial restrictions can be modeled, e.g., road networks.

3.3.3. Navigation

Navigation systems become standard equipment in nowadays cars. Such
systems require a location model to find paths between locations. Possible
paths are defined by the transportation network (roads, train or bus
routes, etc.) and consist of several interconnected locations. This means, it
does not suffice to know the geometry e.g., of roads, but it is also
important to know how to get from one location to neighboring locations,
e.g., from one road segment to another road segment at a junction, and
finally to the destination. Therefore, the topological relation “connected to”
has to be modeled that describes these interconnections between

neighboring locations (cf. Figure 3.2).

Iengtq=80m —>3 connected to
s3 length= s3
s1 s2 élwsz
\Iength:150m
s4 5‘4
length=120m

Figure 3.1: Road geometry (left) and road topology (right)

There are different kinds of navigational tasks, e.g., finding the shortest
path or the fastest path. Finding for instance a suitable path for a person in

63

a wheelchair requires additional information about locations, e.g.,
staircases or elevators. Therefore different attributes need to be modeled
to implement these variants, e.g., the distance that has to be traveled to get
from one location to another location, the maximum allowed speed on a
road segment, the presence of stairs, which cannot be used with a
wheelchair, etc. Even highly dynamic information like the current traffic
situation on a road can be part of the model. In general, this means
modeling some kind of weight on path segments. The “length” of a path is

then calculated by summing up the weights of each path segment.

3.3.4. Range Queries

A range query returns all objects within a certain geographic area. It can
be used for instance to query the occupancy of a room as well as for a
check whether an evacuation plan is processed correctly, i.e., if a room is
empty before the fire doors are closed and sealed. Also, simple algorithms
for new types of communication can be implemented on the basis of range
queries, e.g., geocast [DR03], i.e., the sending of messages to receivers in a
certain geographic area. First, a range query can be used to determine all
receivers in the target area of the message. Secondly, the message is sent to
these receivers, e.g., using multiple unicast messages.

First of all, object positions have to be known to answer a range query.
Additionally, the topological relation “contains” has to be modeled, i.e., it
has to be defined whether a coordinate lies within a spatial area. For
geometric coordinates, this information can be derived from the known
geometry. But for symbolic coordinates, this relation has to be defined
explicitly. For instance, a model can define that the room 2.062 is on
(“within”) the second floor that in turn is part of (“within”) a certain
building, etc. Thus, querying for a larger area automatically includes all

objects from locations that lie within that area.

64

3.3.5. Visualization

Drawing maps is one of the most obvious application of location models.
Maps can be used for many different tasks like positioning, navigation,
etc.,, which we have already described in the subsections above. A map
helps the user to execute these tasks manually or it is used to display the
results of these tasks if they are carried out automatically. All model
information introduced above can be visualized, but usually a map is
drawn, which requires a more or less detailed geometric representation of

these objects, depending on the desired level of detail (see below).

3.3.6. Requirements

From the use cases presented above, the following requirements for
location models can be derived. Note, that not all of these requirements
have to be fulfilled at the same time. However, being aware of the
application requirements is crucial in order to choose the appropriate
location model organization.
Based on position, nearest neighbor, and range queries it can be concluded
that a location model should provide:
o Object positions: Positions of objects have to be modeled in form of
coordinates. Supported coordinates and reference systems are
0 Geometric and symbolic coordinates
0 Multiple, local and global coordinate reference systems
e Distance function: Distances between spatial objects have to be
modeled. This can also be the “size” of a location, e.g., the length of
a road segment, which represents the distance one has to travel
when crossing this location in order to reach another location.
e Topological relations: The following topological relations between
spatial objects have to be modeled:

0 spatial containment in order to allow range queries, and

65

0 spatially connected to for navigation services.
Furthermore, the position of objects alone is not sufficient for some
applications which also require the direction of a moving object or the
orientation of a user, e.g., in order to provide information about the
building a tourist looks at.

e Orientation: In addition to positions of mobile objects, the
orientation in the horizontal and/or vertical dimensions can be
supported.

These requirements have to be regarded in conjunction with the
requirement of minimal modeling effort. There are different factors that
influence the modeling effort:

e Accuracy: The model should describe the real world as accurately as
possible, i.e., the stored information should be consistent with the
real world. Accuracy is not a question of the model type but of how
the model is created and updated and of the dynamics of the
modeled objects: Highly dynamic objects require high update rates,
e.g., highly mobile objects will have to update their position
frequently to get accurate position information. These issues are not
the focus of this paper, and therefore accuracy will not be
considered any further.

e Level of detail: The level of detail describes the precision or
granularity of the model. Fine-grained models describe locations
down to room level or below; coarse-grained models stop at
buildings or larger. A flexible model allows both ends of the scale.

e Scope: The scope is the area covered by the model. Local models
may only describe one single room, whereas global models at the
other end of the scale describe locations all over the world.

The two last items are intimately connected. Highly detailed models

usually only describe small parts of the world, because they require high

66

modeling effort; coarse-grained models may have a larger scope
[RDD+03]. Also the architecture used to manage the model plays an
important role for the level of detail and scope. A federation of highly-
detailed partial models with limited scope can be used to extend the scope
of the (federated) model and make highly detailed global models feasible
[NGS+01]. In this paper we do not consider how location models are
management, but we concentrate on the general properties of the different
kinds of location models. The following discussion first addresses location
models for geometric and symbolic coordinates. Then the integration of
geometric coordinates into symbolic location models leading to hybrid
location models is discussed. Based on this discussion a classification of

the general approaches is presented and existing work is classified.

3.4. Geometric Location Models

Geometric models describe locations by geometric figures. If not only
global coordinate systems are to be used but also local ones, the position
and orientation of local systems with respect to other local systems or the
global system has to be defined in order to translate coordinates of one
system to other systems.

On the basis of geometric coordinates the topological relation “contained
in” can be derived. In contrast to the containment relation, the ”connected
to” relation modeling e.g., doors connecting rooms cannot be derived from
location geometries. This relation has to be modeled explicitly. If this
information is modeled, it can be used to improve the notion of distances,
e.g., by incorporating the distance a user has to travel in contrast to the
direct distance reflected by the underlying geometry. However, it is also
reasonable for a geometric location model to store the spatial containment

relation explicitly since geometric operations are costly.

67

3.5. Symbolic Location Models

In this section we describe different types of symbolic location models and
discuss their suitability for the different types of queries described in the
requirements section of this paper. Set-based, hierarchical, and graph-

based models are presented.

3.5.1. Set-based Model

A set L of symbolic coordinates forms the basis for the set-based approach.
Locations comprising several symbolic coordinates are defined by sub-sets
of the set L. As a simple example consider a building with several floors.
The set L consists of all room numbers of this building. The second floor as
shown in Figure 3.3 can be modeled by the set Loz = {2.002, 2.003, ...,
2.067}. Further arbitrary locations may be defined, e.g., the locations A =
{2.002, 2.003} and B = {2.003, 2.005} in Figure 3.3.

A=[2.002,2.003}) B={2.003,2.006}

J 200z | 2003 2.006 2o08 | 2010 | 2012 | 2014 | 2016 | 2018 | 2020 |
2.087 ?
— Wos |Teekue. | 2075 | 2073 | zo077 | | 2069 | 2.067 f
A od
- P . . .

Figure 3.3: Set-based location model

This model can be used to determine overlapping locations and as a
special case of overlapping locations the containment relation by
calculating the intersection of two sets L1 and Lz. If L1 " L2 # J, then L1 and
L> overlap. If L1 N L2 = L1, then L2 contains Li. Thus, this model can be used
for range queries where the range is defined by one set R of symbolic

coordinates, and all sub-sets of R define locations within R.

68

This model can also be used to express a simple qualitative notion of
distance between symbolic coordinates by modeling sets of “neighboring”
symbolic coordinates, which we call neighborhoods (by Lcn we denote the
set of neighborhoods). For instance the sets A and B in Figure 3.3 as well as
the set Loz defined above are such neighborhoods in Lecn. Distances
between the symbolic coordinates x, y and x, z are compared as follows:
d(x,y) <d(x,z) & 3L VL, el ,(xeLayelL axelL,nzel, > L cL,)
That means, the two smallest neighborhoods containing x,y and x,z,
respectively, define the distance from x to y and x to z. Consider for
instance the three symbolic coordinates 2.002, 2.003, and 2.006. d(2.002,
2.003) < d(2.002, 2.006) because A (the smallest neighborhood that contains
2.002 and 2.003) is a proper subset of Lioor (the smallest neighborhood that
contains 2.002 and 2.006 in our example). To achieve a fine distance
granularity, neighborhoods can be defined for each pair of directly
connected locations, e.g., rooms which are connected by a door. For
instance, the locations A and B introduced above are such locations.
Larger neighborhoods are defined recursively by joining smaller
neighborhoods which have non-empty intersections, e.g., the
neighborhood C = AUB. By modeling pairs of connected locations, also
possible paths can be derived. A negative effect of this approach is the
huge number of resulting sets and the involved modeling effort.

Beside this qualitative notion of distance, this approach does not permit to
define a quantitative notion of distance, e.g., to make statements like “the
distance between a and b is as long as the distance between c and 4”.
Therefore, the support for queries related to spatial distances (e.g., nearest
neighbor queries and navigation) is limited.

In contrast to set-based location models which do not contain explicit

relations between locations, the following two models, i.e., hierarchical

and graph-based, model relations between locations.

69

3.5.2. Hierarchical Models

Hierarchical models consist of a set of locations L. The locations are
ordered according to the spatial containment relation, i.e., a location 1 is
an ancestor of a location 2 (i >), if > is spatially contained in [i. If
locations do not overlap each other this leads to a tree-based model [JS02].
If overlapping locations are to be modeled the more general lattice-based
model is applicable where intersections of locations are modeled by
separate locations with more than one parent location [KEG93, DRO3].
Figure 3.4 shows an example of such a lattice-based model. The set of
locations L consists of the building B, the floors Fi..., Fn, two wings Wi
and W: and several rooms Rj,..., R:.. The locations FiW, denote
intersections of the floor Fi and the wing W;. Figure 3.4b also shows the
relationship of the hierarchical models to the set-based approach.
Locations in the hierarchy can also be interpreted as sets of symbolic
coordinates. Overlapping locations are defined by the intersection of sets.
Therefore, hierarchical models can be seen as a special case of set-based

models.

a

everywhere acontains b |
b
Bz{RlszvRszMRS}
4 7
e — Flz W1: WZ: FZ:

{RuR} {RoR} {RuR,R} {Ry,R,R:}

F1W1: 2 2
F2 e {Rl) Rz} {R3) R4,} {Rs}
R,R, R | R. VERN / N\

RR, R= R=R= R= R=
R} R} {Ws}
nowhere=
a) b)

Figure 3.4: Hierarchical lattice-based location model

70

Because the hierarchical models are based on the containment relation
they support range queries naturally. A range is defined by a location in
the hierarchy and the descendants of this location denote locations within
this range.

A simple notion of distance comparable to the one discussed in the

previous sub-section can also be applied to hierarchical models:

Given three locations I3, I, Is € L. Then d(I3, I2) < d(l1, I5), if sup({ls, I2}) <
sup({ly, I3}).

sup({l;, ...,In}) denotes the supremum (least upper bound) of a set of
locations. For instance, the two rooms R: and Rz located on the same floor
and in the same wing in Figure 3.4 are considered to be closer to each
other than the rooms R2 and Rs, which are only in the same wing but on
different floors (F1W2= sup({R1,R2}) < sup({Re,Rs}) = W2). In some situations
this interpretation of distance may be counter-intuitive. If for instance a
short connection exists between Rz and Rs, e.g., stairs, the Rz could be
closer to Rs than to some room located on the same floor and wing as Ro.
Hierarchical models provide no means to model interconnections between
locations, and therefore this situation can not be handled adequately. As

for the set-based approach, this notion of distance is also only qualitative.

3.5.3. Graph-based Model
In the graph-based approach, symbolic coordinates define the vertices V of
a graph G = (V,E). An edge is added between two vertices if a direct
connection between corresponding locations exists. Edges or vertices can

be weighted to model distances between locations. Figure 3.5 shows an

71

example of a graph-based model for the already presented second floor of
a building. In this example the distance between two coordinates is just
the number of hops but with additional information a higher accuracy

could be achieved. [Dro03] gives a deeper discussion of this aspect of

graph-based models.

4 2002 2.003 2.006 2.008 2010 2012 2014 | 2016 2018 | 2.020
L [@ | @ @ |@® | O |0 |®
ol —© 00 000 00 00 00 e 0O—0

eoe|le |[e | [e [O]o |e
Wes |Teekue. | 2075 | 2073 | 207t |5 | 2069 | 2.067
o

Figure 3.5: Graph-based model

From the construction of the graph it is already clear that a graph-based
model supports the definition of the topological relation connected to as
well as the explicit definition of distances between symbolic coordinates. It
is therefore well-suited for nearest neighbor queries as well as navigation.
For the latter the edges or nodes can be further attributed to model e.g.,
speed limits, vehicle restrictions, etc. [VHG+02].

For range queries first the range itself has to be defined, i.e., an area has to
be described within which we want to search for included objects. The
only locations which are explicitly defined in the graph-based model are
the nodes of the graph, e.g., the rooms shown in the example above. This
is surely a very limited set of ranges. Because the graph-based model
allows to define a distance between symbolic coordinates this distance can
be used to define ranges. That means, an object is in the area, if the
distance between its position and a reference location is at most the radius

of the area. In Figure 3.5 for instance the white locations are within the

72

range defined by a reference location marked black and the radius 2, thus
all objects at these locations are within this range. What we are missing is
the possibility to explicitly define bigger locations comprising several
smaller locations, e.g., a whole floor, building, or even parts of a city. In
the next section we will show how this limitation can be overcome by

combining the different types of symbolic location models.

3.5.4. Combination of Graph-based and Set-based
Symbolic Models

Our discussion of the different location models has shown that for
symbolic coordinates the graph-based approach supports queries based on
distance and the definition of connected locations well, whereas the set-
based approach can be used for range queries with explicitly defined
locations like floors, building, etc. representing ranges. Therefore, a
combination of graph-based and set-based symbolic locations models can
be used to combine the benefits of both types of models.

The set-based part of the combined symbolic location model consists of a
set of symbolic coordinates. Locations are sub-sets of this set of locations,
e.g., representing rooms, floors, buildings, etc. This part of the model is
used for range queries as described in the section about set-based models.
In the graph-based part of the combined model, locations are connected by
edges if a connection between these locations exists in the real world. For
instance, two rooms will be connected in the graph, if there is a door
between these two rooms; two floors will be connected if stairs lead from
one floor to the other, etc. As mentioned in the previous section, edges can
also be weighted to model different distances. Figure 3.6 shows an

example of the resulting combined model.

73

floor B.3

floor B.2

floor B.1 -

building B

Figure 3.6: Combined symbolic location model

Besides the already mentioned support for different topological relations
and distances and the range and nearest neighbor queries based on this
information, this model shows another interesting feature. It allows to
generate views with different levels of detail. Figure 3.7 shows three
examples. The first example shows the rooms on one particular floor and
their connections. This view will be used if a very fine granularity is
required, e.g., if we are searching for the next printer. Figure 3.7b shows
only the floors of building A. Floor A.1 and A.2 are connected because
elements of Floor A.1 and A.2 have a connection — e.g., two hallways
connected by an elevator. Finally, Figure 3.7c depicts only buildings and
the paths between them. The latter could be used in a scenario where only
coarse-grained location information suffices, and so it allows to generate

small models that cover large areas, e.g., a whole city district.

roomA.2.1 Ci floor A2 B
R e
— building B building A
b)

a) C)

Figure 3.7: Levels of detail

3.5.5. Summary

We now summarize the properties of the different types of symbolic

location models presented in this section.

74

symbolic |supported |l modeling |distance |“connected |containment
model type | coordinate | effort? support |to” relation |relation

types support support
set-based |symbolic |high limited |yes good
hierarchical | symbolic |low to|very no good

medium |limited
graph- symbolic |low to|good to|yes limited
based medium | very
good

combined |symbolic |medium |good to|yes good
(set-based very
& graph- good
based)

Table 3.1: Properties of symbolic location models

We see that the graph-based approach as well as the hierarchical models
support the containment relation well, making them suitable for range
queries. The graph-based approach is well-suited for all kinds of queries
where distance plays an important role, e.g., nearest neighbor queries and
navigation. The combined symbolic location model combines the benefits
of all other symbolic model types at the cost of higher modeling effort.

Still the accuracy of the combined model can be further improved by
adding geometric information. The next section presents different hybrid

models, which integrate symbolic and geometric information.

2 Modeling effort is always dependent on the granularity and scope of location

information as stated in the requirements section. Therefore, we give a range here.

75

3.6. Hybrid Location Models

The combined symbolic location model presented in the previous section
shows how the benefits of set-based and graph-based models can be
integrated into a common symbolic model. There are two major
arguments for additionally adding geometric information to such a
symbolic model. First, geometric information can be used to achieve
higher accuracy and precision for all kinds of distance related queries.
Secondly, arbitrary geometric figures can be used for instance to define
ranges for nearest neighbor queries, whereas symbolically defined
locations are always restricted to a given structure.

We distinguish between two types of hybrid location models. The first
approach, which we call the sub-space approach, stores geometric
information for every modeled location. The second approach only stores

geometric information for some locations, leading to partial subspaces.

3.6.1. Subspaces

The basis for this hybrid location model is a symbolic model like the
combined symbolic model presented in the previous section. Additionally,
the geometric extent of locations is stored in the location model. The
geometric extent can be either defined using a global reference system like
the WGS84 or local reference systems where coordinates are only valid
within a certain scope, e.g., in one building or room. Subspaces are formed
by embedding coordinate systems into other coordinate systems by
defining the position and orientation of embedded systems (a detailed
description of this embedding of subspaces can be found in [JS02]). With
this information, coordinates can be translated from one system to other

systems, and thus coordinates of different systems can be compared.

76

geometric extent

room 2.1 (polygon)
sl oo

> =
t' Pl s Qp

s>
Figure 3.8: Hybrid location model with subspaces
Figure 3.8 shows a simple example of a hybrid location model using
subspaces. The symbolic part of this model is based in a graph defining
the interconnections between the rooms on a certain floor. The extent of
every room is also modeled geometrically using the coordinate system Ss
of the building B. Within room 2.1 a local coordinate system Sz1 is defined
that is embedded into the system of building B. The system of building B
in turn may be embedded into a global coordinate system. The known

geometry can be used to define precise distances between rooms.

3.6.2. Partial Subspaces

In contrast to the subspaces approach, the partial subspaces approach does
not assume that the geometric extent for every location is modeled, but
only for some locations. Figure 3.9 shows an example, where a geometric
location model exists for the outdoor domain, but within buildings
symbolic models are used. By linking geometric information to symbolic
locations, the symbolic building models can be embedded into the global
geometric model. The benefit of this integration becomes clear when we
consider a range query with a geometrically defined range, e.g., a polygon
drawn on a city plan. Users within a building may only know a symbolic
position like room 2.1 in building B. Through the known geometric extent
of the building, the user’s position can be approximated geometrically
with the geometry of the whole building. This approximated geometric
position can be compared to the geometrically defined range of the query,

and thus the query can be answered. Of course approximation has its

77

limitations. For instance, using geometric areas within a building that is
only modeled symbolically first seems to makes no sense. But it remains

an interesting alternative that can be used to reduce modeling effort.

floor 2
floor 1
. building B
geometric extent
of B (polygon) ﬁg
4

Figure 3.9: Hybrid location model using partial subspaces

3.6.3. Discussion

A summary of the properties of the presented location models is shown in
Table 3.2. In contrast to the purely symbolic models presented in the
previous section, all hybrid models support geometric coordinates as well
as symbolic coordinates. By using geometric information, distances can be
modeled more accurately and precisely.

The spatial containment relationship does not need to be modeled
manually if the geometry of locations is known. This information can be
derived by using geometric operations. Still it makes sense to have a
model that stores the containment relation explicitly to allow for efficient
queries.

Geometric information can also be used to find out whether two locations
lie next to each other, but connections like doors or junctions can no be
derived from geometric information and therefore have to be modeled
explicitly as for the symbolic approaches.

Compared to the subspaces approach the modeling effort can be reduced
by using a partial subspace model where not every location is modeled
geometrically. Still a geometry can be associated with location by using

approximation.

78

model supported | modeling |distance |“connected |containment
type coordinate | effort support |to” relation |relation
types support support
subspaces | symbolic, |high to | very yes (if | yes
geometric |very high |good modeled
explicitly)
partial symbolic, |high good to|yes (if | yes
subspaces | geometric very modeled
good explicitly)
Table 3.2: Properties of hybrid location models
3.7. Summary and Classification of Existing Approaches

This section briefly summarizes the properties of the different location
models presented so far. Existing work is classified along the classes of
location models.

Table 3.3 summarizes the classes of location models, their properties and
the existing work.

Since the discussion so far has shown that there is no location model
serving all requirements at a time with similar modeling effort, designers
of location management systems have to choose an appropriate structure
of the underlying location model. Especially, the trade-off between
supported queries and the involved complexity of the location models has
to be taken into consideration.

Table 3.3 classifies the location models with respect to the supported
coordinate types (sym=symbolic, geom=geometric), the supported queries
(P=position, R=range, N=nearest neighbor), and the modeling effort.
Examples for projects using the location model class are listed as well and

are discussed in the following sub-sections.

79

supported supported modeling projects
coordinates queries effort
sym | geom P R N
Guide [CDM+00b]
comMotion [MS01]
QoSDREAM
[NCO01]
set-based 4] O { { ® ? ActiveBadge
[WHG92]
Open Distributed
Office [RLU9%4]
Aware Home
[ODAO1]
graph-based | M O L ®:3 [] 2>
MavHome
[RBB+03]
MOOsburg
location model
hierarchical ™ O o (] O > 4 [GSF+01]
Semantic Spaces
[BSO1]
combined
| O] { ([7 Active Map [Sch95]
symbolic
subspaces
Jiang [JS02]
(hybrid 4]] ® L (& 0
Leonhardt [Leo98]
model)
partial Nexus [BBRO1,
subspaces DRO3]
4] 4] ® ® [] ?
(hybrid Semantic Location
model) Model [HL04]

Table 3.3: Properties of location models and overview of existing implementations

3 “Range” defined by distance to reference location.

4If the “connected to” relation is modeled.

80

3.7.1. Set-based Location Models

Modeling symbolic locations as identifiers and mapping object ids to
location ids in location services has been widely adopted. The Guide
project identifies the locations of interest to tourists by the WaveLAN
access point id [CDM+00b]. The Active Badge system stores the identifier
of a user’s badge with the symbolic location where the badge has been
observed. Without defining further locations as ranges only position
queries can be processed with minimum modeling effort. However, an
extension of such systems allowing for overlapping sets of locations and
thus range queries has been used in the Open Distributed Office projects
[RLU94]. The modeling effort increases with the number of locations
introduced to the system. QoSDREAM [NCO01] relies on a mapping of
location identifiers and object ids. By applying observers to sets of
locations, applications can be notified when a mobile object has been
observed in a set of locations. This provides means for range queries but
causes considerable effort, since the overlay of observers modeling spatial

inclusion has to be set up based on the basic sets.

3.7.2. Graph-based Location Models

This class of location models naturally provides means to model distance
making them suitable for all navigation oriented tasks. Applications can
be found in the domain of smart environments [ODAO1, RBB+03].
Spatially scoped areas are modeled by the location users populate, e.g.,
floors and rooms, and a connection model defines connectivity and
distance. Navigation services incorporating the positions of individual
objects can be implemented that way. There is no direct notion of ranges.
Either a combined approach is taken modeling ranges as an overlay
structure — in the simplest case ranges are specified as sets of locations

81

themselves — or ranges can be defined based on their extension, i.e., by a

reference location and the distance to this location.

3.7.3. Hierarchical Location Models

In contrast to graph-based models, which reflect distance well but require
additional overhead to express ranges, hierarchical models are designed to
reflect the inclusion of locations. This allows to structure locations into a
hierarchy. It is noteworthy that although approaches such as EasyLiving
[BS01] or MOOsburg [GSF+01] only model the spatial inclusion between
locations other kinds of hierarchical relations can be modeled such as an
organizational structure. A company may structure its location into
development, marketing, research, and production. A distributed systems
development team — and its offices — may be organized to be nearer to the
distributed systems research team in a hierarchy than the theoretical
computer science research group in the offices nearby.

Ranges and their relations — spatially or with respect to other criteria such
as organizational relations — are well reflected in a hierarchy. Distances do
not come with a direct concept in such location models. One way to use a
hierarchy to compare distances between positions is to consider the
smallest locations in the hierarchy that contain these positions. That
means, positions grouped by smaller locations are considered to be closer
to each other than positions grouped by larger locations, e.g., two rooms
on the same floor can be said to be closer than two rooms where the

smallest common range is the building.

3.7.4. Combined Symbolic Location Models

An obvious approach combining the benefits of graph-based and
hierarchical location models are combined symbolic location models, such
as those used in the Active Map [Sch95]. Either a common data structure is
applied that allows to reflect the inclusion relation as well as the

82

connected-to relation between locations such as in [BBRO1], or two
different location models are maintained where one reflects the distances
and the other the ranges. Clearly, the expressiveness of such models
combines the benefits of both models but with a trade-off with respect to
the modeling effort, which basically consists of the effort of creating two
location models. This effort is only justified when applications require
range and nearest neighbor queries. This will likely be the case when a
location model is set up to serve a number of applications, e.g., by

providing an application spanning context model.

3.7.5. Hybrid Location Models

Hybrid location models provide information about locations based on
symbolic and geometric coordinates, which are used to define the spatial
extent of locations.

Basically, all of the symbolic models above can be extended to a hybrid
model by annotating location with their spatial extent. A graph-based
model may use this information to calculate the weight of connections or
rooms in order to provide more accurate distances. Since the effort of
obtaining spatial extensions of locations is rather high, some projects
consider a combined model as basis, e.g., [BBRO1] and [HLO04]. The effort
of annotating all locations in a location model with geometric information
can be used to map the symbolic coordinates into a global, geometric
reference systems realizing a subspaces approach [JS02]. If this is not
necessary, a partial subspace approach can be taken. Such approaches can
be realized either top-down or bottom-up. In [DR03] a top-down approach
is taken that allows approximating the spatial extents of children in a
location hierarchy by the extents of their father nodes. A bottom-up
approach would annotate the leafs in a location model and approximate

the spatial extents of a father node by the extents of its child nodes. The

83

top-down approach allows the integration of an area that is modeled by a
hierarchy of symbolic locations into a geometric model. The root of the
integrated hierarchy is exact with respect to the annotated spatial extent
whereas the approximation leads to some errors in the spatial extents
along the hierarchy. In contrast to that, the bottom-up approach provides
the highest accuracy at the leafs. The modeling effort is great for this
approach if the hierarchy has many leaves. Clearly, it is application

dependent which approach should be taken under given requirements.

3.8. Conclusion

Modeling locations is crucial for most location-based or context-aware
applications. Location models provide means for spatial reasoning based
on coordinates, e.g., the determination whether a coordinate is within a
given range or which coordinates are nearby. Although geometric
coordinates already provide an implicit notion of distance and ranges,
location models allow to model the constraints of the physical world, e.g.,
road networks or floor plans. For symbolic coordinates like room or floor
numbers, a location model with explicitly modeled relations between
locations is essential to support queries beyond simple position queries.

The requirements of applications can be manifold. Since the structure of a
location model determines which kinds of spatial reasoning can be
processed, a number of location models may be appropriate. Beside the
relevant queries a location model has to support, especially the modeling
effort has to be taken into consideration when choosing a location model
for an application or a platform serving a number of applications. A
hybrid model managing geometric and symbolic coordinates supports all
kinds of location-based queries very well but is at the same time the most
complex type of location model. Location models managing only symbolic
locations can be set up more easily. If, beside object positions, distance is

the only relevant information, a graph-based symbolic model can be used,
84

whereas range queries are supported very well by hierarchical symbolic
models. If higher accuracy is required only partially within limited areas, a
partial subspaces model, which augments a symbolic model partially with
geometric information, might be the right choice.

The discussion of location models in this chapter shows that there is no
location model which satisfies all identified requirements at a time with a
low modeling effort. Designers of context-aware applications and systems
thus have to choose location models carefully with respect to the required

spatial reasoning and the involved modeling effort.

85

4. Usenet-on-the-fly - supporting locality of information

in spontaneous networking environments

People on the move are typically interested in information with
respect to their proximity. Location-based services in general
supply users with information about their proximity typically
relying on an infrastructure storing the information and
tracking the mobile objects, i.e., users. In this chapter we
present an approach for spontaneous, i.e., ad hoc, networks
inspired by the Usenet. Information is exchanged using a peer-
to-peer synchronization mechanism. The information is made
available through channels grouping related information. The
information propagation is solely based on spontaneously
connected devices not requiring any infrastructure. Our
prototype implementation shows the technical feasibility of our
approach, whereas simulation results show the applicability of
information diffusion in outdoor scenarios with a realistic

number of nodes, covering a city center.

4.1. Introduction

Location-based services (LBS) gain popularity. While many commercial
approaches are tied to the cellular phone infrastructure, e.g,
[GSM][LBS][Swiss], researchers address solutions for the indoor domain
[HHS+99][KOA+99][WJH97] and outdoor domain [CDM+00a][Pas97] or
both [HKL+99] based on their own infrastructure. Common to these
approaches is the necessity of an infrastructure storing location-dependent
data and management of user positions.

The availability of small computing devices, e.g., Personal Digital
Assistants (PDAs) or cellular phones, equipped with short range radio

transmission technologies such as Bluetooth or IEEE 802.11 allows

86

information exchange on a peer-to-peer basis whenever two devices are
within each other’s radio range. Additionally, information of the
environment can be captured from sensors equipped with similar radio
technology.

The overall focus of our research is to investigate what mechanisms are
needed to support applications for mobile users in a ubiquitous
computing environment using ad hoc communication. The goal is to
provide a foundation that allows users to successfully interact with other
users and their environment. This includes collecting and providing
information about the spatial context of the user.

A major problem in mobile ad hoc networks is the management and
dissemination of information. Since the mobile devices are restricted in
their resources, a complete replication of information will not be possible.
Information exchange should be restricted with respect to the spatial
scope of the information and the interests of the user. Another issue is the
multitude of available information: how can a user determine or specify
which information is interesting to him or her?

In this chapter, we present an approach for information dissemination
based on epidemic algorithms, i.e., diffusion. As one possible scenario,
imagine that it is Saturday night and a large number of young people are
walking around in the city center looking for some fun. What they really
want to know is what is currently going on: where are the cool parties, the
hip discos or the most popular bars. So the information needed depends
very much on the current context of the user, especially the location. The
distribution of the information can be asynchronous and possibly
anonymous, which fits well with our proposed diffusion-based approach.
If cellular phones are equipped with short range radio technologies, such a
Bluetooth, they are the ideal devices for our scenario. Almost all young

people have cellular phones and use them frequently for writing SMS

87

messages, especially in Europe. (The SMS Service allows the transmission
of short text messages between cellular phones using the cellular phone
infrastructure). So the general technology is well-introduced, the only
difference being that the messages are exchanged using ad hoc
connections between devices in the proximity.

In order to structure the information exchanged between devices, the
information is grouped into channels according to subjects, similar to
newsgroups in the Usenet. Users can subscribe and unsubscribe to
channels. Information is only propagated in a distinct area with respect to
its locality. As a result, an easy-to-use application can provide users with
information about their proximity.

To show the technical feasibility of our concept, we have built a prototype
application. However, since the usefulness of our application can only be
determined based on a large user population and since the technology is
not yet widespread enough for a large-scale usability study, we have
conducted a number of simulations to provide some evidence that the
diffusion-based approach makes sense in the given context. An important
aspect of the simulation is the mobility of the users. Therefore, we need a
mobility model reflecting the characteristics of user mobility that may
have an influence on the diffusion. In this chapter we take two mobility
models and compare the results of the respective simulations: the random
waypoint model that is widely used for the evaluation of algorithms in ad
hoc networks and a graph-based mobility model [THB+02] that takes the
possible user paths, i.e., streets, into account and is therefore more
realistic.

The structure of this chapter is as follows: In the next section we present
our general system model. Then we describe our application scenario,
focussing on the “Usenet-on-the-fly” prototype, followed by a detailed

description of the underlying information dissemination protocol. After

88

that we present simulations of the information dissemination protocol and
discuss their results. Following a discussion of related work, the chapter

concludes with an outlook on future work and a summary.

4.2. System Model

The system consists of mobile nodes users carry. Examples of such nodes
are devices like cellular phones or PDAs capable of short range radio
transmission. The communication between nodes occurs spontaneously,
i.e.,, whenever two devices are within radio range of each other, they
discover each other and can exchange information. Additionally, sensors
or info stations may provide local information of the environment to the
thereby formed mobile ad hoc network (MANET).

The information exchanged in such a MANET can differ widely and is
obviously application-dependent. For the remainder of this paper we
consider information to be of local interest. Dishes of the day, temperature
of rooms, bus schedules are mostly relevant in the proximity of their real-
life source. Since we do not assume any access to an infrastructure we
want to investigate, how peer-to-peer computing in such spontaneously
formed networks can be used for information dissemination.

We assume the nature of information to be “nice to have”. If some
information was critical to a user, the user would pay for an uplink to an

infrastructure, e.g., via wireless cell-based communication.

4.3. Application Scenario

The application scenario we want to look at is concerned with the
propagation of information with a local scope in a MANET. We do not
consider multi-hop messages, e.g., routing, here, but only dissemination of
information with multiple, previously unknown receivers. The
information, as mentioned before, is assumed to be locally relevant.

Hence, an information dissemination protocol has to discard the

89

information when the scope of the information is left. Recipients of
information must be provided with a classification of the information in
order to decide, if they want to accept it and store it locally.

Due to the multitude of information and corresponding information
possible in such scenarios, we reduce the complexity by focussing on a
simple scenario. The aim is to provide an evaluation of diffusion-based
information dissemination and demonstrate how information with local
relevance can be handled in such ad hoc scenarios.

The information in the context of this paper is represented as a message. A
message contains a source, which created the message, a topic, which
classifies the content of a message, and a body carrying the information of
the message.

Messages could represent sensor data, with the sensor ID as source, the
kind of sensor information, e.g., temperature or humidity as topic, and the
currently sensed value as content of the message. Another example could
be the provision of bus schedules, where the distinct bus station is the
information source and the topic would determine a transport schedule
with the message body containing the next bus departure. Moreover, users
could also provide information, e.g., rankings of restaurants or shop offers
and feed them into the system by creating messages. Actually, this
inspired our prototype application - Usenet-on-the-fly - which is presented
in the next section. Following that, we explain the information
dissemination protocol in more detail and present some simulation

results.

4.4, The Usenet-on-the-fly Prototype

The Usenet provides users with the ability to subscribe to so-called
newsgroups where they can read, post and reply to articles. The
newsgroups group articles with a distinct topic. It is considered rude in

the Usenet community to place articles in inappropriate groups - being
90

“off-topic”. The Usenet does not rely on a centralized infrastructure.
Instead, servers providing “news” to users allow them to read, post and
reply to articles. This local news is propagated over news feeds to other
news servers which present these articles to their users, receive the replies
and postings and offer these as news feeds to other news servers.

The architecture of the Usenet originates from former times when many
computers were not permanently linked to each other as nowadays via the
Internet. However, this situation reflects the characteristics of an ad hoc
network where nodes are not permanently available but only when they
are in the vicinity of other nodes. The concept of categorizing information
by grouping them into newsgroups according to topics - or in our
terminology: channels - and peer-to-peer reconciliation of content matches
the needs of information propagation according to our requirements.

The data model of our Usenet-on-the-fly is directly corresponding to the
messages as they were informally defined in the previous section:

. Message headers, i.e., the channel name, the subject and the sender
. Message content, i.e., the actual information

Scoping of the information is simply done by adding a hop count.
Thereby, the scope within which a message is presented to other nodes is
restricted, which, in most cases, automatically leads to a geographical

scoping.

91

4.4.1. Functionality

pRIsTE

File

#10.0.0.3% alexdttest Tu e Aug 20 11:33:36 CES

-
Channel: Ivegetarian

Subject: best vegie re:

Sender alex _IrI
Eage Friarity: S g 20 A
E::,t;.ljf j gotoLoe's at ¥ Bond ;I

Channel| =t for good vegie food
Date: To ""

Reply to f
Priatity: Fuhblish |
[| | 2

Figure 4.1: Usenet on the fly user interface

Figure 4.1 shows the user interface of the Usenet-on-the-fly prototype. The
prototype is realized as a Java application. We used notebooks and
Compaq iPags equipped with WaveLan cards as an evaluation platform.
A user can create channels and messages and open an existing channel to
retrieve messages. Figure 4.1 shows the dialog for creating a message. This
dialog combines the creation of a new message with the possible creation
of a new channel. Additional attributes, e.g., the priority, allow filtering of
messages in order to save bandwidth or space on the devices.

Users can subscribe to a topic, i.e., a channel, and receive all messages on
that channel. The local database containing the messages is updated
whenever another node is met. Both nodes negotiate about their channels
and contents and exchange the difference. New channels are presented to

the user who can subscribe to them or simply ignore them.

92

When users on the move are visiting different places, only the information
concerning these places is offered in the channel. Information is scoped in
its lifetime by a time-to-live (TTL) as well as in its propagation scope by a
hop count. The message exchange is based on a single hop
communication, i.e., devices only communicate with other devices in their
transmission range. Hence, restricting the number of times a message can
be passed on between nodes leads to a geographical scoping.

As an example consider a user subscribing to “restaurant menu”, “bus
schedule”, and “restaurant recommendations”. The channel “restaurant
menu” will contain the dish of the day of the restaurants within a distinct
vicinity, depending on the hop count. Also, only the bus schedules of
nearby bus stops are presented in the “bus schedule” due to the scoping.
Not only stationary entities like restaurants or bus stops can create
messages. Other users can use the “restaurant recommendation” channel
to express their satisfaction about a particular restaurant. This information

is scoped with respect to its local lifetime and geographical scope as well.

4.4.72. Architecture

The Usenet-on-the-fly prototype was built in a straightforward way.
Nodes maintain a small database where the channels and all messages are
stored. The database is regularly scanned and messages whose TTL has
expired are deleted. The user interface operates on the database and
allows the display of channels and their messages as well as the creation of
new messages and replies.

The content of local databases are synchronized with other nodes
whenever they are within their radio transmission range. First, the
channels are compared and new channels and messages are announced to

other nodes. Before offering a message, the hop count is considered. If the

93

scope of a message has been reached, it is no longer propagated to other
nodes.

The resulting architecture is depicted in Figure 4.2. Central to the system is
the database where messages are stored in the corresponding channels.
The user interface accesses the database in order to display available
channels and on selection of channels the messages of the channel. The
user can create new messages and channels leading to new data in the
database.

The content of the database is propagated by a simple diffusion protocol.
We will describe the protocol in detail in the next section. For short: the
protocol announces locally available data to other nodes. These nodes can
request the information and store it in their databases. After a node has
propagated its database content, it switches the role and updates its
database by the advertised channels and messages of the other node. This
data reconciliation occurs whenever two nodes “meet”. To allow nodes to
continue exchanging data when they stay in communication range, they
can end their communication and then “rediscover” each other.

The communication subsystem is built on top of a minimized servlet
container which offers the Simple Object Access Protocol (SOAP) for
message exchange. The SOAP standard is well-suited for interoperability
between different platforms. However, it currently restricts us to unicast
communication, so we cannot take advantage of broadcast protocols that
are suitable for propagating data to a larger set of recipients.

The prototype has been built in Java. The platforms for evaluation were
notebooks and Compaq iPaqs, both equipped with WaveLan. It is
available for download from http://www.informatik.uni-

stuttgart.de/ipvr/vs/de/people/haehnejg/#misc

94

Graphical User Interface

}

Database

\’/

Diffusion Protocol

Figure 4.2: Usenet-On-The-Fly Architecture

4.5, Information Dissemination Protocol

The messages in the system are disseminated using a diffusion-based
protocol that we call Channel and Message Diffusion Protocol with
Negotiation (CMDPN). The pseudo-code of an algorithm implementing
that protocol on a given node is shown in Figure 4.3.

When a node A discovers another node B in its transmission range, it
sends an advertisement message listing all the channels (consisting of a
unique channel ID and a description of the channel topic) and the IDs of
the messages it currently has in its database. Node B then goes through
the advertised channels and checks, if it has seen them before. If not, the
user is given the channel description and is asked, if he or she wants to
subscribe to the new channel. Having updated the subscription informa-
tion, Node B goes through the advertised message IDs pertaining to those
channels it has subscribed to. It creates a request message containing the
message IDs of the messages it does not have in its database yet. On
receiving the request from Node B, Node A collects the requested
messages and sends them to Node B, which updates its database

accordingly.

95

TYPES
message_id: unique id
channel_id: unique id
topic: string
message_body: string

message: struct
channel_id
message_id
message_body

VARIABLES
channel_topic = array[channel_id] of topic
message_ids = array[channel_id] of list of message_id
messages = array[message_id] of message
seen_channels = list of channel _id
subscribed_channels = list of channel_id
EVENT HANDLERS
ON_NODE_DISCOVERQ)
Channel _ADV ca = empty list
Message_ ADV ma = empty list
for each channel_id in subscribed_channels do
append(ca, (channel_id, channel_topic[channel_id]))
for each message_id in message_ids[channel_id] do
append(ma, (channel_id , message_id))
od
od
if not empty(ma) then
send_message((ca, ma))

ON_RECEIVE_ADV((ca: Channel_ADV, ma: Message_ADV)):
for each (channel_id, channel_topic) in ca do
if channel _id not in seen_channels then
append(seen_channels, channel.channel_id)
if ask_user(channel_topic) then
append(subscribed_channels, channel)
channel_topic[channel_id]:=
channel_topic
fi
fi
od
Message REQ mr = empty
for each (channel_id, message_id) in ma do
if channel_id in subscribed_channels then
iT needed(message_id) then
append(mr, message_id)
od
if not empty(mr) then
send_message(mr)

ON_RECEIVE_REQ(mr: Message_REQ):
Message DATA md = empty
for each message_id in mr do
append(md, messages[message_id]))
od
if not empty(nd) then send_message(md)

ON_RECEIVE_DATA(md: Message_DATA):
for each message in md do
if needed (message.message_id) then
append(message_ids[message.channel_id],
message_id)
messages[message_id] := message
fi
od
Figure 4.3: Channel and Message Diffusion Algorithm with Negotiation (CMDPN)

96

Of course, the same protocol is applied in the other direction between
node B and node A

The CMDPN is a simple protocol for replicating Usenet-style messages. Its
purpose is to minimize the exchange of unwanted messages, saving
bandwidth and energy, which are scarce resources for mobile devices
using wireless connections.

Further improvements could be:

e To further reduce the data that needs to be exchanged, the protocol
could be split up into two phases. In the first phase only the
channel information is exchanged. Then, in the second phase, only
the information about the messages pertaining to those channels a
node is subscribed to need to be exchanged.

e The actual messages could be exchanged according to user-defined
priorities, which is especially helpful, if the devices are not within
communication range long enough to exchange all messages of
interest.

e A history of mobile nodes and the data which has recently been
exchanged with them could be kept to keep the message
advertisement messages small.

In the following section, we will present some simulations to evaluate the
effectiveness of the dissemination of messages to a population of nodes,
i.e.,, how many nodes have received a certain message in what period of

time.

4.6. Simulations

This section will describe the simulation context used for the evaluation of
the CMDPN protocol, as well as the results, including a discussion of the

results.

97

Since, as a first step, we were mainly interested in the maximum
effectiveness of message dissemination, given a certain population of
nodes, we used simplified assumptions:

We assume that all nodes are interested in all the messages and that these
messages pertain to a single channel. We did neither restrict the hop
count, nor set a restrictive TTL, so the messages are distributed within the
whole area over the time of the simulation. To control the introduction of
messages into our system, so that we could more easily calculate the
spreading of information, we assume that the messages are introduced
into the system by special stationary ,sensor nodes”, e.g., providing the
local temperature or introducing the meal of the day. Each of the sensor
nodes continuously provides the same single message to the mobile nodes
in its proximity.

The CMDPN protocol was simulated using our Java-based CanuSim
simulator, which implements a simple MAC layer that prevents multiple
nodes from accessing the same wireless channel simultaneously. The main
advantage of our simulator is that the two mobility models we present in

the following can easily be integrated.

4.7. Simulation Model

The simulations were performed for an outdoor context using two
different mobility models. The first model is the so-called random
waypoint model (RWP). This model is often used for the evaluation of
algorithms in the area of MANETs [BM]J+98] and originated in the
application area of rescue and disaster operations. In the RWP model a
mobile node chooses a random destination and a speed and then moves
directly to the destination using the given speed. The size of the area
covered was 2462 m x 1733 m, equivalent to the area of the city center

used later on.

98

The second mobility model - the graph-based mobility model GBM
[THB+02][Ste02] - assumes that mobile nodes do not move randomly, but
according to an infrastructure, e.g., road map or building layout. It models
the spatial environment as a graph. The example graph for our
simulations models a typical city center, as it can be found in Central
Europe. The model contains 115 locations on an area of 2462 m x 1733 m
interconnected with 150 edges. Figure 4 shows a sketch of the city graph
used.

In several scenarios different numbers of mobile nodes as well as sensor
nodes, each providing one piece of information, were placed randomly on
the graph. Destinations were chosen randomly out of the 115 locations in
the graph scenario or randomly in the RWP scenario. The mobile nodes

moved around at normal pedestrian speed, i.e., between 3 and 5 km/h.

~\

Church Ak
\"--. ~
. 8 . aCentral Station
= Hospital - T
\ A T .
\ e g = - ‘_ (e T ~—
\ — X T
X Museom. o University /| j S
\ | Ji o [o //j
e 4 f o / ; e
N \J x "~ Theatsr 8
N) i
. . \ Post Office # -~
\ 5 ry ! o
\ Concert Hall '/ N o
\ \ i\ “PGallery
f j/' L ——» Castle /
/ ¢’ /N \
’ AN / \ *
/ P . g,-/ [\
/! P ~ N \
. A A 4 b \
- "‘i__ v / A - 8 ".
L i | P ~Shopping Mall
\ — 'n
\ /.// ,/-/’/-' \"\. |’lll \
chuch® _—" /N \, City Hall
o Gl
Court

Figure 4.4: City Center Graph

On reaching a destination, mobile nodes stayed there for 12 to 20 minutes,
representing pedestrians stopping at a shop or station, before choosing a
new random destination. The sensor nodes remained stationary,
broadcasting their sensor information to mobile nodes within transmission

range. The mobile nodes all used CMDPN as the protocol for message

99

exchange. The time needed to discover a node in transmission range was
assumed to be between 2 and 3 seconds, which corresponds, for example,
to average Bluetooth discovery times [KLO1]. All scenarios used a
transmission range of 75m.

The simulation runs were terminated when a certain level of information

spreading was reached. The information spreading is calculated by

Z databasesize(m)

—meM
IM[< [S]

where M denotes the set of mobile nodes and S denotes the set of sensor
nodes that each introduced a single message (500 bytes) into the system.
The function databasesize(m) sums up all the messages stored on the mobile

node m.

part of connections [%)]

100 150 250
time in range [s]

Transmission

Ranae ——10m —=—40m —&—75m |

Figure 4.5: Time in Communication Range Depending on the Transmission Range

between Mobile Nodes and Stationary Sensor Node

100

part of connections [%]

0 50 100 150 200

time in range [s]

Transmission
Range

—— 10m —=— 40m —— 75m

Figure 4.6: Time in Communication Range Depending on the Transmission Range,

between Mobile Nodes

We have integrated the graph shown in Figure 4.4 into our simulator for
MANETs in order to simulate realistic mobility patterns of users. A first
interesting result concerning the relation between communication time
and transmission range is shown in Figure 4.5 and Figure 4.6. We placed
100 sensor nodes in the city center scenario and measured the average
time of communication between 1000 mobile nodes and the 100 sensor
nodes. The figures are based on a one hour simulation of the scenario.
Figure 4.5 shows the distribution of time mobile nodes are in
communication range with any sensor node. Assuming a communication
range of 75 meters most nodes have more than 50s per connection to
communicate, whereas 10m transmission range allows only less than 15s
for most connections.

Figure 4.6 shows the distribution of communication time between the

mobile nodes. Here the results are slightly worse for the 10m transmission
101

range, since the mobility of nodes shortens the transmission time to 7
seconds, whereas for 75m most nodes still have more than 50s per
meeting. Information dissemination in such ad hoc networks has to be
aware of these small slots for communication, i.e., not relying on stable

routes and long-term communication relations

4.8. Simulation Results

This subsection presents the simulation results of the aforementioned

diffusion algorithm based on random waypoint versus the graph-based

mobility model.

0.9 ——

/

0,8
0,7

0,6

0,5

01 /

O T T T T T
1000 2000 3000 4000 5000 6000 7000

Ratio Mobile time [s]

Nodes to
Sensor Nodes —— 100x100 — 200x100 — 500x100

information spreading [%)]

Figure 4.7: Information Spreading over Time for Random Waypoint Movement with 100

Sensor Nodes

Figure 4.7 and Figure 4.8 present the simulation results for the RWP

scenario based on a transmission range of 75m. The simulations were run

102

until 95% information spreading was reached, meaning that every mobile
node carried almost all the information disseminated by the sensor nodes.
The results show that a higher number of mobile nodes supports the
information spreading. Nevertheless even a small number of nodes leads
to a reasonably fast message replication considering the large area: 100
mobile nodes discovered 100 sensor nodes on an area of approximately 4
square kilometers reaching an information spreading of 95% in only little
more than two hours moving at pedestrian speed. A larger number of
mobile nodes (500) reaches the same amount of information spreading in
less than half an hour. Remember that 500 people in a city center is still a

fairly small number.

N
/ /

information spreading [%]

0,1 -
0 T T T T
0 1000 2000 3000 4000 5000
Ratio Mobile time [s]
Nodes to Sensor
Nodes —— 100x1 — 200x1 — 500x1

Figure 4.8: Information Spreading over Time for Random Waypoint Movement with One Sensor
Node

103

Figure 4.9 shows the results of the simulations performed with the GBM
pattern. The obtained results show a significant improvement over the
results of the RWP pattern. The graph-based simulations showed to be
approximately twice as fast until the information spreading of 95% was
reached. The major reason for this improvement is the fact that the mobile
nodes only move along the edges of the graph and do not occupy the
whole area as they do in the RWP model. Since the GBM pattern
represents our initial outdoor scenario better, we expect CMDPN to

behave towards those results in a “real world deployment”.

o) S T

ool 11/

information spreading [%]

0 500 1000 1500 2000 2500 3000

Ratio Mobile time [s]
Nodes to
Sensor Nodes

——100x100 ——200x100 ——500x100

Figure 4.9: Information Spreading over Time for Graph Walk Movement with 100 Sensor

Nodes

A second set of simulations with only one sensor node was conducted to
investigate the effect of the spreading of a single information item. Figure
4.8 and Figure 4.10 show the results obtained with RWP and GBM pattern

respectively. The results show that, once the information has been picked
104

up and passed on a few times, the steepest rise of the curve is reached.
This shows that the information is spread very quickly around its source
supporting the locality aspect of many information items in ubiquitous

computing.

1
0,9 / ./ /
0,8 A
0,7

os | 1 {
s |
{ {

0,3
0,2 -
0,1 -

0 T T T T T
0 500 1000 1500 2000 2500 3000

/

/

information spreading [%]

Ratio Mobile Nodes to time [s]
Sensor Nodes

——100x1 ——200x1 ——500x1

Figure 4.10: Information Spreading over Time for Graph Walk Movement with One

Sensor Node

4.9. Discussion

The simulation results show that, assuming realistic values for the
transmission range and the density of mobile nodes, the distribution of an
update in the vicinity of an information source is a matter of minutes.
Reaching an almost complete spreading of information can also be
achieved within less than an hour.

The difference between the simulation results based on different mobility
models shows the importance of using realistic mobility models in order

to get realistic simulation results.

105

4.10. Related Work

Applications based on message exchange in infrastructure-based systems
such as the Usenet have been used for a very long time. More recently,
peer-to-peer file sharing application like Gnutella [Kan01] have become
popular. However, as we are interested in systems based on ad hoc
networks with mobile nodes, we want to mostly restrict our discussion in
the following on systems fitting those characteristics.

In the area of collaborative wearable computing, the ad-hoc exchange of
information between mobile users during chance encounters has been
investigated. Application scenarios including the exchange of tasks
between user agents [KS5+99] and the dissemination of trust information
[SKJ+00] have been simulated. In those scenarios the information
distributed is much more specialized than in ours and exchange of
information depends much more on the individual users themselves, even
though the underlying mechanisms are very similar.

Much work has been done on routing in MANETs, where messages
between sender and receiver are exchanged on [DGH+87] an unstable path
built of mobile nodes (see, for example, [PB94] or [Joh94]). Usually,
however, a fully connected path from the sender to the receiver is required
to be able to forward a message. In [VB0OO] a general routing protocol for
partially connected networks is discussed, which, similar to our approach,
uses the moving mobile nodes to relay messages. Their results show, that
such an approach is feasible, transmitting 100% of the messages in most
cases in reasonable time.

Recently, information diffusion has been discussed in the area of sensor
networks. There, information is exchanged between a number of
randomly placed non-mobile nodes, which acquire a model of their
environment using built-in sensing systems (e.g., for seismic data or

images). Algorithms in this area have to be able to cope with the failure of

106

single sensors. Different variants of broadcast algorithms have been
discussed for such sensor networks with the goal of reducing bandwidth
and energy consumption [XWCO02]. In [KHB99] a family of negotiation-
based protocols for sensor networks, called SPIN, are discussed. It is
shown that they perform better regarding performance and energy
consumption than the more simple broadcast protocols.

More closely related to our approach regarding the dissemination of data
is the 7DS system [PS01]. Their underlying data model relies on a
hierarchy of web-caches and the information can be accessed via a
client/server-based approach from an infrastructure if available. If
network partitions occur, the mobile nodes rely on their cached data,
which can be updated similar to the diffusion algorithm that we have
presented here. Cooperation among the mobile nodes allows the access of
information in other caches. Queries trigger a diffusion process of data
through the mobile nodes which update their cache with the requested
information. The mobility model is a strict random waypoint model
neglecting spatial constraints. However, their objective relates to the
fragmented data storage. Replication of the data on every node and
restricting the coverage of the information dissemination, e.g., to an area

or a number of nodes, is not an issue there.

4.11. Conclusion and Outlook

In this chapter we have shown that the dissemination of data in large
MANETs is feasible. Simulation results show that information can be
spread among several hundred users in a city center scenario within
approximately 10 to 60 minutes from its initial creation at the sources. This
time interval is appropriate for many types of information that may be of
interest to a pedestrian walking through a city, such as information about
current events or specials on sale. A I-fo-many message exchange

application, like our Usenet-style prototype for PDAs, can be implemented
107

using devices and technologies which will soon be deployed among many
(millions of) users.

It can be concluded that information can be made available in MANETs
through the dissemination of messages using a diffusion algorithm. This
means that in a lot of cases it is not necessary to access an infrastructure in
order to obtain information concerning the current proximity.

After showing the general feasibility, there are still many questions that
remain unanswered. Our simulations show that the time it takes to
disseminate information among users varies depending on how the
mobile nodes, i.e., the users, move around. This strengthens the need for
realistic user mobility models in order to obtain a reliable performance
prediction of new systems prior to deployment.

More simulations are needed to show, if limiting the scope of the
information by hop counts successfully approximates the locality of
information as we expect. In any case, this solution gives only a very
coarse resolution of locality. A more sophisticated solution here is to
employ a more detailed world model [BBR0O1] and location sensors, e.g.,
GPS, to locate the mobile nodes. Then, the spatial scope of an information
could be specified directly and precisely, e.g., information could be
interesting for users on the same floor only, but not for those on the floor
below, yet the people there might be closer concerning the communication
if only distance is taken into account.

In our simulations we have assumed that every user is interested in all
channels, i.e.,, we completely replicated all messages. If we assume a large
variety of topics for channels in a real-world system, it is evident that
complete replication does not work due to resource restricted devices on
the one hand and users that are not willing to carry unwanted information
on their devices on the other. A technical compromise is that every user

allots some portion of his systems memory and communication time for

108

information that is not of (high) interest to him. The question here is: how
much is technically necessary for the system to work and how much are
users willing to contribute.

Since our system is based on the assumption that the number of
participants is large, the social situations in which a user sees a clear
benefit and therefore uses this interaction style has to be investigated.

This, we believe, can only be answered by appropriate user studies.

109

5.A Protocol for Data Dissemination in Frequently
Partitioned Mobile Ad Hoc Networks

Distribution of data in mobile ad hoc networks is challenged
when the mobility of nodes leads to frequent topology changes.
Existing approaches so far address either the network
partitioning problem or are capable of handling large amounts
of data, but not both at the same time.

In this chapter a novel approach is presented which is based on
a negotiation scheme enhanced by an adaptive repetition strat-
egy. Different strategies for the selection of repeated data are
presented and evaluated. Simulation results show a reduction
of data transfer volume compared to hyper-flooding by 30 to

40% even in the presence of frequent network partitions.

5.1. Introduction

Mobile ad hoc networks (MANETSs) are going to be a reality in the near
future with more and more mobile devices, e.g., PDAs or cell-phones,
being equipped with short range radio technology, e.g., as Bluetooth or
802.11. In our daily environments such MANETs will not only contain the
mobile nodes which are typically carried by their users but also
incorporate devices being fixed in the infrastructure, such as sensors or
information provision points, e.g., info-stations. Applications in such
environments can make use of the information being available through the
sensors and other nodes. Examples are tracking applications in production
plants capturing the location of production material and the state of
manufacturing machines, communication on a construction site, missions
from civil services, e.g., collaborative fire-fighting, but also convenience

applications such as smart city/shopping guides.

110

Typically, information in such networks itself is spatially scoped, i.e., only
from interest within a distinct area nearby the information source. Sensor
networks, i.e., ad hoc networks with typically stationary nodes, can setup
links between information sources and sinks. Mobility challenges the
information dissemination in such networks, since network partitions
cannot be treated as errors because they happen regularly. In order to
supply applications on nodes with information of their environment a
robust mechanism to deliver data is needed. In order to increase
availability of data, replication is a candidate to achieve this goal with a
trade-off to consistency.

In this chapter we present an algorithm for updating replicated data on
mobile nodes which is gathered by information provided by sensors. We
refer to such data as model-data, since the sensor information provides a
model of real-world’s state. The consistency of the replicated data is weak,
due to unpredictable network partitioning, aiming at delivering the most
current state of an information entity and not providing single-copy
consistency. Current information shall replace older one and
inconsistencies are tolerated as long as the most current information will
finally be propagated. Using a hyper-flooding [OT98] approach as the
foundation of a three-way-handshake protocol enables our protocol to
overcome network partitions. The negotiation of transferred data leads to
a significant reduction of the data transfer volume compared to plain
hyper-flooding by 30 to 40%.

Next we will introduce the system model. After a discussion of existing
flooding techniques for data propagation in ad hoc networks our
algorithm is described. Performance results from simulations are
presented based on two scenarios before the discussion of related work

and an outlook to future work concludes the chapter.

111

5.2. System Model

The system consists of two kinds of nodes: observer nodes and mobile
nodes. Observer nodes are equipped with a synchronized real-time clock
(e.g., GPS clock) or an appropriate clock synchronisation algorithm
[Roem01], and sensors allowing to make observations in their proximity
that describe properties of the real world. Every observation represents a
state change of an object that has a unique object ID (0id), and has a time to
live (TTL) that depends on the type of observation. Each observation is
timestamped with tes by the observer node to indicate when the
observation was made. Additional information (info) may be added by the
observer node to describe precisely what kind of state change was
observed, e.g., the position (state change described in info) of a person
(object) or the temperature inside a room. The tuple (oid, TTL, tus, info) is
called meta-data because it describes the ,what and when” of an
observation. The actual distinction of objects on the sensor level is not part
of this paper.

Mobile nodes maintain a local copy of the most recent state of all objects,
observed within a distinct area. The copies of state information on mobile
nodes form a replicated database. The replicated database maintains weak
consistency where mobile nodes may keep and use stale information, but
any update made to a local copy will add more recent information to the
database. The size of such a database is limited due to the locality of
information and the resource restrictions of the mobile devices.

The synchronized clocks of observer nodes are necessary to be able to
compare two or more independent observations of the same object
accurately. The high accuracy of, for example, GPS clocks of
approximately 360ns [GPS] is sufficient to distinguish many observations
made in the real world, e.g., people’s movements. It would, for example,

not be accurate enough to observe the direction of a light beam passing

112

two independent observer nodes equipped with a light sensor. In general
the accuracy needed is driven by the type of observations that need to be
made.

Mobile nodes use local real-time-clocks (RTC) to determine when the TTL
of an observation record expires. Those clocks do not have to be
synchronized, since they are only used to measure how long a record has
been kept locally. Assuming a typical clock skew of a simple hardware
RTC of 5 to 15 seconds per day [DALLAS], it would be sufficient to
synchronize a few times a day (e.g., when passing any observer node) in
order to correct the clock drift and to measure the time a record has been
kept accurately enough.

All nodes are equipped with a symmetrical short range RF communication
technology that offers a device discovery mechanism and allows two way
communication. The RF technology is used to locally broadcast messages,
i.e., every neighbor in the transmission range of the sender may receive
the message. Additionally, we assume that the MAC protocol follows a
CSMA/CA approach that detects collisions. Mobile nodes and observer
nodes thereby form a MANET which is assumed to be partitioned very

frequently due to short transmission ranges and the mobility of nodes.

5.3. Forwarding Strategies

For the task of distributing observations to mobile nodes a robust
forwarding mechanism is needed that can cope with the frequent topology
changes and network partitions in a MANET. The evaluation of flooding
in such environments [HOT+99] has shown that it provides a good basis
for distributing information in highly dynamic and sparsely populated
MANETs. Different possibilities for flooding have been proposed and
shall be briefely described here since they will be used for our algorithm

presented in Section 5.4.

113

Plain Flooding: The basic version of flooding is a robust way to broadcast
information in a network. Every node forwards an incoming message
unless it has done so before or some knowledge of the network diameter is
available to add a maximum hop count to the message. Although this is
very reliable, plain flooding cannot cope with network partions or very
high mobility [HOT+99].

Selective Flooding and Gossiping: Selective flooding has been proposed
to reduce the number of messages in comparison to the plain flooding
approach. The general idea is that a node forwards a message only to a
subset of its neighbors [Tan96]. Gossiping is a variant of selective flooding
where the message is sent to a subset of neighbors that is chosen randomly
[HKB99]. This reduces the number of messages sent with the trade-off of
being less robust, especially in networks with a low node density.
Selective flooding is based on plain flooding and thus does not cope with
network partitions.

Hyper Flooding is a modification of flooding proposed in [OT98]. It
allows nodes to forward a message more than once if the set of neighbors
changes within a given validity period of the message. This improves the
delivery performance over plain flooding in scenarios with frequent
topology changes (e.g., due to high mobility) and network partitions that

are rejoined within the validity period of the message.

5.4. Negotiation-based Ad hoc Data Dissemination
Protocol: NADD

This section describes an algorithm suitable for exchanging observation
data in MANETs with frequent topology changes. First, data structures
relevant to the algorithm are explained. Second, the algorithm itself is
described. Crucial to the algorithm is when and which data is (re-)sent. A

deeper discussion of selection strategies of data to be resent is presented.

114

54.1. Data Structures

Every observer node stores an observation record for each object that is
currently within its observation range. An observation record contains the
following elements:

o Object ID (0id) of the observed object

o Time-to-live (TTL) of the observation
. Timestamp of the last observation of a state change (foss)
. Information that indicates the replication progress of a record (d)

o Additional meta-data (info)

. State of the observed object

The oid kept in the observation record is a unique identifier for a real-
world object such as a room or a person. Additional meta-data may be
added to describe in more detail what kind of information is represented
in the record, e.g., the temperature in a room or a person’s position. In the
context of this paper, different oids represent information about
distinguishable objects. The type of information represented is of no
further concern for this paper. The TTL is initialized by the observer node
and is continuously decremented by each node that holds a copy of the
record. Its initial value depends on the type of observation made (e.g., part
of the meta-data) and is supplied by the observer node. The observation
time tobs is recorded by the observer node that has created the observation
record originally, i.e., that has actually made the observation. In case of
multiple observers of the same object nodes create different records about
the same object. These records can be ordered due to the assumption that
all observers have synchronized clocks. The precise description of 4 is

given in Section 5.4.2.2.

115

5.4.2. Protocol

In the proposed protocol, messages are sent from a sender to all direct
neighbor nodes (local broadcast). The mechanism used to forward
observations is implemented using a three-way-handshake where
observations stored locally in a node’s database (DB) are advertised in ADV
messages, requested in REQ messages from nodes that do not have the
advertised information in their DB, and sent with DATA messages by the
advertising node as shown in Figure 5.1. Since the state information
provided by observer nodes may become large, this approach has the
advantage that state data is only exchanged if at least one neighbor node
requests it. Additionally, the three-way-handshake allows the
optimization of advertising many observation records in a single ADV

message.

out: ADV message in: REQ message out: DATAmessage

latest repetition latest | repetition Datal Data2 | Data3

Meta-data
||||’||E|’|||E|| I\TI I}’I

LocalDB \@ Local DB Local DB

Figure 5.1: Interaction pattern of a node while advertising

An ADV message contains multiple tuples (oid, tes TTL, d) describing
information available in the DB of a node. A REQ message contains
multiple tuples (oid, tos) of observation records needed by a node in
response to an ADV message. A DATA message is a set of observation
records that have been requested by any neighbor. Figure 5.3 shows an
overview of the protocol in pseudo-code.
5.4.2.1. Interaction Between Nodes
A new information entity, i.e.,, a new or updated observation record that

was either received by a mobile node or observed by an observer node, is

116

offered to all neighbors of such a node by sending an ADV message. Any
neighbor node may send a REQ message in return to indicate that it is
interested in some of the data. On receiving a REQ message, a node
broadcasts the corresponding state information. The protocol as described
so far uses plain flooding on top of a three-way handshake. This results in
the disadvantages of not overcoming the boundaries of network partitions
as mentioned in Section 5.3. To disseminate information across partitions
an approach similar to hyper-flooding is added: whenever a node
discovers a new neighbor, it is allowed to re-advertise observations as long
as the TTL has not expired. The TTL is decremented continuously by each
node that holds a copy of an observation record. If the TTL equals 0, the
item is removed from the DB.

The number of items that can be advertised in a single ADV message is
limited to keep messages short and thus to reduce the probability of
collisions on the MAC layer. On the other hand, replication performance is
improved by letting a node send more than one ADV. In our algorithm
nodes may ask any node that replies to their ADV message with a request
to issue another ADV message. In the current implementation a node
always requests another ADV message with each REQ message sent. This
process stops if no items offered in an ADV message are requested or -
obviously - when the two nodes leave each others communication range.
This mechanism is backed up by the creation of ADV messages if the set of
neighbors of a node does not change for a predefined period of time.
Figure 5.1 gives an overview of the basic interaction scheme.

5.4.2.2. Advertising Strategies

For a large number of different observations the size of each DB replica
will soon be large, making it impossible to advertise all observation
records in a single ADV message. Therefore an advertising node has to be

able to select a sub-set of the data from its local DB when composing an

117

ADV message. This leads to the problem of finding an appropriate
selection strategy that ensures a reliable overall replication process.

As a first approach we applied a strategy mix where information that has
never been advertised by a node is selected to be advertised first. If this
number is smaller than the number of items an ADV message can hold,
the remainder of the ADV message is filled with advertisements of data
that has already been sent based on a round-robin strategy in the
database. This ensures that new data has priority over data that has
already been offered.

In a second class of strategies, we replaced the round-robin selection with
a more sophisticated demand driven selection policy. When a new record is
created by an observer node, it is important to give priority to the
propagation of this record in order to support its replication. An
approximation for that property can be made locally on any node by
taking into account the number of data messages including the particular
record, that have already been sent by the node. A low number of such
messages indicates that not many replicas have been initiated by the node
and therefore priority has to be given to that record when sending
advertisements. On the other hand, this indicator is not sufficient when
the record has already been replicated on almost every node. In this
situation a node that received a copy of an almost completely replicated
record r late will prefer such a record over a record r’ that has been
replicated only a few times, since the number of data messages that
include r will soon be outrun by those that contained r” and will hardly
increase. This is due to the fact that almost no other node will request r
and more nodes will request 7’. To take this into account we keep the
difference d=#adv-#data for every record r, where #adv is the number of
ADV messages sent that included r and #data is the number of DATA

messages. A large d indicates that the record has been advertised and only

118

relatively few requests were received that lead to DATA messages. A
small d indicates that an item has been requested regularly in response to
advertisements. To approximate the global replication progress of a
particular observation record, the value of d calculated by other nodes is
taken into account on the reception of every ADV and DATA message.
The node receiving such a message re-calculates its own
Anew=(alpha*doia)+(1-alpha)*dremote,

where daa is the previous local value for the observation and dremote is the
value for the same record on the node that sent the message. alpha is a
weight, with O<alpha<1 that defines how much remote information is taken

into account.

< Kk |
I

latest Selected from Selected from
records subset L of DB | subset H of DB

a— —a—f*(k-n) —=1— (1-f)*(k-n) —

Figure 5.2: Structure of an ADV message for the demand driven selection strategy

Figure 5.2 shows the structure of an ADV message for the second selection
strategy determined by a tuple (k, f, g). The message can contain at most k
entries, where n are occupied by new information, just as in the round-
robin selection strategy. The remainder is split into two parts, determined
by the fraction f with 0<f<1. The DB is split into two subsets L and H with
(DB=HUL)A(HNL=2)

L contains a fraction g of all records in the local DB such that d for all
records in L is smaller than the lowest d of any record in H. Records from L
and H are selected randomly (uniform distribution) to fill f*(k-n) and (1-
f)*(k-n) slots in the ADV message respectively. If any subset contains less

messages, the remainder will be filled with information from the other set.

119

5.4.2.3. Randomized Messages Transmission

To reduce the number of messages and to avoid broadcast storms
[NTC+99], randomization is used to delay messages before they are sent.
ADV messages issued by mobile nodes are delayed to avoid that a group
of nodes advertises the same observation at the same time and location.
REQ messages are delayed, because it is sufficient that one node requests
an observation, while other nodes can pick up the DATA message without
requesting it. DATA messages are delayed to avoid that many nodes
answer a REQ message. Delaying messages in the described way results in
a flavor of selective flooding, since not every node that receives a new
information entity re-advertises it. Whenever the TTL of an observation

expires any node that holds it, drops it.

ON NEW DATA or ON NEW NEIGHBOR:
a = prepareAdvMsg() // compose ADV message a from local DB
schedule for send(a) // send within a randomized time interval
ON_RCV_ADV (m: AdvMsg) :
p = 1 // probability for ADV requesting
r = prepareRegMsg(m, 1) // build REQ based on local DB and ADV diff
if r contains at least one request then
schedule for send(r) // send within a randomized time interval
ON_RCV_REQ(m: RegMsg) :
d = prepareDataMsg(m) // prepare DATA based on incoming REQ
schedule for send(d) // send within randomized time interval
if m.sendAnotherAdv then // additional ADV prepared on demand
a = prepareAdvMsg()
schedule for send(a)
fi
ON_RCV_DATA (m: DataMsg) :
store(m) // update local DB with requested data
ON_IDLE: // send messages from send buffer

if first item(fifo send queue).send time <= current time
then
send and remove (first item(fifo send queue))
fi
schedule for send(m: msg) // send buffer with randomized schedule
rnd = random_ int (k*msg time, 2*k*msg time)

if isempty(fifo send queue) then
append (fifo send queue, {current time+rnd, m})
else
append (fifo send queue, {last queue time+rnd, m})
fi

Figure 5.3: Pseudo-code of our NADD

120

5.5. Simulation

The proposed algorithm was tested in simulations to evaluate its
performance with respect to replication latency, i.e., the time until a
certain fraction of the data is replicated on all nodes, and the message
overhead imposed by the algorithm.

In order to compare the discussed selection strategies, optimal selection is
simulated. Nodes only advertise data that is missing in the database of
other nodes. This ensures maximum efficiency in the data exchange,
which is only influenced by the mobility of the nodes and the underlying
communication technology.

5.5.1.1. Simulation Environment

The simulations were done using a discrete time-step approach. At the
MAC layer a simple carrier sense, collision avoidance mechanism
(CSMA/CA) prohibits one node to send if it is within the radio range of
another node that is already sending. In this case the message is scheduled
to be resent later. If retransmission fails for the third time the message is
dropped. If both senders are out of each others radio range, simultaneous
transmissions are allowed, though the message does not reach receivers in
the intersection of both ranges. If two or more senders start sending
simultaneously, again messages in the intersection of any two radio
ranges are extinguished and do not reach their receivers. ADV and REQ
messages have a size of 32 bytes per item advertised or requested. DATA
messages have a size of 512 bytes per item transfered. The transmission
speed is 128 kbit/s with 10 m transmission range. Mobile nodes follow the
random waypoint mobility pattern [BMJ+98] with a pedestrian speed of 3-
5 km/h and intermediate stays of 72-120 seconds. Observer nodes are
placed in a regular grid and remain stationary during a simulation run.

The total area simulated is 100 m by 100 m to represent a large building.

121

Scenario (Strategy Max. Remark
IADV size
RR-6 round-robin 6
RR-12 round-robin 12
SEL-6 selection 6 alpha=0.5, f=0.65,
0=0.5, k=6
SEL-12 selection 12 alpha=0.5, f=0.65,
0=0.5, k=12
OPT-6 optimal knowledge |6
OPT-12 optimal knowledge |12

Table 5.1: Scenario Overview

In all scenarios observers can advertise at most 6 or 12 observation records
per ADV message. This represents a message size of 224 (=32+6*32) or 416
bytes for ADV and REQ messages and a maximum of 3104 (=32+6*512) or
6176 bytes for DATA messages, respectively. Thereby messages for
advertisements and requests are short to keep the probability of collisions
low. The TTL of all observation records is set to a value that does not
invalidate the item during the time of the simulation. All updates were
done by the observer nodes at the start of the simulation. Future
investigation will have to evaluate the effect of temporally overlapping
replication processes.

All scenarios contain 10 mobile nodes and 9 observer nodes. Each observer
node makes 80 observations, resulting in a database size of 720
observation records. The scenarios vary in the selection strategy chosen for
advertisements and the maximum number of entries in an ADV message.
All simulations were run for 3600 seconds. Table 5.1 gives an overview of

the scenarios evaluated.

5.5.2. Replication Latency

This section presents the growth of the database copies carried on mobile
nodes over time. The results of Figure 5.4 show the replication latency for
the scenarios where at most 6 items can be advertised in an ADV message.
With the optimal strategy OPT-6 it takes approximately 800 seconds to

perform a complete replication on all nodes. This result solely influenced

122

by the mobility of the mobile nodes, since each advertising node is
assumed to know the contents of the database of the node it is offering
data to. The round-robin strategy RR-6 uses a simple advertising schedule
that only depends on what has locally been advertised before. This results
in a very slow propagation, because the advertising behavior of other
nodes is not taken into account at all. The demand driven strategy SEL-6
shows improvements over the round-robin strategy and results in a faster
data replication, especially in the time span where 40% to 80% of the data
is replicated.

Compared to the results described above, the scenario SEL-12, which uses
12 entries per ADV message shows a significantly faster growth of the
database copies in the time span where 60% to 95% of the data has been
replicated on each node. The optimal scenario OPT-12 shows the same
behavior as its counterpart OPT-6, because it is also only limited by the
mobility of the nodes. The round-robin strategy shows about the same
replication latency in both cases, but varies in the message overhead as

described in the next section

g 0,8 /{/-/./J/-—__.
(0] //‘///
N
»n 0,6
Q
o ﬁ /
= 04
o
o
= 0,2 1
>
©
O -~ T T T T T
0 500000 1000000 1500000 2000000 2500000 3000000

time /msec

—+—RR-06 —=— SEL-06 —— OPT-06

Figure 5.4: Average replication latency with ADV size 6

123

[N

—~ 0,9 1 /././4"”’/4
<05 /At
© 07
@ 0,6 // /
3 05
T 0,4
o
S 0,3
S 0.2
8 0,1

0 T T T T T

0 500000 1000000 1500000 ~ 2000000 2500000 3000000
time / msec
| ——RR-12 —=— SEL-12 ——OPT-12 |
Figure 5.5: Average replication latency with ADV size 12
5.5.3. Message Overhead

This section discusses the message overhead imposed by our protocol. The
results of Table 5.2 give an overview of the average number of messages
and their total size per node sent by each node in the different scenarios.
The message sizes show the average transfer volume per node divided
into ADV, REQ, and DATA volume sent. Here the messages sent have
been weighted according to their size, where one ADV or REQ entry has
32 bytes, and one DATA item has 512 bytes. Each message has a constant
overhead of 32 bytes. It has been assumed that every message includes the
maximum of 6 or 12 entries. The optimal strategy has the lowest message
overhead, since it only advertises data if necessary. It does not show the
same results for ADV, REQ, and DATA messages since messages can be
lost due to collision on the MAC layer and the mobility of nodes. The
round-robin strategy needs about twice as many ADV messages
compared to OPT. Many of those messages do not contain data that is
needed and therefore only little more REQ messages are sent compared to
OPT. The SEL strategy has the highest message overhead because many
ADV messages contain information that is requested and therefore
additional ADV messages are triggered. On the other hand this strategy

shows a very good replication latency, as stated above.
124

Table 5.2 shows how much transfer volume would have been needed if,
instead of the three-way-handshake, only DATA messages would have
been used to propagate the observation records (i.e., in a hyper-flooding
approach without negotiation). The advantage of the three-way-
handshake over the plain data message approach with respect to transfer

volume is 30-40% (see Table 5.2 and Table 5.3).

Num [Num [Num |Size Size Size Total
ADV [REQ |DATA [ADV |[REQ DATA Size

RR-6 225 83 88 50kB [18kB 269kB 337kB
SEL-6 497 241 247 110kB [54kB 768kB 932kB
OPT-6 (101 70 75 22kB [L5kB 233kB 270kB
RR-12 168 47 50 70kB [19kB 340kB 429kB
SEL-12 [377 181 176 157kB |75kB 1091kB |1323kB
OPT-12 [54 37 38 22kB [15kB 237kB 274kB

Table 5.2: Message overhead in number and size of messages

IAssumed transfer volume using DATA Num \Vol/ kB
instead of ADV messages DATA

RR-6 225 682
SEL-6 497 1506
OPT-6 101 306
RR-12 168 1013
SEL-12 377 2273
OPT-12 54 325

Table 5.3: Transfer volume with DATA messages only

5.6. Related Work

The SPIN protocol family [HKB99] uses a a three-way-handshake protocol
similar to our protocol. SPIN addresses sensor networks, i.e., ad hoc
networks with stationary nodes. Since it does not take temporary network
partitions into account and therefore does not deal with the resulting
problem of choosing a selection strategy the advertisement of data will

only work in environments with low node mobility.

125

In various situations it has been proved that flooding is a robust
mechanism to distribute information to all nodes in MANETs. In
[HOT+99] flooding has been evaluated as a basis for multicast protocols in
MANETs. Hyper-flooding has been proposed as a method to overcome
network partitions in ad hoc multicast routing if, besides other
parameters, the TTL for a message and the approximate network diameter
are known [OT98]. In our protocol, the replicated model data already has
a TTL included in its meta-data. The diameter of the network is not
needed because nodes can decide to drop information solely based on the
TTL, since model data is assumed to be valid for a long period of time in
comparison to messages used in routing protocols. Additionally, our
protocol does not perform hyper-flooding on a per-message basis but on
the basis of a three-way-handshake, where advertisements are hyper-
flooded by re-advertisements according to the selection strategies.

In [VB00] an epidemic protocol was introduced to solve the routing
problem in a partially connected network. They use a similar mechanism
to exchange information between two neighbor nodes. However, their
goal is to deliver messages to any node without establishing a route
between sender and receiver and not the replication of model data. The
data considered is typically short-lived, i.e., if routing of a message fails a
retransmission is issued.

A combination of so called rumor-mongering and anti-entropy is used in
[DGH+87] to replicate information in databases in wired networks. In our
protocol, we combine new information and, if free space is available in an
ADV messages, older information. This results in a partial anti-entropy
session, because some differences between hosts are resolved with new in-
formation first (i.e., rumors) and older information (i.e., part of the anti-

entropy).

126

In [XWCO00] the distance between any two versions of a data item and the
communication cost is used as the basis for a cost model in order to
determine the estimated benefit of forwarding the data. In this approach it
is necessary that every node has a notion of , distance” which depends on
the semantics of the data. The authors also make the assumption that only

a single node updates a particular object.

5.7. Conclusion

We presented a protocol for information dissemination in mobile ad hoc
networks. The protocol replicates information stored in local databases of
nodes. In order to reduce the data transfer volume, negotiation is used to
advertise and request data among mobile nodes. Network partitions, as
they appear due to node mobility or low node density, can be tolerated
since data is advertised more than once. The selection strategy that
determines which data is re-advertised, influences the performance of the
protocol with respect to the propagation latency and the data transfer
volume. The demand driven selection policy shows a reduction of the data
transfer volume by 30 to 40% compared to a plain hyper-flooding
approach which does not use negotiation. The replication latency
performs nearly optimal till 80% replication of the data is achieved and
slows down for the last 20%.

So far, we have investigated the impact of different data selection
strategies on replication latency and message overhead. In future work,
we will investigate what parameters can be used to adjust the hyper-
flooding nature of advertisements, e.g., depending on the node density, in
order to achieve further reduction of advertisement messages in dense
networks. Mobility models of mobile nodes have impact on the
performance of routing protocols [THB+02]. We will examine the impact
of mobility models on our protocol and the improvements that can be

made if such knowledge is exploited.
127

6.From Home To World: Supporting Context-Aware
Applications through World Models

In the vision of pervasive computing smart everyday objects
communicate and cooperate to provide services and
information to users. Interoperability between devices and
applications not only requires common protocols but also
common context management. In this chapter we discuss
requirements on the context management based on the Georgia
Tech’s Aware Home environment and the global context
management perspective of the Nexus project. Our experiences
with integrating the Aware Home Spatial Service into the
Nexus platform show how federation concepts and a common
context model can provide applications with uniform context
information in different administrative and application

domains.

6.1. Introduction

Pervasive computing has drawn increasing attention of researchers in the
past years. As a result, a multitude of applications has been developed.
These applications cover different domains, such as tourist guides
[CDM+00a],[AAH+97] indoor information systems [Cooltown],[CKWO01]
and smart environments, e.g., the Georgia Tech Aware Home [KOA+99],
to name a few. A variety of supporting infrastructures have been
proposed, which facilitate the development of applications. However,
these infrastructures mostly address a distinct application domain, such as
context processing based on sensors [SDA99] or providing application-
specific context [STMO00], [CDM+00a].

However, one cannot deploy any of the above-mentioned applications and

expect them to cooperate or share resources. Also, when new services,

128

hardware or environmental information such as maps become available to
an application, other existing applications can not automatically use them.
Interaction between different applications based on their context, e.g.,
identity, location, or state, is not possible if they do not rely on a common
representation of this context.

In this chapter we discuss the requirements on application-independent
context management in order to provide a platform where applications
can seamlessly share their context. Two approaches for such platforms are
presented. One addresses the context management in the scope of a smart
home environment based on the Georgia Tech's Aware Home project
[AAH+97] while the other approach addresses global context management
from the perspective of the Nexus project [HKL+99]. We have integrated
both approaches and discuss our experiences regarding the context
representation. Crucial to the integration of both approaches is a common
context model and a federation concept for the local context management.
The chapter is structured as follows. First we motivate the requirements
on context management to achieve interoperability based on typical
applications in a smart home environment. Following to that, the related
work is presented. In section 6.4 and section 6.5, we describe the context
management for the Aware Home and the Nexus platform. An assessment
of context modeling and the platform integration is given in section 6.6
based on the integration of the Aware Home Spatial Service into the
Nexus platform. Finally, we close with a summary and outline future

work.

6.2. Requirements

In this section we derive requirements based on a scenario and discuss

what follows from that for context modeling.

129

6.2.1. Scenario

Consider the following scenario: You have a home that can sense what its
inhabitants are doing, adapt to them and support them with their task;
e.g., the Smart Intercom allows you to reach every other person in the
house - regardless of where he or she is located. So if you are in the
basement, it is possible to say "House, I want to talk to Thomas". The
house then would localize Thomas, check if it is currently acceptable to
contact him or if he is occupied otherwise, and then create an audio
connection to him using the closest available audio interface device. This
could be the phone on his desk or the speakers and microphones in the
room.

Now you want to add another application to your home: A smart
doorbell. Depending on whom a visitor is here to see, the Smart Bell finds
the respective person and notifies her that a visitor is waiting at the door.
Then it routes a video feed from the entrance area to the wall display
closest to that position. Now you can decide whether the visitor should be
let in. It is also possible to identify the visitor and to register him with the
intercom system and other systems of the house.

Also, you want to add a smart alarm system. Because the house knows the
identities and the locations of its inhabitants, it can continuously monitor
whether unauthorized persons are in the house and notify the authorities
accordingly. Then it would provide the authorities with information about
the situation within your house - e.g., the layout of the house, where the
inhabitants and where the intruders are located.

In the remainder of this section, we discuss requirements for the data

model of these applications and for the infrastructure that supports them.

130

6.2.2. Derived requirements

Based on the scenario we derive requirements regarding the information
model, information access, consistency, the abstraction from resources,
and interoperability.

Information Model:

The applications in the scenario need certain information to fulfill their
tasks. Mobile objects, such as users with their identity and position, and
stationary objects, such as furniture or input/output devices, are relevant
for context-aware applications. These objects have to be managed with
respect to their spatial environment, e.g., the floor plan of a smart house or
the layout of a city center. Additional attributes of these objects, such as
user preferences or a functionality description, can be wused by
applications. The information model should be easily extensible, since new
applications are likely to require additional or specialized objects.
Information Access:

Applications access the information in the information model through
queries, predicates, and functions operating on the information model.
Queries are used to access objects via their identity or their current
location, e.g., a range or a neighborhood. The interpretation of a range or a
neighborhood requires spatial knowledge which has to be provided by the
underlying information model. Spatial predicates are constantly evaluated
and signal distinct correlations between mobile and stationary objects to
an application, e.g., a user entering a room or a certain user meeting
another user. Applications can modify information in the information
model via updates.

Consistency:

The information about people, house and resources, e.g., as gathered
through sensor systems in the infrastructure, has to be maintained and

kept consistent among all applications. If real world objects or resources

131

are moved or removed, the information in the infrastructure has to be
updated.

Abstraction from Resources:

The variety of possible information sources and services, such as sensors,
actuators, and user interfaces, should be transparent to applications. A
layer of abstraction should be provided to facilitate the easy change of
resources, such as upgrading a positioning system. Newly integrated
resources should be made available to applications.

Interoperability:

One of the main requirements for the infrastructure is interoperability in
three dimensions. First, interoperability between resources, e.g., the audio
speakers should be able to work with the TV to display the video feed of
the Smart Doorbell. Secondly, applications that communicate using
information or resources: e.g., the Smart Doorbell inserts a new "person"
into the house and the Smart Intercom should be able to use this
information. Thirdly, the interoperability between applications: e.g., the
Smart Doorbell notifies the Smart Intercom that it has to use the audio

speakers to signal into the room.

6.2.3. Context modeling

The information model as discussed in the previous section is concerned
with context data. A number of different definitions for context exist, e.g.,
[CKOO][DA99]. Our view on context is similar to the definition presented
in [DA99]: Context is the information which can be used to characterize the
situation of an entity. Entities are people, locations, or objects which are
considered to be relevant for the behavior of an application. The entity itself is
regarded as part of its context.

When context is stored in a context model it is necessary that applications

can access it. As the examples have shown, applications typically consider

132

information about a distinct location or an entity, e.g., a user or object.
Hence, such a model must allow for access to context information based
on location and the identity of objects. Additionally, context models can
incorporate the time dimension, i.e., capture history or provide a
prognosis. In general, a combination of either identity and time or location
and time is needed to access context information in a meaningful way.
However, time can also be defined implicitly as the current point in time.
Based on the selection of objects via identity, location, and time further
information, such as the activity of a user or the state of an object, can be
derived. Using location as index imposes new challenges on the
representation of the index and its processing. The underlying spatial
structure has to be reflected in the index.

A variety of different location models exist, which can be classified as
topographical, topological, or hybrid models. Topographical models use
geometry to model space. They model the spatial entities as geometric
shapes that are placed within a coordinate system. The relations between
the entities, e.g., which entities are next to each other, are implicitly
defined by their location. Topological models describe the relations
between spatial objects explicitly without localizing them in a coordinate
system. Hybrid models combine the localization of the spatial entities
within a coordinate system with the explicit modeling of their relations.
The complexity of the models differs widely, e.g., regarding the level of
detail and the available functionality. Common tasks are querying for
objects within a distinct area as well as determining the nearest object with
respect to a given position. Hence, the context model requires a spatial
structure. Since our context models take the spatial structure of the real

world as their basis, we also call them world models.

133

6.3. Related work

Context-aware applications have attracted the interest of researchers over
the past years. A number of different applications have been developed
exploring different application domains. Tourist guides, e.g., Guide
[CDM+00a] or CyBARguide [AAH+97], provide information to mobile
users about typically stationary objects in their vicinity, such as distinct
sights. Indoor information systems, e.g., Cyberguide [AAH+97], ETH
World [ETH], or conference room reservation [CKWO01], provide similar
services in the indoor domain.

Another class of pervasive computing applications presents location-
dependent information to users. Virtual Information Towers [LKR99]
provide information for a distinct area through posters, while Stick E-
Notes [Pas97] and Geo-Notes [EPS+01] offer a Post-It metaphor allowing
users to leave messages at a distinct location. These systems typically are
not concerned with the relations between different mobile objects, e.g.,
users, and they only require simple spatial models. Abstraction from
resources is typically not necessary, since the information is not captured
via sensors and actuators are not supported. Interoperability is typically
not an issue in such systems.

For another class of applications, an underlying spatial model is required.
The Teleporting project [HHS+99] requires a spatial model in order to
redirect output to the devices that are closest to users. Similar to that, the
Family Intercom [NKO+01] also requires spatial knowledge. While the
Family Intercom does not intend to share its spatial model, the Teleporting
project has developed a platform which provides a data model linked to
locations obtained via fine-grained location and spatial monitoring
systems. This platform already meets some of our requirements, but its
scalability is targeted at larger buildings. There is no given structure of

data objects though, leading to reduced interoperability.

134

The Context Information Service (CIS [JS03]) of the Aura project [GS5+02]
also aims at providing context information. The underlying location
model is based on a mapping onto geometric coordinates [JS02] thus not
allowing purely symbolic coordinates. The information model is targeted
at technical information of the network and its entities, such as printers or
bandwidth, and reflects their properties via meta data. The location of
people is also provided. This centralized architecture is limited to building
size scalability although caching techniques provide improved
performance.

Other kinds of infrastructure are targeted at distinct domains. The Context
Toolkit [SDA99] provides abstractions to integrate various sensor devices
and facilitates sensor fusion. Guide [CDM+00a] also provides an
infrastructure which enables classes of applications from the navigation or
outdoor domain to rely on an extensible data model. However, the
location model is cell-based and depends on the communication
infrastructure.

Most of the above-mentioned approaches do not allow for flexible
integration of different spatial models. Such spatial information is
represented by location models, reflects application requirements, and
depends on the modeled environment [BBR02]. Easy Living [BMK+00] is
targeted at the indoor domain and provides an infrastructure for spatial
access to information similar to QoSDream [NCO01]. Abstractions of
hardware providing context information or a common data model are not
addressed by either approach.

As we have seen, there are a variety of different approaches which address
some of the requirements derived in Section 2. A comprehensive solution
is still missing. In particular, the scalability of the infrastructure and

interoperability of applications are still open research questions. The

135

answers to these questions are crucial to provide users with applications

which operate in varying environments.

6.4. AHSS - A local architecture

We have designed and implemented a context management infrastructure,
the Aware Home Spatial Service (AHSS), at the Georgia Tech Aware
Home, based on the requirements presented in section 6.2 and the
feedback from the developers at the Aware Home. One of their main
requirements for developing applications was flexibility. As their research
environment is very dynamic, they did not want to be obstructed by too
inflexible frameworks and standards, preferring direct interaction and
agreement between developers instead. Scalability, on the other hand, is
not such a big issue for prototype applications in the Aware Home.
Therefore, the Aware Home Spatial Service is targeted at small to mid-size
smart home environments.

The "intelligence" in such settings is usually not concentrated in mobile
devices like PDAs, cellular phones or wearable computers. It is typically in
stationary systems in the house that serve the area of the house. In the
smart home we are considering, a variety of platforms are in use. The
main language for most systems in our setting is Java. Some application
areas like computer vision necessitate the use of other languages like C or

C++.

6.4.1. Spatial model

The AHSS spatial model defines and implements a standardized way to
model context information structured along the dimension of space. This
spatial model is topological, similar to the one proposed in [BBR02] that

we have adapted and extended by topographic aspects.

136

<4 P» Represents —> Interacts with O Location <—> Relation

Application OZO --_I ___________ . ’t_\L]
Service :— —— l__‘ _ -
Sensor L L i?l-._ - I . J

Applications, Services Spatial Model Real World

Figure 6.1: AHSS conceptual view

As shown in Figure 6.1, the spatial model represents context information
from the real world. All applications can use the same spatial model. The
model consists of a graph, with locations as vertices and relations as
edges. Locations describe relevant spatial objects, rooms, furniture or even
people. An AHSS Location has an ID that is unique within the spatial
model, a type that is associated with it, some standard attributes and an
optional spatial attribute. This spatial attribute can be a point, a line, a
polygon or any other geometry type specified in the OpenGIS standard
[OpenGIS]. It represents the topographic aspect of the model. For
example, it is possible to attach the shape of a room (i.e., its geometry) to
the Location representing it. Spatial attributes provide a variety of spatial
operations like wunion, intersection etc. Furthermore, Locations are
extensible. Applications can add arbitrary attributes with application-
specific semantics.

Locations are connected by relations, to allow modeling of explicit spatial
relations. They have a type and a weight that can be used to model
distances that are not geometric: two rooms might be very close from a
geometric point of view, but if there is a wall between them, or a door that
can only be used in case of an emergency, they may in fact be very far
apart.

Also, locations are organized within levels of detail (LOD) that structure
the spatial model hierarchically. This is important because not every

application needs to deal with the model on the same level of detail. One
137

application might only need the coordinates of a house, while another
application might need more detailed information, e.g., the layout of the
rooms in the house. Figure 6.2 illustrates this. On every Location, it is
possible to generalize (get the equivalent Location on a lower LOD) or
specialize (get the gateway Location on a higher LOD). For example,
generalizing the kitchen would yield the first floor, specializing the first

floor could yield the staircase.

LOD:
House Smart Home House

Street LeveI'-O<—>Q<—>O
Basement First E Floor Second Floor
House Level

A
Kitchen Stair¥ case Living Room
Floor Level

O Location
<€) LOD connection

- Relation between two
locations, here: “next to”

Figure 6.2: Levels of detail in the AHSS spatial model

6.4.2. System architecture

If multiple applications are concurrently using the same spatial model, the
model has to be kept consistent among those applications. The AHSS uses
a centralized approach to accomplish this - the Spatial Server, that stores
the current spatial model (see Figure 6.3). This centralization allows us to
keep the architecture of the system relatively simple. However, it should
be noted that a centralized design is not required by our spatial model.
Sharing and consistency of our model could also be provided by a

distributed infrastructure.
138

The spatial server has to store a potentially large amount of information
that has a spatial component in a persistent way. Instead of implementing
a proprietary data storage, we rely on a database system. As we have seen
in section 6.2.3, the information we are dealing with is structured by space.
Therefore, the AHSS spatial server uses a spatially-enabled database. This
allows us to model the spatial components of our data much more
naturally. It also improves query performance because many spatial
databases support spatial indexing. There is a variety of commercial
spatially-enabled databases available (e.g., IBM's Spatial Extender for DB2
or Oracle Locator), but those products tend to have a large footprint and
are generally expensive. We decided to use the open source database

PostGIS [PostGIS], a spatially enabled version of PostgreSQL.

Java application
AHSS client library
RMI-IIOP CORBA

IIOP IIOP
\l/ \|/
AHSS Spatial Server
SQL
Spatially enabled Database]

C++ application

N/

Figure 6.3: Architecture of the AHSS

The communication between the spatial server and its clients utilizes IIOP.
This allows Java clients the access via RMI/IIOP, while other clients, e.g.,
written in C++, can use CORBA. Using RMI-IIOP callbacks, the
infrastructure also offers an event concept. Applications can define events
on locations in the spatial model. Other applications can then subscribe to

those events, and get notified when the events are triggered.

139

6.4.3. Experiences

The Aware Home Spatial Service provides a simple infrastructure to
model context information that is structured along the dimension of space.
It allows us to store spatial information in a central infrastructure and to
reuse it across multiple applications. Applications can exchange
information through the spatial model and they can notify each other
using events.

As shown in Table 6.1 AHSS meets our requirements as they were
introduced in Section 6.2.

Requirements
Requirement Realization

Information |Support for location and identity as indexes - allows queries for stationary and
Model mobile objects based on the spatial layout of the smart home.

The spatial layout of the AHSS allows the calculation of spatial relations, e.g.,
the distance between two objects. Querying and updating of information is
supported by the database.

Information
Access

The centralized architecture of the AHSS provides a consistent view on the

Consistency modeled information.

Since applications only rely on the information stored in the AHSS the
information source, e.g., a sensor device or a fusion of sensor data, as provided
by the Context Toolkit [SDA99], is shielded from the information consumer.
Resource discovery is automatically provided by processing queries on the
database which is constantly updated.

Abstraction from
Resources

Applications sharing information stored in the AHSS rely on the same
Interoperability |information model and thus become interoperable. However, the AHSS does
not define any interoperability protocol between applications themselves.

Table 6.1: Requirements

Although all of our requirements are met, there are some issues worth
noting. The AHSS does not rely on an explicit model of the context
information that is managed. Different instances of an AHSS, as they can
occur in different administrative settings, will therefore not automatically
become interoperable. Hence, the interoperability of application gets
restricted to a distinct information model of the underlying AHSS.

However, the AHSS is a suitable platform for local context management.
In the next section we discuss a global context management architecture.

A common context model allows the integration of different local context

140

models into a federated, global context management platform. In Section 6

we show how AHSS can be integrated into such a global context model.

6.5. Nexus - A global architecture

If we want to extend the scope of interoperable, context-aware
applications beyond a closed environment like a single home, we need a
common context model that is suitable for a wide range of context-aware
applications. To achieve this goal, we need to address two major
challenges: modeling standards (how can A understand what B models)
and infrastructure (how can such a huge model be managed efficiently).
Since no single person or corporation will model the entire world in detail,
our approach in the Nexus project at the University of Stuttgart is to
investigate how context-aware applications can be supported by the
federation of local context models. Hence, the infrastructure should allow
for the integration of context models from different providers.

The federation of different context models from a variety of providers
requires a common information model which states the type and structure
of information objects as well as the access to the objects, i.e., a unified
model of object identities and the location model.

For the Nexus platform, the information model is called Augmented
World Model. The Augmented World Model is a global object-based
ontology that defines how context information can be shared between
applications and data providers. It contains real world objects like rooms,
sensors, streets or persons as well as virtual objects like Virtual
Information Towers (VIT) [LKR99] or virtual Post-Its [Pas97] that are used
to represent digital information in the world. The Augmented World
Model is not stored explicitly. Instead, it is a federated, global view on all
compliant local context models. Those local models are called augmented
areas (AA) (see Figure 6.4). An AA has a certain extent that describes the

geographical area in which its objects reside. There is no restriction on the
141

size or the number of objects an AA can host. AAs can overlap or model
the same real world entity. The Augmented World Model is the federated,
global view on all Augmented Areas. An application does not need to
know from which AA the context information comes, and it can use data
that is combined from different AAs. This federation is only possible
because the AAs rely on a common data schema called the Standard Class

Schema (SCS).

b 3

Augmented Area 3:
A (smart) house with
smart things, people
and one home VIT

Augmented Area 2:
Sightseeing Points and VITs

Augmented Area 1:
Buildings and Streets

Figure 6.4: Augmented Areas

The SCS defines the types and attributes of objects of the Augmented
World. These are ordered in a hierarchical "is-a" relationship (inheritance).
In Figure 6.5, you can see an excerpt from the top levels of the SCS:
dataobject is the root that defines a unique object identifier and locator for
each object called the Nexus Object Locator (NOL). Objects of the type
spatialobject all have a geographical position and optionally an extent.
Because the spatial context is our primary index and therefore is crucial to
performance, we distinguish between static and mobile objects.

While static objects seldom change their location and therefore can be
managed in a single AA, mobile objects move around and cross the
borders of AAs which leads to handovers. In total, the SCS defines about
250 classes or types for context-aware data objects. We have designed that
model by doing a use case analysis on different applications [NM01]. An
AA provides the attribute, the type and the meaning of the attributes of its
objects.

142

NexusDataObject

ZY
I I
WebsituatedObiject .ee SpatialObject
y N >
| | | I
Application | ., .| VIT StaticObject MobileObject
- T
I | I
Sensor BuildingElement eee | Area Person |, ..
= i
| I
Room |, ., .| Building NetworkCell |, . .

Figure 6.5: Excerpt from the top part of the Standard Class Schema

To provide extensibility, any data provider can define an Extended Class
Schema (ECS). The classes of the ECS are derived from appropriate classes
of the SCS. For example, if somebody wants to integrate LivingRoom
objects into an AA, then she can extend the SCS type Room with the
necessary additional attributes (see Figure 6.6). An advanced LivingRoom
application can now access this information, whereas normal applications

knowing only the SCS could treat the object as its parent class Room.

Standard Class Schema

;l I;l Room

g ﬁ ggls:: r\I!‘gé_ition
A

Exténded Class #chema 1 Other Extended
' Class Schemas

LivingRoom ; |
g@ maincolor: String

Figure 6.6: Standard and extended class schema

143

6.5.1. Platform architecture

Model
Server

Server
Server

appl|cat|_on % Application A Application B
tier §] .
N query notification
¥
§ Nexus Node [.
. B \ Service
federation § Area / Nexus Nexus
tier § Service Query Navigation Event Node Node
§ Register Service Siwce
N register notification
service % .| Spatial | fx—=.... Spatial
ier & Spatial Model
fer \ Model P
RS
N\

Figure 6.7: Architecture of the Nexus platform

As we have seen, a global context model like the Augmented World
Model is feasible if independent providers can build their local models
based on a flexible standard and make them available to a federation that
integrates all local models into a global view. Now we will describe an
open infrastructure that is able to manage the Nexus Augmented World
Model. As depicted in Figure 6.7, the Nexus Platform is built in three tiers:
the service tier contains data and service providers for Augmented Area
models. The federation tier integrates the AAs and supports value added
services on the Augmented World Model. Applications are located in the

application tier and use the services of the federation.

6.5.2. Spatial model servers

Spatial Model Servers (SpaSes) host Augmented Areas. Obijects are
modeled in AWML (Augmented World Modeling Language) and queried
using a simple spatial query language called AWQL (Augmented World

Query Language), which is used to specify the objects of interest and to

144

filter the attributes. AWQL supports spatial predicates (overlaps, inside)
and nearest neighbor queries as well as data manipulation (insert, update,
delete). AWML and AWQL are both XML languages. Note that AWQL is
not an XML query language like XQuery - AWQL is suitable for spatial
objects, not for hierarchical XML documents.

Depending on what kind of context information a SpaSe provides, the
implementation of the spatial server which processes the AWQL/AWML
can differ to a large degree. For static objects and large-scale spatial
models, we use a full-grown database with a spatial extension (IBM DB2
7.1 + Spatial Extender). AWQL can be easily transformed to SQL by an
XSLT style sheet. Mobile objects are managed by the Location Service
[LRO2]. Because position data is highly dynamic and does not need to be
persistent, main memory data structures are better suited for this task. The
Location Service consists of hierarchically structured servers that manage
objects within a certain area. When the object moves out of this area,

handovers are performed.

6.5.3. Nexus nodes

The Nexus nodes in Figure 6.7 mediate between Nexus applications and
Nexus services. They are responsible for distributing queries to different
data providers and for composing the results, thus providing the
Augmented World Model for the applications. The nodes do not store
persistent data, a fact that allows replicating them for load balancing.

For query distribution and service discovery, a Nexus node uses the Area
Service Register (ASR). This service is a directory of the available
augmented areas and stores the address of the server, the available object
types and the extent to the AA. The Nexus node computes the targeted
region and the object types of the application query and queries the ASR

to find out which Spatial Model Servers cover the requested region and

145

store objects of the requested types. Then the node distributes the query to
the relevant data providers named by the ASR and merges their results.

More details about the federation tier can be found in [NGS+01].

6.5.4. Value added services

In addition to the query functionality, every Nexus node supports value-
added services. They use the federated context model to implement
advanced services and have their own interface. In Figure 6.7, you can see
three different value-added services of the Nexus platform: the event
service monitors spatial events, combining basic events into more complex
events. This allows the processing of spatial predicates, such as "two of my
friends meet". The map service provides maps based on a selected area
and the navigation service provides a navigation route from a starting

point to an endpoint.

6.6. The NexusScout application

In this section we briefly describe NexusScout, a location-based
application that runs on the Nexus platform. It is based on the Virtual
Information Tower application [LKR99]. We have added several advanced
functionalities that show the power of the platform and are useful for
mobile, context-aware applications. NexusScout runs on a notebook and
we have also just ported it to a PDA. It uses WLAN for wireless
communication. Outdoor positioning is done via GPS, while indoor
positioning uses infrared beacons.

The NexusScout provides maps to users showing their position. Virtual
Information Towers (VIT) provide information (web pages) that is
relevant at the given location. Based on the Nexus Augmented World
Model nearest-neighbor queries for objects, e.g., restaurants, are possible.

The integration of the navigation and map services allows to use the

146

Neuxs as navigation system as well as register spatial predicates, e.g.,

"notify me when my colleague enters the building".

Z neXus Scout - The Application Yersion 0.9 - Microsoft Internet Explorer == =]
J Datei Bearbeiten Ansicht Favorten Extras 7 ﬁ
| «ruick - = - @ [2] @ | Bsuchen [EFavoriten (Hverout | By &b]

JAdresse I@ CiiDevelop\neXus|configuration|webserver\webbaseinexusscoutiMainFrame, hkml j @Wechse\n 2u H Lirks >

File Settings Bookmarks Location Service Help

MyPostion Direction
60 | [erez495N, 047436251926 [~ 3| [Autoposttioning Select Sensor: [Mone — =
I\Jﬁwnaﬂir\nl | Frdnesrest | verts | Foster | actveroster| LsPoster | Map | secuy |
Local Search Objects |
I Zoom In J Zootn Out o] =] | C =send Gealiessage
Meme | Dist v | Dae | L T g

-- U University of Stuttgart
U Bushattestelle Katharinenhospital

e

Eeas S

D' g,._ oo X2 il

~ T Bustllestelle Hat g
g
Un!y_'_e%ny of Stunga&

-y Martin Matihigs

Sensor:
‘@ Applet de.uni_stuttgark.nexus. client.nexusScout, view, applets Mapapplet started ’7 ,7 |@‘ Arbeitsplatz
Hhstart| | [@ 153 || Disanben... | Fjsstd-voi..| Cacipevslo.. |[Enexus se... Funbenan... [0 o [RUEEETEC MZOE w0

Figure 6.8: Screenshot of the NexuScout

6.7. AHSS in Nexus

As we have seen in Section 6.4.3, a local context model like AHSS is
suitable for small- to mid-size home environments, where flexibility is
very important to quickly develop and evaluate prototype applications,
and where developers can easily interact and agree on the modeling.
However, if we have applications for which the context is to be shared
over larger areas and possibly multiple administrative domains, e.g.,
multiple aware homes, the AHSS is no longer sufficient, as it does not
provide the necessary scalability and agreements between developers on
how the world should be modeled. Our approach to mitigate this problem

is to integrate AHSS into our Augmented World Model.

147

6.7.1. Conceptual integration

We decided to integrate AHSS into Nexus as a spatial server. This way, an
area which is served by AHSS appears to be an Augmented Area to the
Nexus federation. The major challenge is to integrate the concepts of
Nexus and AHSS. The integration does not have to be complete: While
AHSS needs to support all the concepts of Nexus in order to function as
part of a Nexus federation, the reverse is not necessary. In our approach,
we map Nexus objects to AHSS Locations. Basic attributes of Nexus
attributes like the object id and the type are mapped to their AHSS
counterparts. Nexus attributes that have no standardized AHSS
counterpart are mapped to extended AHSS attributes. We are now going
to describe the changes we have made to AHSS in order to integrate it into

Nexus.

6.7.2. Technical integration

To work as part of a federation, the AHSS spatial server has to perform
several tasks. First, it needs to register with the Nexus Area Service
Register to give the federation the information it needs to dispatch the
queries. It has to specify which area the spatial server covers, and which
Nexus object types it provides. The Nexus federation queries the spatial
servers by using AWQL. Thus we had to implement an AWQL interface to
Nexus which processes the query and update operations against the AHSS
data. Also, the Nexus Federation expects the replies in AWML format.
Therefore the AWQL interface has to map the AHSS Locations to Nexus
objects, and then has to serialize them into AWML. AWQL queries specify
the class schemata the client understands. The replies have to contain only
objects that conform to these class schemata. Also, if a Nexus client queries
e.g., for BuildingElements, objects of descendants of BuildingElement that

match the query have to be returned. So it is necessary for AHSS to know

148

the Augmented World Model (AWM), the Standard Class Schema plus
appropriate Extended Class Schemas, which are both modeled in XML.
We have therefore added an AWM interpreter which reads the
appropriate AWM specified in the query. It then handles the AWM
inheritance hierarchy issues of the query and strips the resulting AHSS
Locations of all attributes which are not part of the class schema. If a
Nexus application is interested in getting all the spatial objects with all
their attributes from the infrastructure, it can specify that the results
should conform to the "Generic" class schema. Then all AHSS Location
attributes are returned. Figure 6.9 gives an overview of the necessary

changes to the AHSS architecture.

6.7.3. Experiences

The integration of AHSS into the Nexus federation provides various
advantages. First of all, AHSS becomes part of the Nexus federated world
model. Nexus applications can then use context information that is stored
within the AHSS. This makes it possible to use existing Nexus applications
with the AHSS. For example, the NexusScout can use AHSS without any
modifications. Also, Nexus applications can store their context
information into the AHSS. This information can further enrich the context
model which AHSS applications can access. The local AHSS interfaces are
still available, so local applications can access AHSS either through the
local interfaces or through the Nexus AWQL interface.

This approach makes it possible to use simple, specialized infrastructures
to support local applications, while using the Nexus federation to support
greater scalability needs. The context model of each specialized
infrastructure has to support topographic modeling and has to be flexible

enough to store the attributes which are required by Nexus.

149

_______________________________ e
|

r'e isters P 5
i | Area Service Register g “““ Java application C+-+ application E

. i 1 | AHSS client library
' § RMI-TIOP CORBA ;

. | Nexus Application Ij ; '
i . 1IOP 1I0P g
—{[AWQL interface | AHSS Spatial Server
= die—) sQL

Nexus Spatial
Model Server

1| CS interpreter Spatially enabled Database

Figure 6.9: The extended AHSS architecture

6.8. Conclusion and future work

In this chapter we have shown that shared context models are a suitable
basis for building context-aware applications that operate in the same
environment and rely on the same context information. We have
presented the Aware Home Spatial Service (AHSS) that was designed for
a single smart home environment. For context management on a global
scale, we have developed the Nexus platform that federates different
context models based on a common standard for modeling objects and a
topographic modeling of space. Finally, we have shown how an existing
local spatial model like AHSS can be integrated into the Nexus platform.

The current version of the extensible Nexus standard class schema is only
the first step towards defining a common standard for context models in
general. The integration of further application models currently used in
smart environments will lead to a better understanding of world models
and how to build them. To support further classes of applications we have
to go beyond modeling sensor information as model data and integrate
hardware abstractions and discovery mechanisms into our model, e.g.,
provide access to standardized interfaces for complex actuators and
sensors like cameras. So far the Nexus platform has focused on providing
efficient and scalable access to two dimensional topographical world

models. In the future, we will investigate complex three dimensional

150

models and also full-fledged support for topological models. Federating
different models modeling the same real world objects ensures internal
consistency of the model information. Consistency between the model and
the real world is also an important focus of our future research.

For a more widespread use of world models in smart environments tools
for creating such models have to be developed. Having larger smart
environments allows more useful evaluations in real world situations. We
plan to investigate security, privacy and acceptability issues in such

settings.

151

7 .Middleware and Application Adaptation
Requirements and their Support in Pervasive
Computing

Pervasive computing environments are characterized by an
additional heterogeneity compared to existing computing in-
frastructures. Devices ranging from small embedded systems
to fullfledged computers are connected via spontaneously
formed networks. In this chapter we analyze requirements of
applications and system software to cope with the dynamically
changing execution environment. Based on our microbroker-
based middleware BASE a component framework for pervasive

computing supporting application adaptation is proposed.

7.1. Introduction

In the recent past, middleware platforms have been the target of
researchers in order to provide flexibility with respect to the configuration
of the middleware itself. Requirements on such reconfigurable
middleware systems arose mainly from the domain of Quality of Service
(QoS) management. Different application requirements on non-functional
aspects, such as QoS, lead to mechanisms of the middleware to ensure a
distinct QoS property.

The vision of ubiquitous or pervasive computing adds new complexity.
Our everyday environment becomes populated with smart everyday
items. That is, processors are integrated into the environment and allow to
access information related to the real world as well as to control distinct
functionality. The end systems in such scenarios are far more
heterogeneous than in classical computing environments. Sensors will
only need limited computing and communication capabilities and other

devices will be dedicated to a single purpose, i.e., a presentation system in

152

a video projector might contain a fullfledged computer but its software is
specialized for presentation management. Besides the involved devices,
the communication technology will differ as well, ranging from infrared
connections over radio links to computers connected via static links. The
resulting network topologies will frequently change due to user and
device mobility. Information and services available are bound to the
location of the device, e.g., temperature information or a presentation
system of a far away place are typically less interesting than those
available nearby.

As a result, the requirements on adaptation and configuration of the
underlying middleware as well as those from the applications change
compared to those requirements already present in classical middleware
systems. In this chapter we will present an example scenario, derive and
motivate requirements on middleware configuration support and
application adaptation. Our approach to support these requirements via a
microbroker based middleware — BASE — and a component model based
on an application framework is then presented. After a discussion of
related work the chapter closes with a summary and outlook on future

work.

7.2. System model

This section will first present a pervasive computing scenario and two

possible applications before the system model is defined.

7.2.1. Scenario

Let us consider a scenario as it is common in the envisioned pervasive
computing systems. Present in such a scenario are embedded and
specialized devices, e.g., sensors providing information about
temperature, position of users or specialized systems, such as the before

mentioned presentation system. All these devices are equipped with

153

wireless communication. Along with these stationary devices, mobile
devices which are typically carried by users are present. Such devices
could be handheld devices, such as personal digital assistants (PDAs) or
cell phones, but in the future there might be smart clothes as well. The
computing environments of today will not vanish or be substituted by
these devices but complement such systems. In order to motivate the use
of such environments to applications two possible applications are
sketched:

Support of senior citizens: in order to support the life of the elderly in
their home, their body functions and positions might be captured and
evaluated at a designated home server. If a change in the health condition
occurs, information how to behave is presented through audio or video
devices in the room where the person currently is located. In serious
health conditions an ambulance is called and provided with the health
status of the person.

Office support: the status of rooms and objects could be monitored by
sensors and propagated into the vicinity. Users nearby are thus provided
with environmental information as well as vacancies of meeting rooms etc.
Additionally, locally available services become accessible when a user is
nearby, e.g., a presentation system is only of use, when the user is in the

same room to make use of its output.

Before we will derive requirements from these scenarios the underlying

system model will be presented.

7.2.2. System Model

Pervasive computing environments can be classified by the involved
devices and the network characteristics. Furthermore, applications depend
on the abstractions provided by the underlying operating system or

middleware — which is referred to as system software. We will briefly

154

sketch the characteristics of these three topics in the remainder of this
subsection.

7.2.2.1. Devices.
As stated above, devices range from sensors over specialized systems to
full fledged computers and mobile devices. Besides their processing and
storage properties — which may differ widely — devices provide different
capabilities which can be used by applications running on these devices.
Examples are sensors, e.g., temperature as well as positioning, display or
input capabilities, or some controlling capability, such as dimming the
light or adjusting the blind of a window.
The availability of a device capability might be restricted in space and
time. A GPS sensor is not likely to work within a building and at night
sensors based on daylight will stop operating.

7.2.2.2. Network.
The wireless connections between the devices differ with respect to the
underlying technology and their characteristics. The most profound
difference to classical computing environments is the spontaneous nature
of such networks, which are formed by nodes which are temporarily in
each others communication range. Obstacles, user mobility, and power
saving are common events which lead to a reconfiguration of a
spontaneous network.
As a result, services located on a device that is not in the current
spontaneous network of a client, are not available. This prevents the usage
of centralized lookup or trading services. During the interaction with a
service, the device providing the service might leave the network. Since
devices can be equipped with different network interfaces, spontaneous
networks will overlap, i.e., some devices might be reachable via more than

one network interface at a time.

155

7.2.2.3. System software.

The support of system software clearly may differ widely. Specialized
operating systems for embedded devices, common operating systems with
middleware support, or completely proprietary solutions are present.
From an application point of view, the abstractions how to interact with
remote services — a typical middleware responsibility — and how to access
device capabilities, which is an operating system task, are important in
order to be comprehensive and yet easy to use.

Another relevant issue in distributed systems in general is interoperability
which is typically achieved by relying on interoperability protocols.
Interoperability protocols reflect the communication model of the
application as it is supported by a middleware. Remote method
invocations are reflected by request/response messages while events can
be realized by oneway messages containing the event. Requirements on
the underlying transport, such as an error-free connection-oriented
channel, lead to a restricted usage if only oneway communication — via an

optical link, or connection-less communication - is available.

7.3. Requirements

In this section we will derive requirements on the adaptation of
applications and its support by system software and component models.

Applications are considered to be executed in a distributed way.
Standalone applications could require adaptation support as well, e.g.,
when a device capability becomes unavailable (a GPS sensor indoor), but
these kinds of adaptation requirements are a subset of the more general

ones of distributed applications.

7.3.1. Application adaptation requirements
Applications in a spontaneous networking environment have to cope
with:

156

Changing service and device capability availability: With devices
becoming available their services should be used by an application. As
well, if a service becomes unavailable, an alternative service should be
selected. This will only work, if applications are composed of services with
clear dependencies. If alternative levels of an application are defined
which require different services the application can continue as long as at
least on set of services is available. Clearly, this cannot be supported by
the middleware alone but requires an appropriate framework for
applications. The same mechanisms can be used to address fluctuating
sensor availability on a device.

Different abstractions for programming of device -capabilities:
Middleware and operating system abstractions for remote services and
device capabilities are typically different, e.g., proxy objects vs. system
calls. This hardens adaptation, since the switch of a local to a remote

device capability cannot be done with the same programming interface.

7.3.2. System software adaptation requirements

System software in a spontaneous networking environment has to
support:

Device lookup and service discovery for spontaneous networks: The
device lookup depends on the underlying network characteristics and
thus requires distinct lookup mechanisms for each supported network
interface. Additionally, services might require distinct interoperability
protocols which also depend on the network interface and hence the
service lookup will have to take this into account. The detection of lost
devices and thus the unavailability of all services in use on that devices
have to be signalled to the application or an application framework.
Flexible protocol support and selection: If a network interface looses its

connection to another device, communication should be upheld if other

157

network interfaces can provide a communication channel. Switching
between different interoperability protocols over networks with different
characteristics however requires adaptation if the underlying transport
does not fullfil requirements of the interoperability protocol, e.g., IIOP
requires connection-oriented error-free/signalling communication.
Decoupling of application communication model and interoperability
communication model: In order to allow different communication links
for outgoing and incoming messages, the application communication
model, e.g, RPC or events, should be kept independent from the
communication model of the possible interoperability protocols. For
example this allows communication over infrared via sending out a
request as an event and receiving the reply as a reply message over an
RPC interoperability protocol based on TCP and IEEE 802.11.

Uniform abstraction for device capabilities and services: This allows
applications to access remote capabilities in the same way as local ones.
Moreover, a uniform abstraction to access services and device capabilities
allows to mask the heterogeneity of devices.

Flexible integration of adaptation mechanisms: Since different
application requirements will need support through mechanisms, e.g., to
migrate a component to a remote host to increase the application
performance or to migrate it to the local node in order to save energy,
different mechanisms should be easily integrated, configured, and used
either directly by an application above the system software or by an
application framework.

A system software offering the above mentioned support is not sufficient
to help application programmers to conquer the heterogeneity and
dynamics of pervasive computing environments. Instead of programming
towards middleware mechanisms and selecting distinct mechanisms

manually, application programmers should rely on high level policies

158

which will result in combinations of mechanisms of the system software.
Examples for such policies are 'EnergySaving’, leading to fostering local
execution of application components and restricting radio communication
that is costly in terms of energy, or 'IncreasingAvailability’, which would
make extensive use of remote services in order to allow the application
execution — as a tradeoff to energy.

What is needed in addition to a middleware supporting the requirements
stated above is an application framework that will provide benign
abstractions for choosing appropriate adaptation policies. In order to
support such a framework, we have developed a microbroker-based
middleware, BASE [BSG+03], which meets these requirements. Currently
we are developing a component system based on BASE which will allow
the specification of component dependencies.

In the following we will sketch the design of BASE and the component

system, which we are currently developing.

7.4. BASE a Microbroker based Middleware

Our middleware BASE is intended to be a minimal platform suitable for
small embedded systems but extensible to make use of abstractions
available on resource-rich environments. BASE provides application
programmers with suitable abstractions to conquer the heterogeneity in
pervasive computing environments. Another objective of BASE is to form
a foundation for an adaptation supporting component framework. We
will briefly sketch the overall architecture of BASE. More detailed
information is available in [BSG+03].

The major design decision in BASE was to choose a microbroker design.
Device capabilities as well as local and remote services are uniformly
accessible via invocation objects, which carry the target object, method-
name, parameters, and a service context indication special handling of the

invocation, such as QoS parameters. The microbroker takes incoming
159

invocations and dispatches them to either a local service via a skeleton, a
remote service via a transport module which connects the local and
remote device, or to a device-local device capability. Hence, remote device
capabilities can be accessed as services as well.

Invocation objects can be created manually or - if a service provides a stub
object — through a proxy (stub object) as conventional middleware systems
typically provide. The microbroker is responsible for synchronizing the
caller and issue invocations and receive possible replies as well as an
invocation. This allows the application to choose different communication
models, such as remote procedure calls (RPC), deferred synchronous
RPCs, or events via stub objects. Furthermore, the utilization of different
interoperability protocols becomes possible. Interoperability protocols
typically reflect the applications communication model. However, since
the microbroker maps the application communication model to an
exchange of invocation objects, different protocols can be used as long as
they accept an invocation object and transfer it. Using the same
interoperability protocol for outgoing and incoming invocations is not
necessary, since the microbroker keeps track of expected responses
(modelled as incovations as well). A scenario where a node uses two
communication technologies for the outgoing request and the incoming
reply is depicted in Figure 7.1.

BASE allows the integration of transport plugins during runtime. The
dynamic invocation creation along with local service registries provide a
simple reflection mechanism.

The BASE prototype has been implemented in Java, making it suitable for
a variety of Java-enabled embedded systems, e.g., mobile phones or the
TINIBoard. A minimal configuration of BASE requires 130 KBytes of
memory. Due to buffer usage this can increase to a maximum of about 400

KBytes. Still, this makes BASE suitable for many small embedded Java-

160

based systems. The extensibility of the microbroker allows the integration

of features available on resource-rich computing environments.

7.5. PCOM

The functionality provided by BASE offers a basic abstraction to ease
application development. Still, additional mechanisms on top of BASE are
needed to enable the automatic adaptation of applications during runtime
in order to react to the changing availability of services or device
capabilities according to the current application execution policy, e.g., to

minimize the energy usage or to maximize the dependability of an

application.
request:
application application
object object
y = ~ A
KBASE micro-broker BASE m’cro—broker/‘
L.\ r
~ly A=
Transport % > Transport Transport
A Plug-ln A Plug-ln B Plug-In
response:
application application
object object
A= ~y
? BASE micro-broker BASE micro-broker ¢
A= ~y
Transport Transport Transport Transport
B Plug-ln A Plug-In A Plug-In B Plug-In

Figure 7.1. Request/response interaction in BASE

To achieve this, we propose an application model based on a component
system (named PCOM). The application model specifies the architectural
building blocks (modeled by components) and their interdependencies
(modeled by contracts between components). At runtime, this
specification is mapped to a concrete set of component instances where all
mandatory contracts are fulfilled. Hence, PCOMcomponents offer a
distinct functionality via contractually specified interfaces (following the
definition of [Szy98]). The functional properties of the contract are
modelled in the interface itself whereas additional properties, e.g.,
dependency on another component, QoS requirements, or behavioral
contracts via preand postconditions, are explicitly modelled as contract
types. This concept has been proposed in the realm of traditional
component systems, e.g., [BJP+99, WBG+01]. Contract types are templates
for contract instances as well as the components are templates for
component instances. When components are instantiated, contract types
are mapped to concrete contracts which either offer the desired property,
e.g., negotiate a distinct QoS property or bind to another component, or
indicate a contract violation. An application is modelled via a special
component (the so-called application anchor) which specifies the set of
necessary subcomponents. These components depend on each other

according to the specified contract types.

L <ene olicy>
application g 7 S
healt_h _ anchor "= - %7 presentation
monitoring system -
\ / application logic .

AR

size & resolution

Figure 6.2. Health monitoring application in PCOM.

162

A simplified example for this is given in Figure 6.2. Here, a health
monitoring application is shown, which outputs information and advices
whenever a suitable display is in the vicinity. This application is formed
by its application anchor and three subcomponent instances:

The health monitoring component is used to retrieve sensor information
such as blood pressure, pulse, etc.

The presentation system component is responsible for presenting advices for
certain health conditions, e.g., to calm down, take a distinct kind of
medicine, on a display nearby.

The application logic component depends on these two components. It
receives sensor information from the health monitoring component and
derives advices, which it sends to the presentation system component. For
simplicity, only the dependency between the application logic and the
presentation component is shown. It is modelled as a contract which
requires distinct size and resolution of the presentation system.
Additionally, a policy regarding energy consumption is shown, which is
assigned to the application.

The application specification has to be mapped to instances on devices
which realize the components. The different components are mapped to
specific services residing on potentially different devices. Contracts
between components have to be negotiated when a binding is established.
For an example, before using or acquiring the display component a
negotiation ensures that the resolution and size fullfil the contract.

The policy specifying the energy consumption is taken into account by the
underlying framework when tasks that need a lot of energy, e.g,
performing calculations or accessing remote components, are executed.
The policies lead to configurations of the underlying BASE which will

enforce them, e.g., in selecting the transport requiring the least energy.

163

The mapping of application policies, the contracts, and the binding of
components deployed across different devices shall be provided by the
framework. Currently, we have implemented BASE and designed the
above sketched application model. Our next steps involve the design of
the underlying framework as well as the mapping of contracts and
policies to the services and mechanisms provided by BASE.

The overall framework will allow adaptation of applications by activating
those applications where the application anchor contract is satisfied. That
is, all dependencies of the applications can be fullfilled according to the
application policies and contracts involved. Adaptation is supported by
the mechanisms of the underlying middleware and the selection of
alternative contracts. The execution context of an application is
determined by the services available on nearby devices and the associated

component instances from the application specification.

7.6. Related Work

7.6.1. Middleware Systems

In the past, a multitude of different middleware systems has been
developed (e.g., [OMG02a, SunRMI]) shielding application programmers
not only from distribution of services but also different operating systems
or hardware architectures. Conventional middleware systems are
designed for mostly stable environments, in which service unavailability
can be treated as an error, making these systems unsuitable for
spontaneous networking environments.

The latter can be achieved by extending conventional middleware systems
to dynamically reconfigurable middleware systems (e.g., [BG00, BCR+00,
RKCO01]), which are able to adapt their behavior at runtime, e.g., how

marshalling is done. Still, most existing reconfigurable middleware

164

systems concentrate on powerful reconfiguration interfaces and not on
supporting small, resource-poor devices.

The resource restrictions of such devices prohibit the application of a full-
fledged middleware system. One way to address this is to restrict existing
systems and provide only a functional subset (e.g., [OMG02b, RSC+99])
leading to different programming models or a subset of available
interoperability protocols. Another option is to structure the middleware
in multiple components, such that unnecessary functionality can be
excluded from the middleware dynamically. One example is the
Universally Interoperable Core (UIC) [RKCO01]. Like BASE, UIC is based
on a microkernel that can be dynamically extended to interact with
different existing middleware solutions. @ However, different
communication models or different protocols for outgoing and incoming

messages are not supported.

7.6.2. Component Systems and Pervasive
Computing

Component systems strive for independence of software components from
underlying platform properties in order to allow their reuse. One way to
achieve this is to model explicit context dependencies, e.g., via contracts
between components or contracts between the component container, such
as in J2EE [Sun]J2EE]. Typically, the inter-component contracts can be
negotiated and various solutions exist, to ease the integration into the
application framework, such as the aspect-oriented programming
paradigm [BG00, BAO1]. While such approaches can be appropriately used
to handle the inter-component contracts the component container contract
typically relies on a fixed common abstraction, making it unfeasible for
pervasive computing environments where the container contract can

change.

165

In the realm of ubiquitous computing the first approaches for component
based systems are emerging. While Pebbles [Oxygen] is at a stage where it
is hard to judge which requirements will be met, the Aura project
[CGS+02] proposes a component framework similar to ours. The resource
dependency of the Aura system is not addressed by the underlying
middleware but by hand tailored resource monitors. Hence, only a
comprehensive support of adaptation at the application layer, not on the
middleware layer, is intended. Similar to Aura, One.world [GAB+00] and
the Gaia system [RCOO] shift the complexity of applicication adaptation to
the programmer. Support of the underlying middleware is only provided

with respect to communication issues.

7.7. Conclusion and Outlook

Pervasive computing environments differ from existing ones in the
increasing heterogeneity of devices and networks. The spontaneous
networking leads to situations, which are treated as errors in classical
computing, but require distinct precautions since they can happen
regularly. Based on typical scenarios we have derived a system model for
pervasive computing and the support from system software and
application adaptation. We have presented an extensible middleware
platform which already provides basic abstractions to ease application
development. The automatic adaptation of applications should be
supported by a component model based on a framework. The basic
abstractions of our middleware BASE can be used to build a framework
for a component model. A contract concept is not only used to specity
required properties for component interaction but also to indicate
application configurations leading to a component-based application
model. Adaptation of application is reduced to validating required
contracts and activating applications where all contracts are fullfiled.

Contract enforcement and mechanisms to adapt are provided by BASE.
166

Currently, we have designed and implemented BASE. We are building
prototypes for applications using BASE in order to gain experience on
how the framework can support our application model. In the next steps

of our work we will aim at completing the framework.

167

8.BASE - A Micro-broker-based Middleware For

Pervasive Computing

Pervasive computing environments add a multitude of
additional devices to our current computing landscapes.
Specialized embedded systems provide sensor information
about the real world or offer a distinct functionality, e.g.,
presentation on a “smart wall”. Spontaneous networking leads
to constantly changing availability of services. This requires
middleware support to ease application development.
Additionally, we argue that an extensible middleware platform
covering small embedded systems to full-fledged desktop
computers is needed. Such a middleware should provide easy-
to-use abstractions to access remote services and device-specific
capabilities. We present a micro-broker-based approach which
meets these requirements by allowing uniform access to device
capabilities and services through proxies and the integration of
different interoperability protocols. A minimum configuration
of the middleware can be executed on embedded systems.
Resource-rich execution environments are supported by the

extensibility of the middleware.

8.1. Introduction

Existing middleware platforms are characterized by their precautions to
overcome heterogeneity of computer systems with respect to the hardware
platforms and programming languages. However, the computer systems
on which applications are executed are mostly homogeneous according to
their processing and storage capabilities. The vision of ubiquitous or per-
vasive computing [Wei91] creates a world populated not only by

computers as we know them today but also with sensors and smart

“everyday items”. The heterogeneity added by these smart things is
characterized by an additional property: the embedded systems integrated
in the environment are typically tailored to distinct purposes. Hence, not
only processing and storage capabilities differ widely but local device
capabilities, such as different sensor types for temperature, pressure or
positioning, are also device-specific. Communication between the different
end-systems can take place over different kinds of network interfaces,
such as infrared communication or radio links, e.g., Bluetooth or IEEE
802.11, and additionally via different interoperability protocols, such as
IIOP, RM], or simple event-based protocols.

The availability of resources, remote ones as well as local ones, can change
over time, due to network connectivity as well as sensor-specific
properties, e.g., it is unlikely that a GPS-based positioning system will
work indoors.

In order to provide application programmers with support for conquering
the additional complexity in pervasive computing environments, we have
developed a micro-broker-based middleware. Our middleware will serve
as a foundation for applications as well as component systems, hence the
name BASE. Key features of BASE are the uniform access to remote
services and device-specific capabilities, the decoupling of the application
communication model and the underlying interoperability protocols, and
its dynamic extensibility supporting the range of devices from sensors to
full-fledged computers.

The chapter is structured as follows. Next, we will motivate the
requirements for such a middleware and introduce an example scenario.
Existing approaches are classified and discussed in the related work
section before we will sketch the overall design rationale of our approach

BASE. Some implementation details of BASE and an evaluation will be

169

presented before we close the chapter with a conclusion and outlook on

future work.

8.2. Requirements

In order to clarify our system model and derive our requirements, we
want to sketch a small scenario. In a future “pervasive computing world”,
a building, e.g., an office, contains a huge number of highly specialized
and therefore very heterogeneous computing devices. While some of them
are stationary, e.g., placed in a room, others are carried by users, e.g., as
wearable computers. Devices range from small embedded sensors to
classic stand-alone computers. Clearly, the resources and capabilities of
such devices differ widely, due to cost and size restrictions. Note, that the
capabilities of a mobile device can also change dynamically. As an
example, a GPS-sensor will stop functioning when entering a building. To
summarize, a pervasive computing environment consists of a multitude of
heterogeneous devices, both stationary and mobile, with different and
dynamically changing capabilities and specific ways to access them.

One essential device capability is the ability to communicate and interact
with other devices. This is achieved by forming spontaneous networks
with changing members due to the communication range. Following
[KF02] we prefer to use the term "spontaneous’ instead of ‘ad-hoc” as ad-
hoc tends to be restricted to specific lower level functionality like routing.
The network interfaces used are highly heterogeneous ranging from
infrared communication over radio links to wired connections.
Interoperability protocols are tailored to specific requirements as well, e.g.,
a sensor does not need to implement a complex interoperability protocol
but can simply emit its data periodically as events. To summarize, devices
interact by forming spontaneous networks using different network

interfaces and interoperability protocols. Membership in these networks is

170

temporary and network related properties like communication cost and
bandwidth change dynamically.

Distributed applications in this scenario are structured into application
objects, or services, interacting with each other. Services in turn use device
capabilities or further services, which are provided by either the local
device, or by remote interaction with other devices. From the application’s
point of view, one of the main challenges is to use services and capabilities
with changing availability. As we have seen, this is true for local, e.g.,
GPS, as well as remote cases, e.g., due to reachability. In addition, even a
service that is both functional and reachable can become unavailable. Take
for example a presentation system integrated into a video projector. If the
user leaves the room, the presentation system becomes unavailable,
because the user cannot see its output anymore.

Existing middleware platforms typically address portability of
applications via standardized interfaces for remote service interaction,
e.g., via stub and skeleton objects, and interoperability of applications
across different middleware platforms via interoperability protocols. We
derive three additional requirements:

1. Uniform programming interface: while classical middleware
addresses uniform access to remote services the additional heterogeneity
of specialized device capabilities requires similar abstractions, e.g., proxy
objects, in order to access different device capabilites in a uniform way
independent of the underlying platform.

2. Flexible protocol support: the service model of a middleware, e.g.,
remote procedure call or events, is typically reflected in its underlying
interoperability protocol, e.g., using request/response messages or
emitting event messages. The devices and systems in the above-mentioned
scenario would need the integration of a variety of such service models

which are reflected by their correspondent interoperability models. A

171

decoupling of the service model from the interoperability model used by
the middleware can help to bridge these interoperability domains.
Additionally, this allows different communication paths for the incoming
and outgoing messages. As an example think about two devices
communicating via infrared in order to save energy. If the infrared link
breaks due to obstacles or distance and a wireless radio link still exists,
communication can continue. This can be either achieved by providing
one interoperability protocol over different network interfaces or by the
abstraction of different interoperability protocols which allows flexible
usage of existing technologies.

3. Tailorable: To be useable on all kinds of devices found in future
scenarios, the middleware has to be tailorable to the device at hand, a
sensor device as well as a mainframe. The core functionality should be
small enough to be executed on a sensor platform, but easily extensible to

use the capabilities of resource richer devices.

Nowadays middleware platforms already provide high abstractions for
programming distributed systems. Some platforms are already targeted to
the above mentioned scenarios. The next section will discuss related work

before we will present our approach.

8.3. Related Work

8.3.1. Conventional Middleware Systems

Device heterogeneity is not a wunique characteristic of pervasive
computing, but can be found in conventional systems, too. Different
middleware systems like CORBA [OMGO02b], Java RMI [SunRMI] or
DCOM [EE98] have been developed to provide a homogeneous access to
remote entities independent of e.g., operating systems or hardware

architectures. Typically, these middleware systems try to provide as much

172

functionality as possible, which leads to very complex and resource
consuming systems, that are not suitable for small devices. Approaches to
solve this problem exist and are discussed below. Conventional
middleware systems are designed for mostly stable network
environments, in which service unavailability is a rare event and can be

treated as an error.

8.3.2. Dynamically Reconfigurable Middleware

Extending conventional middleware systems to dynamically
reconfigurable middleware systems (e.g., [BG00], [BCA+01], [BCR+00],
[Led99], [RKC99], [RKCO01]) enables such middleware to adapt its
behavior at runtime to different environments and application
requirements, e.g, how marshalling is done. Still, different
communication models or different protocols for outgoing and incoming
messages are typically not supported. As one exception, the Rover toolkit
[JTK97] provides this functionality for its queued RPC (QRPC) concept,
layered on top of different transport protocols. However, Rover only
supports the QRPC and addresses potentially disconnected access to an
infrastructure and not spontaneous networking.

A further difference from BASE is that most existing reconfigurable
middleware systems concentrate on powerful reconfiguration interfaces
and not on supporting small, resource-poor devices. A notable exception

to this is UIC [RKCO01], which is discussed below.

8.3.3. Middleware for Resource-Poor Devices

The resource restrictions on mobile devices prohibit the application of a
full-fledged middleware system. One way to address this is to restrict
existing systems and provide only a functional subset (e.g., [OMGO02a],
[RSC+99], [TAQ]) leading to different programming models or a subset of
available interoperability protocols. Another option is to structure the

173

middleware in multiple components, such that unnecessary functionality
can be excluded from the middleware dynamically. One example is the
Universally Interoperable Core (UIC) [RKCO1]. UIC is based on a micro-
kernel that can be dynamically extended to interact with different existing
middleware solutions. Still, the used protocol stack is determined before
the start of the interaction and cannot be switched between request and

reply as in BASE and abstractions are only provided for remote services.

8.3.4. Middleware for Pervasive Computing

Most pervasive computing middleware systems (e.g., [ACH+01],
[CPW+99], [Mo0z98], [RCO0]) try to establish some kind of integrated,
preinstalled technical infrastructure in a physical area, e.g.,, a room or
building, often called an intelligent environment (IE), in which the user
and his/her mobile devices are integrated on-the-fly when entering the
area. The IE offers a huge variety of different capabilities and middleware
services that can be used, once the device of the user is integrated.

As an example, the goal of the Gaia system [RC00] is to enhance physical
spaces with computers to ActiveSpaces. Gaia provides an infrastructure to
spontaneously connect devices offering or using services registered in
Gaia. To integrate existing systems, like CORBA, interaction between
application objects is done via the Unified Object Bus [RC01], which is
layered on top of these systems. As essential system services, such as
discovery and lookup, are provided by the Gaia infrastructure, mobile
devices cannot cooperate autonomously without the infrastructure.

In contrast to this, we aim at supporting the cooperation of nearby
devices, i.e., using only temporarily available hardware and software
capabilities of nearby devices, independent of the presence of an external
infrastructure. An infrastructure, such as an IE, may be included into a

spontaneous network as temporarily available services, but the other way

174

round - without the infrastructure - spontaneous networking requires

additional support.

8.4. BASE

Before we describe the architecture and implementation of BASE, we first

want to motivate our design rationale.

8.4.1. Design Rationale

One key idea behind BASE is the uniform abstraction of services as well as
device capabilities via proxies as the application programming interface.
Consequently, the middleware delivers requests to either device services
in the middleware or transport protocols. Allowing different
communication models with respect to the transactional pattern
(request/response, event, synchronous, asynchronous, etc.) results in the
middleware to provide the synchronization independent of the under-
lying protocols. Our approach is inspired by micro-kernels as they were
introduced into the realm of operating systems (e.g., [RJO+89], [TKR+91])
and had some first applications in the middleware area as well (e.g.,
[PRO0], [RKCO1]). Only minimal functionality, i.e. accepting and
dispatching requests (so-called invocations), is located in the micro-broker.
Interoperability protocols as well as object lifecycle management can be
added as additional services, realized as plug-ins.

The micro-broker accepts requests represented as so-called invocation
objects. In the following, we will refer to the invocation object when
talking about an invocation. An invocation is composed of a source and a
target address, an operation with parameters, and additional information
concerning the handling of the invocation. The micro-broker dispatches
the invocation to either a local service, a local device capability or a
transport plug-in, which transports the invocation to a remote micro-

broker. Transports which receive an invocation or a reply to a previous

175

invocation — also represented by an invocation — submit them to the micro-
broker to initiate the dispatching to the corresponding local service or
device capability. Invocations can be either generated by proxies,
representing a service or a device capability, or manually by the
application programmer, e.g., like the request object in the dynamic
invocation interface in CORBA [OMGO02b]. Figure 8.1 depicts the micro-
broker in a typical setting, where invocations are dispatched to (a) device
capabilities and (b) transport plug-ins for the remote processing on other
nodes. Remote service interaction follows the same pattern and is depicted
in Figure 8.4.

Let us briefly argue why we have chosen this approach. Clearly, the
requirement for uniform access of device capabilities as well as remote

services can be easily established by our approach.

application application
object object
M M
BASE micro-broker BASE micro-broker BASE micro-broker

™

GRS |
Plug-In

™ M

Transport Transport GPS
Plug-In Plug-In Plug-In
receiver receiver

(a) accessing a local device capability (b) accessing a remote device capability
Figure 8.1: Local and remote capability usage.

The micro-broker allows the flexible integration of new transport plug-ins
and device capabilities by simply registering a new entity which accepts
an invocation. This allows to provide access to all features available on
resource-rich computer systems. The minimal functionality of the micro-
broker itself allows the deployment of the middleware on resource-poor
devices as well. To sum up, the uniform programming abstraction is
provided by the service abstraction for remote service access and device

capabilities. Together with the extensibility of the micro-broker this fullfils

176

the first and third requirement that we have identified. The micro-broker
allows in- and out-going messages over different transport protocols that
can be dynamically loaded and configured through the invocation
abstraction, which satisfies the second requirement. Although our
implementation does not rely on reflection, the dynamic composable
invocations along with the service registries provide means for reflection
about services registered with the middleware.

The prototype of BASE is implemented in Java but relies only on features
available in the Java Microedition. This allows the deployment on small
Java-based embedded systems (e.g., [LooO1l]) or specialized Java
processors (e.g., [JStamp]). The proliferation of end-systems besides
classical computers capable of executing Java, such as cell-phones or
PDAs, and the aforementioned embedded systems make Java a suitable
starting point providing a uniform abstraction for our middleware.

The benefit of our micro-broker approach compared to existing
middleware platforms is the minimal footprint needed for a basic
configuration which qualifies it for small embedded systems as well as the
extensibility providing the means to use features of more sophisticated
computers. The configurability that reflective middleware typically
provides is also supported by BASE. A major difference to existing
middleware platforms is the support of different communication models,
such as RPC or events with different synchronization semantics, by the
micro-broker, which allows these communication models over a variety of
different interoperability protocols. Typically, the main communication
model of a middleware is reflected in its interoperability protocols, e.g.,
CORBA'’s IIOP reflects the RPC by request/response messages. The BASE
micro-broker only requires a transport plug-in to marshal and send an
invocation. If responses are expected they may be received by any other

transport plug-in.

177

8.4.2. BASE Architecture

Figure 8.2 depicts the overall architecture of BASE. Four layers are
involved. The micro-broker is the central part of the system, consisting of
the invocation broker and two registries for local services and devices
which can currently be reached.

The micro-broker accepts invocations which are either manually
assembled or generated by a stub-call. Additionally, an invocation can be

used to access the registries for service lookups.

o
I| Application | 85
| objects | £z
Stub / Skeleton | &
(=== —————— -
| InvocationBroker FE
| H
|| ServiceRegistry || DeviceRegistry | § B
o e e IR

| Plug-in Manager

| B
| E: (= c EC = |§
| 8ol & %c'n 2ol & | o
cS|Es|l =23 Q3| &3 g
| Sa ol —a 2n || = |"'L
= a
e e e -
|| Platform ||_@
£
| ;2= - [&
o E — = o D
S5 w=fogl(l2=|,*%
52 E IR
>
128 BT T8

Figure 8.2: BASE architecture.

The plug-in layer maintains plug-ins which represent the entities capable
of receiving invocations. Examples for plug-ins are transport protocols or
encapsulations of device capabilities, such as sensor systems like
positioning or temperature, or other services depending on the device, like
input/output capabilities such as printing or video projection. Plug-ins
typically involve interaction with the underlying operating system or
directly with the hardware to offer access to a device capability or
transport. The invocation broker accesses the plug-ins via invocations.

Thus the underlying platform is encapsulated by the plug-ins. The device
178

capability layer represents the device platform by its supported hardware
and software.

In the remainder of this section the layers sketched above are discussed in
more detail starting with invocations, the invocation broker, registries,
stubs and skeletons, and the plug-in layer.

8.4.2.1. Invocation

Invocations are similar to dynamic invocation interface requests in
CORBA. Figure 8.3 shows the elements of an invocation. Naturally, an
invocation is represented as an object. Device and service IDs are used to
denote a sender and receiver of an invocation. Services are given unique
IDs that are local to a device. This ID is combined with a unique device ID
to form a globally unique ID. The message IDs are needed for
synchronization issues and are described in the paragraph discussing the
invocation broker. A service context field allows the specification of
additional parameters that indicate properties relevant to the processing
of the invocation in the middleware such as synchronization issues or
Quality of Service parameters. Basically, the context is a name-value list
where parameters can be added freely. The payload contains the
operations and parameters. In the case of event-based communication no
receiver needs to be specified and the operation denotes the event-type on
which applications can subscribe. The parameters then carry additional
information of the event. In point-to-point communication the operations

and parameters are interpreted as a remote method invocation.

| devicelD | servicelD | messageID|

~ -
~ -
~ -
> -

service
context

sender | receiver payload

/ KT - ~
Fi ~
-~
!
/
/ ~
’ ~

-~

-
& | operation |parameters
~

~

devicelD | servicelD | messageID|

Figure 8.3: Invocation object structure.

179

8.4.2.2. Invocation Broker

Central to the system core, the invocation broker realizes the core
functionality of the micro-broker. Invocations are accepted and
dispatched. In order to separate the control flow between application and
the processing of an invocation in a plug-in, a thread pool is maintained.
Incoming calls are entered into the invocation table, assighed a message
ID in order to identify parallel invocations of the same client. The context
field contains, among other information, the communication model, i.e.,
synchronity and transactional pattern (request-response/event) of the
invocation. Depending on the communication model, the invocation
broker blocks the incoming thread in case of a synchronous invocation. A
new thread from the thread-pool is taken and the delivery of the
invocation to the responsible plug-in (see below) is executed. After the
plug-in has processed the invocation by either a local action, e.g.,
retrieving a sensor data, or a remote action, i.e., marshalling and sending
the request to a remote peer, the thread returns and is added to the
threadpool again. In case of a remote processing, an invocation may be
sent back to the initial caller. The invocation broker receives the invocation
from a plug-in for remote interaction, which may be different from the one

that has processed the outgoing invocation, as shown in Figure 8.4.

180

request:

application application
object object
A
| |
BASE micro-broker BASE micro-broker
™y i
Transport Transport ___)} Transport Transport
Plug-In B Plug-In A Plug-In A Plug-In B
response:
application application
ohject object
¥
7 |
LBASE micro-broker BASE micro-broker
~T1 =1
Transport Transport Transpont Transport
Plug-In B Plug-in A Plug-In A Plug-in B

“

Figure 8.4: Request / response in BASE.

The invocation carries the target object and its message ID. If a message ID
is contained in the receiver field of the invocation, this indicates that a
caller is either blocked or awaiting an asynchronous delivery of the
invocation. In case of a blocked call the waiting thread is freed and the
invocation is provided as return. In the asynchronous case the invocation
broker takes a thread from the thread-pool and calls up the application
through a callback. In this case the message ID is used to designate the
application callback registered at the invocation broker.

Notice that the explicit handling of synchronization depending on the
communication model retrieved from the service context is a major design
decision in BASE. This decouples the communication model from the
underlying interoperability —protocols. A request/response based
communication model can be realized over two event-protocols as well as
an event can be sent as a single request in an RPC-based interoperability
protocol. An interaction can take place over different transport plug-ins

for out-going and incoming invocations.

181

So far, BASE only supports a limited number of communication models,
but an extension to different synchronization models, see e.g., [OMG98],
can easily be established with the underlying concept.
In order to determine the target of an invocation or to provide applications
with service lookup two registries are maintained and described below.
8.4.2.3. Service and Device Registry
The service registry maintains all locally available services on a device.
Services - as mentioned before -can be either application objects offering a
service or device capabilities. Applications can query for available services
by either specifying a name or the functional properties, i.e., the interface.
Hence, a simple name and trading service is provided. Due to the nature
of spontaneous networks, the availability of a lookup service cannot be
assumed. The device registry maintains a list of all currently reachable
devices and the transport plug-ins which provide the access to another
device. If multiple transport plug-ins are possible for the same device,
they are also entered into the list. This allows for a simple service lookup
in the vicinity of a device. If a service request cannot be fullfilled locally,
registries of nearby devices are queried and the result presented to the
application.
The information of the device registry is also used by the invocation
broker in order to determine which transport plug-in should be used.
First, without any further information, any of the available transport plug-
ins can be used. As long as there is a connection between two devices, i.e.,
the device is listed in the device registry and at least one transport plug-in
is provided, invocations can be exchanged. Notice, that even if the
transport plug-in by which a request invocation has been sent becomes
unavailable replies can be received, if another transport plug-in exists. The
service context sent with an invocation can be used to control the selection

of specific transport plug-ins, e.g., in order to save energy or require a

182

distinct bandwidth. We plan to extend this concept by strategies which
will provide application-specific selection of transport plug-ins according
to policies, e.g., energy awareness.
Although the current implementation of the service and device lookup is
rather simple, the underlying concept is designed to be extensible
allowing the integration of other lookup mechanisms, e.g., Jini [Wal99]
and UPnP [Mic00].

8.4.2.4. Stubs and Skeletons
A common abstraction in middleware systems are local proxies for remote
entities providing local access for application objects - stubs representing
the remote service to clients and skeletons issuing local calls to services. In
BASE, stubs and skeletons rely on the invocation abstraction. Stubs
generate invocations upon method calls and skeletons generate local
method calls upon a received invocation. Notice, that the generation of an
invocation does not result in the marshalling of the parameters. This is a
responsibility of the transport plug-ins. Invocations are used here to
provide a common concept for interaction with the micro-broker.
Applications can, however, omit the use of stubs and skeletons and com-
pose and interpret invocations directly.
In contrast to systems like Jini [Wal99], where stub and skeleton can
include a service specific protocol stack this is not provided in BASE.
Instead a service specific protocol would be realized as a transport plug-in
and thus become re-usable for other services as well.

8.4.2.5. Plug-In Manager
The plug-in layer is essential for the abstraction BASE presents to an
application developer. Plat-form-specific capabilites, e.g., device
capabilities and transports, are represented as plug-ins and become
accessable to the application programmer as services. The plug-in

manager allows the dynamic loading and integration of new plug-ins.

183

Device capabilities are registered at the local service registry, and
transport protocols at the invocation broker itself.

Plug-ins provide an abstraction of device-specific resources. Depending on
the platform interface that allows the access of the device capability layer
they can be portable among devices. Thus, an application on top of BASE
will only interact via invocations, either dynamically constructed or
generated by stubs, with device-specific capabilites.

Transport plug-ins are responsible for accepting an invocation, marshal it,
and transmit it as a protocol data unit to a remote peer, which then
constructs an invocation by demarshalling it. The simplest transport plug-
in would use object serialization to marshal an invocation into a byte-
buffer and send the buffer via a transport protocol, e.g., TCP/IP. Other
transport plug-ins could rely on existing interoperability protocols and
marshal and represent the invocation accordingly, e.g., map it to a request-
message in IIOP and marshal the parameter by CDR, which allows
interoperability with CORBA-based systems.

As long as the context of an invocation does not require a distinct
transport plug-in, the invocation broker may use any transport plug-in to
send an invocation to a remote device. The device registry maintains a list
of all currently available transport plug-ins to a specific device. Hence,
communication can take place as long as at least one transport plug-in

allows the communication.

8.5. Implementation Status and Evaluation

This section will present the current status of our prototype
implementation and discuss memory size and execution performance

measurements.

184

8.5.1. Implementation Status

Our prototype has been implemented in Java to rely on its platform-
independence. Although, for small devices C or C++ would seem to be a
better choice at first, we found that Java allows us to run our middleware
on a multitude of different devices, if the used Java features, like
reflection, etc. are carefully restricted. A Tini minicomputer for example
can execute only a subset of Java Version 1.1. Other devices, like smart
phones or PDAs are limited to the Java Microedition [Sun]J2ME].

So far, our prototype implements the basic concepts. Namely the
invocation broker, the service and the device registry are implemented.
The invocation broker handles different synchronization concepts and the
service context is used to indicate the synchronization of RPC calls. For
synchronous invocations, stub and skeleton support is implemented. Two
transport plug-ins are realized so far, one based on the Java standard
serialization mechanism on top of TCP/IP and a second based on Java
RMI. Others are under way. The plug-in manager is implemented and

allows the dynamic and static configuration of a BASE system.

8.5.2. Memory Size

The memory footprint of a minimal BASE configuration is crucial in order
to allow the installation on small or embedded devices. We have
measured the memory footprint of such a configuration, containing the
micro-broker (invocation broker and registries) plus a TCP-based
transport plug-in. The measurements where done using the IBM]9
implementation of the Java Microedition, more specifically the Java
Microedition with the Connected Device Configuration and the
Foundation Profile. First, in order to determine the memory footprint
without additional dynamic memory consumption, i.e., BASE in idle

mode, we use the Windows Task-Manager, as suggested in [WkO0O]. In this

185

mode 132 KByte are used. During runtime, when invocations are
exchanged, the system uses up to 420 KBytes, which was measured using

the J-Sprint profiler [JSprint].

8.5.3. Execution Performance Overhead

To measure the execution performance overhead introduced by the
additional communication via the BASE micro-broker, we compared a
BASE configuration sending invocations via a Java RMI transport plug-in
with a pure Java RMI-based system. The measurements were conducted
for a synchronous RPC communication by transmitting invocations for an
operation testOperation, that takes a single string input parameter and
returns immediately. The string size was either 0 or 1000 characters. This
was done for local as well as remote invocations. The results are shown in
Figure 8.5 and Figure 8.6. Each value given is the average of 12750
measurements. Measurement was done in 50 rounds with roundnumber
x10 invocations per round, leading to a total number of)10 xi = 12750;

i=1..50 measurements.

0.6
05
0.4
S 0 BASE(0)
3
BASE(1000
§ 03 M| ()
Z RMI(0)
E 0.2 § RMI(1000)
0.1
0

Figure 8.5: Local communication performance.

186

8.5.3.1. Local Invocations.

In the local case, BASE is clearly faster than RMI. This is due to the fact,
that RMI in this case uses the loop-back interface including the RMI and
TCP protocol stack while the BASE micro-broker forwards the call directly
to the service skeleton and does not use the RMI-based transport plug-in
at all.
8.5.3.2. Remote Invocations

In the remote case, BASE introduces an additional performance overhead
of about 20%. Taking into account the creation of invocations from the
stub objects and their interpretation by the skeletons, this seems
acceptable. However, the absolute end-to-end latency measured for BASE
is about 4 ms per remote invocation with a string size of 1000, which is
rather long. Therefore, we did some additional measurements to compare
this to the end-to-end latency of pure RMI, ie. calling the remote
operation directly through RMI without marshalling the invocation object.
The pure RMI call only needed about 0,95 ms or 25% of the time BASE
needed. This is due to the fact that we have used the standard Java object
serialization mechanism in our prototypical RMI plug-in to marshal the
invocation object. Note, that this is not a problem of the micro-broker
itself, but of the current RMI plug-in implementation. Currently, other
transport plug-ins are under development to overcome this performance

bottleneck.

187

c .
AANANRNANNY
s
AL SR
M NN OBASE(Q)
— NRLENENREE
] NIV
AR AR AR
S A m BASE(1000)
o N RNELLLL L
RRARARRARRRS
- RN AR RN RN
AR RRRRARRRS
c NI RMI(0)
b s NN
—] PR
AN
W ‘ AR I RM |(1 000)
NAN AR RN
E SRR KL
LR
AR
R
AR RRR AR
AANANRNNNY
s
PR RRRRRR
AAREEEANN Y
A
EAEEAT
RRARARRRRRRS
AR
LA
NAN AR RN
TS
LR
1AM

T L
T
A o ey
L S L T L LA L L T S L T

A I T L B L T 3 3
T L A e
L T L T L L T S
L gt
L L T T T R R L e T e T R
T e L T L T R L T

o ol i

Figure 8.6: Remote communication performance.

8.6. Conclusion and Future Work

We have presented the concept and design of BASE, a flexible middleware
supporting the additional requirements of pervasive computing
environments. Based on a micro-broker design, BASE allows minimal
installations on embedded devices or specialized platforms as well as the
integration of features available on resource-rich devices, such as personal
computers. Application programmers can rely on a uniform abstraction to
access remote and local services as well as device-specific capabilities.
Thus BASE supports the portability of applications across heterogeneous
devices. The middleware shields applications from the multitude of
different communication technologies and interoperability protocols by
separating the communication model of the application and the
interoperability protocols used. This allows the usage of nearly arbitrary
interoperability protocols.

The current implementation status of BASE is promising. Currently we are
adding further support for different interoperability protocols and port

BASE to some specialized devices. Further experience will be gained from

188

doing prototypical implementations of pervasive computing applications
in our lab.

Using BASE as a middleware already will ease the design and
implementation of applications. In further research directions we want to
design a component system based on BASE that will support the
adaptation of applications due to their execution environment. BASE will
be extended by mechanisms to enforce adaptation strategies in the
component framework, such as migration or service selection strategies.
The extensibility of the micro-broker approach seems to be a good BASE

here.

189

9.PCOM - A Component System for Pervasive
Computing
Applications in the Pervasive Computing domain are
challenged by the dynamism in which their execution
environment changes, e.g., due to user mobility. As a result,
applications have to adapt to changes regarding their required
resources. In this chapter we present PCOM, a component
system for Pervasive Computing. PCOM offers application
programmers a high-level programming abstraction which
captures the dependencies between components using
contracts. The resulting application architecture is a tree
formed by components and their dependencies. PCOM
supports automatic adaptation in cases where the execution
environment changes to the better or to the worse. User
supplied as well as system provided strategies take users out of

the control loop while offering flexible adaptation control.

9.1. Introduction

Pervasive Computing is characterized by the interaction of a multitude of
highly heterogeneous devices, ranging from powerful general-purpose
servers located in the infrastructure, to tiny mobile sensors, integrated in
everyday objects. Devices are connected to each other on-the-fly using
wireless communication technologies like Bluetooth, IEEE 802.11 or IrDA
and share their functionality. A sensor could for instance use a nearby
display to present its data to the user.

Developing and executing applications in such environments is a non-
trivial task. Apart from the device heterogeneity, the hardware and
software resources, i.e., devices and services, available to an application

are highly dynamic, due to factors like user mobility, fluctuating network

190

connectivity or changing physical context. This forces applications to
adapt themselves constantly to their ever-changing execution
environments. User-interaction, e.g., for adaptation control or
administrative tasks, should be minimized, thus removing the user from
the control loop [WPTO03].

To ease application adaptation, we have developed BASE, a flexible
middleware for Pervasive Computing environments (see e.g., [BSG+03] for
details). It provides adaptation support on the communication level by
dynamically (re-) selecting communication protocol stacks, even for
currently running interactions.

BASE offers no support for adaptation at higher levels, e.g., by
automatically reselecting services and devices. Therefore, we have
designed and developed PCOM, a light-weight component system on top
of BASE. PCOM allows the specification of distributed applications that
are made up of components with explicit dependencies modeled using
contracts. An application can be executed if all of its components can be
executed — either local or remote — meaning that all dependencies between
components can be fulfilled. In order to automatically choose alternatives
if multiple suitable components are available, strategies are employed.
This allows adaptation without prompting the user. The main
contribution of this chapter is the definition and evaluation of this light-
weight component system for strategy-based adaptation in spontaneously
networked Pervasive Computing environments.

The remainder of the chapter is structured as follows. Next, we will
present our system model and briefly sketch BASE. Models for application
adaptation are discussed in section 9.3. The requirements on application
adaptation, especially those that are not fulfilled by BASE, are derived in
section 9.4. Section 9.5 presents the architecture of PCOM, its application

model and the mechanisms that enable adaptation. As an indication for

191

the validity of our approach, an evaluation of PCOM, including a
comparison of application adaptation in BASE and PCOM is given in
section 9.6. After discussing related work in section 9.7, we conclude the

chapter and provide an outlook on future work in section 9.8.

9.2. System Model

Our work focuses on spontaneously networked Pervasive Computing
environments in which devices are connected on-the-fly, typically using
some kind of wireless technology. Such environments are highly dynamic.
Connections between devices are not permanent, the topology of the
network is constantly changing, and there is no central or coordinating
element. We do not assume the presence of a smart environment like Gaia
[RC00], Aura [GSS+02] or iROS [JFWO02]. Although such an infrastructure
could be available at certain times, devices cannot rely on it.

In our system model communication and thus interaction is restricted to
devices that are currently reachable by the network (e.g., due to
communication technology). As a result, systems in these environments
are inherently location-aware as communication is typically spatially
limited. The devices have different specializations and resource
limitations. Besides resource-poor and specialized devices such as sensor
nodes, resource-poor general purpose devices could be present, e.g.,
PDAs. Also resource rich-devices can either provide a general purpose
platform or they can provide single services such as a presentation system.
Due to the lack of a central or coordinating element, applications are
dynamically composed of services provided by devices that are part of the
currently reachable environment. As an example, consider an instant
messaging application that requires an input service such as a keyboard or
a touch screen to write messages and an output service to display

messages, e.g., a monitor, a video projector or an audio channel. During
192

start up, the application scans the current environment for available
services and connects to suitable instances. At execution time, the
application uses the services and adapts to changes regarding their
availability or quality. Possible adaptations could include for instance the

reselection of the output service whenever it becomes unavailable.

9.2.1. BASE.

In order to provide basic support for services that enable such
applications, we have developed BASE. BASE is written in Java using the
Java 2 Micro Edition with the Connected Limited Device Configuration
(CLDCQ). It assists application programmers by providing mechanisms for
device discovery and service registration that can be used to locate and
access local as well as remote device capabilities and services. Since the
availability of services and capabilities can fluctuate in spontaneously
networked environments, BASE provides a simple signaling mechanism
to determine their availability. Communication protocols and device
capabilities can be extended flexibly, since BASE is structured as an
extensible micro-broker. This allows the middleware to run on resource-
poor devices and benefit from resource-rich devices. In the context of this
work, BASE is used as underlying communication middleware, offering
communication and discovery on a wide range of devices. More

information on BASE can be found in [BSG+03] and [BS03b].

9.3. Adaptation Models

To provide application adaptation support for Pervasive Computing
systems, three main levels of support can be distinguished. This
classification is similar to the one given in [OGT+99].

Manual adaptation: here, adaptation is done by the end user. If an

adaptation is performed, the system presents different choices and the

193

user selects the most appropriate one. For the instant messenger described
previously, this means that the user has to explicitly select the output or
input service used by the application, whenever a used service becomes
unavailable or a new service is discovered. Clearly, this is time-consuming
and irritating, especially for environments with a high level of dynamism
and a large number of different devices and services.

Application-specific automatic adaptation: to lessen the involvement of
users, application adaptation should be executed with as little user
interaction as possible. This can be realized by shifting the adaptation
decision into the application. As a result, the system must support
adaptation by signaling changes in the environment and the application
programmer has to explicitly handle resource availability on a per-
resource base, leading to complex and error-prone adaptation routines.
Regarding the instant messenger scenario the programmer must provide
routines that reselect the input and output service whenever the used
services become unavailable. Such a reselection may be necessary at any
point during the usage of a service. Therefore, the code of the application
will be cross-cut by adaptation routines that are effectively reducing its
readability and maintainability.

Generic automatic adaptation: at the highest level of support, application
adaptation is done without stressing users or application programmers.
The programmer only specifies the functional and non-functional
properties of services required by the application and the user controls the
adaptation process by stating adaptation goals. Thereafter, the system
monitors service availability and selects the optimal services. The
programmer of an instant messenger simply specifies the parameters of
the input and output service, e.g., minimum screen resolution, and the
user defines the adaptation preferences, e.g., highest available resolution.

At runtime, the system automatically tries to find services with an

194

acceptable quality. In cases where multiple services fulfill the requirement,

the system performs the selection based on the preferences of the user.

9.4. Requirements

BASE offers generic automatic adaptation support at the communication
layer. With PCOM we aim at providing further generic adaptation
support at the application layer. PCOM should enable application
programmers to extend the system with application-specific adaptation
logic if needed. This enables a rather straight forward specification of
application dependencies along with standard adaptation strategies
resulting in a simple core system which can be customized to the needs of
an application programmer. From these objectives the following
requirements can be derived:

Application specification: applications should be specified in terms of
their required services. Services should clearly denote their dependencies
to other services and the platform. Non-functional properties of the
dependencies should be explicitly stated. The composition of an
application from services should allow the specification of alternatives in
order to support the system to automate adaptation decisions.

Service monitoring: the system has to monitor the availability of services
in order to detect currently used services that change their non-functional
properties or become unavailable as well as to detect new services.
Strategy based adaptation: the system has to provide means for automatic
adaptation of an application. If alternatives of services are present in the
current execution environment, strategies decide which service to select.
Besides standard strategies, e.g., to optimize energy consumption, user-
defined policies should be integrated. At the core of adaptation, the
application lifecycle and the lifecycle of single services have to be

managed.

195

Minimalism and extensibility: to meet the resource heterogeneity of
Pervasive Computing the resulting system has to be minimal with respect
to required resources, e.g., processing power and memory, and it has to be

extensible to exploit the advantages of resource-rich devices.

9.5. PCOM
Remote Cont’q_i_ner Interfaces
PCOM Container | ,.4- 1. | PCOM Container [. .
Component (Anchor)
_Instantiation =
p B Component et
.."'. Contract . .
> _ Negotiation Iy oy 5 [
‘ Component L) : T I LA reasd omponen
Adaptation Adaptation
Signaling Signaling Strategies
\
L)

+ v
>BASE H BASE

Figure 9.1: PCOM Architecture

In the following we will present our component system PCOM (see Figure
9.1). PCOM provides a distributed application model and supports
automatic application adaptation based on signaling mechanisms and
adaptation strategies. Applications are composed of interacting entities,
so-called components, which dependencies are explicitly specified as
contracts. The PCOM container hosts components, manages their
dependencies, and thus acts as a distributed execution environment for
applications. Each container defines a remote container interface that
exports locally available components by their contracts and allows remote
containers to negotiate new contracts and access the components. To reuse
the communication and discovery capabilities of our middleware BASE,

the container is implemented as a single service on top of BASE. As a

196

result, a container is automatically capable of detecting and using other
containers.

In the following we will further describe our application model and
present components along with their contracts. After that, we discuss

application adaptation in PCOM and its realization.

9.5.1. Application Architecture

Applications in PCOM are composed of components, that interact with
each other in order to fulfill their dependencies. Components are atomic
with respect to their distribution but can rely on local or remote
components, resulting in a distributed application architecture.

An application is modeled as a tree of components and their dependencies
where the root component (the so-called application anchor) identifies the
application. The application tree reflects the dependencies between
components where the successors of a component identify its
dependencies in order to fulfill the service. PCOM uses a tree as
application model, because arbitrary graphs cause several complications.
For instance, the multiple use of the same component requires merging
probably conflicting requirements. As another example, cycles of the
graph could cause infinite loops during the composition of applications.
The life cycle of an application is reflected by the life cycle of its
application anchor. Next, we will explain components in more detail,

including the modeling of dependencies via contracts and their life cycle.

9.5.2. Components

Components in PCOM are units of composition with contractually
specified interfaces and explicit context dependencies. PCOM’s
components enclose contracts that describe their offered functionality and
requirements regarding the platform and other components. Components
are atomic with respect to distribution and may use other components in

197

order to provide their service. Note that PCOM does not regulate the
granularity of components. Therefore, the granularity could range from

single functionalities to complete applications.

9.5.2.1. Contracts.

Contracts consist of two distinct parts: The first part specifies the
corresponding component’s requirements on the executing platform, e.g.,
required libraries or memory. The second part specifies the functionality
provided by the component and its dependencies on other components. A
dependency between two components has a direction and reflects the fact
that one component either requires certain service interfaces (pull) or
listens to some events provided by another component (push). Thus,
PCOM supports push and pull communication models between
components.

In order to describe dependencies, contracts in PCOM specify the service
interfaces and the events that are offered and required by a component.
Along the syntactical interface specification of events and services that
define a functional dependency, non-functional parameters can be added
to express further properties, such as a screen-size, energy consumption or
performance related parameters. In contrast to the functional specification
that is known at compile time, non-functional parameters can vary at
runtime and might depend on the offer of components that are used to
satisfy the dependencies. Thus, non-functional parameters can be either
static or dynamic.

At runtime, contracts in PCOM are represented as object graphs. To ease
the specification of these graphs, we use a compiler to transform an XML
document into code that creates the desired structure. This representation
is used for the comparison of offers and requirements. By applying them,

it is possible to determine whether the offer of one component can be used

198

to satisfy the requirements of another component. Due to the possibly

large number of comparison operators that is needed to support arbitrary

non-functional parameters, the underlying object model provides only a

small set of operators that can be extended by application programmers.

(a)

(b)

(c)

(d)

K
+*

</CONTRACT>

<CONTRACT>

|[<OFFER></OF FER> |
<REQUIREMENT>
<COMPONENT NAME="Input" PROXY="pcom.ex.InputProxy">
<INTERFACE TYPE="pcom.ex.InputService™/>
<EVENT TYPE="pcom.ex.NewLineEvent"/>

<LANGUAGE CCMPARE="eguals">ENGLISH</LANGUAGE>
< /COMPONENT >

<PLATFORM>

<PROFILE>CLCD</PROFILE>

<MEMORY >10240</MEMORY >
</PLATFORM>
< /REQUTIREMENT >
< IMPLEMENTATICN NAME="InstantMessengerComponent"
FACTORY="pcom.ex.InstantMessengerFact"
IMPLEMENTATICN="pcom.ex.InstantMessengeriml”
SKELETON="pcom.ex.InstantMezsengerikel" />

wREANy
4 s

InstantMessenger

NewlineEvent

Component InputService

- (M
*
"‘ BufferedlnputService\H Y r|\ ?EscapeEvent
(h)’Q’ (k) InputService NewLineEvent(|)
*

‘o, Keyboard
nput “*3 Component

'0

(e)

(f)

(9)

<CONTRACT >

<OFFER>
<INTERFACE TYPE="pcom.ex.InputService"/>
<INTERFACE TYPE="pcom.ex.BufferedIinputService”/>
<EVENT TYPE="pcom.ex.NewLineEvent"/>
<EVENT TYPE="pcom.ex.EscapeEvent™/>
<LANGUAGE>ENGLI SH</LANGUAGE >
<CHARS»>A-Z</CHARS>
<NUMBERS>0-39< /NUMBERS >

</OFFER>

<REQUIREMENT>

<PLATFORM>
<PROFILE>CLCD</PROFILE>
<MEMORY >204 8< /MEMORY >

</ PLATFORM>

< /REQUIREMENT >

<IMPLEMENTATION NAME="KevboardComponent"

FACTORY="pcom.ex.KeyboardFact"
IMPLEMENTATION="pcom. ex.KeyboardInpl"”

SKELETON="pcom. ex.KeyboardSkel" />

</ CONTRACT>

Figure 9.2: Exemplary Contracts

'+,
Frnanst

A
+
-

199

9.5.2.2. Example.

Figure 9.2 shows XML-based contract specifications for an exemplary
instant messenger component and a keyboard component. First, we will
have a look at the messenger’s contract. It specifies that the messenger
component does not offer any service to other components (a) and that it
depends on an input component offering a given service interface and
event type (b). Additionally, the messenger’s contract states the non-
functional requirement that the input component’s language must be
English (b). Next, the platform dependency declares, that the messenger
must be executed by a container that has at least 10 Kbytes of free memory
and provides a CLDC (c). The last section of the contract contains
information about the component’s internals used by the container (d).

In contrast to the messenger’s contract, the keyboard component’s contract
specifies an offer that consists of two interfaces and two events (e).
Additionally, the offer also contains non-functional attributes that describe
the available keys and the supported language. Apart from the
requirements on the platform (f) the keyboard does not have any
requirements. Again, the last section of the contract contains information
about the component implementation (g).

At runtime, these XML-based contracts are transformed into an object
model that allows matching the instant messenger component’s
requirements with the offer of the keyboard component. As the keyboard
offers all required functional and non-functional features, it can be used to
satisfy the messenger’s dependency. After the components have been
combined at runtime (h), the instant messenger component is capable of
placing calls to the interface provided by the keyboard component (i) and
the keyboard component can send the requested event to the instant
messenger (j). The additional interface (k) and event (1) of the keyboard

component will never be used.

200

9.5.2.3. Component Lifecycle

To consistently embed components into applications, the container
defines and manages the lifecycle of components. Conceptually, this
lifecycle consists of the two states STARTED and STOPPED. The state
transitions are controlled by the container. The container loads a
component by first loading the object graph that represents its contract. It
then determines whether it can fulfill the component’s requirements
towards the platform. If they can be satisfied, the container adds the
contract to the set of exported contracts. Initially the component rests in
the STOPPED state. Once a component is about to be embedded into an
application, the container tries to resolve and initialize the component’s
dependencies by selecting suitable components to fulfill them. This initial
resolution of dependencies can be seen as a special case of adaptation. A
more detailed description of the selection process is given in subsection
9.5.3. After all dependencies are fulfilled, the container triggers a transition
to the STARTED state. In this state, the component provides its
functionality and the container provides signaling and adaptation
support. When the state changes to STOPPED, the container releases all
resources held by the component.
9.5.2.4. Contract Exchange and Negotiation

As soon as a component is about to be executed, the container has to
determine whether its dependencies — both, functional and non-functional
— can be satisfied. In order to find components that can potentially be used
to satisfy a dependency, the container sends the contract that contains the
requirements to the containers available in the environment. These
containers reply with the contractual offers of their components that could

tulfill the requirements.

201

As mentioned earlier, there are non-functional parameters that a
component cannot determine without knowing the components that are
used to satisfy its dependencies. In order to determine such parameters,
PCOM containers also support a negotiation phase that recursively
determines the non-functional parameters of a component without
starting it. To enable this, containers rely on so-called factories that are
representatives for locally installed components. Factories provide the
capability to determine the actual value of a non-functional parameter
based on the set of components that is currently available. While PCOM
provides a simple standard factory, application programmers can provide
component-specific factories by declaring them in the component
contract’s implementation section (see Figure 9.2 (d)).

The algorithm for contract negotiation is a post-order traversal of the tree
of matching offers and requirements, where factories implement the
functionality that determines the values of non-functional parameters

from the available offers.

9.5.3. Adaptation

In ever-changing environments, component-based applications have to
deal with fluctuating availability and quality of components. Changes
regarding the availability and quality of components can either have a
positive or a negative impact on the application. This means that the
quality of a used component’s functionality can either increase or decrease
during the execution. Also, used components might become unavailable
and new components that could deliver a required functionality might be
discovered at any time.

In order to adapt to fluctuations, a component has to have means of
detecting changes with respect to quality and availability of other

components that either depend on or are required by the component.

202

PCOM defines three signaling mechanisms that detect changes regarding
availability and quality.

9.5.3.1. Signaling Mechanisms
The first signaling mechanism is targeted at the availability of used
components. Whenever a used component becomes unavailable, a so-
called communication listener is notified. Application programmers can
register communication listeners for every dependency of a component.
As PCOM uses a soft-state lease mechanism to maintain the dependencies
between components, the detection of an unavailable component is either
a result of an unsuccessful call placed by the using component or by a
heart-beat message sent by the runtime system.
The second mechanism detects the availability of new components. In
order to receive notifications about components that could potentially be
used to replace a currently used component, programmers can define
discovery listeners for each dependency. Whenever BASE detects a new
device, PCOM checks whether the device hosts an instance of PCOM. If a
new instance is discovered, PCOM determines whether the new
components could be used to replace a dependency of a locally executed
component. The comparison of the requirements of a running component
and the offer of a newly discovered component is solely based on the static
parameters of the offer, significantly reducing the discovery overhead.
Once a discovery listener is called, an adaptation strategy can decide, if a
full negotiation of the dynamic parameters should be done. Hence,
negotiation is performed only if an application may profit from a
component change.
The last signaling mechanism provided by PCOM aims at fluctuations in
the quality provided by a component. As mentioned above, non-

functional parameters can change over time. Therefore, PCOM allows

203

application programmers to specify contract listeners that are notified
whenever a parameter changes.

9.5.3.2. Options for Adaptation
Application programmers can use the described signaling mechanisms as
hooks to specify their own actions for adaptation or use system provided
mechanisms. PCOM offers two generic mechanisms: execution
discontinuation and component reselection. Application programmers are
provided with means to implement further options, e.g., modifying
contracts or retransmitting messages in case of a transient network
partitioning.
The first generic adaptation mechanism is simply the discontinuation of
an executed component. Whenever an executed component is no longer
able to provide its functionality, it can stop its execution. This will result in
an event that is received by the communication listener of the using
component. With respect to the application model defined by PCOM, this
means that a problem in a component is escalated to the next, i.e., higher,
level of the tree. The escalation continues until a component resolves the
conflict by either reselecting a component (see below) or applying a user-
defined strategy. If the escalation leads to the discontinuation of the
application anchor, the execution of the application stops.
The second generic mechanism supports the reselection of components at
runtime. This is enabled by two features. First, components specify their
dependencies explicitly which allows matching a contractually specified
requirement and its corresponding offer. Second, PCOM allows the
definition of strategies that prioritize possible components based on user
preferences. Therefore, if a component initiates the reselection of a certain
dependency, PCOM can automatically determine the possible
replacements that match the programmer’s requirements. If there are

several possible replacements, a user defined strategy is applied to select

204

the best replacement according to the user’s current selection goals.
Clearly, a simple reselection will only be possible if the corresponding
component is stateless. For stateful components, the application
programmer still has to provide additional routines that establish the
desired state. Nevertheless, the programmer does not have to implement
the reselection algorithm and can use the signaling mechanisms to add an

application-specific adaptation routine.

So far we have seen, how PCOM allows for generic application adaptation
support via predefined as well as user-supplied strategies. The container
realizing PCOM'’s runtime system resides on top of BASE, our middleware
for Pervasive Computing. In the next section we will compare the
abstractions provided by PCOM with the support BASE offers. The
additional overhead for communication and application adaptation is

presented based on measurements.

9.6. Evaluation

As stated in Section 9.4 the main requirements on PCOM are application
specification and support for strategy-based adaptation. In PCOM these
requirements are realized through components with contractually
specified dependencies. As shown in Section 9.5.3, a crucial task for
adaptation is the (re-)selection of services. Therefore, we will evaluate the
service selection in PCOM and BASE. We compare the necessary tasks of a
programmer and the assistance for service selection provided by PCOM
and BASE. Next, the time needed for service selection is presented which
includes contract evaluation, communication, and component
instantiation. Finally, the additional requirements of PCOM regarding

remote communication, memory, and computing power are discussed.

205

Selecting a service that will be used by an application comprises two
fundamental tasks. First of all, an application has to determine the set of
services that is available in a given environment. Thereafter, it has to

determine the suitability of each service and select the best service

9.6.1. Service Selection

possible.

To allow determining the suitability, BASE and PCOM support non-

functional parameters that allow a more detailed description of services.

206

// component contract
<REQUIREMENTS>

(a)

-’CITF O El'!'_‘

-4 l—‘-.l;'-"_"l.l IREMENTS>

/7 component 1mplementat10n
if {(monitor.getController().rebind{)) |

// monitor is bound to the best monitor (b)
} else |

J// no suitable monitor available

t

Selection strategy

/7 return ordered contracts that can fulfill the requ1rement
|) e shtr lequirement regquireme

7 retrleve avallable cuntalners

RemoteContainer[] containers = get eContainers () ;
for :iLV i I; i < ﬂfnlhinnlﬁ.lwngL i ++)
// retrieve matching contracts
Contract[] contracts = contalners(i).getContracts (reguirement)

// selection strateqgy {51nmle 1nsert10n sort by size)
for {(int j = 0; j < cont

izel = co

inserted

ibute ("sSize")

Jresults.elementit

() .getidttribute

// return contracts sorted by size
return results;

Figure 9.3: Component Selection in PCOM

Application

System

The suitability of a service could recursively depend on the suitability of
the services used by it. As mentioned earlier, PCOM supports negotiation
of dynamic parameters to model such dependencies. But since BASE does
not deal with dynamic parameters, we restricted all parameters used
during the evaluation to parameters that are static and thus, do not
require negotiation.

Figure 9.3 shows the units of PCOM that are involved in the component
selection process. An application programmer specifies the requirements
of a component using a contract (a). At runtime, PCOM provides the
application programmer with a handle for each component requested by
the contract. Using this handle, a programmer can simply initiate the (re-)
selection by calling the rebind-method (b). Typically, this method will be
called within one of the listeners discussed above. When a reselection is
initiated, PCOM uses contract matching to find suitable components and it
uses a strategy to prioritize possible replacements (c). The distinction
between contract and strategy separates the requirements that must be
met to ensure the desired component behavior from user preferences.
Notice, that (a) and (b) are supplied by a programmer, while (c) is a
configurable and thus re-usable strategy that is integrated in the system.
Figure 9.4 shows how a similar behavior can be implemented using BASE.
An application programmer provides a selection routine for the required
service that specifies its properties and priorities (d). Whenever a
reselection must take place, the application calls this routine (e). In
contrast to PCOM, the selection routine provided by the application

programmer encapsulates both, service requirements and preferences.

207

Service selection routine

public Monitor rebindMonitor (Registry registry)
I retrleve avallable components

new Fropertles|() ;

dth", "1600");

EJhL“, nizoom) ;
[up ("base.ex.Monitor”, properties):
// selectlon strategy {31n@1e bubhle sort by size)
L i i < descs l.ngth = 1; i++) |

- 1;

// create best service instance

cor monitor = null;

j i 0 < descs.length; i++)
registry.createlnstance (descs([i]);

Application

;.I.::o'.l..-_|—.I.TTfi:)i

// service implementation

Monitor monitor = rebindMonitor(registry);

if (monitor != null) { (e)
// monitor is bound to the best monitor

} elze |

// no suitable monitor available
}

Figure 9.4: Service Selection in BASE

The comparison of these two implementations shows that - from an
application programmer’s point of view - using a service in BASE is more
complex than using a component in PCOM. While application
programmers in BASE have to provide the functionality for searching and
selecting required services, programmers in PCOM are provided with
handles that hide the details of this selection. Instead of providing the
specific algorithm that searches and prioritizes components, they simply
specify the parameters that denote application-specific requirements and
thus, they do not have to reason about user preferences. This means an
additional flexibility which would be hard to achieve in a BASE
implementation. Note that other, more complex features like contract

208

negotiation or PCOM’s signaling mechanisms are even harder to

implement on top of BASE because of the lack of dynamic attributes.

160
140 //:
120 /
100
/7 —A—BASE
80

——PCOM
60

40 4

msec per rebind

20

1 2 3 4 5

number of neighbors
Figure 9.5: Component vs. Service Selection

Clearly, the extraction of functionality for selection causes an additional
performance overhead. To quantify the impact on performance, we
measured the time for a reselection in PCOM and in BASE. Figure 9.5
shows the average time for reselecting a service respectively a component
(using the strategies and algorithms described in Figure 9.3/9.4) in cases
where suitable components (or services in BASE) were available on 1 to 5
remote systems. The measurements have been conducted on PCs
(Pentium III/600MHZ) connected with a 100 MBit network in order to
show the fundamental effort without experiencing additional delays, such
as Bluetooth discovery. The numbers shown in Figure 9.5 are the result of
measuring 10 independent runs with 100 reselections each and varying the
number of devices offering services (BASE) and containers (PCOM). To
reduce fluctuations as far as possible, we disabled Java’'s just-in-time

compiler. The remaining fluctuations were below 10 percent of the

209

average time of a run and are most likely side-effects of the operating
system’s scheduler and Java’s built-in garbage collector.

The total selection time is determined by the time for obtaining offers from
neighbors, choosing an offer, and instantiating the chosen service or
component. While the time for obtaining offers and choosing an offer
increases linearly with the number of neighbors the instantiation of the
chosen offer is constant. The measurements in Figure 5 show that,
although reselection in PCOM is slower than in BASE, the relative
overhead decreases with the number of neighbors. This is due to the
higher cost for instantiating a PCOM component compared to a BASE
service. The absolute overhead for a selection of approximately 30 ms
however, is unlikely to be a bottleneck for realistic applications.

In addition to these measurements on resource-rich devices we have
performed experiments on a JStamp embedded system® connected by a
19200 baud serial line. The average selection time was 3300 ms, which still
may not impose serious problems, since a constant change of an
application configuration, such as switching a monitor, will be annoying
to the user.

In summary, comparing service and component selection shows that
separating requirements and preferences using contracts and strategies is
not for free. Although the overhead is noticeable, we believe that the

gained flexibility is worth the performance penalty.

9.6.2. Communication

In order to compare the communication performance in BASE and PCOM,
we measured the cost for a single message transfer using both systems.
Our measurements showed that PCOM basically does not induce

overhead on calls between components as it does not introduce

® http://www.jstamp.com

210

indirections in the dispatch chain. This in turn is a result of carefully
integrating proxies and skeletons of BASE and PCOM.

In terms of general communication overhead, three mechanisms
introduced by PCOM require additional remote communication. In
contrast to services in BASE, components in PCOM use a soft-state
protocol to detect the (un-)availability of components. This protocol
transparently exchanges additional keep-alive messages if no other
messages have been exchanged during a lease period. These messages
represent an additional communication overhead for components that
communicate infrequently. The second mechanism that introduces new
messages is the discovery listener as it retrieves relevant contracts from
devices that have been newly discovered. The last mechanism that
requires additional remote communication is the contract listener. It
creates a message for every modification of an offer or a requirement that
is specified in a contract.

Clearly, all three mechanisms do not only create overhead, but do also
provide necessary features. It is conceivable that realistic applications in
dynamic environments must rely on soft-state protocols to reduce the
amount of wastefully reserved resources. Similarly, components that have
changing requirements or offers need to communicate them. Finally,
optimization of executed applications requires notification about changes
that could have positive impact.

Obviously, all three mechanisms could also be implemented in the
application space, but it is questionable whether the possible performance
benefit would outweigh the memory and engineering overhead of

implementing all mechanisms within each component.

211

9.6.3. Resource Overhead

Apart from the cost of single mechanisms, PCOM has additional memory
and processing requirements. In terms of memory usage, PCOM adds 30-
40KB on top of 90-120KB required by BASE, resulting in a total memory
usage of 120-160KB. With respect to processing, component instantiation
and contract evaluation as well as all three mechanisms described in the
previous section lead to increased requirements. The overhead for
comparing contracts and instantiating components has already been
discussed in the comparison of service and component selection. The
processing requirements for the other mechanisms vary heavily
depending on the applications and the environment and thus are hard to

quantify.

In summary, the evaluation shows that the application of PCOM is not for
free, but our results are promising. Compared to the baseline memory
requirements of BASE, PCOM adds only little additional overhead. With
respect to communication, the requirements do not change. Although the
reselection overhead is more noticeable, we believe the gained flexibility is

worth the cost.

9.7. Related Work

We will discuss related work in the areas of component systems,
architectures for adaptation and evolution as well as recoverable
computing, and pervasive computing.

Component Systems: Szyperski defines components as units of
composition with contractually specified interfaces and explicit context
dependencies only along with other properties [Szy98]. This definition
conforms to our definition introduced in section 9.5. Existing component

systems, e.g.,, CORBA CCM [OMGO02c], Enterprise Java Beans [SunE]B],

212

conform to this definition by introducing container abstractions to
decouple components from the underlying platform and by providing — at
least functional — contracts between components via interfaces. Such
systems typically provide persistency and transactional behavior and are
targeted at enterprise software rather than on resource constrained and
dynamic environments, such as Pervasive Computing.

Adaptation Architectures and Recoverable Computing: The self
configuration of software is addressed by a number of projects in the
research area of application architectures. In contrast to our work, these
projects typically consider adaptation to be a rather rare event, caused by
errors or changes in the software’s mission.

The Weaves approach [OGT+99] provides a general graph structure to
model component dependencies. This leads to complex algorithms and
additional specifications to support adaptation decisions. Therefore, this
approach is too heavy-weight for resource poor devices and frequent
adaptations.

The recursive restartability approach [PBB+02], proposed in the domain of
recoverable computing, uses a tree-based application model quite similar
to the PCOM model. Still, this model is specifically designed to allow the
restart of failing components. The partitioning of the application follows
the encapsulation of restartable units — not units of composition — and the
only supported adaptation is a component re-instantiation. PCOMs
application model is different in that it models the functional and non-
functional properties of inter-component dependencies.

Pervasive Computing: The necessity of application adaptation is realized
by a variety of projects that differ widely in their support for adaptation
and the abstractions provided to application programmers. The system
model considered is often based on smart environments, providing a set of

services, such as lookup and persistent storage to devices that connect

213

temporarily or permanently to the smart environment. In contrast to this,
our system model does not assume connectivity to a smart environment
but spontaneous connectivity to devices in the vicinity.

The iROS [JFWO02] application model consists of atomic application parts
which communicate via an event heap, realized as a tuple space. The event
heap decouples distributed parts of an application. If functionality is not
present, the request in the event heap is purged using an aging
mechanism. Adaptation of applications is implicit, as functionality is only
presented to the user if the application receives an answer to its request in
the event heap.

One.world [GAB+00] is also based on a tuple space to allow communication
between distributed parts of an application via events. Applications are
composed of nested environments. Environments isolate applications
from each other and serve as containers for persistent data. Conquering
failure and selective availability is supported by providing mechanisms
for application-specific automatic adaptation, such as migration or
checkpointing along with persistent storage. Generic automatic adaptation
is not supported.

Gaia [RCOQ] provides an application model based on a generalized model
view controller pattern. An abstract definition of required functionality is
mapped to the services available in a distinct smart environment (an
active space). A coordinator component ensures that the application is
executed as long as their integral parts are available. Adaptation is mainly
considered to happen when a user moves to another active space and the
matching of non-functional parameters is solely used to create a mapping
between them.

The application model of Aura [GSS+02] provides a high level, user
oriented task scheduler. Like PCOM, Aura aims at providing generic

automatic adaptation support, but assumes a variety of services, e.g.,

214

remote communication, distributed file system, between remote Aura
environments. PCOM is intended for environments, where this cannot be

assured.

9.8. Conclusion

In this chapter we have presented PCOM, a light-weight component
system supporting strategy-based adaptation in spontaneous networked
Pervasive Computing environments. Using PCOM, application
programmers rely on a component abstraction where interdependencies
are contractually specified. The resulting application architecture is used
for strategy-based adaptation of applications. Our results so far are
promising. Based on our middleware BASE, PCOM adds only little
memory overhead and basically no runtime overhead on communication.
Overhead is introduced by the instantiation of components resulting in
higher reselection time. However, this overhead decreases with the
number of involved nodes. We conclude that providing a component
abstraction along with generic adaptation support is possible with
reasonable overhead even for resource-restricted devices.

Besides evaluating PCOM on a variety of different devices and
communications technologies in our lab, we are currently evaluating
PCOM’s abstractions by developing further and more complex
applications. From the gained experiences, we expect to identify
additional generic adaptation mechanisms. Furthermore, we are working
on generic adaptation mechanisms that will allow the reselection of
stateful components. In the near future different adaptation strategies will

be developed and evaluated using our system.

215

10. Experiences: Minimalism and Extensibility in BASE
In the wvision of Ubiquitous Computing everyday objects
become smart. Technically, this requires some sort of
processing and communication technology. We have designed
and implemented a middleware for spontaneous networking in
Ubiquitous Computing environments. The major objectives
were minimalism and extensibility in order to deploy the
middleware on a variety of devices ranging from sensor nodes
to classical general purpose computers. In this chapter we will
assess the taken approach based on two follow-up projects: the
port of BASE to a small embedded system and the design and
implementation of a component system on top of BASE. While
the fundamental concepts and design principles of BASE have
proven to be solid, both projects provided insights that led to

minor conceptual and major technical changes.

10.1. Introduction

Ubiquitous Computing (UC) [Wei91] envisions spontaneous interaction of
computerized devices in order to achieve complex goals and support
people’s tasks. As in ordinary distributed system settings, interaction is
achieved through the exchange of data and therefore is based on
mechanisms that enable communication of computer systems. Support for
communication in UC environments faces challenges that go beyond those
of systems in static environments. Apart from the heterogeneity of devices
which, to some degree, can also be found in ordinary distributed systems,
UC is based on networks that form spontaneously and change
dynamically. The mobility of devices makes it inevitable, that devices
integrate in their ever-changing surrounding networks in order to utilize

the functionality provided by them.

216

Resulting from the need to enable communication between heterogeneous
computer systems in dynamic environments, a number of infrastructures
have been proposed. These infrastructures are designed to provide an
easy and efficient way of building and executing applications for
ubiquitous computer systems. Depending on the degree of device mobility
anticipated, they can be classified into two categories. The first category of
infrastructures is based on the concept of smart environments. Prominent
examples are Gaia [RCO00], Aura [GSS+02] and iROS [JEWO02]. They
provide means to integrate small, mobile devices into relatively heavy
weight environments with the immense processing power and storage
capacities of today’s desktop systems. The second category of
infrastructures is targeted at supporting mobile devices with limited
resources without relying on the processing power or storage capacity of
the environment. Two representatives of this category are RCSM
[YKW+02] and BASE [BSG+03], a middleware that supports spontaneous
communication between devices. BASE has been designed to support a
wide range of devices from sensor platforms to general purpose
computers. Its micro-broker architecture allows the creation of a portable
system with minimal hardware requirements, but it makes extension
mechanisms inevitable in order to optimally utilize the capabilities of
different devices.

In this chapter we present our experiences with porting BASE to a JStamp
processor [Systronix], a Java-based embedded system supporting only the
Java 2 Micro Edition [Sun]2ME] in the Connected Limited Device
Configuration (CLDC). Further experiences where gained when we
designed and implemented a component system for UC on top of BASE.
Our experiences so far are promising. Both projects together enabled a first

evaluation of minimalism and extensibility of BASE and led to

217

optimizations regarding the internal mechanisms and external
abstractions provided by this middleware.

The remainder of this chapter is structured as follows. Next, we will
present an overview of BASE’s architecture. Section three briefly describes
the projects that led to the experiences described in this paper. In the forth
section we will discuss the problems that we have encountered, their
solutions and lessons learned. Section five summarizes and concludes the

chapter.

10.2. BASE — A Micro-broker Based Middleware

In order to understand the approach taken during the design of BASE's
architecture, it is necessary to explain the underlying requirements and
design rationales. As a complete description would go beyond the scope
of this chapter, and can be found in Chapter 7. We only present a brief
overview before presenting the architecture. A more detailed presentation

of BASE can be found in [BS03a] and Chapter 8.

10.2.1. Design Rationales

BASE was designed to fulfill three major requirements. First, application
programmers should be provided with a uniform programming interface for
accessing device capabilities, like a GPS receiver, and application objects,
both, local and remote ones. This allows transparently switching
functionality at runtime or more general, adapting to changes in the
availability of functionality in a uniform way, e.g.,, by switching to a
remote location service once the GPS receiver stops operating indoors.
Therefore, in BASE, a service abstraction is provided to the application
programmer to access device capabilities and application objects.

Second, the variety of different devices will likely lead to a number of
different interoperability protocols with different communication models,

e.g., events, remote procedure calls (RPC), etc. These should be decoupled

218

by the middleware from the application communication model. This allows for
example using an event-based interoperability protocol to deliver
request/response messages of an RPC.

Last but not least, the middleware should be minimal and tailorable. This
allows the installation on resource restricted devices, e.g., sensors, as well
as using resources on more powerful devices, such as presentation

systems or desktop computers.

Application Objects Application
[stublSkeleton | Layel
DIl Sl
L System Core
ServiceRegistry | | DeviceRegistry I vacationBroier Layer

| Plug-in Manager

Transport] TCP RMI Discovery| Wrapper
Plug-in | Plug-in | Plug-in Plug-in | Plug-in

| | Platform

Device IEEE GPS
Capability 802.11b | Sensor

Device Capability

Layer

Figure 10.1. BASE Architecture

10.2.2. Architectural Overview

The architecture of BASE is depicted in figure 10.1. BASE offers
application programmers a static (SII) and a dynamic invocation interface
(DII). For the SII, stubs and skeletons are generated by a compiler and are
used to map a method call to/from a so-called invocation object. If the DII
is used, the application composes invocation objects directly. Invocation
objects are Java objects, containing the unmarshalled invocation parts, like
method name and parameters as well as further information on how to
thread the invocation, e.g., which synchronization pattern should be used.
While marshalling typically is a stub/skeleton responsibility, it was

omitted on this layer and pushed down to the transport plug-ins to give

219

the middleware maximum flexibility in choosing a suitable
interoperability protocol at runtime.

In the system core layer, the invocation broker is responsible for delivering
the invocation to either a local device capability or a remote service by
choosing an appropriate plug-in. The invocation broker relies on
information from the service registry (local services) and the device
registry (currently reachable devices and the corresponding transport
plug-ins) in order to dispatch an invocation. Since plug-ins can realize
arbitrary protocols the invocation broker has to synchronize the
invocation according to the application programming model and the
underlying plug-in.

Plug-ins can be dynamically loaded and thus allow the extensibility of the
middleware. The invocation broker follows the micro-kernel philosophy
by only offering minimal functionality, i.e., how to find a service
responsible for the invocation, dispatch it, and synchronize the invocation
according to the application communication model. Thus, we call it a
micro-broker.

Since all plug-ins, i.e., for device discovery, device capability, and
transports rely on the same interface, i.e., handle invocations, applications
can use the same programming interface (SII, DII) to access them. As stubs
and skeletons do not provide any marshalling functionality, transport
plug-ins have to ensure the marshalling of parameters and construction of

interoperability protocol messages.

10.3. First Experiences

The first prototype of BASE was developed using an IBM]9
implementation of the Java 2 Micro Edition with the Connected Device
Configuration (CDC). The CDC omits a variety of features from the
Standard Edition, e.g., reflection, while others, such as object serialization,

are present. Initial measurements [BSG+03] showed a reasonable small
220

memory footprint of about 130 Kbytes but also that the initial marshalling
resulted in two to three times overhead compared to Java RMI. This
overhead mostly resulted from the naive approach taken, i.e., serializing

an invocation object with Java’s object serialization.

10.4. Porting and using BASE

After the initial prototypical implementation that built upon the J2ME
CDC platform, we started two projects related to BASE. One project
ported BASE from its original platform the JStamp. The other project
aimed at the development of a component system on top of BASE. The
combined experiences created a picture that allowed an initial evaluation

of both, the internal structure and the external abstractions.

10.4.1. Porting BASE

Although BASE is targeted at systems of all sizes we decided not to deal
with all complexities that arise from the application of extremely restricted
platforms during the development of the first prototype. Therefore, we
did not build upon the most restricted platform defined by the J2ME
specification. Instead we used the CDC, since it has a range of advanced
features that allowed us to speed up the initial development. These
features included for instance, JVM support for object serialization and
dynamic class loading. The typical hardware that provides CDC sized
runtime environments are high-end personal digital assistants or TV set-
top boxes. Clearly, UC aims at devices that are even smaller. Therefore, we
began to port BASE to the CLDC shortly after the first prototype was built
successfully. The CLDC is targeted at devices including low-end personal
digital assistants and embedded processors. Porting BASE required two
tasks. First, we had to remove or reconstruct all convenient features that
were solely available on CDC enabled systems. Second, we had to build

platform specific transport and discovery plug-ins, since the JStamp

221

processor did not support our existing IP-based transport and discovery
plug-ins. Both tasks together gave us a chance to evaluate the internal

structures when porting BASE to other platforms.

10.4.2. BASE as a Platform for Components

BASE aims at abstracting from platform specifics, but it leaves application
programmers with only basic support, when dealing with fluctuating
availability of local and remote services. As these fluctuations are inherent
in mobile ad hoc networks, code of stable applications is necessarily
tangled with code that manages dependencies on functionality provided
by services. Since this kind of tangled code raises the complexity of
application development, we decided to automate dependency
management by the middleware using a component abstraction. The
resulting component system used BASE as means of communication.
Since we did not want to change the main mechanism and abstractions
provided by BASE during its development, the component system can be
seen as an application built on top of BASE. Therefore, this project enabled
us to evaluate BASE’s external structures that are used during application

development.

10.5. Experiences

Before we present the lessons learned from conducting the port and the
development of a component system, we will describe the resulting
modifications to BASE. The modifications can be divided into two classes
depending on their effects. The first class has been foreseeable and did not
have conceptual impact. The second class is more interesting as it affects

the fundamental concepts of BASE.

222

10.5.1. Technical Modifications

The additional restrictions imposed by the CLDC led to technical issues
that could be resolved in a straight forward manner. Most noteworthy we
were facing the following difficulties:

Class loading: the initial version of BASE made use of dynamic class
loading in order to locate and execute plug-ins and services at runtime. As
dynamic class loading is very restricted by the CLDC, we had to reduce
this flexibility. Instead of dynamic class loading we modified BASE to use
linked classes. We simplified the resulting more complex configuration
process by providing a graphical configuration tool that generates desired
configurations.

Object serialization: the CLDC does not provide means for serialization of
objects. Since plug-ins are responsible for the marshalling, the first
prototype of BASE simply serialized the invocation object. As mentioned
before, this resulted in an unnecessary overhead and additionally, it was
not possible on the CLDC. Our solution to this problem is straight
forward. Via a serialization interface the marshalling code can access the
object’s state and write/read it to/from an output/input stream. We will
later describe a solution for a more flexible and performance oriented

plug-in structure.

10.5.2. Conceptual Modifications

BASE’s plug-in concept offers a rather coarse grained structure currently
including marshalling, interoperability, discovery, and transport layer
abstractions. As the JStamp did not support our existing transport and
discovery plug-ins, we had to develop new plug-ins. Although developing
plug-ins is a fairly simple undertaking, due to their coarse grained
structure, we were not able to reuse much of the existing code. Along with

the marshalling performance mentioned earlier and current activities for

223

QoS management, we have to conclude that the plug-in concept so far
provides suitable abstractions to interface to the micro-broker but requires
additional structuring into an interoperability framework. Optimized
marshalling code for distinct interfaces, service discovery, as well as
transport layer related issues, e.g., SSL encryption, can be integrated via
interceptors offering a simple configuration and re-use of these elements
in other plug-ins.

Apart from the technical modification described earlier, the inability to
load classes dynamically also led to conceptual changes. Just like JINI
[Edw99] services, BASE services were designed to provide stubs for their
clients. The automated delivery of stubs allows service-instance specific
stubs and skeletons, but it relies on the ability to load classes dynamically.
Porting BASE led to the conclusion that, due to its overall architecture,
service-instance specific stubs and skeletons are an unnecessary feature.
With respect to JINI services, loadable stubs are the only way to support
flexible communication mechanisms. While BASE decouples stubs from
the specifics of the transport and interoperability layers, JINI's stubs cut
right through all communication layers. Therefore, JINI clients have to use
the stub provided by the service. Otherwise they will not be able to create
valid requests. The only functionality provided by BASE'’s stubs is the
creation of Invocations. Encoding and transmission of data is handled by
plug-ins. As a result, clients are able to include stubs for all services that
they might use. The fact that BASE does not need service-instance specific

stubs and skeletons results in a leaner ServiceRegistry.

10.5.3. Lessons Learned

From conducting both projects we learned a lot about the design decisions
made during the initial development of BASE. A very obvious lesson that

can be learned is that porting a Java-based system is not always as simple

224

as some people claim. Although Java is usually considered to be a
platform independent language, switching to a more restricted J2ME
configuration can lead to costs that are comparable to the costs of porting
platform dependent programs. Both, the lack of object serialization and
dynamic class loading required the design of new mechanisms to achieve
a similar level of convenience.

Apart from the platform related issues, the conceptual modifications
provided two interesting insights. First, we learned that it is possible to
use our plug-in concept to successfully build plug-ins for small devices. At
the same time, we discovered that the granularity of the plug-in layer is
not yet satisfactory. Therefore we have to conclude that the plug-in
concept offers the required extensibility, but it needs a more sophisticated
structure to increase reuse of existing code and to provide improved
support for developers.

The second modification showed that the plug-in architecture allows
removing service specific stubs and skeletons without loss of functionality.
The extensibility provided by BASE’s plug-in layer is sufficient to achieve
at least the same degree of flexibility as systems like JINIL

The previously discussed lessons can be derived directly from
modifications, but there are also lessons learned that result from keeping
existing concepts. For example, one interesting feature of BASE that did
not change during the projects is its reflection mechanism. In contrast to
the Standard Edition, J2ME does not support reflection. However, in the
presence of dynamic invocation creation and appropriate means to specify
services and their interfaces via the service registry, a simple reflection
mechanism is provided by BASE. It was an ongoing discussion in the team
whether to aim for general reflection, i.e., storing signatures and class-
relations in the service registry, or only providing interface names and the

class-hierarchy information. So far, we have chosen the latter approach

225

without experiencing any restrictions. Our component system provides
more powerful concepts for interface description and exploration
including non-functional parameters and hence we decided to keep BASE
minimal.

Another and probably the most important lesson that we have learned is
also a result of not changing anything. During the development of the
component system, there was no need to modify BASE. All necessary
additions were implemented in the application layer. Only two extensions
were integrated directly into BASE. First, components managed by the
component system use stubs and skeletons that inherit from the original
stubs and skeletons provided by BASE. This enables a faster dispatch of
messages since there is no additional indirection in the dispatch chain.
Second, some of the functionality provided by the Registries is accessed
directly in order to remove indirections that might have negative impact
on the performance of the system. Note, that these design decisions are
performance optimizations. We could have done everything in the
application layer (although this would have led to a much slower system).
This brings us to the conclusion that BASE provides suitable abstractions
for implementing applications as well as high-level infrastructures.

The successful development of the component system also raised
questions. Our preliminary evaluation indicates that the overhead caused
by a carefully designed component system is reasonably small compared
with the initial cost of using BASE. The current version of BASE requires
90KB. Through the usage of the component system, these requirements are
increased by 30KB. Considering target systems like the JStamp that have
at least IMB of memory, we are currently considering whether it makes
sense to completely abandon the service abstraction and use components
instead. But at the moment it is too early to fully assess all consequences of

such a move.

226

10.6. Conclusions

In this chapter we have presented our experiences with conducting two
projects that build upon BASE. While the internal structures have
undergone technical and conceptual modifications, the external structures
stayed remarkably stable. The conceptual modifications led to a follow up
project, in which we began to design an improved plug-in layer to
overcome the described deficiencies. Furthermore, we were able to
successfully port BASE to a new set of target devices and to utilize it for a
larger application. This success is encouraging and it shows that BASE is
not only suited for smaller devices, but also that it can be used as
infrastructure for applications as well as for further high-level
abstractions. We are highly confident that the minimalism of our micro-
broker approach together with the extensibility of its plug-in architecture

will prove to be adequate for UC environments.

BASE and the component system are freely available to research

institutions and can be downloaded at http://www.3pc.info.

227

11. Summary and Outlook

The proliferation of sensor technology and the miniaturization of
computing devices already provide the foundations to capture the
physical world’s state. Integrating this state into applications allows
presenting information and selecting services based on the physical
world’s state. Applications thus become context-aware. First examples of
context-aware applications are already available on the market. Car
navigation systems are based on road maps providing a model of the
physical world. Integrating dynamic information, such as the current
traffic information, allows the routing function to avoid traffic jams.
Application scenarios for context-aware computing span all domains
where human users interact with computer systems. Context-aware
tourist guides, reminder services, home automation are examples for such
application systems. Certain domains can clearly benefit from context-
aware computing technology. Support for senior citizens could consists of
body monitoring in order to ensure that help is called if some critical state
is monitored. A smart pill dispenser can keep track of the correct medicine
to be taken. Offering the latest health information plus a history to a
physician in case of an emergency can help to provide the best-possible
medical care. But not only human-centered computing can benefit from
context-aware computing. A smart factory could track the position and
state of tools and resources in order to integrate it into its resource
management. This allows balancing stocking of resources and tools versus
possible production downtimes due to their unavailability.

Context as a concept reflects all information that relates to the situation of
entities relevant for applications and users. Applications can use context
information by different means. If the context is stored in a context model
and the application provides the precautions for adaptation to context

changes we refer to this class of system support as adaptation by application.

228

Such context models are typically realized as context services which allow
storing context information obtained by sensors, the application, or the
user. Applications interface to such context services by using query
languages in order to retrieve or modify context information. Based on
such context models applications can select information and services
depending on the context, change their presentation, issue some action, or
allow to tag information to context. Context services can be designed for a
single application, an application domain, or aim at generic context
management. The underlying system models influence the context
management. Infrastructure-based approaches can rely on one or a
number of services offering the context information to applications.
Applications thus have to access the infrastructure whenever context
information is required. Another possible approach is based on ad hoc
communication. Mobile devices are connected by wireless communication
technology and form a spontaneous network. The unpredictable topology
changes and the resulting network partitions prevent the management of
context in a single service. Context information can be managed on a peer-
to-peer-based fashion where mobile devices manage their context locally
and exchange information with other devices. Location services for mobile
ad hoc networks are examples of context information that is maintained
collaboratively among mobile devices.

In contrast to context services which provide applications only with
information about context but do not provide any support for application
adaptation, support for adaptation by system exists as well. Applications are
automatically configured depending on the available information and
services. Spatial proximity as a major context information can be reflected
either by a spatially restricted resource management or by using ad hoc
communication. In the first case, which is common for smart

environments, the management of a spatial area is provided by an

229

infrastructure. The smart environments controls the integration and
leaving of devices and mediates the interaction. Applications are mapped
onto the available services. The relevance of information and services is
reflected by being available through the smart environment which only
manages a spatially restricted area, e.g., a meeting room or a smart home.
Spatial relevance of information and services is naturally reflected in
spontaneous networks based on mobile ad hoc networks. The
communication between devices is based on wireless communication and
thus devices in direct communication range are considered to be in
proximity. In contrast to smart environments there is no central control
provided by an infrastructure. This requires the system support to
discover available services and information for each participating device

and to adapt applications accordingly.

11.1. Contributions

This thesis provides a general discussion about system support for
context-aware computing. A classification of system support along the
dimensions of the underlying system model, i.e., ad hoc or infrastructure,
and the system support for application adaptation, i.e.,, by system or by
application, is given and structures this research area.

Specific contributions are made to the domains of support for adaptation
by application. Location models as a basic structure of context models are
presented and classified according to their suitability for supporting
position, range, and nearest neighbour queries. The domain of context
services in ad hoc systems is addressed by the Usenet-on-the-fly. This
application allows users or applications to specify filters on information,
which is exchanged between mobile devices in a mobile ad hoc network.
The local relevance of information is reflected by the dissemination
algorithm that propagates information between devices whenever they are

in communication range. An improved version of this algorithm is
230

provided which allows scheduling the advertisement of messages based
on their popularity. Another contribution to the field of context services
are the experiences gained from the integration of a local context server for
Georgia Tech’s Aware Home into the Nexus platform.

The research area of Peer-to-Peer Pervasive Computing — support for
adaptation by system in an ad hoc setting — is covered in the remaining
part of this thesis. First, a requirement analysis of this class of system
support is given. Second, a flexible middleware platform that allows for
spontaneous cooperation in Peer-to-Peer ad hoc systems is introduced. A
micro-broker design allows minimal installation but also flexible
extensibility. Third, the support for application adaptation by system is
addressed by a component system. Based on the middleware a
component-based application model is designed. The container managing
the components can automatically adapt to resource changes because of
the explicit dependencies modelled in the component’s contracts. Fourth,
the experiences of porting the middleware to resource restricted devices
and building the component container close the thesis showing the

feasibility of the introduced concepts.

11.2. Outlook

Context-aware computing already starts to become available in products,
such as navigation systems. The integration of sensor and computing
platforms as embedded systems into everyday objects as a trend can also
be observed. The next challenges in context management are common
context models allowing applications to share and reason about context.
Standardized query languages along with the context models are required
to share the costs of gathering and managing context.

Context-aware applications react to the changes in the physical world
along with other context information, such as user preferences. As a result,

these applications will change their behaviour over time with the context
231

information. The potentially high number of context information and the
resulting combinations require applications to either neglect relevant
context information or to deal with this information. Clearly, this
complicates the task of developing and maintaining context-aware
applications. In an ideal case, application programmers are provided with
means to specify the variations in an application’s behaviour and the
system support automatically configures the application depending on the
current context. A similar situation can be found in Peer-to-Peer Pervasive
Computing. The fluctuation of services and resources in general will
require constant adaptation of application to the ever-changing execution
environment. If the application programmer is assisted by higher level
support, such as a contract-based application model, e.g., the one
provided by PCOM, the system performs constant self-configuration.
Classical computer systems are also challenged by the number of involved
components. The complexity of such systems leads to high effort for fault-
isolation and configuration. The vision of Autonomic Computing aims at
self-organizing, self-healing, and self-optimizing systems. The similarity of
objectives of Autonomic and Pervasive Computing — as discussed in
[WPTO3] - leads to the questions how the concepts for adaptation and
specification of applications can be transferred between these domains.
Clearly, the system models differ. Systems considered by Autonomic
Computing are of higher complexity and changes, such as errors or
reconfigurations, are happening on a lower rate than in Pervasive
Computing. The core problem, that a system has to adapt to a variety of
potentially unknown changes, however, stays the same.

With basic technology being available, the vision of Pervasive Computing
can become reality. Research challenges ahead do not only affect core

computer science disciplines but also business cases for the deployment of

232

such systems as well as the social implications of a world populated with

sensing, computing, and communication capabilities.

233

12. References

[3PC]

[AAH+97]

[ACH-+01]

[BAO1]

[BBHO2]

[BBRO1]

[BBR02]

[BCA+01]

[BCR+00]

[BCS+98]

[BD04]

[BGOO]

[BHS+04]

234

Peer-to-Peer Pervasive Computing Project (3PC): http://www.3pc.info

G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton “Cyberguide: A
mobile context-aware tour guide”, Wireless Networks 3(5) (1997) 421-433

M. Addlesee, R. Curwen, S. Hodges,]. Newman, P. Steggles, A. Ward, A. Hopper,
“Implementing a Sentient Computing System”, IEEE Computer Magazine, vol. 34,
no. 8, pp. 50-56, August 2001

L. Bergmans and M. Aksit “Composing crosscutting concerns using composition
filters”, Communications of the ACM, 44(10), Oct. 2001.

C. Becker, M. Bauer, J. Hahner “Usenet on the fly - supporting the locality of
information in spontaneous networking environments”, Workshop on Ad hoc
Communications and Collaboration in Ubiquitous Computing Environments in
conjunction with ACM Conference on CSCW 2002, New Orleans/USA, 2002

M. Bauer, C. Becker, K. Rothermel “Location Models from the Perspective of
Context-Aware Applications and Mobile Ad Hoc Networks”, Workshop on Location
Modeling for Ubiquitous Computing, UBICOMP 2001, Atlanta, 2001.

M. Bauer, C. Becker, K. Rothermel “Location Models from the Perspective of
Context-Aware Applications and Mobile Ad Hoc Networks”, Personal and
Ubiquitous Computing. Vol. 6(5-6). S. 322-328, London: Springer-Verlag (2002)

G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-Limon, T.
Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski, “The Design
and Implementation of Open ORB version 2”. IEEE Distributed Systems Online
Journal, vol. 2, no. 6, 2001

G. S. Blair, G. Coulson, P. Robin, M. Papathomas, “An Architecture for Next
Generation Middleware”, Proceedings of Middleware 2000, Lake District, UK, 2000

S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward “A distance routing
effect algorithm for mobility (DREAM)” In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom'98, Dallas, TX, 1998.

C. Becker, F. Diirr “On Location Models for Ubiquitous Computing” accepted for
publication in Personal and Ubiquitous Computing, Springer, 2004

C. Becker and K. Geihs, “Generic QoS-Support for CORBA”, Proceedings of the 5th
IEEE Symposium on Computers and Communications (ISCC2000) Antibes, France,
2000

C. Becker, M. Handte, G. Schiele, K. Rothermel “PCOM - A Component System for
Pervasive Computing”, In Proceedings 2nd IEEE International Conference on

Pervasive Computing and Communication (PerCom 04), Orlando, USA, 2004

[BJP+99]

[BJR+03]

[BKW02]

[BMJ+98]

[BMK+00]

[BMRO4]

[BRO4]

[BSO1]

[BS03a]

[BSO3b]

[BSG+03]

[CDM+00a]

A. Beugnard, J.M. Jezequel, N. Plouzeau, and D. Watkins “Making components
contract aware” IEEE Computer, 13(7), July 1999.

M. Bauer, L. Jendoubi, K. Rothermel, E. Westkdamper “Grundlagen ubiquitédrer
Systeme und deren Anwendung in der Smart Factory” Industrie Management —
Zeitschrift fiir industrielle Geschéftsprozesse, 19(6), 2003

J. Baus, A. Kriiger, W. Wahlster “A resource-adaptive mobile navigation system” In
Proccedings of International Conference on Intelligent User Interfaces, San Francisco,
2002

J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, J. Jetcheva “A Performance Comparison
of Multi-Hop Wireless Ad Hoc Network Routing Protocols”, Proceedings of the
Fourth Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom’98), Dallas, Texas, 1998.

B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer “EasyLiving: Technologies for
Intelligent Environments” Handheld and Ubiquitous Computing (HUC), Bristol, UK,
2000

S. Biirklen, P. Marron, K. Rothermel “An Enhanced Hoarding Approach Based on
Graph Analysis” In Proceedings of the 5th IEEE International Conference on Mobile
Data Management (MDM 2004); Berkeley, California, USA, 2004

Bauer, Martin; Rothermel, Kurt: “How to Observe Real-World Events through a
Distributed World Model” In: to appear in: Proceedings of the Tenth International
Conference on Parallel and Distributed Systems 2004 (ICPADS 2004);Newport Beach,
California, July 7-9, 2004

B. Brumitt, S. Shafer “Topological World Modeling Using Semantic Spaces”, In
Proceedings of the Workshop on Location Modeling for Ubiquitous Computing,
Atlanta, Georgia, USA, Sep 2001

C. Becker, G. Schiele “BASE: A Minimal yet Extensible Platform for Pervasive
Computing”, International Conference on Tales of the Disappearing Computer,
Santorin, Greece, 2003

C. Becker, G. Schiele “Middleware and Application Adaptation Requirements and
their Support in Pervasive Computing”, 3rd International Workshop on Distributed
Auto-adaptive and Reconfigurable Systems (DARES) at ICDCS, pp. 98-103, May 19-
22, Providence, USA, 2003

C. Becker, G. Schiele, H. Gubbels, K. Rothermel “BASE - A Micro-broker-based
Middleware For Pervasive Computing”, Proceedings of the 1st IEEE International
Conference on Pervasive Computing and Communication, pp. 443-451, Fort Worth,
USA, March 2003

K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou “Developing a Context-
aware Electronic Tourist Guide: Some Issues and Experiences”, Proceedings of CHI

2000, Netherlands (2000)

235

[CDM+00b]

[CGS+02]

[CKO00]

[CKWO1]

[CLC+02]

[Cooltown]

[CPW-+02]

[CPW+99]

[DA99]

[DALLAS]
[DGH+87]

[DRO3]

[Dro03]

[Edw99]

[EE98]

236

K. Cheverst, N. Davies, K. Mitchell, and A. Friday “Experiences of developing and
deploying a context-aware tourist guide: the GUIDE project”, In Proceedings of the
6th Annual International Conference on Mobile Computing and Networking, Boston,
Massachusetts, 2000, 20-31

S.W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel, P. Steenkiste, and N. Hu
“Software architecturebased adaptation for pervasive systems”, In International
Conference on Architecture of Computing Systems (ARCS’02): Trends in Network
and Pervasive Computing, Apr. 2002.

G. Chen, D. Kotz “A Survey of Context-Aware Mobile Computing Research”,
Dartmouth Computer Science Technical Report TR2000-381, Dartmouth College
(2000)

W. S. Conner, L. Krishnamurthy, R. Want “Making Everyday Life Easier Using
Dense Sensor Networks”, In Proceedings of UBICOMP 2001, Atlanta, USA (2001)

N. H. Cohen, H. Lei, P. Castro, J. S. Davis II, A. Purakayastha “Composing Pervasive
Data Using iQL” 4th IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 2002), Callicoon, New York, 2002

Cooltown, http://www.cooltown.com/cooltownhome/index.asp

N. H. Cohen, A. Purakayastha, L. Wong, D. L. Yeh “iQueue: a pervasive data-
composition framework” 3rd International Conference on Mobile Data Management,
Singapore, 2002

M.H. Coen, B. Phillips, N. Warshawsky, L. Wiesman, S. Peters, P. Finin, “Meeting the
Computational Needs of Intelligent Environments: The Metaglue System”,
Proceedings of the 1st International Workshop Managing Interactions in Smart
Environments (MANSE'99), Dublin, Ireland, pp. 201-212, December 1999

A. Dey, G. Abowd “Towards a better understanding of context and context-
awareness”, Georgia Tech GVU Technical Report, GIT-GVU-99-22 (1999)

Accuracy of RTC: http://dbserv.maxim-ic.com/appnotes.cfm/appnote_number/632

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.
Swinehart, D. Terry “Epidemic Algorithms for Replicated Database Maintenace”, In
Proceedings of the 6th ACM Symposium on Principles of Distributed Computing,
pp- 1-12, 1987.

F. Duirr, K. Rothermel “On a Location Model for Fine-Grained Geocast”, In
Proceedings of the Fifth International Conference on Ubiquitous Computing
(UbiComp 2003), Seattle, WA, Oct 2003, 18-35

T. Drosdol: Unterstiitzung symbolischer Koordinaten im Lokationsmanagement;
Diploma thesis, University of Stuttgart, 2003

W. K. Edwards “Core JINI” The SUN Microsystems Press Java Series, Prentice Hall,
1999

G. Eddon, H. Eddon “Inside Distributed Com”, Microsoft Press, February 1998

[EPS+01]

[ETH]
[FHM-+04]

[GAB+00]

[GPS]
[GSF+01]

[GSM]

[GSS+02]

[HBO1]

[HBBO02]

[HBRO3]

[HHS+99]

[HKB99]

[HKL+99]

F. Espinoza, P. Person, A. Sandin, H. Nystrém, E. Cacciatore, M. Bylund “GeoNotes:
Social and Navigational Aspects”, In Proceedings of UBICOMP 2001, Atlanta, USA
(2001)

ETH World, http://www.ethworld.ethz.ch

A. Ferscha, M. Hechinger, R. Mayrhofer, R. Oberhauser ” A Light-Weight Component
Model for Peer-to-Peer Application” In the 24th IEEE International Conference on
Distributed Computing Systems Workshops, Tokyo, Japan, 2004

R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. “A system architecture for
pervasive computing”, In Proceedings of the 9th ACM SIGOPS European Workshop,
pp. 177-182, Denmark, September 2000.

Information GPS: http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
C. H. Ganoe, W. A. Schafer, U. Farooq, J. M. Carroll “An Analysis of Location Models
for MOOsburg”, In Proceedings of the Workshop on Location Modeling for
Ubiquitous Computing, Atlanta, Georgia, USA, Sep 2001

GSM World. Location-based Services.
http://www.gsmworld.com/technology/applications/location.shtml

D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste “Project Aura: Towards
Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, special issue on
"Integrated Pervasive Computing Environments", Volume 1, Number 2, (Apr-Jun
2002) 22-31

J. Hightower and G. Borriello “Location systems for ubiquitous computing”, IEEE
Computer 34(8), 2001, 57-66

J. Hightower, B. Brumitt, and G. Borriello “The Location Stack: A Layered Model for
Location in Ubiquitous Computing”, In Proceedings of the 4th IEEE Workshop on
Mobile Computing Systems & Applications (WMCSA 2002), Callicoon, NY, 2002, 22-
28

J. Hahner, C. Becker, and K. Rothermel “A Protocol for Data Dissemination in
Frequently Partitioned Mobile Ad Hoc Networks”, In Proceedings of the IEEE
Symposium on Computers and Communications (ISCC 2003), Antalya/Turkey, 2003
A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster “The anatomy of a context-
aware application”, In Proceedings fifth annual International Conference on Mobile
Computing and Networking (MobiCom’99), Seattle, WA

W.R. Heinzelman,]. Kulik, H. Balakrishnan “Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks”,In Proceedings fifth annual
International Conference on Mobile Computing and Networking (MobiCom’99),
Seattle, WA

F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, M. Schwehm “Next Century

Challenges: Nexus - An Open Global Infrastructure for Spatial-Aware Applications”,

237

[HLO04]

[HOT+99]

[JFW02]

[Joh94]

[JS02]

[JS03]

[JSprint]
[JStamp]
[JTK97]

[Kan01]

[KEG93]

[KF02]

[KHB99]

[KLO1]

238

Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom'99), Seattle, Washington, WA

H. Hu and D. L. Lee “Semantic Location Modeling for Location Navigation in Mobile
Environments”, In Proceeding of the IEEE International Conference on Mobile Data
Management, Berkeley, California, USA, Jan 2004

C. Ho, K. Obraczka, G. Tsudik, K. Viswanath “Flooding for Reliable Multicast in
Multi-Hop Ad Hoc Networks”, Proceedings of MobiCom Workshop on Discrete
Algorithms and Methods for Mobility (DialM’99), 1999.

B. Johanson, A. Fox, T. Winograd, “The Interactive Workspaces Project: Experiences
with Ubiquitous Computing Rooms”, IEEE Pervasive Computing, vol. 1, no. 2, pp.
67-74, April-June 2002

D. Johnson “Routing in Ad Hoc Networks of Mobile Hosts”, In Proceedings of the
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, USA,
1994.

C. Jiang, P. Steenkiste “A hybrid location model with a computable location identifier
for ubiquitous computing”, In Proceedings of the Fourth International Conference on
Ubiquitous Computing (UbiComp 2002), Goteborg, Sweden, 2002, 246-263

G. Judd, P. Steenkiste “Providing Contextual Information to Pervasive Computing
Applications”, In Proceedings of IEEE International Conference on Pervasive
Computing and Communications (PerCom), 2003, 133-142

J-Sprint Homepage, http://www j-sprint.com/

JStamp Homepage, http://jstamp.systronix.com/index.htm

A.D. Joseph, J.A. Tauber, and M.F. Kaashoek, “Mobile Computing with the Rover
Toolkit”, IEEE Transactions on Computers: Special issue on Mobile Computing, vol.
46, no. 3, pp. 337-352, March 1997

G. Kan ”Gnutella” In Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, Andy Oram (ed.), O’Reilly, March 2001.

W. Kainz, M.]J. Egenhofer, I. Greasley “Modeling spatial relations and operations
with partially ordered sets” International Journal of Geographic Information Systems
7(3), 1993, 215-229

T. Kindberg, A. Fox, “System Software for Ubiquitous Computing”, IEEE pervasive
computing, vol. 1, no. 1, pp. 70-81, January-March 2002

J. Kulik, W. Heinzelman, H. Balakrishnan “Negotiation-based protocols for
disseminating information in wireless sensor networks”, In Proceedings of the Fifth
Annual ACM/IEEE International Conference on Mobile Computing and Networking,
Seattle, WA, USA, 1999.

O. Kasten, M. Langheinrich “First Experience with Bluetooth in the Smart-Its

Distributed Sensor Networks”, Workshop on Ubiquitous Computing and

[KMP99]

[KOA+99]

[KSS+99]

[LBB+04]

[LBS]

[Led99]

[Leo98]

[LJD+00]

[LKA+96]

[LKR99]

[LSD+02]

Communication. In Proceedings of 10th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT’01), Barcelona Spain, 2001.

G. Karumanchi, S. Muralidharan, R. Prakash “Information Dissemination in
Partitionable Mobile Ad Hoc Networks”, Proceedings of 18th IEEE Symposium on
Reliable Distributed Systems, 1999.

C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt, T. Starner,
W. Newstetter “The Aware Home: A Living Laboratory for Ubiquitous Computing
Research”, In Proceedings of the Second International Workshop on Cooperative
Buildings - CoBuild’99, 1999

G. Kortuem, J. Schneider, J. Suruda, S. Fickas, Z. Segall “When Cyborgs Meet:
Building Communities of Cooperating Wearable Agents”, In Proceedings Third
International Symposium on Wearable Computers (ISWC'99), San Francisco, CA,
USA, 1999.

O. Lehman, M. Bauer, C. Becker, D. Nicklas “From Home to World: Supporting
Context-Aware Applications through World-Models”, In 2nd IEEE International
Conference on Pervasive Computing and Communication (PerCom 04), Orlando,
USA, 2004

LBS Portal, http://www.Ibsportal.com/

T. Ledoux, “OpenCorba: A Reflective Open Broker”, Proceedings of the 2nd
International Conference on Reflection (Reflection'99), pp. 197-214, Saint-Malo,
France, 1999

U. Leonhardt “Supporting location-awareness in open distributed systems”, PhD
thesis, Imperial College London, Department of Computing, 1998

J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, R. Morris “A Scalable Location
Service for Geographic Ad hoc Routing” in Proceedings Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom'00),
Boston, USA

S. Long, R. Kooper, G. D. Abowd, C. G. Atkeson “Rapid prototyping of mobile
context-aware applications: the Cyberguide case study” In Proceedings of the second
annual International Conference on Mobile Computing and Networking, White
Plains, NY, 1996

A. Leonhardi, U. Kubach, K. Rothermel “Virtual Information Towers - A metaphor
for intuitive, location-aware information access in a mobile environment” In
Proceedings of third International Symposium on Wearable Computers, San
Francisco, CA (1999) 15-20

H. Lei, D. M. Sow, J. S. Davis II, G. Banavar, M. R. Ebling “The design and
applications of a context service” Mobile Computing and Communications Review 6,

No. 4, October 2002

239

[Loo01]

[LR02]

[Mic00]

[Moz98]

[MS00]

[MS01]

[NCO1]

[NGS+01]

[NKO+01]

[NMO1]

[NTC+99]

[ODAO1]

[OGT+99]

[OMG98]

240

D. Loomis, The TINI(tm) Specification and Developer's Guide, Addison-Wesley, June
2001

A. Leonhardi, K. Rothermel “Architecture of a Large-scale Location Service”, In
Proceedings of the 22nd Int. Conf. on Distributed Computing Systems (ICDCS 2002),
Vienna, Austria (2002) 465-466

Microsoft Corporation, Universal Plug and Play Device Architecture, Version 1.0,
http://www.upnp.org/download/ UPnPDA10_20000613.htm, June, 2000

M. Mozer, “The Neural Network House: An Environment that Adapts to its
Inhabitants”, AAAI Spring Symposium, Stanford, pp. 110114, March 1998

N. Marmasse, C. Schmandt “Location-aware information delivery with commotion”
In Proceedings of the second International Symposium on Handheld and Ubiquitous
Computing (HUC), Bristol, UK, 2000

N. Marmasse, C. Schmandt “Location Modeling” In Proceedings of the Workshop on
Location Modeling for Ubiquitous Computing, Atlanta, Georgia, USA, Sep 2001

H. Naguib, G. Coulouris “Location Information Management” In Proceedings of the
3rd International Conference on Ubiquitous Computing (UbiComp 2001), Atlanta,
Georgia, USA, Sep 2001

D. Nicklas, M. Grofimann, T. Schwarz, and S. Volz “A Model-Based, Open
Architecture for Mobile, Spatially Aware Applications”, In Proceedings of the 7th
International Symposium on Spatial and Temporal Databases (SSTD 2001), Redondo
Beach, CA, USA, Jul 2001

K. Nagel, C. D. Kidd, T. O'Connell, A. Dey, G. D. Abowd, “The Family Intercom:
Developing a Context-Aware Audio Communication System” G. D. Abowd, B.
Brumitt, S. A. N. Shafer (Eds): Ubicomp 2001, LNCS 2201, Springer-Verlag Berlin
Heidelberg (2001), 176-183

D. Nicklas, B. Mitschang “The Nexus Augmented World Model: An Extensible
Approach for Mobile, Spatially-Aware Applications”, In Proceedings of the 7th Int.
Conf. on Object-Oriented Information Systems (2001)

S.-Y.Nij, Y.-C. Tseng, Y.-S Chen, J.-P. Sheu “The Broadcast Storm Problem in a Mobile
Ad Hoc Network”, Proceedings of the Fifth Annual International Conference on
Mobile Computing and Networking (MobiCom'99), 1999.

T. O’Connel, P. Jensen, A. Dey, and G. Abowd: Location in the Aware Home; In
Proceedings of the Workshop on Location Modeling for Ubiquitous Computing,
Atlanta, Georgia, USA, Sep 2001

P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A.
Quilici, D.S. Rosenblum, A.L. Wolf, “An Architecture-Based Approach to Self-
Adaptive Software”, IEEE Intelligent Systems, vol. 14, no. 3, pp. 54-62, May-June
1999

Object Management Group, CORBA Messaging, report orbos/98-05-06, 1998

[OMGO02a]

[OMGO02b]

[OMGO02c]

[OpenGIS]

[OT98]

[Oxygen]
[Pas97]

[PB94]

[PBB+02]

[Pebbles]

[PostGIS]
[PPL+03]

[PROO]

[PS01]

[RBBO3]

[RBB+03]

Object Management Group, Minimum CORBA Specification, Revision 1.0. August
2002

Object Management Group, The Common Object Request Broker: Architecture and
Specification, Revision 3.0. July 2002

Object Management Group (OMG), “CORBA Component Model V3.0”, formal/2002-
06-65, 2002

Open GIS Consortium Inc.: OpenGIS Simple Features Specification for SQL,
<http://www.opengis.org/techno/specs/99-049.pdf>

K. Obraczka, G. Tsudik “Multicast Routing Issues in Ad Hoc Networks”,
Proceedings of the IEEE International Conference on Universal Personal
Communication ICUPC’98), 1998.

Oxygen System Group Homepage. http://02s.lcs.mit.edu/.

J. Pascoe “The Stick-e Note Architecture: Extending the Interface Beyond the User”,
In Proceedings of the International Conference on Intelligent User Interfaces. Editors,
Moore, J., Edmonds, E., and Puerta, A., pp. 261-264, 1997

C. E. Perkins, P. Bhagwat “Highly Dynamic Destination-Sequenced Distance Vector
Routing (DSDV) for Mobile Computers”, In Proceedings of ACM SIGCOMM'%4,
London, UK, pp. 234-244, 1994.

D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,]. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,].
Traupman, N. Treuhaft, “Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies”, UC Berkeley Computer Science Technical
Report UCB//CSD-02-1175, March 2002
http://www.cag.lcs.mit.edu/~umar/publications/pebbles-abstract.pdf

PostGIS, <http://postgis.refractions.net>

G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen, M. Podlaseck, H. Chen, N. Sukaviriya
”Steerable Interfaces for Pervasive Computing Spaces”, In Proceedings of IEEE
International Conference on Pervasive Computing and Communications (PerCom),
2003, 315 322

A. Puder, K. Roemer, MICO: An Open Source CORBA Implementation, 3rd edition,
Morgan Kaufmann Publishers, March 2000

M. Papadopuli, H. Schulzrinne ”Effects of power conservation, wireless coverage
and cooperation on data dissemination among mobile devices”, In Proceedings of
MobiHoc 2001, Long Beach, USA, 2001.

K. Rothermel, M. Bauer, C. Becker ”Digitale Weltmodelle - Grundlage
kontextbezogener Systeme”, in Total Vernetzt, Ed. F. Mattern, Springer, 2003

A. Roy, S. K. D. Bhaumik, A. Bhattacharya, K. Basu, D. J. Cook, and S. K. Das

“Location Aware Resource Management in Smart Homes”, In Proceeding of the First

241

[RCO0]

[RCO1]

[RDD+03]

[RJO+89]

[RKC99]

[RKCO1]

[RLU94]

[RMK+00]

[Roem01]

[RSC+99]

[Sat96]

[SAW94]

[SBG99]

242

IEEE International Conference on Pervasive Computing and Communications
(PerCom '03), Fort Worth, USA, Mar 2003

M. Roman and R.H. Campbell, “GAIA: Enabling Active Spaces”, Proceedings of the
9th ACM SIGOPS European Workshop, pp. 229-234, Kolding, Denmark, September
2000

M. Roman and R.H. Campbell, “Unified Object Bus: Providing Support for Dynamic
Management of Heterogeneous Components”, Technical Report UTUCDCS-R-2001-
2222 UILU-ENG-2001-1729, Universiy of Illinois at Urbana-Champaign, 2001

K. Rothermel, D. Dudkowski, F. Diirr, M. Bauer, C. Becker “Ubiquitous Computing —
More than Computing Anytime Anyplace”, In Proceedings of the 49th
Photogrammetric Week, Stuttgart, Germany, Sep 2003

R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, M. Jones, “Mach: A
System Software kernel”, Proceedings of the 34th Computer Society International
Conference (COMPCON 89), San Francisco, CA, February 1989

M. Roman, F. Kon and R.H. Campbell, “Design and Implementation of Runtime
Reflection in Communication Middleware: The DynamicTAO Case”, Proceedings of
the 1999 ICDCS Workshop on Electronic Commerce and Web-Based Applications,
pp. 122-127, Los Alamitos, CA, 1999

M. Roman, F. Kon, and R.H. Campbell, “Reflective Middleware: From Your Desk to
Your Hand”, IEEE Distributed Systems Online Journal, Special Issue on Reflective
Middleware, July 2001

M. Rizzo, P. Linington, I. Utting “Integration of Location Services in the Open
Distributed Office”, Technical Report 12/94, University of Kent, Canterbury, UK,
1994

M. Roman, D. Mickunas, F. Kon, R.H. Campbell, “LegORB and Ubiquitous CORBA”,
IFIP/ACM Middleware2000 Workshop on Reflective Middleware, NY, April 2000
Romer, K.: , Time Synchronization in Ad Hoc Networks”, Proceedings of the ACM
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’01), 2001.

M. Roman, A. Singhai, D. Carvalho, C. Hess, R.H. Campbell, “Integrating PDAs into
Distributed Systems: 2K and PalmORB”, International Symposium on Handheld and
Ubiquitous Computing (HUC'99), Karlsruhe, Germany, September 1999

M. Satyanarayanan “Fundamental Challenges in Mobile Computing” in Proceedings
15t ACM Symposium on Principles of Distributed Computing, Philadelphia, USA,
1996

B. N. Schilit, N. A., Roy Want “Context-Aware Computing Applications” IEEE
Workshop on Mobile Computing Systems and Applications, 1994

A. Schmidt, M. Beigl, and H.-W. Gellersen “There is more to context than location”,

Computers and Graphics 23(6), 1999, 893-901

[Sch95]

[SDA99]

[SensorML]

[SKJ+00]

[Ste02]

[STMO00]

[SunEJB]

[SunJ2EE]

[Sun]2ME]

[SunRMI]

[Swiss]

[Systronix]
[Szy98]

[Tan96]
[TAO]

[THB+02]

[TKR+91]

[VBOO]

[VGH-+02]

W. N. Schilit “A System Architecture for Context-Aware Mobile Computing” PhD
thesis, Columbia University, 1995

D. Salber, A. Dey, G. Abowd, G.: The Context Toolkit: Aiding the Development of
Context-Enabled Applications. Proceedings of CHI (1999)

Open GIS Consortium Inc.: SensorML http://www.opengis.org/docs/02-026r4.pdf

J. Schneider, G. Kortuem, I. Jager, S. Fickas, Z. Segall “Disseminating Trust
Information in Wearable Communities”, In Proceedings of the 2nd International
Symposium on Handheld and Ubiquitous Computing (HUC2K), Bristol, UK, 2000.

I. Stepanov “Integrating Realistic Mobility Models In Mobile Ad Hoc Network
Simulation”, Diploma Thesis No. 1989, in English, Department of Computer Science,
University if Stuttgart, 2002. Available at ftp://ftp.informatik.uni-stuttgart.de/
pub/library/medoc.ustuttgart_fi/DIP-1989/DIP-1989.pdf.

A. Schmidt, A. Takaluoma, J. Mantyjarvi “Context-aware telephony over WAP”, In
Personal Technologies 4 (4) (2000) 225-229

SUN Microsystems, “Enterprise Java Beans Specification”,
http://java.sun.com/products/ejb/docs.html, 2003

Sun Microsystems. Java 2 platform, enterprise edition. http://java.sun.com/j2ee.

Java Micro Edition Homepage, http://java.sun.com/j2me/

Java Remote Method Invocation Specification. Revision 1.8, Sun Microsystems,
available online: http://java.sun.com/j2se/1.4/docs/ guide/rmi/index.html, 2002
Swisscom. Go Mobile.
http://www.gomobile.ch/static/en/community/community_web_public.htm
Systronix Inc home page, http://www jstamp.com/

C. Szyperski “Component Software Beyond ObjectOriented Programming”,
AddisonWesley, 2nd edition, 1998.

A. Tanenbaum “Computer Networks - Third Edition”, Prentice Hall, 1996.

D.C. Schmidt, Minimum TAO.
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/docs/minimumTAO.html

J. Tian.,]J. Hahner, C. Becker, 1. Stepanov, K. Rothermel “Graph based Mobility
Model for Mobile ad-hoc Network Simulation”, In Proceedings of the 35th Annual
Simulation Symposium (ANNSS35), San Diego, USA, 2002.

A.S. Tanenbaum, M.F. Kaashoek, R. van Renesse, and H. Bal, “The Amoeba
Distributed Operating System-A Status Report”, Computer Communications, vol. 14,
no. 6, pp. 324-335, July/August 1991

A. Vahdat, D. Becker “Epidemic Routing for Partially Connected Ad Hoc Networks”,
Technical Report CS-200006, Duke University, USA, 2000.

S. Volz, M. Grofimann, N. Honle, D. Nicklas, T. Schwarz ,Integration mehrfach
reprasentierter Straflendaten fiir eine fOderierte Navigation”, In it+ti,

Informationstechnik und Technische Informatik 5, 2002

243

[Wal99]

[WBG+01]

[Wei91]

[WHG92]

[WJH97]

[WKO0]

[Wor95]

[WPT03]

[XWC02]

[YKW-+02]

244

J. Waldo, “The Jini Architecture for network-centric computing”, Communications of
the ACM, vol. 42, no. 7, pp. 76-82, July 1999

T. Weis, C. Becker, K. Geihs, N. Plouzeau ,,An UML metamodel for contract aware
components”, In Proceedings of UML 2001, 2001.

M. Weiser, “The computer for the 21st century”, Scientific American, vol. 265, no. 3,
pp. 94-104, September 1991

R. Want, A. Hopper, and J.Gibbons “The Active Badge Location System”, In ACM
Transactions on Information Systems 10, 1992, 91-102

A. Ward, A. Jones, A. Hopper “A new location technique for the active office”, IEEE
Personal Communications 4(5), 1997, 42-47

S. Wilson, J. Kesselman “Java Platform Performance: Strategies and Tactics”,
Addison-Wesley, May 2000

M. F. Worboys “GIS: A Computing Perspective”, Taylor & Francis, London, UK,
1995.

R. Want, T. Pering, D. Tennenhouse, “Comparing Autonomic and Proactive
Computing”, IBM Systems Journal, vol. 42, no. 1, pp. 129-135, January 2003

B. Xu, O. Wolfson, S. Chamberlain “Spatially Distributed Databases on Sensors”, In
Proceedings of the 8th ACM Symposium on Advances in Geographic Information
Systems, Washington DC, USA, pp. 153-160, 2000.

S. S. Yau, F. Karim, Y. Wang, B. Wang, S. K. S. Gupta “Reconfigurable Context-
Sensitive Middleware for Pervasive Computing”, IEEE Pervasive Computing, vol.1,

no.3, pp.33-40, 2002

13. Publications contained in this thesis

Chapter 3: C. Becker, F. Diirr “On Location Models for Ubiquitous
Computing”, accepted for Personal and Ubiquitous Computing, Springer

Chapter 4: C. Becker, M. Bauer, J. Hahner “Usenet on the fly - supporting the
locality of information in spontaneous networking environments”, Workshop
on Ad hoc Communications and Collaboration in Ubiquitous Computing
Environments in conjunction with ACM Conference on CSCW 2002, New
Orleans/USA, 2002

Chapter 5: J. Hahner, C. Becker, and K. Rothermel “A Protocol for Data
Dissemination in Frequently Partitioned Mobile Ad Hoc Networks”, In

Proceedings of the IEEE Symposium on Computers and Communications
(ISCC 2003), Antalya/Turkey, 2003

Chapter 6: O. Lehman, M. Bauer, C. Becker, D. Nicklas “From Home to World:
Supporting Context-Aware Applications through World-Models”, In
Proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communication (PerCom 04), Orlando, USA, 2004

Chapter 7: C. Becker, G. Schiele “Application Adaption Requirements and
their Support in Pervasive Computing” In Proceedings of the 3rd International
Workshop on Distributed Auto-adaptive and Reconfigurable Systems, ICDCS
2003, Providence/USA, 2003

Chapter 8: C. Becker, G. Schiele, H. Gubbels, K. Rothermel “BASE - a Micro-
broker-based Middleware for Pervasive Computing” In Proceedings of the
IEEE International Conference on Pervasive Computing and Communication
(PerCom 2003), Fort Worth/USA, 2003

Chapter 9: C. Becker, M. Handte, G. Schiele, K. Rothermel “PCOM - A
Component System for Pervasive Computing”, In Proceedings of the 2nd IEEE
International Conference on Pervasive Computing and Communication
(PerCom 04), Orlando, USA, 2004

Chapter 10: M. Handte, C. Becker, G. Schiele “Experiences: Extensibility and

Flexibility in BASE” Workshop System Support for Ubiquitous Computing
(UbiSys) at UbiComp, Seattle/USA, 2003

245

