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1. Introduction 
Pervasive  Computing  has  been  proposed  over  a  decade  ago. 

Over  the  last years a new community has been  formed which 

strives  to  accomplish  Weiser’s  vision  of  disappearing 

computers,  which  seamlessly  interact  providing  users  with 

information  and  services  at  any  time,  any  place.  Pervasive 

Computing  belongs  to  the  larger  class  of  context‐aware 

computing.  This  thesis  provides  a  classification  of  system 

support  for  context‐aware  computing.  Some  fundamental 

aspects of context‐aware computing, such as location models as 

an  underlying  structure  of  context  models  and  data 

dissemination  algorithms  for  ad  hoc  based  systems  are 

presented.  The  focus  of  this  thesis  covers  Peer‐to‐Peer 

Pervasive  Computing.  After  a  discussion  of  requirements  a 

two tier approach that is based on a lightweight middleware for 

establishing  spontaneous groups  in  an  ad hoc network  and  a 

component  system  allowing  automatic  adaptation  of 

applications is presented.  

 

“The most profound technologies are those that disappear” is perhaps the 

most cited statement from Marc Weiser’s seminal paper “The Computer of 

the 21st Century”  [Wei91]. In his vision of Ubiquitous Computing Weiser 

provides us with scenarios that have left their science fiction character due 

to  the  rapid  progress  in  technology.  The miniaturization  of  computing 

platforms, the proliferation of sensor systems, and the availability of short 

range  wireless  communication  technology  already  provides  the  basic 

building  blocks  of  Pervasive  Computing. However,  there  are  only  few 

commercial  applications  available. Modern  cars  integrate mobile phones 
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seamlessly  into  their  user  control,  e.g.,  use  the  board  computer  display 

and control knobs on the steering wheel. 

This effect can be partially explained by the initial lack of business models 

and  research prototypes  that  explored Pervasive Computing  technology 

by applying it to fancy scenarios which rarely showed evidence of use for 

society or businesses. A prominent example of such scenarios  is Weiser’s 

coffee  machine  which  automatically  brews  coffee  to  be  ready  when  a 

person  awakes.  However,  there  are  more  convincing  Pervasive 

Computing examples that clearly identify its relevance in research and in 

its applications. Support of elderly people  in  their homes by monitoring 

their body functions, dispensing medicine, notifying qualified personal in 

case of unusual behavior or body functions can help senior citizens to stay 

in  their  familiar environment  leading  to more  comfort  in  their  lives and 

presumably a reduction in the health‐care costs. Resource management in 

a  smart  factory  can  help  to  integrate  the  business  processes  into  the 

production  flow  at  a  fine  granularity.  Procurement  systems  can  ensure 

that the necessary resources are available, i.e., ordered as they are needed 

without  over‐stocking,  as  well  as  the  production  process  itself  can  be 

optimized on  the base of current  information captured by sensors  in  the 

production plant along with  the order data,  the deadlines of cooperation 

partners, the logistics, etc.  

Although  the benefits of Pervasive Computing  technology  exist  and  are 

widely  recognized,  there  are  still  open  research  questions  to  be  solved. 

First, Pervasive Computing systems react based on their context. Context 

relates Pervasive Computing  systems with  the physical world. Users  as 

well  as  information  captured  by  sensor  platforms  are  used  by  these 

systems to change their behavior. Thus, Pervasive Computing can be seen 

as  an  important  class of  context‐aware  systems.  Second,  interoperability 

issues are made harder by the vast heterogeneity of devices with respect to 
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their resources and their specialization. In addition to that, the integration 

of  sensor  and  computing  platforms  in  everyday  items  will  lead  to  a 

number  of  devices  in  different  possibly  overlapping  administrative 

domains. New concepts with respect to the organization of systems, their 

administration, and their deployment have to be developed.  

This  thesis  contributes  to  several  research  questions  in  the  domain  of 

context‐aware  computing.  In  Chapter  2  we  will  classify  support  for 

context‐aware computing and discuss  requirements and  related work. A 

more  elaborated  presentation  of  the  contribution  of  this  thesis  ends 

Chapter  2.  In  Chapter  3  location models  for  Pervasive  Computing  are 

discussed.  A  location  model  represents  a  common  spatial  structure  of 

context models and  thus  is of great  importance  in order  to allow spatial 

reasoning and  interoperability between context models. Requirements on 

location models are discussed based on a brief use case analysis of context‐

aware applications. Possible approaches  to represent  location models are 

presented  and  classified  according  to  their  suitability  to  fulfill  the 

requirements  and  the  involved  modeling  effort.  Information 

dissemination in an ad hoc network is discussed in Chapter 4 based on the 

“Usenet‐On‐The‐Fly”  application  which  provides  users  an  information 

service offering locally relevant information. Besides this novel application 

a  suitable  protocol  is  presented  and  evaluated. An  improvement  of  the 

underlying  protocol  for  ad  hoc  networks  with  frequent  partitioning  is 

discussed in Chapter 5. An important question concerning the integration 

of different context models is the focus of Chapter 6. The integration of a 

context  server  for Georgia Tech’s Aware Home  into  the Nexus platform 

and the consequences in concept and implementation are discussed.  

Chapter 7  to 10  focus on support  for Peer‐to‐Peer Pervasive Computing. 

This  class  of  context‐aware  computing  is  challenged  by  the  frequent 

changes  in  an  application’s  execution  environment.  Support  for 
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adaptation  has  to  be  provided  along  with  flexible  middleware 

infrastructures. Chapter 7 presents a more detailed requirement analysis. 

Chapter  8  and  9  present  a  flexible  middleware  system  (BASE)  and  a 

lightweight component model (PCOM) allowing for automatic application 

adaptation. Chapter 10 finally presents experiences from the port of BASE 

to an embedded system and from the implementation of PCOM on top of 

BASE. The  thesis closes with an outlook  to  further  research questions  in 

the domain of context‐aware computing. 
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2. Context 
This  chapter  introduces  context  as  a  concept  to  enable 

applications  to  reason  about  and  react  to  changes  in  the 

physical  world.  Context  definitions  and  the  classification  of 

context  into  primary  and  secondary  context  are  introduced 

before  system  support  for  context‐aware  computing  is 

classified  and  related work  is presented. The  contributions  of 

the following chapters are summarized. 

 

Context‐aware  systems  have  attracted  researchers  in  the  past  years 

starting from location‐aware computing. Early work considered context to 

be  [SAW94]  related  to  the  location  of  users,  the  people  nearby,  and 

resources  which  can  be  accessed  based  on  the  spatial  proximity. 

Depending on the focus of research projects, further definitions of context 

have  been  proposed.  Projects  related  to  Human  Computer  Interaction 

focused on user’s activity or social environment, e.g., in order to adapt the 

behavior of a cell‐phone [SBG99]. The user’s location was only of interest 

as  long as  it could be used  to derive  information about his activity. The 

progress  in  technology with  respect  to  the miniaturization of computing 

and sensing devices will  lead to billions of  information sources placed  in 

our physical world which will  constantly  report  changes  in  the physical 

world captured via sensors. This information is related to locations in the 

physical world  as well  as  to  users.  This  is  an  integral  part  of  context 

concerning  the  locations as well as  the users. Some existing  information 

spaces, e.g.,  the WWW, also provide  information about physical entities. 

Common  to  this  information  independent  of  its  origin,  i.e.,  sensed  by 

sensor platforms or provided by applications or information spaces, is the 

relation  between physical  entities  such  as users  or  locations  and  virtual 

entities,  such  as  applications.  The  following  definition  is  based  on  the 



  11

discussion  in  [RBB03]  and  reflects  this  more  general  view  on  context 

information. 

2.1. Context and Context-Awareness 

Definition  Context:  Context  is  the  information  which  can  be  used  to 

characterize  the  situation  of  an  entity. Entities  are persons,  locations,  or 

objects  which  are  considered  to  be  relevant  for  the  behavior  of  an 

application. The entity itself is regarded as part of its context. 

 

It is interesting to see that an entity can be part of its context itself as well 

as an entity can be interpreted different depending on the context. For an 

example  consider  two  applications  dealing  with  trucks.  A  fleet 

management system would keep track about the position, the freight, the 

route  of  trucks  along  with  other  information,  such  as  the  trucks’ 

maintenance rate, the assigned driver etc. A navigation system installed in 

the individual trucks would also consider the delivery routes but only for 

the individual truck. Other information, such as traffic jam information, is 

used to optimize the navigation between destinations.  

From a context management perspective both applications may operate on 

the  same  context  information. The  fleet management  system may access 

the context model in order to retrieve all trucks in a given area in order to 

decide which truck a given tour should be assigned to. Individual trucks 

or drivers may  be  queried  for  administrative  issues. The  car navigation 

system as well accesses the context model in order to update information 

as well as  to query  for  individual data  relating  the  truck and  its current 

position.  The  point  in  time  is  also  crucial  information  for  both 

applications.  The  navigation  system will  take  the  current  situation  into 

account. Prognosis of the traffic situation can be used to improve the route 

planning. Thus,  the navigation  system will access  context data based on 

time  (present and  future). The  fleet management  system will also access 
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information  regarding  the  current  time  and  the  future  for  planning  of 

tours.  In  addition  to  that,  history  plays  an  important  role  in  order  to 

account for transportation costs and for issuing invoices. 

Based  on  the  scenario  above we  can  derive  that  context  information  is 

accessed based on three major criteria: 

▪ The identity of the entities 

▪ The location of entities 

▪ The time where the information is relevant 

Because of  the  important  role of  identity,  location,  and  time we  refer  to 

these  as  primary  context.  The  role  of  primary  context  in  context 

management  obviously  is  the  indexing  of  context  information.  Further 

information  of  entities  can  be  accessed  once  they  are  found  using  the 

primary index. The additional context information, e.g., load of a truck, a 

person’s  email  address,  the  vacancy  of  a  taxi,  are  denoted  as  secondary 

context.  Possible  combinations  of  accessing  context  information  are 

(location,  time),  (identity,  time),  or  (identity,  location,  time). Note,  that 

time may  be used  implicitly,  e.g.,  an  index may  only  refer  to  a distinct 

location.  The  time  can  then  be  interpreted  as  the  current  status  of  the 

context information related with the index.  

The notion of primary and secondary context does not imply the relevance 

of  context  information  from  an  application  perspective.  Some  context  –

aware applications exist where secondary context, such as a user’s activity, 

may be of relevance. However, in order to access the context information 

the primary context has to be used.  

Context‐aware applications  can make use of  context  in many ways. The 

following  definition  captures  common  understanding  of  context‐aware 

applications [DA99][RBB03][CK00]. 
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Definition Context‐Aware Application: an application is context‐aware if 

it adapts its behavior depending on the context.  

 

Based on this definition, four classes of context‐aware applications can be 

isolated,  which  either  select  information  or  services,  change  their 

presentation, or issue some action based on context, or tag information to 

context: 

▪ Context‐based  selection:  information  and  services which  are used 

by an application are selected based on context information, such as 

a  user’s  preference,  their  physical  proximity  (the  next  printer)  or 

relevance to the user (public transport schedules from the next bus 

stop). 

▪ Context‐based presentation: the way which and how information is 

presented  to  the  user  also  depends  on  the  context. A  navigation 

system may change the way information is displayed based on the 

speed  of  traveling  from  a map  to  a direction  based  output using 

arrows or to audio output only in order not to distract the user. 

▪ Context‐based  action:  in  contrast  to  context‐aware  presentation 

where  a  user  is  explicitly  involved  in  the  interaction  with  an 

application  context‐based  action  allows  to  automatically  react  to 

changes  in  the  context without prompting  the user. Examples are 

applications which automatically  forward messages  to  the devices 

in  a  user’s  proximity,  facility management  systems which  adjust 

light and heating conditions to user preferences. 

▪ Context‐based  tagging:  in  contrast  to  selection,  presentation,  and 

action, which  lead  to  an  immediate  change  in  the behavior  of  an 

application,  tagging of  information  to context allows a  later action 

based on  this  information. This allows applications, such as Stick‐

Enotes [Pas97], GeoNotes [EPS+01], or Virtual Information Towers 
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[LKR99].  These  applications  allow  to  associate  information  with 

context, typically location and the id of user in case of personalized 

information, and display this information to users when they are in 

proximity of this location.  

 

Examples  of  context‐aware  applications  can  be  found  in  a  variety  of 

domains. We will present some examples of context‐aware applications in 

visitor  information  systems,  navigation,  annotations,  support  in 

workspaces, and smart environments. 

Visitor Information Systems 

Supporting mobile users with information about their spatial proximity is 

explored in many projects. The CyberGuide [LKA+96] at GeorgiaTech has 

explored  a  tour  guide  for  visitor  tours  through  their  laboratories.  An 

extension  to CyberGuide provided support  for  tours  through downtown 

Atlanta [AAH+97]. Users were provided with information about sights or 

projects  and  could  create  a  diary  of  their  visit.  The  Guide  project 

[CDM+00a] developed a tourist guide for the city of Lancaster. Users are 

provided with information about historic sights and could use additional 

services, such as communication and restaurant reservation. 

Navigation 

The  REAL  project  [BKW02]  investigates  adaptive  navigation  systems 

where  the  information  to  pedestrians  changes  (e.g.,  from  a map  to  an 

arrow indicating the direction) depending on their speed of travel and the 

display  they  use  (head mounted  display  or  a  display  integrated  into  a 

bum bag). 
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Annotations 

Annotations combine  two classes of context‐aware applications. First, an 

annotation is made combining information with context, such as a location 

where  the  information  is  of  relevance  or  a  user  the  information  is 

addressed to, or a combination. Context‐aware actions or presentations are 

executed when the context the information is tagged to is observed, e.g., a 

user enters a room where information for him is placed. The stick‐e Notes 

System  [Pas97]  is a  typical candidate  in  this class of applications. Virtual 

Post‐Its  can  be  tagged  to  context  information  and  are  displayed 

accordingly. The VIT System [LKR99] is based on the metaphor of virtual 

information  towers  which  maintain  information  with  relevance  for  a 

distinct  geographic  area.  ComMotion  [MS00]  incorporates  time  and 

location as context in order to remind users of distinct tasks. 

Support in Workspaces 

Assisting the user in his daily workspace environment was investigated in 

the  Active  Badge  System  [WHG92]  and  Active  Bat  System  [HHS+99] 

projects. The  forwarding  of  incoming  calls  to  the  closest  telephone  to  a 

user  or  teleporting  of  user  interfaces,  where  graphical  user  interfaces 

“follow”  the user  to  the next appropriate display.  In  the Netman project 

[KSS+99] wearable  computing  technology was  used  to  provide  context 

dependent  information  to  service  personal.  The  TEA  project  [STM00] 

investigated  context  dependent  configurations  of  mobile  phones 

depending  on  the  context,  such  as  a  meeting  taking  place,  the  phone 

located on a table or in a briefcase. 

Smart Environments 

Smart Environments augment a spatial restricted area, so‐called active or 

smart  spaces, with  various  facilities  for  interaction with  users,  such  as 
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wallscreens,  ticker‐display,  digitally  enhanced whiteboards,  tables with 

integrated  displays,  etc.  Additionally,  devices  carried  by  users  are 

integrated into such environments. In the Gaia project [RC00] applications 

are  mapped  onto  the  devices  available  in  such  environments  via 

predefined  mapping‐scripts  and  thus  make  use  of  the  offered 

functionality. Adaptation  at  runtime  allows  coping with  changes  in  the 

execution  environments  based  on  an  application  model  that  separates 

model,  view,  and  presenters.  A  different  approach  is  taken  by  the 

interactive  workspaces  projects  (IROS  [JFW02])  which  aims  at  the 

coupling of applications via an event heap. The integration and leaving of 

devices and services is supported by the event heap which decouples the 

different parts of  an  application. Context  in  such  smart  environments  is 

typically  reflected  by  the  location  of  devices  and  services  by  implicit 

means. Devices  in  the  same  smart  environment  are  considered  to  be  of 

relevance and made available. The spatial scope of the smart environment 

defines  its  spatial  context.  Typical  applications  are  tailored  towards  the 

purpose of  the physical space  the smart environment  is based upon,  i.e., 

support for meetings and teaching. 

The  Aura  project  [GSS+02]  is  an  exception  here,  since  it  aims  at  the 

support  of  applications  across  different  smart  environments.  The  Aura 

Context  Information  Services  [JS03]  provides  context  information  about 

users and locations as well as on devices and their network connections.  
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Project  Description  Primary Context  Class  of  Context 

Awareness 

Cyberguide Indoor guide  identity, location  selection 

Guide  Tourist guide  location  selection 

Stick‐e Notes  Virtual Post‐Its  location, identity  selection,  action, 

tagging 

VIT  Virtual  

Information Towers 

location, time  selection 

ComMotion  Location‐based 

reminder 

location, identity  selection, action 

REAL  Navigation  location, identity  presentation 

Active  Badge: 

Telephone 

Assistant 

Forwarding  of  phone 

calls 

identity, location  action 

Active  Bat: 

Teleporting 

Teleporting  of  user 

interfaces 

identity, location  presentation, 

action 

TEA  Adaptation  of mobile 

phones 

identity  presentation, 

action 

Netman  Support for 

maintenance staff 

location  selection 

Gaia  Smart Environment  location  selection, 

presentation 

iROS  Smart Environment  location  selection, 

presentation 

Aura  Smart Environment 

spanning context 

management 

location, identity  selection, 

presentation, 

action 

Table 2.1: Examples of context‐aware applications 

Table 2.1 summarizes the properties of the presented examples of context‐

aware applications. The individual way, in which the context information 

is stored, retrieved, managed, and used by applications,  is not discussed 

so  far.  The  next  section  classifies  the  system  support  for  context‐aware 

computing  and  discusses  related  work  as  well  as  the  contributions 

contained in this thesis. 
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2.2. Classification of System Support for Context-Aware 
Computing 

A general model for the relation between the physical world and context‐

aware  applications  is  depicted  in  Figure  2.1.  Context  information  is 

formed by the current state of an application as well as from the states as 

they are present in the physical world, such as a user’s position, services in 

the  proximity  of  a  user,  etc.  The  context model  as  shown  in  Figure  2.1 

separates applications  from  the process of sensor processing and context 

fusion.  Moreover,  this  allows  a  number  of  applications  to  share  the 

gathered context. Note, that this is a conceptual model and depending on 

the underlying system, i.e., based on an infrastructure or ad hoc network, 

and  the  way  applications  make  use  of  the  context  information  the 

instances of this model may differ.  

Physical
World

Context
Model

Applications

Sensors
(Fusion)

A
pp

lic
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n
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queryUpdate(id, value)

Update(id, value)

 
Figure 2.1: Context Model 

For example, context can be managed by applications without providing 

means for sharing. A number of such applications will manage their local 

context  models.  Other  applications  may  not  build  an  explicit  context 

model  but  directly  access  sensor  information  and  process  the  obtained 

context information directly. 
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In the remaining part of this chapter we assume context information to be 

available  via  appropriate  representations,  such  as  a  context model. We 

classify  the system support along  the underlying system –  infrastructure 

or  ad hoc  –  and  along  the  support  for  application  adaptation. Based on 

these dimensions  four  classes of  context‐aware  computing are discussed 

(cf. Table  2.2). Requirements on  system  support  are derived  and  related 

work  is  discussed. At  the  end  of  the  chapter,  the  contributions  of  this 

thesis are summarized. 

The  requirements  on  system  support  for  these  classes  are  presented 

followed by the related work. The chapter closes with a discussion of the 

contributions  to  the  classes  of  system  support  for  context‐aware 

computing contained in the following chapters of this thesis. 

Table 2.2: Classes of context‐aware computing 

2.3. Dimensions 

The  following dimensions  are  introduced  to  classify  system  support  for 

context‐aware computing: 

  Adaptation by System  Adaptation by Application 

Infrastructure  Smart Environments 

iROS, Gaia, one.world 

Infrastructure‐based  Context 

Service 

Aura  CIS, Nexus,    Context 

Toolkit 

Ad hoc  Peer‐to‐Peer  Pervasive 

Computing 

PCOM,  P2PComp,  MIT 

Pebbles 

Ad hoc based Context‐Services 

Usenet on the Fly 

RCSM, GLS, Nexus 
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Infrastructure-based system  

Services  that  are  required  by  context‐aware  computing  form  an 

underlying  infrastructure.  Examples  are  context  services  as  they  are 

provided by Aura  [GSS+02] or Nexus  [HKL+99] or  smart  environments, 

such  as  iROS  [JFW02]  or  Gaia  [RC00].  Applications  typically  require 

permanent access to the infrastructure.  

Ad hoc system  

In contrast  to  infrastructure‐based systems, where the connectivity to the 

infrastructure  is  a  prerequisite,  ad  hoc  approaches  do  not  require  such 

services.  Devices  are  spontaneously  connected  –  typically  by  some 

wireless  communication  technology  –  and  share  their  functionality  or 

information. Examples are  information propagation,  such as  the Usenet‐

on‐the‐Fly  [BBH02],  or  Peer‐to‐Peer  based  approaches  to  Pervasive 

Computing, e.g., BASE [BSG+03] or PCOM [BHS+04]. 

 

Adaptation  of  applications  has  been  recognized  as  a  must  for  mobile 

application in general [Sat96]. The taxonomy provided by Satyanarayanan 

differentiates  between  no  system  support  (laissez‐faire)  and  application 

transparent adaptation. In the first case, applications have to decide which 

adaptation  actions  should  be  taken without  any  system  support.  In  the 

course  of  this  thesis we  to  refer  to  this  class  as  adaptation  by  application, 

since  we  do  not  assume  system  support  for  adaptation  decisions,  but 

system support for accessing adaptation‐relevant parameters, i.e., context 

information. The second case means, that the system adapts an application 

transparently according  to changes  in  the context. Thus, we  further refer 

to this class as adaptation by system.  
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Adaptation by Application 

Context‐aware  applications  adapt  to  changes  in  context.  Based  on  a 

context  model  (cf.  Figure  2.1)  an  application  can  retrieve  information 

about  context  or  gets  signaled  when  a  relevant  context  change  has 

happened.  If  the  adaptation  decision  is  taken  by  the  application,  each 

relevant  constellation  of  context  parameters  has  to  be  reflected  in  the 

application code. 

Context Model Context Model

t

Application Application

 
Figure 2.2: Adaptation by application 

The resulting architecture is depicted in Figure 2.2 where a change in the 

underlying  context  is  observed  by  the  application  based  on  a  context 

model. The change of  the application behavior  is directly reflected  in  the 

application’s  internal  structure.  The  application  is  depicted  as  a  flow 

diagram, where  the decisions  in  the  flow  are depending  on  the  current 

context. The selected branches of a decision are shown by a greyed box, 

whereas  the  white  boxes  indicate,  that  a  branch  is  not  being  taken. 

Application programmers can design their applications to react to context 

changes  in  the desired way with  full  control of  the  adaptation decision. 
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There  is  no  required  application  architecture  or  framework which may 

restrict application programmers. On the other hand this means that every 

change  of  context  leading  to  an  adaptation  has  to  be  reflected  in  the 

application  leading  to  an  additional  overhead  in  programming  context‐

aware applications.  

Examples  for  system  support  in  this  class  are  context  services  or 

frameworks which supply context information to applications. The Nexus 

platform  [HKL+99]  provides  applications  with  context  information 

without  assuming  an  application  architecture  so  far. Applications query 

context  information  or  register  spatial  events  in  order  to  receive 

notifications  on  a  defined  predicate  on  the  context model.  The  context 

toolkit [SDA99] does not maintain a context model but allows applications 

to  connect  to  sensors  or  entities  which  aggregate  context  information. 

Based  on  this  context  information  an  application  can  choose whatever 

action it takes to adapt.  

Adaptation by System 

The effort involved in dealing with changes in context has lead to another 

class  of  system  support,  where  the  system  analyzes  the  context  and 

triggers reconfigurations of  the applications according  to  the context and 

the  application  structure.  The  overall  objective  here  is  to  relieve  the 

application  programmer  from  explicitly  programming  adaptation 

decisions. 
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Figure 2.3: Adaptation by system 

Applications are composed from building blocks, which are configured by 

the  system  according  to  the  context  and  some  other  information  that 

allows  to  determine  the  correct  configuration  of  an  application  with 

respect  to a given context. The building blocks of  the application do not 

adapt  to  context  changes.  Figure  2.3  depicts  the  situation  where  the 

context change leads to a different configuration of the system. Again, the 

greyed boxes indicate that a building block was selected in a configuration 

and the white boxes depict building blocks not chosen. 

Examples  for  this  kind  of  system  support  can  be  found  in  smart 

environments. The Gaia  [RC00] programming model allows mapping an 

application  to a so‐called active space by supplying scripts which assign 

parts  of  the  application  to  devices  and  services  available  in  an  active 

space.  iROS  [JFW02]  supports  building  blocks  with  larger  granularity. 

Applications  are  composed  of  independent  parts.  The  availability  of  an 

external functionality is supported by requesting this service via an event 

heap which dispatches  the request  to a suitable service. Applications are 

only aware that a request may not be answered when no suitable service is 
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present in the environment. Another example from spontaneous networks 

based  on  ad  hoc  networks  is  PCOM  [BHS+04],  which  supports  fine 

granular  application  adaptation  by  the  system  based  on  a  component‐

based application model. 

 

Note, that a combination of application and system supported application 

adaptation  is  possible.  A  system  could  configure  an  application  from 

building blocks, where some of  these building blocks could change  their 

behaviour in an application specific way, i.e., by reconfiguring themselves 

based on context information. 

2.4. Classes 

Based on  the  introduced dimensions we  can now briefly  classify  system 

support  for  context‐aware  computing  along  these  dimensions.  General 

requirements on system support in these classes are presented along with 

related work. The contributions contained in the following chapters of this 

thesis  are  discussed  with  respect  to  the  requirements  and  existing 

approaches. 

The  introduced  dimensions  classify  context‐aware  computing  along  the 

underlying  system,  e.g.,  based  on  an  infrastructure  or  on  ad  hoc 

networking, and the adaptation support for applications, i.e., the systems 

adapts  an  application  to  context  changes  vs.  the  system  offers  the 

necessary  context  information  for  an  application, which  can  then  adapt 

itself. 

The  first  two  classes  are  characterized  by  their  support  for  application 

adaptation. 

Infrastructure‐based adaptation by system: applications  in  this class are 

automatically  adapted  by  the  system  if  relevant  changes  in  the  context 

occur.  Since  the  infrastructure  already  provides  a  comprehensive  set  of 

services,  temporarily present services and devices are  integrated and  the 
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application execution is adapted in order to make use of this functionality. 

Typical candidates in this class are smart environments which are tailored 

towards  a  distinct  application  class  in  a  spatial  area  augmented  with 

specialized computing devices, e.g., a meeting room, and supply a set of 

services and devices as execution environment. Hence, applications face a 

rather static set of predefined services and devices which can be extended, 

e.g., by  the  integration of mobile devices user carry. Adaptation support 

thus means that a given application has to be mapped onto the available 

services and devices. Further adaptation  support  can provide means  for 

the  integration  of  dynamically  changing  services  and  devices,  such  as 

users’ mobile devices. In general, adaptation support requires knowledge 

about the application structure and the execution environment in order to 

allow the system to adapt the application. 

Ad  hoc  adaptation  by  system:  in  contrast  to  infrastructure‐based 

approaches  the underlying ad hoc networks reveal a higher dynamics of 

change  in  the execution environment. Due  to user mobility and wireless 

communication  the  services  and devices  available  to  an  application  can 

change  over  time. Application  adaptation  support  requires  ‐  similar  to 

infrastructure‐based application adaptation by system ‐ knowledge about 

the application architecture. The management of  the  spontaneous group 

and available services and the resulting dynamism is the major difference 

between the ad hoc and infrastructure‐based approaches. Examples in this 

class are P2PComp [FHM+04] and 3PC [3PC] which allow the composition 

of  applications  dynamically  from  the  functionality  available  in  a 

spontaneous network based on ad hoc communication. 

Infrastructure‐based  adaptation  by  application:  application  adaptation 

offers a higher flexibility than automated adaptation by the system, since 

the application can choose its behaviour according to context. This means, 

that  the  system  support has  to provide access  to  context  information by 
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the  application.  In  contrast  to  application  adaptation  by  the  system  the 

applications  are not bound  to  a given  application  architecture,  since  the 

system does not adapt the application.  

Typical  examples  are  context  management  platforms,  e.g.,  context 

services, which maintain context information and offer query interfaces to 

applications.  The  Nexus  platform  [HKL+99]  and  the  Aura  Context 

Information  Service  [JS03]  are  examples  for  such  context  management 

platforms. 

Ad  hoc  adaptation  by  application:  providing  context  information  to 

applications  in  ad  hoc  based  environments  in  order  to  allow  these  to 

control  their  adaptation  decision  is  similar  to  infrastructure‐based 

adaptation  by  application. The  resource  restrictions  on  the participating 

mobile devices and  the underlying network characteristics which  lead  to 

network partitions result  in different needs  for organization. As a result, 

the  context  information  managed  in  such  a  setting  differs  from 

infrastructure‐based  context  services.  Typical  examples  are  location 

services  for  mobile  ad  hoc  networks,  e.g.,  GLS  [LJD+00]  and  DREAM 

[BCS+98], which only offer limited context information, i.e., the position of 

mobile  objects.  The  absence  of  a  central  component  or  infrastructure 

requires  appropriate  dissemination mechanisms  in  order  to  disseminate 

context  information  from  the  place where  it  occurs  to  the  place where 

applications  request  it,  e.g.,  by  data  dissemination  algorithms,  such  as 

SPIN  [HKB99]  for  connected  networks  with  less  frequent  network 

partitions or  the one presented  in  [HBR03] which has been designed  for 

frequently  partitioned  networks.  Applications  which  make  use  of  the 

context  information  are  provided  with  an  interface  to  the  context 

management  and  are  shielded  from  the  underlying  protocols  and  data 

management strategies.  
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2.5. Requirements  

The  discussion  of  the  classes  of  context‐aware  computing  support  has 

shown that adaptation by application, e.g., via context services, in general 

decouple  applications  from  the  underlying  system,  i.e.,  infrastructure‐

based or ad hoc. However, further restrictions, such as limited memory of 

mobile devices,  influence  the context data provided  in  its size or  level of 

detail.  We  will  discuss  the  general  requirements  on  context  services 

independent of the underlying system model.  

Similar  to  context  services,  the  support  of  adaptation  by  system  share 

many  requirements  independent  of  the  underlying  system model.  The 

underlying system model may shift priorities between requirements, e.g., 

adaptation  becomes  more  important  in  settings  with  higher  device 

fluctuation, but in general the same requirements apply. 

2.5.1. Adaptation by application  

Adaptation  by  application  is  assisted  by  system  support  via  context 

services, which provide the necessary context information applications can 

base their adaptation decision on. 

General  requirements  context  services  have  to  fulfil  are  concerned with 

the  representation  of  context  information,  supported  queries  for 

applications  to  access  the  context  information,  and  the  spatial  layout 

which determines the underlying model of the part of the physical world 

reflected by the context model.  

Context representation 

Context  representation  obviously  first depends  on  the  context modeled. 

Context  can  be  classified  along  its  sources  which  already  determine 

properties of context representation. Context information with low update 

rates,  such  as  street  networks,  building  floor  plans,  or  3‐dimensional 

models of buildings can form realistic models of the physical world. More 
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dynamic context information, such as information obtained via sensors for 

positioning or temperature, typically reflect a single aspect of the physical 

world which  is  captured by a  sensor. So  far,  there  is no  standardization 

effort  capturing  context  representation  at  its whole. However,  for  single 

domains  standards exist or are beginning  to emerge. Road networks  for 

instance are available in different formats, such as the geographic data file 

GDF 77 or ATKIS  [VGH+02]. The OpenGIS  consortium  started  to define 

data  emitted  by  sensors  via  SensorML  [SensorML]  an  XML‐based 

language  capturing  sensor  properties  such  as  the  dimension,  accuracy, 

and spatial relevance.  

Even  if  standards  and  suitable  representation  of  context  information 

existed in each single domain, there are still open questions concerning the 

integration into a common context model: 

▪ Query languages and semantics: accessing context information in a 

possibly  application  spanning  way  requires  suitable  languages 

serving a broad range of applications. Service models such as push 

and  pull  models  should  be  supported.  Indexing  context 

information  along  the  primary  context  has  to  be  supported  (see 

below). 

▪ Multiple  representations:  if  multiple  applications  and  context 

sources  feed  their  data  into  a  context  model  multiple 

representations  of  an  object may  exist.  The  context model  has  to 

provide concepts to deal with such phenomena, e.g., choosing one 

representation, combining them, or prompting the user. 

▪ Common  semantic:  the  interpretation  of  context  data  across 

applications requires a common semantic. Examples are a common 

type schema or ontology. 

▪ Context‐specific management:  the management of highly dynamic 

data, e.g., position information of mobile objects, requires different 
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handling than that of stationary objects or objects with low update 

rates, such as road networks. In addition to that, the organization of 

a context model should allow for queries incorporating the primary 

context, i.e., identity, location, and time.  

In  the  following we will  briefly  discuss  queries  and  service models  of 

context  services and  their  spatial organisation before  context models are 

classified and existing approaches are discussed.  

Queries 

As noted before, queries  to a context model should support  the selection 

of entities based on primary context as depicted in Figure 2.4. Depending 

on  the application  requirements, not all queries have  to be supported.  If 

access  to  context  information  of  the  past  of  future  is  not  an  issue,  the 

context models only store the current state reflecting the present time – or 

the time where the context model has been captured ‐ based on state from 

the physical world.  

 
Figure 2.4: Queries to a context model 

The  service models  supported  should  not  only  allow  for  queries  in  the 

pull‐model  but  also  allow  for  asynchronous  communication.  Spatial 

events  [BR04]  are  an  example  where  applications  are  notified  about 

changes in the context and receive a notification. A spatial event is defined 

by a predicate which operates on context data. This allows to raise actions 
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based on  changes  in  the  context model which are  typically  triggered by 

state changes in the physical world. 

Spatial organisation 

One  important  aspect  of  context  information  is  related  to  location. This 

includes  the  position  of  entities  as well  as  the  spatial  relation  to  other 

entities. Such relations cover the  inclusion  in a distinct area or range and 

the  distance  to  other  entities.  Typical  queries  a  context  management 

platform should support with respect to location are according to [BD04]: 

▪ Position: retrieve the position of an object. Examples are “where is 

John”, “What is the position of printer PHP13”. 

▪ Range: a number of objects which are located in a spatial range are 

retrieved.  Examples  are  “What  objects  are  on  Floor  2  of  the 

Computer Science Faculty Building” which  includes  all objects  in 

the rooms on the second floor as well. 

▪ Nearest Neighbor:  these queries offer a  list of one or more objects 

which are closest  to  the position of an object. Queries  for  the next 

printer, restaurant, gas station thus become possible. 

Although these queries at first seem simple and obviously necessary for a 

variety  of  context‐aware  applications,  their  efficient processing depends 

on  the underlying  spatial  structure  and  the  involved  coordinates by  the 

position  information.  Position  information  is  obtained  by  positioning 

systems which track mobile objects and report their position to a location 

management system.  In general,  two kinds of coordinates are supported 

by positioning systems: 

▪ Geometric coordinates: represent points or areas in a metric space, 

such as WGS 84  coordinates of GPS which  represent  the  latitude, 

longitude,  and  elevation  above  sea  level  of mobile  objects. Using 

geometric  functions  such  as  the  Euclidian  distance  allows 
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calculating  distances  and  allows  for  nearest  neighbor  queries. 

Overlaps of geometric figures can be used to specify ranges by their 

geometric extension and determine whether ranges are included in 

each other which allows for range queries. 

▪ Symbolic coordinates:  in contrast  to geometric coordinates  there  is 

no  spatial  relation  offered  by  symbolic  coordinates.  Such 

coordinates  are  represented  by  an  identifier,  such  as  a  room 

number or the ID of a cell or access point  in wireless telephone or 

local  area  networks.  In  order  to  allow  spatial  reasoning  about 

inclusion (for ranges) and distances (for nearest neighbors) explicit 

information  about  the  spatial  relations between pairs  of  symbolic 

coordinates has to be provided. 

Location models are used to define spatial relations between locations. In 

general, locations can be determined by a symbolic identifier but also by a 

geometrically  defined  location.  The  latter  allows  expressing  spatial 

relations which  are  not  covered  by  the  underlying metric  on  geometric 

coordinates.  Consider  a  road  network  where  people  are  bound  to  the 

spatial  restrictions  of  the  physical world. A  geometric  distance may  be 

misleading, e.g., when a user has  to cross a highway and another object 

may be closer from a user’s perspective. Thus, location models are of use 

for geometric coordinates as well. 

Choosing  a  suitable  location model  for  the  spatial  structure of a  context 

model  is  important  for  two  reasons.  First,  the  possible  spatial  queries 

along the primary context location depend on the location model. Second, 

the  integration of two or more context models has to provide a mapping 

from  one  location model  into  another  in  order  to  allow  spatial  queries 

across the objects with possibly different location information provided by 

different  positioning  system  as  basic  coordinates  or  different  spatial 

relationships modeled in graphs or hierarchies. 
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Influence of system model 

The  general  requirements  on  context  services  so  far  did  not  take  the 

underlying  system  model  into  account.  Clearly,  the  influence  of  the 

involved  end‐systems  and  their  network  connection  affects  the  context 

information that a given system can maintain. Resource‐restricted mobile 

devices  will  not  be  able  to  provide  highly  detailed  three‐dimensional 

models of  larger spatial areas. Therefore  infrastructure‐based approaches 

are more appropriate to handle context for larger scopes and with higher 

complexity. However,  an  infrastructure‐based  context  service may  only 

serve  a  single  house  and  thus  scalability  is  not  an  issue  there,  e.g.,  the 

Aware Home Spatial Model Server [LBB+04]. Other context services, such 

as  the  Nexus  platform,  aim  at  potentially  global  scope  context 

management, where  the  scalable  integration  of new  context  servers  is  a 

must as well as efficient query processing.  If a context service allows  for 

the  integration  of  new  context  servers,  a  common  underlying  context 

model is required in order to integrate the context data. If such a platform 

should  be  open  to  new  context  data,  extensibility  of  the  context  types 

stored and maintained is required. 

In contrast to infrastructure‐based context services there are some natural 

limitations  in  ad  hoc  systems which  do  not  allow  for  larger  scopes  or 

higher complexity of context data. The memory limitations of the typically 

mobile and battery powered end systems along with the energy required 

for  communicating  larger  amounts  of  data  allows  only  for  restricted 

context models,  such  as  location  information  of mobile  objects  or  some 

aspects of the physical world, e.g., floating car data1. Requirements in such 

settings  are  on  suitable  data  organisation  and  data  dissemination 

                                                 
1 Note that energy typically is not an issue when propagating floating car data between 

vehicles. 
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algorithms. Typical  trade‐offs which have  to be  tuned  to  the operational 

environments  have  to  deal  with  the  freshness  and  availability  of 

information versus  the  communication overhead of  the underlying data 

dissemination protocols. 

2.5.2. Adaptation by System 

Application adaptation by the system first needs some kind of application 

knowledge  in  order  to  determine  the  possible  configurations  of  an 

application. Furthermore, resources required for these configurations have 

to  be  managed  and  finally,  adaptation  decisions  have  to  be  made. 

Applications  in such settings combine the resources available  in a spatial 

area. Typical scenarios are smart environments, where rooms or buildings 

are equipped with a  central  control which mediates  the  resources  in  the 

environment,  e.g.,  Gaia  [RC00]  or  iROS  [JFW02].  These  projects  reveal 

following the characteristics: 

▪ Service  oriented:  in  contrast  to  context  services,  that  provide 

information about context, as  they are addressed  in adaptation by 

application  system  support,  adaptation  by  system  addresses 

applications composed of services. These services serve as building 

blocks for the adaptation support of the system. 

▪ Dynamic composition: the available services and information in an 

execution  environment  are used by  applications. Applications  are 

not considered to be self‐contained. Instead, they integrate available 

services and information and typically require a distinct set in order 

to get executed. 

▪ Fluctuation  of  service  availability:  due  to  user  (and  thus  device) 

mobility and other factors, such as device power down on drained 

batteries,  the  number  of  devices  in  an  environment may  change 

unpredictably.  Also,  device  capabilities  like  sensors  may  be 
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temporarily unavailable, e.g., a GPS sensor stops operating when a 

user enters a building. 

▪ Spatial  relevance:  the  information and services which are used by 

an application typically only have relevance in the proximity of the 

user. This kind of context‐awareness is reflected by the organization 

of  an  execution  environment,  e.g.,  smart  environments  mediate 

between  applications  and  the  services  in  a given  spatial  area. Ad 

hoc  systems  reflect  the  spatial  relevance  by  the  organization  of 

services reachable via  the underlying ad hoc network  typically by 

restricting  communication  between  involved  devices  to  one  or 

more hops. 

▪ High  number  of  devices/service:  the  integration  of  embedded 

systems into nearly every object of our daily life leads to situations 

where hundreds of services are available in a single room.  

▪ Heterogeneity:  the  specialization  of  devices  with  respect  to  the 

offered  services,  e.g.,  a  powerful  computer  that  only  serves  as 

presentation  service, and  the miniaturization and  thus  restrictions 

on  computing  power  as  well  as  memory  along  with  other 

resources, lead to an increased heterogeneity compared to classical 

computing environments.  

▪ Administrative  domains:  the  pervasion  of  our  daily  environment 

with  pervasive  computing  nodes  will  lead  to  a  multitude  of 

administrative domains which may overlap depending on the roles 

the participating user fulfils. A janitor may access all relevant parts 

of  a  facility  management  system  whereas  the  employees  of 

competing  companies  in  the  same  building will  be  restricted  in 

their  access  to  the  systems  of  their  respective  companies. A  user 

will  seamlessly  connect  and  disconnect  to  a  variety  of 

administrative  domains  and  use  the  services  and  information 
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available to him while moving on through his work or recreational 

day. 

Based on these characteristics of application adaptation by system, which 

are also common for the area of Pervasive Computing, we can derive the 

following requirements on system support: 

▪ Spontaneous  networking:  devices  should  allow  the  dynamic 

networking with other devices. Especially,  the  integration of new 

devices as well as the leaving of other devices has to be supported.  

▪ Adaptation  by  system:  the  constant  change  of  devices  in  the 

execution  environment  leads  to  services  entering  and  leaving  the 

environment  as  well.  Hence,  applications  have  to  adapt  to  the 

resources  available  in  order  to  continue  their  execution  when  a 

resource is no longer available or to improve the performance when 

a  better  resource  becomes  available.  The  number  of  possible 

combinations of resources in such dynamic settings along with the 

complexity  of  programming  adaptive  applications  leads  to  the 

requirement of adaptation by system. 

▪ Interoperability: the heterogeneity of devices will lead to a number 

of  interoperability  protocols  from  sensor  to  complex  application 

specific protocols.  In order  to allow  the seamless  integration of all 

of  these  devices  interoperability  protocols  and  bridging  between 

them  is  necessary.  Additionally,  the  system  software  has  to  be 

available  on  all devices  or provide means  for  integrating devices 

into the environment. 

▪ Security: attacks on such systems can have severe  impact not only 

on  the data  stored  but  also  on  the physical  environment. Motion 

detectors  can  be  used  to  check  whether  a  house  is  occupied, 

actuators can be tampered with and result in damage in the house – 

consider  a  frozen  heating  system  due  to  a  vandalizing  attack 
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shutting down the system. Thus, environments build by adaptation 

by  system,  such  as  Pervasive  Computing  environments,  have  to 

provide means  to  secure  the  system  in  the  presence  of  dynamic 

integration of devices and restricted resources. 

Influence of system model 

System  support  for  adaptation  by  system  shares  the  same  requirements 

independent of  the underlying  system model. However, priorities of  the 

requirements  shift  depending  on  the  system  model.  Spontaneous 

networking is an issue in both cases. Infrastructure‐based approaches, e.g., 

smart  environments,  have  to  provide  means  to  integrate  devices 

dynamically  as well  as  to  handle  their  exit.  The  fluctuation  of  services 

available to an application in an ad hoc system will likely be higher than 

in an infrastructure‐based approach. Thus adaptation becomes even more 

important. This is made harder since the devices are typically mobile and 

battery  powered.  The  state  for  adaptation  decisions,  e.g.,  dependencies 

between services or resource conflicts, is distributed among the devices in 

a peer group  formed by  the underlying  ad hoc network.  Infrastructure‐

based approaches can gather  the  state at a  central  instance and complex 

adaptation  decisions  can  be  placed  on  nodes  with  suitable  computing 

performance and most likely powered by a constant power source. 

The  class  of  applications  in  such  settings  also  may  differ.  A  smart 

environment can be tailored to support distinct application classes, such as 

a smart  teaching room  [JFW02]. Peer‐to‐Peer based applications  typically 

can  only  rely  on  more  generic  sets  of  services  since  their  execution 

environment can not be determined beforehand.  



  37

2.6. Related Work 

The  related work  is  discussed  for  context management  platforms  first, 

followed  by  smart  environments  and  Peer‐to‐Peer  based  Pervasive 

Computing. 

2.6.1. Adaptation by application – context 

management platforms 

Context models and their corresponding management architectures can be 

classified (cf. [RBB03]) along the dimensions of 

▪ Spatial  Scope:  denotes  the  spatial  area  which  is  covered  by  the 

context  model.  This  area  can  range  from  rooms  in  a  smart 

environment over smart homes to global scope.  

▪ Complexity  of  abstractions:  refers  to  the  level  of  detail  and  the 

details which are provided by  the context model. Complex model 

could  incorporate highly detailed 3D models of buildings whereas 

simple 2D models are commonly used, e.g., in navigation systems.  

▪ Dynamism: the rate in which updates to information in the context 

model  is supported typically depends on  the provided complexity 

and  scope.  Cell‐phone  networks  allow  for  high  dynamism  with 

respect to the managed position of mobile users but rely on a rather 

simple context model representing the position of users in terms of 

the cells their mobile terminal is logged in. 
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Figure 2.5: Classification of context models 

Figure 2.5 depicts the three dimensions of the context model classification. 

Already  existing  context models  from  research  and  industry  are  either 

serving small areas with higher details and dynamics or  larger areas but 

only with limited dynamism or complexity. To the best of our knowledge, 

only  two  projects  so  far  address  high  detailed  context  information  for 

larger  scopes,  namely Nexus  [HKL+99]  at  the Universität  Stuttgart  and 

ContextWeaver at IBM Research [LSD+02]. 

Table  2.3  provides  an  overview  of  examples  of  context  management 

platforms. The Guide project  [CDM+00a]  realizes  a  tourist guide  for  the 

city of Lancaster. The information is organized around locations which are 

modeled  by  the Wireless LAN  access point deployed  in  the  city  center. 

The underlying context model  is extensible  in  form of HTML extensions 

which assign information to a distinct location.  

The context  information service [JS03] of the Aura project [GSS+02] relies 

on  the  Aura  context  model  which  captures  the  relations  (network 

connection,  physical  space)  between  entities  (devices,  people)  from  the 

computational  and  physical  context,  e.g.,  users  and  road  networks  in 

contrast  to  printers  and  network  connections.  Based  on  a  simple meta 

model  instances  can  be  created  and  stored  in  a  database.  A  SQL‐like 

syntax for queries is provided. 
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The location stack [HBB02] is an example for a specialized context model 

which is created by combing different positioning systems and determines 

the position of mobile objects by sensor fusion.  

A  rather  simple programming  and data model  is offered by  the  context 

toolkit [SDA99] which aims at capturing sensors and allowing the fusion 

of  sensor data by  combining  them  in a  fusion architecture. Applications 

access  context  data  by  connecting  to  a  so  called  context  widget  or 

interpreter which  represent  access  points  to  a  context  source  or  fusion 

point. There  is no  explicit model  supported  and  each  application has  to 

model its context model based on the obtained sensor information. 

The  REAL  project  [BKW02] mainly  aims  at  the  investigation  of multi‐

modal user  interfaces. Since  the  focus  is not on context management,  the 

underlying  context  model  is  not  designed  for  extensibility.  However, 

complex  context  representations  and  large  scope  is  supported  although 

the current architecture limits the scope by storing context information in 

a local database. 

The  Nexus  project  [HKL+99]  aims  at  large  scale  context  management 

supporting  highly  dynamic  and  complex  context  information.  A 

federation is used to combine context models into one global spatial world 

model providing applications with a uniform view on  the  spatial world 

model. A standard class schema provides a common semantics across the 

federated  context  models.  Besides  context  queries,  spatial  events  are 

supported  as  well  as  context‐aware  communication,  such  as  hoarding 

[BMR04] and geocast  [DR03]. A deeper discussion of Nexus  is presented 

in Chapter 6. 

Recent  research  at  IBM  T.J. Watson  addresses  similar  goals  as  Nexus. 

However,  there  are  only  aspects  published,  such  as  requirements 

[LSD+02],  an  event  specification  language  [CLC+02],  and  an  overall 

architecture  [CPW+02]. The context  representation and  the semantics are 
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not predefined by  the  system allowing application  specific  context  to be 

managed. 

Project Specialization Dynamic Complexity Scope 

Guide Generic 

HTML-like 

object 

structure 

Extensible 

models 

Cell-based 

granularity  

City center  

Aura CIS Generic in the 

Aura context 

model 

Dynamic 

(e.g., position 

information) 

Hybrid location 

model (2D) 

Not restricted 

Location 

Stack 

Tailored 

towards 

location 

management 

Highly 

dynamic 

Uses (some) 

complex models 

for fusion 

Not restricted 

Context 

Toolkit 

Generic as 

long as 

widgets are 

provided 

Dynamic, 

tailored 

towards 

sensor 

integration 

No underlying 

model; mainly 

sensor 

abstraction 

Not restricted 

REAL Fixed models 

for context 

representation 

Rather static Indoor: 3D; 

Outdoor 2D 

Models 

Only restricted by 

local database 

Nexus Generic; an 

extensible 

class schema 

models 

semantics  

Highly 

dynamic 

(sensor 

integration) 

plus static 

objects 

Hybrid 2D-2,5D 

Models 

Indoor, Outdoor; 

targeted at global 

scope 

Table 2.3: Examples of context models 

 

So  far, we have discussed  related work  in  infrastructure‐based  systems. 

There are so far only few examples for context services in ad hoc systems. 

The  Nexus  project  starts  to  explore  context  management  in  ad  hoc 

systems.  Besides  of  that,  there  are  mainly  location  services  used  for 

routing  protocols  representing  adaptation  by  application  in  ad  hoc 

systems, e.g., the Grid Location Service [LJD+00] or the location service of 
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DREAM  [BCS+98].  Another  example  is  the  Usenet‐on‐the‐fly  [BBH02] 

presented  in  Chapter  4,  which manages  information  propagation  with 

spatial scope in an ad hoc network. 

 

We will now present the related work  in the dimension of adaptation by 

system  split  into  approaches  relying  on  an  infrastructure,  i.e.,  smart 

environments, and approaches in ad hoc based networks. 

 

2.6.2. Smart Environments 

Prominent examples for adaptation by system relying on an infrastructure 

can be found in Pervasive Computing, where smart environments manage 

the  functionality of a distinct  spatial area. The  smart environment offers 

basic services for devices to register their services with the SE and to look‐

up  resources  required  for  their  execution.  This  is  typically  allowed 

dynamically  in  order  to  support  spontaneous  networking.  Interaction 

between the devices without the SE is not supported. Although this allows 

keeping  the  memory  footprint  on  the  participating  devices  small, 

communication and  interaction  is always mediated via  the SE. This may 

lead to higher energy consumption than necessary if the device/service of 

interest  is nearby and  to performance bottlenecks. The  larger  the  spatial 

area a SE controls gets the more devices interact. Scalability is an issue in 

this  domain.  However,  most  existing  approaches  either  focus  on  a 

spatially restricted area – typically of room size – or support only a more 

or less fixed set of services and thus restrict the possible traffic. 

Examples for this domain are Aura [GSS+02], Gaia [RC00],  iROS [JFW02] 

to name  a  few  representatives.  In  contrast  to Aura  the  system model of 

Gaia,  and  iROS  mostly  address  room‐size  smart  environments. 

Applications  adapt  initially  to  the  services  available  in  the  SE.  Further 
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adaptation  is  supported  on  different  levels.  Gaia  offers  an  application 

model  that  is  a  variation  of  the  model‐view‐controller  pattern  and 

mediates  between  the  state,  the  presentation,  and  the  processing  of  an 

application.  Adaptation  mechanisms  can  be  applied  to  a  coordinator 

component which may react to resource changes. An initial mapping of an 

application  to  a  specific  smart  environment  is  provided  by  a  scripting 

language.  iROS  introduces a coarse grained application model where  the 

distributed  parts  of  an  application  in  a  SE  are  basically  self‐contained 

applications  that make use of additional  functionality. A so called event‐

heap  –  a  tuple  space with  an  aging mechanism  –  allows  applications  to 

request services. The requests are purged via the aging mechanism when 

no suitable service is available. 

Aura addresses context‐aware applications for larger spatial areas than the 

aforementioned  projects.  A  context  information  service  [JS03]  provides 

information  about  the  physical  space  and  the  users  as  well  as  the 

computational  entities  and  their  network  connection.  Applications  are 

formed by tasks which capture the user’s intention and provide automatic 

adaptation by the system based on the information of the context service. 

The concrete evaluation of the user’s intention and the mapping onto tasks 

is on‐going research.  

2.6.3. Adaptation by System in Ad Hoc Networks 

Ad hoc based system support with application adaptation by system leads 

to  Peer‐to‐Peer  systems where  nodes  in  the  ad  hoc  network  interact  as 

equal peers. Reflecting  the asks of a smart environment  in a Peer‐to‐Peer 

(P2P) based organization means that there is no central control mediating 

the discovery, composition, and execution of an application. This class of 

systems seems promising, since the spatial relevance of information can be 

easily  reflected  by  the  typically  spatially  restricted  wireless 
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communication.  There  is  no  need  for  central  directories  and 

communication  is not  routed via a potential bottleneck.  Interaction with 

services being open  to  the public  can be easily established on a Peer‐to‐

Peer  base  allowing  users  to  access  public  services  in  different 

administrative  domains,  e.g.,  a  floor‐plan  or  indoor  navigation  system. 

However,  security  is also an  issue  in Peer‐to‐Peer Pervasive Computing, 

because  there  is no central control and many of  the participating devices 

may not be capable of executing powerful encryption algorithms because 

of the involved effort in calculation.  

To the best of our knowledge, there are only few projects contributing to 

Peer‐to‐Peer Pervasive Computing. The MIT Pebbles project is addressing 

a  P2P  based  approach  but  requires  a  central  instance  to  execute  the 

planning algorithms for the assignment of tasks to devices. However, the 

project  is  still  at  an  early  stage  [Pebbles]  and  the  composition  of  an 

application relies on more than  local knowledge and a central evaluation 

in order to map the application onto the devices in the P2P network. The 

Reconfigurable Context‐Sensitive Middleware  (RCSM)  [YKW+02]  is  also 

contributing to Peer‐to‐Peer Pervasive Computing. In contrast to the MIT 

Pebbles,  BASE  [BSG+03]  and  PCOM  [BHS+04],  RCSM  relies  on  a 

specification of context information which is used for service specification 

and  selection.  The  work  presented  in  [FHM+04]  addresses  similar 

objectives  as  BASE  and  PCOM.  However,  the  support  for  restricted 

devices  is  limited since an existing component model  (OSGi)  is extended 

for  spontaneous  networking.  The  support  for  reselecting  components  is 

comparable  to  the  adaptation  of  communication  in  BASE.  Using 

application  knowledge  represented  in  contracts  like  in  PCOM  is  not 

considered.  
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To sum up, context‐aware computing has matured in the past years and a 

variety  of  concepts  and  architectures  are  being  explored  in  different 

projects. However, there are to the best of our knowledge only few to none 

projects  addressing  ad hoc based  support with  adaptation by  system  so 

far,  although  this  class  of  support  for  context‐aware  computing  seems 

promising for a variety of reasons, e.g., the integration of applications into 

smart environments as well as interaction between devices in the absence 

of  a  smart  environment.  This  thesis  contributes  in  particular  to  this 

research area. 

 

2.7. Contributions contained in this thesis 

The contributions of this thesis address several classes of system support 

for  context‐aware  computing  as  depicted  in  Table  2.4.  Chapter  3 

contributes to systems supporting adaptation by application by providing 

a  thorough  discussion  about  properties  of  location  models,  which  are 

required for the underlying spatial structure of context models. Chapter 4 

and  5  address  support  for  adaptation by  application  in  ad hoc  systems. 

First, a novel application for  information exchange  in ad hoc networks  is 

presented  along  with  the  underlying  data  dissemination  algorithm. 

Second, an  improvement of the underlying data dissemination algorithm 

in  order  to  support  frequently  partitioned  networks  is  presented.  The 

integration of different context‐models is the focus of Chapter 6 where the 

integration of Georgia Tech’s Aware Home context server into the Nexus 

platform is described. 

Chapter  7  to  10  address  an  important  area  of  adaptation  support  by 

system  in  ad  hoc  systems:  Peer‐to‐Peer  Pervasive  Computing. 

Requirements  on  system  support,  a middleware platform,  a  lightweight 

component model, and experiences are the contributions of these chapters. 
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In  the  remaining part of  this  chapter,  the  contributions of  the  following 

chapters are presented in more detail. 

Table 2.4: Contributions of this thesis 

 

Chapter 3: On Location Models for Ubiquitous Computing 

Location models play an important role for context services. The structure 

of the context model has to support relations between locations in order to 

allow  for queries,  such as position, nearest neighbor, and  range queries. 

This  chapter  first provides an overview of application  requirements and 

motivates why  these  kinds  of  queries  have  to  be  supported  in  order  to 

support context‐aware applications. 

Properties  of  coordinates,  symbolic  as well  as  geometric,  are  discussed. 

The main contribution of this chapter is the discussion of different models 

for pure symbolic location models and the integration into hybrid location 

models,  i.e.,  combined  models  which  allow  geometric  and  symbolic 

coordinates  for  the  reference  of  locations.  The  discussed  approaches  to 

location modeling are set‐based, graph‐based, and hierarchy‐based along 

  Adaptation by System  Adaptation by Application 

Infrastructure  Smart Environments 

 

Infrastructure‐based  Context 

Service 

Chapter 3 

Chapter 6 

Ad hoc  Peer‐to‐Peer  Pervasive 

Computing 

Chapter 7 

Chapter 8 

Chapter 9 

Chapter 10 

Ad  hoc  based  Context‐

Services 

Chapter 3 

Chapter 4 

Chapter 5 
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with  their  extension  to  hybrid  location models  by  attributing  locations 

with geometric  coordinates. The  chapter also provides a  classification of 

possible  approaches  to  location models  and  their  assessment  along  the 

criteria of supported queries and the involved modelling effort.  

Chapter 4: Usenet-on-the-Fly: Supporting the Locality of 

Information 

Support of adaptation by application requires some kind of notion about 

the relevance of information and services in order to allow applications to 

choose appropriate  services and  information. One natural way  to  reflect 

the  local  relevance  of  information  is  to  restrict  its  dissemination  to  a 

distinct  scope.  The  underlying  assumption  is  that  users  are  more 

interested in information and services nearby than in far‐away ones.  

This chapter contributes a novel application making use of the underlying 

ad hoc network characteristics. Information is exchanged between mobile 

nodes, which  form  a mobile  ad  hoc  network, whenever  two  nodes  are 

communication range. Users subscribe to information channels, similar to 

the  UseNet,  and  the  application  synchronizes  the  local  databases with 

nearby  nodes.  Such  a  system  can  be  applied  in  many  settings  where 

information  is  of  interest but not worth  connecting  to  an  infrastructure, 

such as a menu of the day of a restaurant or public transport schedules in 

the vicinity of a  transportation platform. The  information  is collected by 

the underlying system and made available  to  the user by  the application 

interface.  Filters  can  be  used  to  configure  channels  and  topics  to  be 

synchronized. 

The  underlying  three‐way‐handshake  protocol  is  evaluated  in  order  to 

show the feasibility of the approach. A prototypical implementation of the 

Usenet‐on‐the‐Fly prototype based on  the underlying data dissemination 

protocol is provided as well. 
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Chapter 5: Data dissemination in Frequently Partitioned 

MANETs 

This chapter provides an enhancement of the data dissemination protocol 

used  for  the Usenet‐on‐the‐Fly  application  in Chapter  4. The  three way 

handshake  protocol  presented  in  Chapter  4  negotiates  all  information 

during its lifetime with other nodes. This can lead to a variety of problems 

in mobile  ad  hoc  networks.  First,  bandwidth  is  consumed  to  advertise 

information  to  other  nodes  which  already  may  have  the  information 

blocking  other  nodes.  Second,  battery  power  is  consumed  for  sending 

advertisements.  Since  power  is  considered  a  precious  resource  in 

MANETs, an optimization of the dissemination protocol was pursued. 

Advertisement messages are split  into  three classes. The classes  relate  to 

information  depending  on  their  freshness  to  the  local  node  and  their 

popularity to other nodes. The first class consists of all messages received 

until a distinct threshold in time. These messages are considered to be new 

and should be propagated to neighboring nodes. The second class is build 

from all messages beyond the threshold. They remain in the second class 

as  long  as  their  popularity  is  high  enough.  The  popularity  is  increased 

whenever  a  neighboring  node  requests  the  data  item  after  an 

advertisement. Messages  in this class age  into the third class  if there was 

no request for a longer period of time. The third class of messages contains 

the  history  of  messages  received.  Based  on  different  strategies,  e.g., 

randomly  or  round‐robin,  messages  of  this  class  are  presented  to 

neighboring nodes. This can help to propagate information across network 

partitions.  If  a message  from  this  class  gets  requested  by  neighboring 

nodes  it  may  be  put  into  the  second  class  again  due  to  its  increased 

popularity. 
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Chapter 6: Frome Home to World – Supporting Context-Aware 

Applications through World Models 

Capturing  and  managing  context  information  can  be  a  time  and  cost 

consuming  task.  Obviously,  sharing  context  information  is  a  way  to 

distribute  the  costs  over multiple  applications  or  at  least  to  justify  the 

effort. So far, there are little experiences in combining context models and 

assess where specific context models  for a distinct domain can be reused 

in other domains or at least allow for an integration. 

An  initial  assessment  from  two  perspectives  of  context management  is 

presented  in  Chapter  6.  A  context  server  from  a  smart  environment 

domain  –  the Georgia Tech’s  Smart Home  Spatial  Server  (AHSS)  – was 

integrated into the federation of the Nexus platform.  

Nexus AHSS 

Open Platform 

Support for arbitrary context-aware 

applications 

Common semantics via standard class 

schema 

XML-based query and modeling language 

Tailored toward Aware Home applications 

No explicit semantic 

Interoperability via the Internet Inter ORB 

Protocol (IIOP) 

Table 2.5: Objectives of Nexus and AHSS 

Table 2.5  lists  the different objectives of  the AHSS  in  contrast  to Nexus. 

While Nexus was designed a priori to support arbitrary applications with 

context  information  the AHSS was  tailored  to  the needs of Aware Home 

applications.  A  use‐case  analysis  showed  that  standard  databases  are 

sufficient  for  the  context  information  necessary  in  the  smart  home.  A 

spatial database was used to allow querying for location as primary index. 

No explicit semantic was modeled, since the members of the Aware Home 

project were  assumed  to  keep  track  of  the  semantics  of  the  individual 

applications.  In  contrast  to  that  the Nexus platform provides a  common 

class  schema which provides  a  basic  semantic  across  all  context  servers 
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integrated  in  the  federation. Extensibility of  the  so  called  standard  class 

schema allows application specific extensions. 

The semantic modeling of the Nexus platform is represented in its context 

modeling language (Augmented World Modeling Language, AWML) and 

its query language (Augmented World Query Language, AWQL) as well. 

The AHSS  relies on  SQL‐queries which  are dispatched  to  the AHSS via 

CORBA’s interoperability protocol IIOP. 

The  integration of  the AHHS  into  the Nexus platform  logically means  to 

register  a  context  server  that  provides  a  spatial  model  for  a  distinct 

geographic  area  (the Aware Home’s  spatial  extension)  and  provide  all 

context  types which  are provided. This  enables  the Nexus  federation  to 

select  context  servers  based  on  the  geographic  area  and  context  types 

requested by applications. 

Technically,  this  resulted  in  mainly  two  changes  with  respect  to  the 

integration  of  the  context  data  and  processing  queries. A wrapper was 

provided which parsed queries from the Nexus federation in AWQL and 

mapped it onto the AHSS context model. Therefore, an integration of the 

data provided by the AHSS into the common class schema was necessary. 

The  experiences  gathered  from  this  experiment  showed,  that  the 

integration of the AHHS into Nexus was possible without any changes in 

Nexus  at  all.  The  necessary wrapping  of  the AHSS with  respect  to  the 

query processing and context model could be realized based on standard 

components  available  for  the  Nexus  platform.  The  only  task  which  – 

obviously – required a deeper understanding of the AHSS context model 

was  the  integration of  the context data stored  in AHSS  into  the common 

class schema. But  if  this  task  is done once, every extension  in  the AHSS’ 

context model becomes available for Nexus applications as well. 
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Chapter 7: Middleware and Application Adaptation 

Requirements and their Support in Pervasive Computing 

The  classification  of  system  support  for  context‐aware  computing  has 

shown  that  the  area  of  adaptation  by  system  in  ad  hoc  settings  is  only 

addressed by  few projects  so  far. Chapter  7  identifies  this  research  area 

and provides application scenarios and a system model. Based on  these, 

requirements are derived and discussed with  respect  to  their  relation  to 

middleware support or application support.  

Namely, applications have to adapt whenever a service or a local resource, 

such as a GPS sensor, fluctuates in quality or availability. This leads to the 

requirement of uniform programming abstractions  in order  to provide a 

comprehensive  framework  for  applications  in  order  to  adapt  to  these 

changes.  The  requirements  on  system  software  thus  contain  a  uniform 

abstraction  to  applications  for  the  access  to  remote  services  and  local 

resources  as well. Monitoring  of  local  resources  and device  and  service 

discovery  has  to  be  provided  flexibly  enough  to  support  a  variety  of 

transport protocols  and  service discovery protocols  along with different 

resource characteristics.  

The  most  notable  requirement  stated  is  the  decoupling  of  the 

communication model of application and interoperability protocol. Nearly 

all existing middleware platforms today reflect the communication pattern 

of  the  application,  e.g.,  Remote  Procedure  Call,  in  the  corresponding 

interoperability protocols, e.g., by using request‐/response‐messages over 

a the same communication channel. The characteristics of ad hoc networks 

impose  problems  here,  since  the  spontaneous  network  connection 

between  peers  can  break  during  interaction.  However,  many  mobile 

devices  are  equipped with more  than  one  communication module,  e.g., 

infrared, Bluetooth, or 802.11. As long as there is one communication link 

between  two  devices,  communication  can  take  place.  This  requires 
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switching the communication link and potentially the protocol stack of the 

interoperability protocol during an  interaction, e.g.,  send a  request via a 

SOAP  stack using  802.11  and  receiving  the  response via  an  event‐based 

protocol  on  Bluetooth.  Obviously,  the  communication  model  of  the 

application stays a remote procedure call but the communication model of 

the  interoperability protocol  changes during  interaction. This  requires  a 

flexible middleware architecture  that provides advanced synchronization 

mechanisms. This middleware is presented in the next chapter.  

Chapter 8: BASE – A Micro-Broker based Middleware for 

Pervasive Computing 

As stated in Chapter 7, the area of adaptation by system in ad hoc systems 

is little explored. Chapter 8 picks up the requirements from Chapter 7 and 

presents  a  micro‐broker  based  approach  for  a  flexible  and  extensible 

middleware platform. The heterogeneity of devices with  respect  to  their 

resources leads to the first design goal of minimalism and extensibility, in 

order  to  support  resource‐restricted  devices  as well  as  to make  use  of 

resources  on more powerful devices. This  is  realized  by using  a micro‐

broker design. The micro‐broker only provides mechanisms to dispatch so 

called invocations to corresponding plug‐ins, synchronize the invocations 

according  to  the  application  communication model,  and  allow  to  install 

and  remove  plug‐ins.  This  offers  a  small memory  footprint,  since  only 

required  plug‐ins  have  to  be  installed.  Additionally,  the  abstractions 

provided  to  the  application  are  the  same  for dispatching  invocations  to 

device‐local  resources as well as  to  transport plug‐ins which  transmit an 

invocation  to  a  remote  device.  The  design  of  the  plug‐ins  represents 

transport  plug‐ins  as  well  as  device  resource  plug‐ins  as  invocation 

consuming entities. Possible  results are  sent back  to  the micro‐broker as 

different  invocations,  indicating  correspondence  to  the  id  of  the  prior 
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invocation.  This  allows  the  micro‐broker  to  synchronize  invocations 

independent of the protocol used in the transport plug‐ins. Moreover, the 

transport plug‐in  receiving  the  first  invocation  can be different  from  the 

one receiving  the corresponding  invocation, e.g.,  for a result. This allows 

the  system  to  adapt  to  the  availability  of  communication  protocols 

between  two devices without  requiring  the  application  to deal with  the 

resulting problems, e.g., messages losses or blocking calls. 

BASE meets the requirements stated  in Chapter 7. The memory footprint 

of  approximately  130  KBytes  seems  promising  even  on  embedded 

systems.  However,  the  abstractions  provided  to  the  application 

programmer  require engineering adaptation  support  to  single  resources. 

Hence, an adaptive application has  to provide adaptation support based 

on the resources it utilizes. Namely, a callback to handle unavailability has 

to be provided and in case one or more resources fail or become available 

the programmer has  to provide  logic  in  order  to  react  accordingly. The 

different levels an application can run on based on the resources available 

are thus represented in the adaptation code. Clearly, this is no support for 

adaptation  by  system.  In  order  to  provide  higher  abstractions  for 

application programmers, PCOM – a component system based on BASE – 

was developed, which is presented in the next chapter. 

Chapter 9: PCOM – A Component System for Pervasive 

Computing 

As mentioned above, BASE offers  flexible support  for  interoperability  in 

ad  hoc  networks.  Context  is  represented  by  the  spatial  proximity  of 

devices,  which  is  reflected  by  their  wireless  communication.  The 

communication between peers in such a network is automatically adapted 

in  order  to  allow  communication  over  arbitrary  communication 

technologies  and  protocols.  The  programming  abstractions  of  BASE 
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require  application  programmers  to  reflect  the  configurations  of  an 

application explicitly in the code depending on the resources available in 

the current execution environment.  

PCOM  was  designed  to  ease  the  implementation  of  applications  that 

adapt  to  different  configurations  depending  on  the  available  resources. 

The  key  concept  in  PCOM  is  to  represent  the  dependencies  between 

components  in  an  application  explicitly.  Based  on  this  information  the 

system  is  enabled  to  provide  means  for  adaptation,  e.g.,  when  a 

component becomes unavailable another suitable component  is searched 

for and ‐ if available ‐ integrated into the application.  

PCOM relies on the concept of a component container which manages the 

lifetime  of  an  application.  An  application  is  composed  of  components, 

which may interact across device boundaries, but are atomic with respect 

to  their distribution,  i.e., a component  itself  is executed  in one container. 

Components  specify  their dependencies  to other  components and  to  the 

underlying  computing  platform  via  contracts.  Contracts  thus  capture 

required components and resources of the device a component is executed 

on. An application  is modeled starting  from a root component along  the 

dependencies to components required for the execution. An application is 

specified by the resulting tree of components along their dependencies. 

PCOM  containers  are  based  on  BASE  and  thus  are  able  to  discover 

themselves and communicate. The containers exchange information about 

the contracts  they can offer  to other containers based on  the components 

installed.  

Adaptation  in  PCOM  is  supported  by  three  means.  When  a  contract 

changes,  i.e.,  a  component  contract  breaks,  a  callback  is  called.  In  this 

callback  three different options can be  taken. First,  the component which 

depended on the contract can stop its operation, breaking its contract, and 

thus  escalating  the  handling  up  the  tree.  Second,  the  component  can 
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choose  to  reselect  the  dependency  to  another  component  which  is 

automatically handled  by  the PCOM  container,  and  third,  a  component 

may choose to provide individual handling. 

Together with BASE, PCOM provides  system  support  for  adaptation  in 

highly  dynamic  environments,  as  they  are  present  in  ad  hoc  based 

environments, such  as Peer‐to‐Peer Pervasive Computing. 

Chapter 10 : Experiences – Extensibility and Flexibility in BASE 

This chapter discusses experiences gathered when BASE was ported  to a 

small  embedded  Java  microprocessor  and  during  the  design  and 

implementation of PCOM. 

Initially, BASE was designed to work on resource‐restricted devices. Based 

on  the  Java  2 Microedition  the Connected Device Configuration  (CDC) 

was chosen. Although this configuration already restricts many features of 

the Java programming environment, there are two features available that 

are not supported on the even more restrictive Connected Limited Device 

Configuration (CLDC), namely serialization and dynamic class loading.  

The required changes during the port did not affect any conceptual design 

decision.  Dynamic  class  loading  could  be  omitted  by  providing  a 

graphical  editor  to  programmers  to  customize  a  BASE  configuration. 

Automatic  loading  of  required  plug‐ins  is  a  feature  which  helps 

programmers  in  dynamic  and  resource‐rich  environments,  but  typical 

devices running the CLDC are fixed with respect to their resources. Hence, 

a  static configuration can be provided. Object  serialization  is a powerful 

concept  that  eases  the  exchange  of  objects  across  devices  realizing 

presentation  layer  issues. We are using a mechanism quite similar  to  the 

serialization  concept  provided  by  Java.  Each  object  has  to  provide  a 

serialization method which provides means to serialize the attributes of an 

object. 
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Even more convincing experiences were collected when designing PCOM 

on top of BASE. There were no changes necessary  in the  implementation 

or design of BASE. PCOM was realized as a service using the underlying 

abstractions  for  service  and  resource  usage  as  well  as  the  signaling 

mechanisms  to  indicate  availability  or  unavailability  of  services  and 

resources.  There  are  only  two modifications made  in  BASE  in  order  to 

improve performance. The proxies for PCOM components directly inherit 

from the corresponding BASE proxies in order to avoid a call through an 

indirection layer. PCOM uses the BASE registries for remote devices in the 

execution environment directly and not through the proxy. This also saves 

one indirection through a proxy.  

Most  notable,  the  abstractions  provided  by  PCOM  could  be  realized  in 

about  30KBytes  leading  to  an  overall  size  of  160 KBytes  for  BASE  and 

PCOM. 
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3. On Location Models for Ubiquitous Computing 
Common  queries  regarding  information  processing  in 

ubiquitous  computing  are  based  on  the  location  of  physical 

objects.  No  matter  if  the  next  printer,  next  restaurant,  or 

friend  is searched  for, a notion of distances between objects  is 

required. A search  for all objects  in a certain geographic area 

requires  the  possibility  to  define  spatial  ranges  and  spatial 

inclusion  of  locations.  In  this  chapter  we  discuss  general 

properties  of  symbolic  and  geometric  coordinates.  Based  on 

that,  we  present  an  overview  of  existing  location  models 

allowing for position, range, and nearest neighbor queries. The 

location models are classified according to their suitability with 

respect  to  the  query  processing  and  the  involved  modeling 

effort  along with  other  requirements. Besides  an  overview  of 

existing  location models  and  approaches  the  classification  of 

location models with  respect  to  application  requirements  can 

assist developers in their design decisions. 

3.1. Introduction 

Location  plays  an  important  role  in  the  domain  of  location‐aware  and 

context‐aware  systems.  Especially  in  the  ubiquitous  computing  domain 

location  is  commonly  considered  to  be  an  important  source  of  context 

[Sch95] but not the only one [SBG99]. However, whenever applications or 

users  are  interested  in  objects  depending  on  their  location  or  spatial 

relationship  location  models  are  required  in  order  to  provide  notions 

about distances or ranges. This chapter presents an overview of possible 

approaches,  discusses  existing work,  and  classifies  the  approaches  and 

existing work according to their suitability to allow for range and nearest 

neighbor queries. 
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Information  about  locations  is presented  in different  formats. Geometric 

coordinates as they are used by GPS refer to a point or geometric figure in 

a multi‐dimensional space, typically a plane or a three‐dimensional space. 

The  topological  properties  of  such  a  space  allow  the  calculation  of 

distances between locations and their inclusion in other locations. 

Symbolic  coordinates  on  the  other  hand  do  not  provide  any  reasoning 

about  their  spatial  properties  (distance  and  inclusion)  without  any 

additional  information.  Such  coordinates  are  available  via  cell‐ids  in 

cellular  networks,  such  as GSM  or wireless  LAN,  as well  as  via  other 

positioning technologies, such as radio frequency tags (RF ids) or infrared 

beacons. 

Examples for the use of location information in applications are navigation 

services  or  location‐based  information  systems,  which  select  services 

based on  their spatial proximity, e.g.,  the nearest printer, or notify when 

some  events  occur  in  the  vicinity,  e.g.,  a  friend  appears  or  an  accident 

happens. 

In  order  to  allow  such  applications  based  on  symbolic  coordinates,  a 

notion of spatial relations such as distance and inclusion is required. This 

information has to be modeled explicitly in a location model. 

In  this  chapter  we  will  discuss  general  requirements  on  location 

management  and  derive  three  types  of  queries  –  position,  nearest 

neighbor, and range ‐ which should be supported by location models. The 

properties  of  symbolic  coordinates  are  discussed  in  general.  Based  on 

these  properties  different  kinds  of  location  models  are  discussed  and 

classified along their suitability to support the queries. 

3.2. System Model 

Our system model consists of three kinds of components (cf. Figure 3.1): 

The  location  model  is  the  central  part  of  our  system  model.  It  stores 

representations of static and mobile real world objects like representations 



 58 

of buildings and people,  respectively.  It  is not  the  focus of  this paper  to 

describe  how  these  objects  are  managed  by  an  infrastructure,  but  we 

concentrate  on  the  typical  properties  of  the  different  kinds  of  location 

models.  Examples  of  such  location  models  are  the  Nexus  platform 

[HKL+99, NGS+01],  the  context  information  server  [JS03],  or  the  guide 

project [CDM+00b]. 

Location Model
-Positions of mobile objects
- topological informations

Applications

Position Updates

Position-, Range, Nearest Neighbor Queries
Navigation,Visualization Information

 
Figure 3.1: System model 

Applications query the location model in order to carry out different tasks 

like  navigation  (see  next  section).  They  also  update  the  location model, 

e.g., by  inserting new objects  into  the model, deleting old objects, or by 

altering existing objects whose state has changed. For  the context of  this 

paper, we are interested in the different kinds of queries and tasks that are 

carried  out  by  these  applications  because  they  determine  the  internal 

structure and organization of a location model. As will be shown later in 

this paper, the suitability of a location model for distinct queries depends 

on its internal organization. This  is especially of interest, when a location 

model  is not  tailored  towards a single application or domain but should 

manage  information  for  a  variety  of  applications  and  their  potentially 

diverging requirements. 
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Positioning  systems  update  position  information  of  mobile  objects  like 

persons or cars. The output of  these systems also  influences  the  location 

model  as we will  see  in  the  next  section. However,  the multitude  and 

variety of positioning  systems and  its discussion  is beyond  the  scope of 

this paper.   For  the  remaining part of  this paper we will  assume  that  a 

positioning  system  allows  a mobile  object  or  tracking  system  to  issue  a 

position  update with  a  coordinate  identifying  a  location  to  the  location 

model.  This  is  sufficient  for  the  discussion  of  the  properties  of  location 

models. However, the interested reader can find an overview of different 

positioning  systems  in  [HB01].  Fusion  aspects  of  different  positioning 

systems  into a common  location  framework are presented  in [HBB02]. In 

the following, a brief overview of the properties of coordinates as they are 

provided by current positioning systems is presented. 

3.2.1. Basic Properties of Coordinates 

A coordinate x is an identifier which specifies the position of an object with 

respect  to  a  given  coordinate  system. A  coordinate  system  is  a  set  X  of 

coordinates.  Some  examples  for  different  kinds  of  coordinates  and 

coordinate systems are: 

• Geographic coordinates in the WGS84, used by the GPS, are 

expressed as triples containing the geographic longitude, latitude, 

and the elevation above main sea level. 

• The Active Bat System [WJH97] is a high‐resolution indoor 

positioning system providing three‐dimensional coordinates – i.e., 

x, y, z value ‐ with respect to a local Cartesian reference system. 

• The Active Badge System [WHG92] provides symbolic identifiers 

for locations via infrared. Coordinates are the symbolic identifiers 

of the fixed IR sensors registering the users’ active badges that 

transmit a unique identifier.  
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Two basic  classes  of  coordinates  can be  identified  from  these  examples: 

geometric and symbolic coordinates. 

3.2.2. Geometric Coordinates 

Geometric  coordinates define positions  in  the  form  of  coordinate  tuples 

relative  to  a  reference  coordinate  system. We  further  distinguish  global 

and local geometric coordinate systems. The World Geodetic System 1984 

(WGS84)  is  a  global  reference  system  and  thus  can  be  used  to  define 

coordinates anywhere on this planet, whereas the Cartesian coordinates of 

the Active Bat  System  are  typically only valid  locally,  e.g.,  in one  room 

equipped with such a system. 

Geometric coordinates can be used to calculate the distance between two 

geometrically defined positions. Through geometric operations it can also 

be determined if two areas overlap, touch each other, or one area contains 

the other, i.e., topological relations like spatial containment can be derived 

from the geometry of objects. Hence, geometric coordinates already allow 

simple spatial reasoning.  

3.2.3. Symbolic Coordinates 

Symbolic coordinates define positions in form of abstract symbols, e.g., the 

sensor  identifiers of  the Active Badge system, or room and street names, 

etc.  In  contrast  to  geometric  coordinates,  the  distance  between  two 

symbolic coordinates  is not  implicitly defined. Also  topological  relations 

like  spatial  containment  cannot  be  determined  without  further 

information  about  the  relationship  between  symbolic  coordinates. 

Symbolic location models provide this additional information on symbolic 

coordinates.  
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3.3. Requirements for Location Models 

In  order  to  derive  requirements  on  location  models  and  discuss  their 

properties with  respect  to  the  organization, we will motivate  queries  to 

location models  from  the perspective  of users  and  applications. Besides 

position  queries,  which  are  obviously  needed  in  location‐based 

applications,  the  necessity  of  nearest  neighbor  and  range  queries  is 

motivated.  This  will  serve  as  foundation  of  the  later  classification  of 

location models. The choice of a distinct location model will dependent on 

the queries required by applications. Therefore, we have to consider these 

queries  and  tasks  in  order  to  assess  the  functional  requirements  for 

location models. 

3.3.1. Position Queries 

The determination of the positions of mobile and static objects like users, 

buildings,  bus  stops,  etc.  is  a  common  building  block  of  location‐based 

and context‐aware systems. The  tasks described below cannot be carried 

out without the known positions of objects. Therefore, all location models 

contain this information, but they differ in the way it is represented.  

The definition of a position requires some form of coordinates. Based on an 

object’s position actions can be carried out, such as  teleporting  the user’s 

interface  [WJH97],  controlling  the  input  and  output  of  applications  to 

arbitrary  spaces  in  the  physical  environment  via  projection  techniques 

[PPL+03], or  in  industrial  settings,  such  as  a  smart  factory  [BJR+03],  the 

positions  of  resources  and  tools  can  be  monitored  in  a  production 

planning  system.  Such  systems  require  a  common  interpretation  of  the 

coordinates in a specific global coordinate system. Within moving objects, 

such as trains, local reference systems can help to address objects, such as 

travelers  with  respect  to  their  compartment  in  the  train  and  not  their 

absolute position to the ground. 
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This shows that a general location model has to support different coordinate 

reference systems, global and local ones. 

Beside  well‐known  geometric  coordinates,  some  positioning  systems 

provide symbolic coordinates, e.g.,  the cell  id  in a cell‐phone network or 

identifiers of  infrared beacons, and often  these  symbolic coordinates can 

be interpreted more intuitively by  users than geometric coordinates. Later 

we  will  show,  how  simple  symbolic  location  models  can  be  set  up 

allowing  for  spatial  reasoning with  low modeling  effort. Therefore,  this 

kind of coordinates has to be supported as well. 

3.3.2. Nearest Neighbor Queries 

A nearest neighbor query is the search for the n objects closest to a certain 

position.  For  instance,  a user  can  search  for  the  nearest  restaurant with 

respect  to his  current position,  or  the next printer. Beside known  object 

positions, the definition of a distance function on the coordinates is required 

for  this  type  of  queries.  For  geometric  coordinates,  the  direct  physical 

distance  between  two  positions  can  be  calculated  using  well‐known 

formulas  like  Pythagoras  in  Cartesian  systems.  If  only  symbolic 

coordinates are modeled then the model must contain explicit definitions 

of  distances  between  these  coordinates,  e.g.,  to  define  the  distance 

between room number X and the printers  in the rooms number Y and Z, 

since  symbolic  coordinates  do  not  contain  a  natural  embedment  into  a 

metric space.  

There are other notions of distance  that are often more relevant  than  the 

direct  physical  distance.  For  instance,  for  a  pedestrian  it  might  be 

impossible to cross a highway. Therefore, a restaurant across the highway 

with  a  direct  physical  distance  of  100 m might  be  farther  away  than  a 

restaurant  with  200  m  direct  physical  distance  not  located  across  this 

highway.  In  these  cases  additional  model  information  like  the  road 
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network  a  user  uses  to  get  from  location  A  to  B  has  to  be  taken  into 

account.  For  such more  complex  nearest  neighbor  queries,  this  leads  to 

similar  requirements  as  for  navigational  tasks  described  in  the  next 

subsection, because “paths” between locations have to be found and their 

“lengths” have to be compared. 

To sum up, a notion of “distance”  is  required  in many context‐aware or 

location‐based  systems.  An  explicit  location  model  is  required  for 

symbolic  coordinates as  they do not provide  implicit distance  functions. 

Systems based on geometric coordinates can benefit from such a model as 

well, as spatial restrictions can be modeled, e.g., road networks. 

3.3.3. Navigation 

Navigation systems become standard equipment  in nowadays cars. Such 

systems require a location model to find paths between locations. Possible 

paths  are  defined  by  the  transportation  network  (roads,  train  or  bus 

routes, etc.) and consist of several interconnected locations. This means, it 

does  not  suffice  to  know  the  geometry  e.g.,  of  roads,  but  it  is  also 

important to know how to get from one location to neighboring locations, 

e.g.,  from one  road  segment  to  another  road  segment  at  a  junction,  and 

finally  to  the destination. Therefore,  the  topological  relation  “connected  to” 

has  to  be  modeled  that  describes  these  interconnections  between 

neighboring locations (cf. Figure 3.2). 
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s3

s4
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s3

s4
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length=150m

length=120m

length=80m
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200m

 
Figure 3.1: Road geometry (left) and road topology (right) 

There  are different kinds of navigational  tasks,  e.g.,  finding  the  shortest 

path or the fastest path. Finding for instance a suitable path for a person in 
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a  wheelchair  requires  additional  information  about  locations,  e.g., 

staircases or elevators. Therefore different attributes need  to be modeled 

to implement these variants, e.g., the distance that has to be traveled to get 

from one  location  to another  location,  the maximum allowed speed on a 

road  segment,  the  presence  of  stairs,  which  cannot  be  used  with  a 

wheelchair, etc. Even highly dynamic  information  like  the current  traffic 

situation  on  a  road  can  be  part  of  the  model.  In  general,  this  means 

modeling some kind of weight on path segments. The “length” of a path is 

then calculated by summing up the weights of each path segment. 

3.3.4. Range Queries 

A range query returns all objects within a certain geographic area. It can 

be used  for  instance  to query  the occupancy of  a  room  as well  as  for  a 

check whether an evacuation plan is processed correctly, i.e., if a room is 

empty before the fire doors are closed and sealed. Also, simple algorithms 

for new types of communication can be implemented on the basis of range 

queries, e.g., geocast [DR03], i.e., the sending of messages to receivers in a 

certain geographic area. First, a range query can be used to determine all 

receivers in the target area of the message. Secondly, the message is sent to 

these receivers, e.g., using multiple unicast messages. 

First of  all, object positions have  to be known  to  answer  a  range query. 

Additionally,  the  topological  relation  “contains” has  to  be modeled,  i.e.,  it 

has  to  be  defined whether  a  coordinate  lies within  a  spatial  area.  For 

geometric  coordinates,  this  information  can be derived  from  the known 

geometry.  But  for  symbolic  coordinates,  this  relation  has  to  be  defined 

explicitly.  For  instance,  a  model  can  define  that  the  room  2.062  is  on 

(“within”)  the  second  floor  that  in  turn  is  part  of  (“within”)  a  certain 

building, etc. Thus, querying  for a  larger area automatically  includes all 

objects from locations that lie within that area. 
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3.3.5. Visualization 

Drawing maps is one of the most obvious application of location models. 

Maps  can be used  for many different  tasks  like positioning, navigation, 

etc., which we have  already described  in  the  subsections  above. A map 

helps the user to execute these tasks manually or it is used to display the 

results  of  these  tasks  if  they  are  carried  out  automatically.  All  model 

information  introduced  above  can  be  visualized,  but  usually  a map  is 

drawn, which  requires  a more or  less detailed  geometric  representation of 

these objects, depending on the desired level of detail (see below). 

3.3.6. Requirements 

From  the  use  cases  presented  above,  the  following  requirements  for 

location models  can be derived. Note,  that not all of  these  requirements 

have  to  be  fulfilled  at  the  same  time.  However,  being  aware  of  the 

application  requirements  is  crucial  in  order  to  choose  the  appropriate 

location model organization. 

Based on position, nearest neighbor, and range queries it can be concluded 

that a location model should provide: 

• Object positions: Positions of objects have to be modeled in form of 

coordinates. Supported coordinates and reference systems are 

o Geometric and symbolic coordinates 

o Multiple, local and global coordinate reference systems  

• Distance function: Distances between spatial objects have to be 

modeled. This can also be the “size” of a location, e.g., the length of 

a road segment, which represents the distance one has to travel 

when crossing this location in order to reach another location. 

• Topological relations: The following topological relations between 

spatial objects have to be modeled: 

o spatial containment in order to allow range queries, and 
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o spatially connected to for navigation services. 

Furthermore,  the  position  of  objects  alone  is  not  sufficient  for  some 

applications which  also  require  the  direction  of  a moving  object  or  the 

orientation  of  a  user,  e.g.,  in  order  to  provide  information  about  the 

building a tourist looks at. 

• Orientation: In addition to positions of mobile objects, the 

orientation in the horizontal and/or vertical dimensions can be 

supported.  

These  requirements  have  to  be  regarded  in  conjunction  with  the 

requirement  of  minimal  modeling  effort.  There  are  different  factors  that 

influence the modeling effort: 

• Accuracy: The model should describe the real world as accurately as 

possible, i.e., the stored information should be consistent with the 

real world. Accuracy is not a question of the model type but of how 

the model is created and updated and of the dynamics of the 

modeled objects: Highly dynamic objects require high update rates, 

e.g., highly mobile objects will have to update their position 

frequently to get accurate position information. These issues are not 

the focus of this paper, and therefore accuracy will not be 

considered any further. 

• Level of detail: The level of detail describes the precision or 

granularity of the model. Fine‐grained models describe locations 

down to room level or below; coarse‐grained models stop at 

buildings or larger. A flexible model allows both ends of the scale. 

• Scope:  The scope is the area covered by the model. Local models 

may only describe one single room, whereas global models at the 

other end of the scale describe locations all over the world. 

The  two  last  items  are  intimately  connected.  Highly  detailed  models 

usually only describe small parts of the world, because they require high 
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modeling  effort;  coarse‐grained  models  may  have  a  larger  scope 

[RDD+03].  Also  the  architecture  used  to  manage  the  model  plays  an 

important  role  for  the  level of detail  and  scope. A  federation  of highly‐

detailed partial models with limited scope can be used to extend the scope 

of the (federated) model and make highly detailed global models feasible 

[NGS+01].  In  this  paper  we  do  not  consider  how  location models  are 

management, but we concentrate on the general properties of the different 

kinds of location models. The following discussion first addresses location 

models  for geometric  and  symbolic  coordinates. Then  the  integration of 

geometric  coordinates  into  symbolic  location models  leading  to  hybrid 

location models  is discussed. Based on  this discussion a  classification of 

the general approaches is presented and existing work is classified. 

3.4. Geometric Location Models 

Geometric  models  describe  locations  by  geometric  figures.  If  not  only 

global coordinate systems are to be used but also  local ones, the position 

and orientation of local systems with respect to other local systems or the 

global  system has  to be defined  in order  to  translate  coordinates of one 

system to other systems.  

On the basis of geometric coordinates the topological relation “contained 

in” can be derived. In contrast to the containment relation, the ”connected 

to” relation modeling e.g., doors connecting rooms cannot be derived from 

location  geometries.  This  relation  has  to  be  modeled  explicitly.  If  this 

information is modeled, it can be used to improve the notion of distances, 

e.g., by  incorporating  the distance a user has  to  travel  in  contrast  to  the 

direct distance reflected by  the underlying geometry. However,  it  is also 

reasonable for a geometric location model to store the spatial containment 

relation explicitly since geometric operations are costly.  



 68 

3.5. Symbolic Location Models 

In this section we describe different types of symbolic location models and 

discuss their suitability for the different types of queries described  in the 

requirements  section  of  this  paper.  Set‐based,  hierarchical,  and  graph‐

based models are presented. 

3.5.1. Set-based Model 

A set L of symbolic coordinates forms the basis for the set‐based approach. 

Locations comprising several symbolic coordinates are defined by sub‐sets 

of the set L. As a simple example consider a building with several floors. 

The set L consists of all room numbers of this building. The second floor as 

shown  in Figure  3.3  can be modeled by  the  set Lfloor2  =  {2.002,  2.003, …, 

2.067}. Further arbitrary  locations may be defined, e.g.,  the  locations A = 

{2.002, 2.003} and B = {2.003, 2.005} in Figure 3.3. 

 

 
Figure 3.3: Set‐based location model 

 

This  model  can  be  used  to  determine  overlapping  locations  and  as  a 

special  case  of  overlapping  locations  the  containment  relation  by 

calculating the intersection of two sets L1 and L2. If L1 ∩ L2 ≠ ∅, then L1 and 

L2 overlap. If L1 ∩ L2 = L1, then L2 contains L1. Thus, this model can be used 

for  range  queries where  the  range  is  defined  by  one  set R  of  symbolic 

coordinates, and all sub‐sets of R define locations within R.  
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This model  can  also  be  used  to  express  a  simple  qualitative  notion  of 

distance between symbolic coordinates by modeling sets of “neighboring” 

symbolic coordinates, which we call neighborhoods (by Lcon we denote the 

set of neighborhoods). For instance the sets A and B in Figure 3.3 as well as 

the  set  Lfloor2  defined  above    are  such  neighborhoods  in  Lcon.  Distances 

between the symbolic coordinates x, y and x, z are compared as follows: 

)(),d(),d( 212211con21 LLLzLxLyLxLLLzxyx ⊂→∈∧∈∧∈∧∈∈∀∃⇔<  

That  means,  the  two  smallest  neighborhoods  containing  x,y  and  x,z, 

respectively,  define  the  distance  from  x  to  y  and  x  to  z.  Consider  for 

instance  the  three  symbolic  coordinates  2.002,  2.003,  and  2.006.  d(2.002, 

2.003) < d(2.002, 2.006) because A (the smallest neighborhood that contains 

2.002 and 2.003) is a proper subset of Lfloor (the smallest neighborhood that 

contains  2.002  and  2.006  in  our  example).  To  achieve  a  fine  distance 

granularity,  neighborhoods  can  be  defined  for  each  pair  of  directly 

connected  locations,  e.g.,  rooms  which  are  connected  by  a  door.  For 

instance,  the  locations  A  and  B  introduced  above  are  such  locations. 

Larger  neighborhoods  are  defined  recursively  by  joining  smaller 

neighborhoods  which  have  non‐empty  intersections,  e.g.,  the 

neighborhood C  = A∪B. By modeling pairs  of  connected  locations,  also 

possible paths  can  be derived. A negative  effect  of  this  approach  is  the 

huge number of resulting sets and the involved modeling effort. 

Beside this qualitative notion of distance, this approach does not permit to 

define a quantitative notion of distance, e.g., to make statements like “the 

distance  between  a  and  b  is  as  long  as  the  distance  between  c  and  d”. 

Therefore, the support for queries related to spatial distances (e.g., nearest 

neighbor queries and navigation) is limited. 

In  contrast  to  set‐based  location models which  do  not  contain  explicit 

relations  between  locations,  the  following  two models,  i.e.,  hierarchical 

and graph‐based, model relations between locations. 
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3.5.2. Hierarchical Models 

Hierarchical  models  consist  of  a  set  of  locations  L.  The  locations  are 

ordered according  to  the spatial containment relation,  i.e., a  location  l1  is 

an  ancestor  of  a  location  l2  (l1  >  l2),  if  l2  is  spatially  contained  in  l1.  If 

locations do not overlap each other this leads to a tree‐based model [JS02]. 

If overlapping locations are to be modeled the more general lattice‐based 

model  is  applicable  where  intersections  of  locations  are  modeled  by 

separate  locations with more  than  one  parent  location  [KEG93,  DR03]. 

Figure  3.4  shows  an  example  of  such  a  lattice‐based model.  The  set  of 

locations L consists of  the building B,  the  floors F1,…, Fm  ,  two wings W1 

and  W2,  and  several  rooms  R1,…,  Rn.  The  locations  FiWj  denote 

intersections of  the  floor Fi and  the wing   Wj. Figure 3.4b also shows  the 

relationship  of  the  hierarchical  models  to  the  set‐based  approach. 

Locations  in  the  hierarchy  can  also  be  interpreted  as  sets  of  symbolic 

coordinates. Overlapping locations are defined by the intersection of sets. 

Therefore, hierarchical models  can be  seen as a  special  case of  set‐based 

models. 
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Figure 3.4: Hierarchical lattice‐based location model 
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Because  the  hierarchical models  are  based  on  the  containment  relation 

they support range queries naturally. A range  is defined by a  location  in 

the hierarchy and the descendants of this location denote locations within 

this range.  

A  simple  notion  of  distance  comparable  to  the  one  discussed  in  the 

previous sub‐section can also be applied to hierarchical models:  

 

Given  three  locations  l1,  l2,  l3 ∈ L. Then d(l1,  l2) < d(l1,  l3),  if  sup({l1,  l2}) < 

sup({l1, l3}).  

 

sup({l1, …,ln})  denotes  the  supremum  (least  upper  bound)  of  a  set  of 

locations. For instance, the two rooms R1 and R2 located on the same floor 

and  in  the  same wing  in  Figure  3.4  are  considered  to  be  closer  to  each 

other than  the rooms R2 and R5, which are only  in  the same wing but on 

different floors (F1W2 = sup({R1,R2}) < sup({R2,R5}) = W2). In some situations 

this  interpretation of distance may be  counter‐intuitive.  If  for  instance  a 

short  connection  exists  between  R2  and  R5,  e.g.,  stairs,  the  R2  could  be 

closer to R5 than to some room located on the same floor and wing as R2. 

Hierarchical models provide no means to model interconnections between 

locations, and  therefore  this situation can not be handled adequately. As 

for the set‐based approach, this notion of distance is also only qualitative. 

 

3.5.3. Graph-based Model 

In the graph‐based approach, symbolic coordinates define the vertices V of 

a  graph  G  =  (V,E). An  edge  is  added  between  two  vertices  if  a  direct 

connection between corresponding  locations exists. Edges or vertices can 

be weighted  to model distances between  locations. Figure  3.5  shows  an 
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example of a graph‐based model for the already presented second floor of 

a building.  In  this  example  the distance between  two  coordinates  is  just 

the  number  of  hops  but with  additional  information  a  higher  accuracy 

could  be  achieved.  [Dro03]  gives  a  deeper  discussion  of  this  aspect  of 

graph‐based models. 

 

 

 
Figure 3.5: Graph‐based model 

 

From  the construction of  the graph  it  is already clear  that a graph‐based 

model supports  the definition of  the  topological  relation connected  to as 

well as the explicit definition of distances between symbolic coordinates. It 

is therefore well‐suited for nearest neighbor queries as well as navigation. 

For  the  latter  the edges or nodes can be  further attributed  to model e.g., 

speed limits, vehicle restrictions, etc. [VHG+02].  

For range queries first the range itself has to be defined, i.e., an area has to 

be described within which we want  to  search  for  included  objects. The 

only  locations which are explicitly defined  in  the graph‐based model are 

the nodes of the graph, e.g., the rooms shown in the example above. This 

is  surely  a  very  limited  set  of  ranges.  Because  the  graph‐based model 

allows to define a distance between symbolic coordinates this distance can 

be  used  to  define  ranges.  That  means,  an  object  is  in  the  area,  if  the 

distance between its position and a reference location is at most the radius 

of  the  area.  In Figure  3.5  for  instance  the white  locations  are within  the 
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range defined by a reference location marked black and the radius 2, thus 

all objects at these locations are within this range. What we are missing is 

the  possibility  to  explicitly  define  bigger  locations  comprising  several 

smaller  locations, e.g., a whole  floor, building, or even parts of a city.  In 

the  next  section we will  show  how  this  limitation  can  be  overcome  by 

combining the different types of symbolic location models. 

3.5.4. Combination of Graph-based and Set-based 

Symbolic Models 

Our  discussion  of  the  different  location  models  has  shown  that  for 

symbolic coordinates the graph‐based approach supports queries based on 

distance and  the definition of  connected  locations well, whereas  the  set‐

based  approach  can  be  used  for  range  queries  with  explicitly  defined 

locations  like  floors,  building,  etc.  representing  ranges.  Therefore,  a 

combination of graph‐based and set‐based symbolic locations models can 

be used to combine the benefits of both types of models. 

The set‐based part of the combined symbolic location model consists of a 

set of symbolic coordinates. Locations are sub‐sets of this set of locations, 

e.g.,  representing  rooms,  floors, buildings,  etc. This part of  the model  is 

used for range queries as described in the section about set‐based models.  

In the graph‐based part of the combined model, locations are connected by 

edges if a connection between these locations exists in the real world. For 

instance,  two  rooms will  be  connected  in  the  graph,  if  there  is  a  door 

between these two rooms; two floors will be connected if stairs lead from 

one floor to the other, etc. As mentioned in the previous section, edges can 

also  be  weighted  to  model  different  distances.  Figure  3.6  shows  an 

example of the resulting combined model.  
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floor A.2

floor A.1floor B.1

floor B.2

floor B.3

room A.2.1

building Abuilding B  
Figure 3.6: Combined symbolic location model 

 

Besides  the already mentioned support  for different  topological relations 

and distances and  the  range and nearest neighbor queries based on  this 

information,  this model  shows  another  interesting  feature.  It  allows  to 

generate  views  with  different  levels  of  detail.  Figure  3.7  shows  three 

examples. The first example shows the rooms on one particular floor and 

their  connections.  This  view  will  be  used  if  a  very  fine  granularity  is 

required, e.g.,  if we are searching  for  the next printer. Figure 3.7b shows 

only  the  floors  of  building A.  Floor A.1  and A.2  are  connected  because 

elements  of  Floor A.1  and A.2  have  a  connection  –  e.g.,  two  hallways 

connected by an elevator. Finally, Figure 3.7c depicts only buildings and 

the paths between them. The latter could be used in a scenario where only 

coarse‐grained  location  information suffices, and so  it allows  to generate 

small models that cover large areas, e.g., a whole city district.  

 

room A.2.1 floor A.2

floor A.1
building Abuilding B

a) b) c)  
Figure 3.7: Levels of detail 

3.5.5. Summary 

We  now  summarize  the  properties  of  the  different  types  of  symbolic 

location models presented in this section. 
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symbolic 

model type 

supported 

coordinate 

types 

modeling 

effort2 

distance 

support 

“connected 

to” relation 

support 

containment 

relation 

support 

set‐based  symbolic  high   limited  yes  good 

hierarchical  symbolic  low  to 

medium 

very 

limited 

no  good 

graph‐

based 

symbolic  low  to 

medium 

good  to 

very 

good 

yes  limited 

combined 

(set‐based 

&  graph‐

based) 

symbolic  medium  good  to 

very 

good 

yes  good 

Table 3.1: Properties of symbolic location models 

 

We see  that  the graph‐based approach as well as  the hierarchical models 

support  the  containment  relation well, making  them  suitable  for  range 

queries. The graph‐based approach  is well‐suited  for all kinds of queries 

where distance plays an important role, e.g., nearest neighbor queries and 

navigation. The combined symbolic location model combines the benefits 

of all other symbolic model types at the cost of higher modeling effort. 

Still  the  accuracy  of  the  combined model  can  be  further  improved  by 

adding geometric  information. The next section presents different hybrid 

models, which integrate symbolic and geometric information. 

                                                 
2  Modeling  effort  is  always  dependent  on  the  granularity  and  scope  of  location 

information as stated in the requirements section. Therefore, we give a range here. 
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3.6. Hybrid Location Models 

The combined symbolic  location model presented  in the previous section 

shows  how  the  benefits  of  set‐based  and  graph‐based  models  can  be 

integrated  into  a  common  symbolic  model.  There  are  two  major 

arguments  for  additionally  adding  geometric  information  to  such  a 

symbolic  model.  First,  geometric  information  can  be  used  to  achieve 

higher  accuracy  and  precision  for  all  kinds  of  distance  related  queries. 

Secondly,  arbitrary geometric  figures  can be used  for  instance  to define 

ranges  for  nearest  neighbor  queries,  whereas  symbolically  defined 

locations are always restricted to a given structure. 

We  distinguish  between  two  types  of  hybrid  location models.  The  first 

approach,  which  we  call  the  sub‐space  approach,  stores  geometric 

information for every modeled location. The second approach only stores 

geometric information for some locations, leading to partial subspaces.   

3.6.1. Subspaces 

The  basis  for  this  hybrid  location model  is  a  symbolic model  like  the 

combined symbolic model presented in the previous section. Additionally, 

the  geometric  extent  of  locations  is  stored  in  the  location  model.  The 

geometric extent can be either defined using a global reference system like 

the WGS84  or  local  reference  systems where  coordinates  are  only  valid 

within a certain scope, e.g., in one building or room. Subspaces are formed 

by  embedding  coordinate  systems  into  other  coordinate  systems  by 

defining  the  position  and  orientation  of  embedded  systems  (a  detailed 

description of this embedding of subspaces can be found  in [JS02]). With 

this  information, coordinates can be  translated  from one system  to other 

systems, and thus coordinates of different systems can be compared.  
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room 2.1
geometric extent

(polygon)

SB

S2.1

 
Figure 3.8: Hybrid location model with subspaces 

Figure  3.8  shows  a  simple  example  of  a  hybrid  location  model  using 

subspaces. The  symbolic part of  this model  is based  in a graph defining 

the  interconnections between  the  rooms on a certain  floor. The extent of 

every room is also modeled geometrically using the coordinate system SB 

of the building B. Within room 2.1 a local coordinate system S2.1 is defined 

that is embedded into the system of building B. The system of building B 

in  turn may  be  embedded  into  a  global  coordinate  system.  The  known 

geometry can be used to define precise distances between rooms.  

3.6.2. Partial Subspaces 

In contrast to the subspaces approach, the partial subspaces approach does 

not  assume  that  the geometric  extent  for  every  location  is modeled, but 

only for some locations. Figure 3.9 shows an example, where a geometric 

location  model  exists  for  the  outdoor  domain,  but  within  buildings 

symbolic models are used. By  linking geometric  information  to symbolic 

locations, the symbolic building models can be embedded into the global 

geometric model. The benefit of  this  integration becomes clear when we 

consider a range query with a geometrically defined range, e.g., a polygon 

drawn on a city plan. Users within a building may only know a symbolic 

position like room 2.1 in building B. Through the known geometric extent 

of  the  building,  the  user’s  position  can  be  approximated  geometrically 

with  the  geometry  of  the whole  building. This  approximated  geometric 

position can be compared to the geometrically defined range of the query, 

and  thus  the  query  can  be  answered. Of  course  approximation  has  its 
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limitations. For  instance, using geometric areas within a building  that  is 

only modeled symbolically  first seems  to makes no sense. But  it remains 

an interesting alternative that can be used to reduce modeling effort. 

floor 2

floor 1

building B
geometric extent
of B (polygon)

 
Figure 3.9: Hybrid location model using partial subspaces 

3.6.3. Discussion 

A summary of the properties of the presented location models is shown in 

Table  3.2.  In  contrast  to  the  purely  symbolic models  presented  in  the 

previous section, all hybrid models support geometric coordinates as well 

as symbolic coordinates. By using geometric information, distances can be 

modeled more accurately and precisely.  

The  spatial  containment  relationship  does  not  need  to  be  modeled 

manually  if  the geometry of  locations  is known. This  information can be 

derived  by  using  geometric  operations.  Still  it  makes  sense  to  have  a 

model that stores the containment relation explicitly to allow for efficient 

queries. 

Geometric information can also be used to find out whether two locations 

lie next  to  each other, but  connections  like doors or  junctions  can no be 

derived  from  geometric  information  and  therefore  have  to  be modeled 

explicitly as for the symbolic approaches. 

Compared to the subspaces approach the modeling effort can be reduced 

by using  a partial  subspace model where not  every  location  is modeled 

geometrically.  Still  a geometry  can be  associated with  location by using 

approximation. 
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model 

type 

supported 

coordinate 

types 

modeling 

effort 

distance 

support 

“connected 

to”  relation 

support 

containment 

relation 

support 

subspaces  symbolic, 

geometric 

high  to 

very high 

very 

good 

yes  (if 

modeled 

explicitly) 

yes 

partial 

subspaces 

symbolic, 

geometric 

high  good  to 

very 

good 

yes  (if 

modeled 

explicitly) 

yes 

Table 3.2: Properties of hybrid location models 

3.7. Summary and Classification of Existing Approaches 

This  section  briefly  summarizes  the  properties  of  the  different  location 

models presented  so  far. Existing work  is  classified  along  the  classes  of 

location models.  

Table 3.3 summarizes the classes of  location models, their properties and 

the existing work.  

Since  the  discussion  so  far  has  shown  that  there  is  no  location model 

serving all requirements at a time with similar modeling effort, designers 

of  location management systems have to choose an appropriate structure 

of  the  underlying  location  model.  Especially,  the  trade‐off  between 

supported queries and the involved complexity of the location models has 

to be taken into consideration. 

Table  3.3  classifies  the  location  models  with  respect  to  the  supported 

coordinate types (sym=symbolic, geom=geometric), the supported queries 

(P=position,  R=range,  N=nearest  neighbor),  and  the  modeling  effort. 

Examples for projects using the location model class are listed as well and 

are discussed in the following sub‐sections. 
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supported  

coordinates 

supported  

queries 

 

sym  geom  P  R  N 

modeling

effort 

projects 

set‐based             

• Guide [CDM+00b] 

• comMotion [MS01]  

• QoSDREAM 

[NC01] 

• ActiveBadge 

[WHG92] 

• Open Distributed 

Office [RLU94] 

graph‐based        3     

• Aware Home 

[ODA01] 

• MavHome 

[RBB+03] 

hierarchical             

• MOOsburg 

location model  

[GSF+01] 

• Semantic Spaces 

[BS01] 

combined 

symbolic 
            • Active Map [Sch95] 

subspaces 

(hybrid 

model) 

        4   
• Jiang [JS02] 

• Leonhardt [Leo98] 

partial 

subspaces 

(hybrid 

model) 

           

• Nexus [BBR01, 

DR03] 

• Semantic Location 

Model [HL04] 

Table 3.3: Properties of location models and overview of existing implementations 

                                                 
3 “Range” defined by distance to reference location. 

4 If the “connected to” relation is modeled. 



  81

 

3.7.1. Set-based Location Models 

Modeling  symbolic  locations  as  identifiers  and  mapping  object  ids  to 

location  ids  in  location  services  has  been  widely  adopted.  The  Guide 

project  identifies  the  locations  of  interest  to  tourists  by  the WaveLAN 

access point id [CDM+00b]. The Active Badge system stores the identifier 

of  a user’s badge with  the  symbolic  location where  the badge has been 

observed.  Without  defining  further  locations  as  ranges  only  position 

queries  can  be  processed with minimum modeling  effort. However,  an 

extension of such systems allowing  for overlapping sets of  locations and 

thus range queries has been used  in the Open Distributed Office projects 

[RLU94].  The  modeling  effort  increases  with  the  number  of  locations 

introduced  to  the  system. QoSDREAM  [NC01]  relies  on  a mapping  of 

location  identifiers  and  object  ids.  By  applying  observers  to  sets  of 

locations,  applications  can  be  notified  when  a  mobile  object  has  been 

observed  in a set of  locations. This provides means for range queries but 

causes considerable effort, since the overlay of observers modeling spatial 

inclusion has to be set up based on the basic sets. 

3.7.2. Graph-based Location Models 

This class of location models naturally provides means to model distance 

making  them  suitable  for all navigation oriented  tasks. Applications  can 

be  found  in  the  domain  of  smart  environments  [ODA01,  RBB+03]. 

Spatially  scoped  areas  are modeled  by  the  location users populate,  e.g., 

floors  and  rooms,  and  a  connection  model  defines  connectivity  and 

distance.  Navigation  services  incorporating  the  positions  of  individual 

objects can be implemented that way. There is no direct notion of ranges. 

Either  a  combined  approach  is  taken  modeling  ranges  as  an  overlay 

structure  –  in  the  simplest  case  ranges  are  specified  as  sets  of  locations 
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themselves – or ranges can be defined based on their extension,  i.e., by a 

reference location and the distance to this location. 

3.7.3. Hierarchical Location Models 

In contrast to graph‐based models, which reflect distance well but require 

additional overhead to express ranges, hierarchical models are designed to 

reflect  the  inclusion of  locations. This allows  to structure  locations  into a 

hierarchy.  It  is noteworthy  that although approaches such as EasyLiving 

[BS01] or MOOsburg  [GSF+01] only model  the spatial  inclusion between 

locations other kinds of hierarchical relations can be modeled such as an 

organizational  structure.  A  company  may  structure  its  location  into 

development, marketing, research, and production. A distributed systems 

development team – and its offices – may be organized to be nearer to the 

distributed  systems  research  team  in  a  hierarchy  than  the  theoretical 

computer science research group in the offices nearby. 

Ranges and their relations – spatially or with respect to other criteria such 

as organizational relations – are well reflected in a hierarchy. Distances do 

not come with a direct concept in such location models. One way to use a 

hierarchy  to  compare  distances  between  positions  is  to  consider  the 

smallest  locations  in  the  hierarchy  that  contain  these  positions.  That 

means, positions grouped by smaller locations are considered to be closer 

to each other  than positions grouped by  larger  locations, e.g.,  two rooms 

on  the  same  floor  can  be  said  to  be  closer  than  two  rooms where  the 

smallest common range is the building. 

3.7.4. Combined Symbolic Location Models 

An  obvious  approach  combining  the  benefits  of  graph‐based  and 

hierarchical location models are combined symbolic location models, such 

as those used in the Active Map [Sch95]. Either a common data structure is 

applied  that  allows  to  reflect  the  inclusion  relation  as  well  as  the 
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connected‐to  relation  between  locations  such  as  in  [BBR01],  or  two 

different  location models are maintained where one reflects the distances 

and  the  other  the  ranges.  Clearly,  the  expressiveness  of  such  models 

combines the benefits of both models but with a trade‐off with respect to 

the modeling effort, which basically consists of  the effort of creating  two 

location models.  This  effort  is  only  justified when  applications  require 

range  and  nearest  neighbor  queries. This will  likely  be  the  case when  a 

location  model  is  set  up  to  serve  a  number  of  applications,  e.g.,  by 

providing an application spanning context model. 

3.7.5. Hybrid Location Models 

Hybrid  location  models  provide  information  about  locations  based  on 

symbolic and geometric coordinates, which are used  to define  the spatial 

extent of locations.  

Basically, all of  the  symbolic models above  can be extended  to a hybrid 

model  by  annotating  location  with  their  spatial  extent.  A  graph‐based 

model may use this information to calculate the weight of connections or 

rooms  in  order  to  provide more  accurate  distances.  Since  the  effort  of 

obtaining  spatial  extensions  of  locations  is  rather  high,  some  projects 

consider a combined model as basis, e.g., [BBR01] and [HL04]. The effort 

of annotating all locations in a location model with geometric information 

can  be  used  to map  the  symbolic  coordinates  into  a  global,  geometric 

reference  systems  realizing  a  subspaces  approach  [JS02].  If  this  is  not 

necessary, a partial subspace approach can be taken. Such approaches can 

be realized either top‐down or bottom‐up. In [DR03] a top‐down approach 

is  taken  that  allows  approximating  the  spatial  extents  of  children  in  a 

location  hierarchy  by  the  extents  of  their  father  nodes.  A  bottom‐up 

approach would annotate  the  leafs  in a  location model and approximate 

the spatial extents of a  father node by  the extents of  its child nodes. The 
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top‐down approach allows the integration of an area that is modeled by a 

hierarchy  of  symbolic  locations  into  a  geometric model. The  root  of  the 

integrated hierarchy  is exact with  respect  to  the annotated  spatial extent 

whereas  the  approximation  leads  to  some  errors  in  the  spatial  extents 

along the hierarchy. In contrast to that, the bottom‐up approach provides 

the  highest  accuracy  at  the  leafs.  The modeling  effort  is  great  for  this 

approach  if  the  hierarchy  has  many  leaves.  Clearly,  it  is  application 

dependent which approach should be taken under given requirements. 

3.8. Conclusion 

Modeling  locations  is  crucial  for most  location‐based  or  context‐aware 

applications. Location models provide means  for spatial reasoning based 

on  coordinates,  e.g.,  the determination whether  a  coordinate  is within  a 

given  range  or  which  coordinates  are  nearby.  Although  geometric 

coordinates  already  provide  an  implicit  notion  of  distance  and  ranges, 

location models allow to model the constraints of the physical world, e.g., 

road networks or floor plans. For symbolic coordinates like room or floor 

numbers,  a  location  model  with  explicitly  modeled  relations  between 

locations is essential to support queries beyond simple position queries. 

The requirements of applications can be manifold. Since the structure of a 

location  model  determines  which  kinds  of  spatial  reasoning  can  be 

processed,  a number of  location models may be  appropriate. Beside  the 

relevant queries a location model has to support, especially the modeling 

effort has to be taken  into consideration when choosing a  location model 

for  an  application  or  a  platform  serving  a  number  of  applications.  A 

hybrid model managing geometric and symbolic coordinates supports all 

kinds of location‐based queries very well but is at the same time the most 

complex type of location model. Location models managing only symbolic 

locations can be set up more easily. If, beside object positions, distance is 

the only relevant information, a graph‐based symbolic model can be used, 
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whereas  range queries are  supported very well by hierarchical  symbolic 

models. If higher accuracy is required only partially within limited areas, a 

partial subspaces model, which augments a symbolic model partially with 

geometric information, might be the right choice.  

The discussion of  location models  in  this  chapter  shows  that  there  is no 

location model which satisfies all identified requirements at a time with a 

low modeling effort. Designers of context‐aware applications and systems 

thus have to choose location models carefully with respect to the required 

spatial reasoning and the involved modeling effort.  
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4. Usenet-on-the-fly - supporting locality of information 

in spontaneous networking environments 

People on the move are typically interested in information with 

respect  to  their  proximity. Location‐based  services  in  general 

supply users with information about their proximity typically 

relying  on  an  infrastructure  storing  the  information  and 

tracking  the  mobile  objects,  i.e.,  users.  In  this  chapter  we 

present  an  approach  for  spontaneous,  i.e.,  ad  hoc,  networks 

inspired by the Usenet. Information is exchanged using a peer‐

to‐peer  synchronization mechanism. The  information  is made 

available  through channels grouping related  information. The 

information  propagation  is  solely  based  on  spontaneously 

connected  devices  not  requiring  any  infrastructure.  Our 

prototype implementation shows the technical feasibility of our 

approach, whereas simulation results show the applicability of 

information  diffusion  in  outdoor  scenarios  with  a  realistic 

number of nodes, covering a city center. 

4.1. Introduction 

Location‐based  services  (LBS)  gain  popularity. While many  commercial 

approaches  are  tied  to  the  cellular  phone  infrastructure,  e.g., 

[GSM][LBS][Swiss],  researchers  address  solutions  for  the  indoor domain 

[HHS+99][KOA+99][WJH97]  and  outdoor  domain  [CDM+00a][Pas97]  or 

both  [HKL+99]  based  on  their  own  infrastructure.  Common  to  these 

approaches is the necessity of an infrastructure storing location‐dependent 

data and management of user positions.  

The  availability  of  small  computing  devices,  e.g.,  Personal  Digital 

Assistants  (PDAs)  or  cellular  phones,  equipped with  short  range  radio 

transmission  technologies  such  as  Bluetooth  or  IEEE  802.11  allows 
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information  exchange on  a peer‐to‐peer basis whenever  two devices  are 

within  each  other’s  radio  range.  Additionally,  information  of  the 

environment  can be  captured  from  sensors  equipped with  similar  radio 

technology.  

The overall  focus of our  research  is  to  investigate what mechanisms are 

needed  to  support  applications  for  mobile  users  in  a  ubiquitous 

computing  environment  using  ad  hoc  communication.  The  goal  is  to 

provide a foundation that allows users to successfully interact with other 

users  and  their  environment.  This  includes  collecting  and  providing 

information about the spatial context of the user. 

A  major  problem  in  mobile  ad  hoc  networks  is  the  management  and 

dissemination  of  information.  Since  the mobile  devices  are  restricted  in 

their resources, a complete replication of information will not be possible. 

Information  exchange  should  be  restricted  with  respect  to  the  spatial 

scope of the information and the interests of the user. Another issue is the 

multitude of available  information: how can a user determine or  specify 

which information is interesting to him or her? 

In  this  chapter, we  present  an  approach  for  information  dissemination 

based  on  epidemic  algorithms,  i.e.,  diffusion. As  one  possible  scenario, 

imagine that it is Saturday night and a large number of young people are 

walking around in the city center looking for some fun. What they really 

want to know is what is currently going on: where are the cool parties, the 

hip discos or  the most popular bars. So  the  information needed depends 

very much on the current context of the user, especially the location. The 

distribution  of  the  information  can  be  asynchronous  and  possibly 

anonymous, which fits well with our proposed diffusion‐based approach. 

If cellular phones are equipped with short range radio technologies, such a 

Bluetooth,  they  are  the  ideal devices  for our  scenario. Almost  all young 

people  have  cellular  phones  and  use  them  frequently  for writing  SMS 
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messages, especially in Europe. (The SMS Service allows the transmission 

of  short  text messages between  cellular phones using  the  cellular phone 

infrastructure).  So  the  general  technology  is  well‐introduced,  the  only 

difference  being  that  the  messages  are  exchanged  using  ad  hoc 

connections between devices in the proximity. 

In  order  to  structure  the  information  exchanged  between  devices,  the 

information  is  grouped  into  channels  according  to  subjects,  similar  to 

newsgroups  in  the  Usenet.  Users  can  subscribe  and  unsubscribe  to 

channels. Information is only propagated in a distinct area with respect to 

its locality. As a result, an easy‐to‐use application can provide users with 

information about their proximity. 

To show the technical feasibility of our concept, we have built a prototype 

application. However, since the usefulness of our application can only be 

determined based on a  large user population and since the technology  is 

not  yet  widespread  enough  for  a  large‐scale  usability  study,  we  have 

conducted  a  number  of  simulations  to  provide  some  evidence  that  the 

diffusion‐based approach makes sense in the given context. An important 

aspect of the simulation is the mobility of the users. Therefore, we need a 

mobility model  reflecting  the  characteristics  of  user mobility  that may 

have an  influence on  the diffusion.  In  this chapter we  take  two mobility 

models and compare the results of the respective simulations: the random 

waypoint model that is widely used for the evaluation of algorithms in ad 

hoc networks and a graph‐based mobility model [THB+02] that  takes the 

possible  user  paths,  i.e.,  streets,  into  account  and  is  therefore  more 

realistic. 

The structure of  this chapter  is as  follows: In  the next section we present 

our  general  system model.  Then we  describe  our  application  scenario, 

focussing  on  the  “Usenet‐on‐the‐fly”  prototype,  followed  by  a  detailed 

description  of  the  underlying  information  dissemination  protocol. After 
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that we present simulations of the information dissemination protocol and 

discuss  their  results. Following a discussion of  related work,  the chapter 

concludes with an outlook on future work and a summary. 

4.2. System Model 

The system consists of mobile nodes users carry. Examples of such nodes 

are  devices  like  cellular  phones  or  PDAs  capable  of  short  range  radio 

transmission.  The  communication  between  nodes  occurs  spontaneously, 

i.e.,  whenever  two  devices  are  within  radio  range  of  each  other,  they 

discover each other and can exchange  information. Additionally, sensors 

or  info stations may provide  local  information of  the environment  to  the 

thereby formed mobile ad hoc network (MANET). 

The  information  exchanged  in  such  a MANET  can differ widely  and  is 

obviously  application‐dependent.  For  the  remainder  of  this  paper  we 

consider information to be of local interest. Dishes of the day, temperature 

of rooms, bus schedules are mostly relevant in the proximity of their real‐

life  source.  Since we  do  not  assume  any  access  to  an  infrastructure we 

want  to  investigate, how peer‐to‐peer  computing  in  such  spontaneously 

formed networks can be used for information dissemination.  

We  assume  the  nature  of  information  to  be  “nice  to  have”.  If  some 

information was critical to a user, the user would pay for an uplink to an 

infrastructure, e.g., via wireless cell‐based communication. 

4.3. Application Scenario 

The  application  scenario  we  want  to  look  at  is  concerned  with  the 

propagation of  information with  a  local  scope  in  a MANET. We do not 

consider multi‐hop messages, e.g., routing, here, but only dissemination of 

information  with  multiple,  previously  unknown  receivers.  The 

information,  as  mentioned  before,  is  assumed  to  be  locally  relevant. 

Hence,  an  information  dissemination  protocol  has  to  discard  the 
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information  when  the  scope  of  the  information  is  left.  Recipients  of 

information must be provided with a classification of  the  information  in 

order to decide, if they want to accept it and store it locally. 

Due  to  the  multitude  of  information  and  corresponding  information 

possible  in  such  scenarios, we  reduce  the  complexity  by  focussing  on  a 

simple  scenario. The  aim  is  to provide  an  evaluation  of diffusion‐based 

information dissemination  and demonstrate  how  information with  local 

relevance can be handled in such ad hoc scenarios. 

The information in the context of this paper is represented as a message. A 

message  contains  a  source, which  created  the message,  a  topic, which 

classifies the content of a message, and a body carrying the information of 

the message.  

Messages  could  represent  sensor data, with  the  sensor  ID as  source,  the 

kind of sensor information, e.g., temperature or humidity as topic, and the 

currently sensed value as content of the message. Another example could 

be  the  provision  of  bus  schedules, where  the  distinct  bus  station  is  the 

information  source  and  the  topic would determine  a  transport  schedule 

with the message body containing the next bus departure. Moreover, users 

could also provide information, e.g., rankings of restaurants or shop offers 

and  feed  them  into  the  system  by  creating  messages.  Actually,  this 

inspired our prototype application ‐ Usenet‐on‐the‐fly ‐ which is presented 

in  the  next  section.  Following  that,  we  explain  the  information 

dissemination  protocol  in  more  detail  and  present  some  simulation 

results. 

4.4. The Usenet-on-the-fly Prototype 

The  Usenet  provides  users  with  the  ability  to  subscribe  to  so‐called 

newsgroups  where  they  can  read,  post  and  reply  to  articles.  The 

newsgroups group articles with a distinct  topic.  It  is  considered  rude  in 

the Usenet  community  to place  articles  in  inappropriate  groups  ‐  being 
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“off‐topic”.  The  Usenet  does  not  rely  on  a  centralized  infrastructure. 

Instead, servers providing “news”  to users allow  them  to read, post and 

reply  to articles. This  local news  is propagated over news  feeds  to other 

news servers which present these articles to their users, receive the replies 

and postings and offer these as news feeds to other news servers.  

The architecture of  the Usenet originates  from  former  times when many 

computers were not permanently linked to each other as nowadays via the 

Internet. However,  this  situation  reflects  the  characteristics of an ad hoc 

network where nodes are not permanently available but only when  they 

are in the vicinity of other nodes. The concept of categorizing information 

by  grouping  them  into  newsgroups  according  to  topics  ‐  or  in  our 

terminology: channels ‐ and peer‐to‐peer reconciliation of content matches 

the needs of information propagation according to our requirements. 

The data model of our Usenet‐on‐the‐fly  is directly corresponding  to  the 

messages as they were informally defined in the previous section: 

•   Message headers, i.e., the channel name, the subject and the sender 

•   Message content, i.e., the actual information 

Scoping  of  the  information  is  simply  done  by  adding  a  hop  count. 

Thereby, the scope within which a message is presented to other nodes is 

restricted,  which,  in  most  cases,  automatically  leads  to  a  geographical 

scoping. 
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4.4.1. Functionality 

 

Figure 4.1: Usenet on the fly user interface 

 

Figure 4.1 shows the user interface of the Usenet‐on‐the‐fly prototype. The 

prototype  is  realized  as  a  Java  application.  We  used  notebooks  and 

Compaq iPaqs equipped with WaveLan cards as an evaluation platform.  

A user can create channels and messages and open an existing channel to 

retrieve messages. Figure 4.1 shows the dialog for creating a message. This 

dialog combines the creation of a new message with the possible creation 

of a new channel. Additional attributes, e.g., the priority, allow filtering of 

messages in order to save bandwidth or space on the devices. 

Users can subscribe to a topic, i.e., a channel, and receive all messages on 

that  channel.  The  local  database  containing  the  messages  is  updated 

whenever another node is met. Both nodes negotiate about their channels 

and contents and exchange the difference. New channels are presented to 

the user who can subscribe to them or simply ignore them. 
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When users on the move are visiting different places, only the information 

concerning these places is offered in the channel. Information is scoped in 

its lifetime by a time‐to‐live (TTL) as well as in its propagation scope by a 

hop  count.  The  message  exchange  is  based  on  a  single  hop 

communication, i.e., devices only communicate with other devices in their 

transmission range. Hence, restricting the number of times a message can 

be passed on between nodes leads to a geographical scoping. 

As  an  example  consider  a  user  subscribing  to  “restaurant menu”,  “bus 

schedule”,  and  “restaurant  recommendations”.  The  channel  “restaurant 

menu” will contain the dish of the day of the restaurants within a distinct 

vicinity,  depending  on  the  hop  count. Also,  only  the  bus  schedules  of 

nearby bus stops are presented in the “bus schedule” due to the scoping. 

Not  only  stationary  entities  like  restaurants  or  bus  stops  can  create 

messages. Other users can use  the “restaurant recommendation” channel 

to express their satisfaction about a particular restaurant. This information 

is scoped with respect to its local lifetime and geographical scope as well. 

4.4.2. Architecture 

The  Usenet‐on‐the‐fly  prototype  was  built  in  a  straightforward  way. 

Nodes maintain a small database where the channels and all messages are 

stored. The database  is  regularly  scanned  and messages whose TTL has 

expired  are  deleted.  The  user  interface  operates  on  the  database  and 

allows the display of channels and their messages as well as the creation of 

new messages and replies. 

The  content  of  local  databases  are  synchronized  with  other  nodes 

whenever  they  are  within  their  radio  transmission  range.  First,  the 

channels are compared and new channels and messages are announced to 

other nodes. Before offering a message, the hop count is considered. If the 
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scope of a message has been reached,  it  is no  longer propagated to other 

nodes.  

The resulting architecture is depicted in Figure 4.2. Central to the system is 

the database where messages  are  stored  in  the  corresponding  channels. 

The  user  interface  accesses  the  database  in  order  to  display  available 

channels  and on  selection of  channels  the messages of  the  channel. The 

user  can  create  new messages  and  channels  leading  to  new data  in  the 

database. 

The content of the database is propagated by a simple diffusion protocol. 

We will describe  the protocol  in detail  in  the next section. For short:  the 

protocol announces locally available data to other nodes. These nodes can 

request  the  information and  store  it  in  their databases. After a node has 

propagated  its  database  content,  it  switches  the  role  and  updates  its 

database by the advertised channels and messages of the other node. This 

data reconciliation occurs whenever two nodes “meet”. To allow nodes to 

continue exchanging data when  they  stay  in  communication  range,  they 

can end their communication and then “rediscover“ each other. 

The  communication  subsystem  is  built  on  top  of  a  minimized  servlet 

container  which  offers  the  Simple  Object  Access  Protocol  (SOAP)  for 

message exchange. The SOAP standard  is well‐suited for  interoperability 

between different platforms. However,  it currently  restricts us  to unicast 

communication, so we cannot take advantage of broadcast protocols that 

are suitable for propagating data to a larger set of recipients. 

The prototype has been built  in  Java. The platforms  for evaluation were 

notebooks  and  Compaq  iPaqs,  both  equipped  with  WaveLan.  It  is 

available  for  download  from  http://www.informatik.uni‐

stuttgart.de/ipvr/vs/de/people/haehnejg/#misc 
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Graphical User Interface

Database

 
Figure 4.2: Usenet-On-The-Fly Architecture 

4.5. Information Dissemination Protocol 

The  messages  in  the  system  are  disseminated  using  a  diffusion‐based 

protocol  that  we  call  Channel  and  Message  Diffusion  Protocol  with 

Negotiation  (CMDPN).  The  pseudo‐code  of  an  algorithm  implementing 

that protocol on a given node is shown in Figure 4.3. 

When  a  node A  discovers  another  node  B  in  its  transmission  range,  it 

sends  an  advertisement message  listing  all  the  channels  (consisting of  a 

unique channel ID and a description of the channel topic) and the IDs of 

the messages  it  currently has  in  its database. Node B  then goes  through 

the advertised channels and checks,  if  it has seen them before. If not, the 

user  is given  the channel description and  is asked,  if he or she wants  to 

subscribe  to  the new channel. Having updated  the subscription  informa‐

tion, Node B goes through the advertised message IDs pertaining to those 

channels  it has subscribed  to. It creates a request message containing  the 

message  IDs  of  the messages  it  does  not  have  in  its  database  yet. On 

receiving  the  request  from  Node  B,  Node  A  collects  the  requested 

messages  and  sends  them  to  Node  B,  which  updates  its  database 

accordingly. 
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TYPES 

message_id: unique id 
channel_id: unique id 
topic: string 
message_body: string 
 
message: struct 
  channel_id 
  message_id 
  message_body 
 
VARIABLES 
channel_topic = array[channel_id] of topic 
message_ids = array[channel_id] of list of message_id 
messages = array[message_id] of message 
seen_channels = list of channel_id 
subscribed_channels = list of channel_id 

EVENT HANDLERS 
ON_NODE_DISCOVER() 
 Channel_ADV ca = empty list 
 Message_ADV ma = empty list 
 for each channel_id in subscribed_channels do 
  append(ca, (channel_id, channel_topic[channel_id])) 
  for each message_id in message_ids[channel_id] do 
   append(ma,(channel_id , message_id)) 
  od 
 od 
 if not empty(ma) then 
  send_message((ca, ma)) 
 
ON_RECEIVE_ADV((ca: Channel_ADV, ma: Message_ADV)): 
 for each (channel_id, channel_topic) in ca do 
  if channel_id not in seen_channels then 
   append(seen_channels, channel.channel_id) 
   if ask_user(channel_topic) then 
    append(subscribed_channels, channel) 

channel_topic[channel_id]:= 
channel_topic 

   fi 
  fi 
 od 
 Message_REQ mr = empty 
 for each (channel_id, message_id) in ma do 
  if channel_id in subscribed_channels then 
   if needed(message_id) then 
    append(mr, message_id) 
 od 
 if not empty(mr) then 
  send_message(mr) 
 
ON_RECEIVE_REQ(mr: Message_REQ): 
 Message_DATA md = empty 
 for each message_id in mr do 
  append(md, messages[message_id])) 
 od  
 if not empty(md) then send_message(md) 
 
ON_RECEIVE_DATA(md: Message_DATA): 
 for each message in md do 
  if needed (message.message_id) then 
   append(message_ids[message.channel_id], 
    message_id) 
   messages[message_id]:= message 
  fi 
 od 

Figure 4.3: Channel and Message Diffusion Algorithm with Negotiation (CMDPN) 
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Of  course,  the  same  protocol  is  applied  in  the  other  direction  between 

node B and node A  

The CMDPN is a simple protocol for replicating Usenet‐style messages. Its 

purpose  is  to  minimize  the  exchange  of  unwanted  messages,  saving 

bandwidth  and  energy,  which  are  scarce  resources  for mobile  devices 

using wireless connections. 

Further improvements could be: 

• To further reduce the data that needs to be exchanged, the protocol 

could  be  split  up  into  two  phases.  In  the  first  phase  only  the 

channel information is exchanged. Then, in the second phase, only 

the  information about the messages pertaining to  those channels a 

node is subscribed to need to be exchanged. 

• The actual messages could be exchanged according to user‐defined 

priorities, which  is especially helpful,  if  the devices are not within 

communication  range  long  enough  to  exchange  all  messages  of 

interest. 

• A  history  of mobile  nodes  and  the data which  has  recently  been 

exchanged  with  them  could  be  kept  to  keep  the  message 

advertisement messages small. 

In the following section, we will present some simulations to evaluate the 

effectiveness of  the dissemination of messages  to a population of nodes, 

i.e., how many nodes have received a certain message  in what period of 

time. 

4.6. Simulations 

This section will describe the simulation context used for the evaluation of 

the CMDPN protocol, as well as the results, including a discussion of the 

results.  
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Since,  as  a  first  step,  we  were  mainly  interested  in  the  maximum 

effectiveness  of  message  dissemination,  given  a  certain  population  of 

nodes, we used simplified assumptions: 

We assume that all nodes are interested in all the messages and that these 

messages  pertain  to  a  single  channel. We  did  neither  restrict  the  hop 

count, nor set a restrictive TTL, so the messages are distributed within the 

whole area over the time of the simulation. To control the introduction of 

messages  into  our  system,  so  that  we  could  more  easily  calculate  the 

spreading  of  information, we  assume  that  the messages  are  introduced 

into  the  system by  special  stationary „sensor nodes“,  e.g., providing  the 

local  temperature or  introducing  the meal of  the day. Each of  the sensor 

nodes continuously provides the same single message to the mobile nodes 

in its proximity. 

The  CMDPN  protocol  was  simulated  using  our  Java‐based  CanuSim 

simulator, which  implements a simple MAC  layer that prevents multiple 

nodes from accessing the same wireless channel simultaneously. The main 

advantage of our simulator is that the two mobility models we present in 

the following can easily be integrated. 

4.7. Simulation Model 

The  simulations  were  performed  for  an  outdoor  context  using  two 

different  mobility  models.  The  first  model  is  the  so‐called  random 

waypoint model  (RWP).  This model  is  often  used  for  the  evaluation  of 

algorithms  in  the  area  of  MANETs  [BMJ+98]  and  originated  in  the 

application  area  of  rescue  and disaster  operations.  In  the RWP model  a 

mobile node chooses a  random destination and a speed and  then moves 

directly  to  the  destination  using  the  given  speed.  The  size  of  the  area 

covered was  2462 m  x  1733 m,  equivalent  to  the  area  of  the  city  center 

used later on. 



  99

The  second  mobility  model  ‐  the  graph‐based  mobility  model  GBM 

[THB+02][Ste02] ‐ assumes that mobile nodes do not move randomly, but 

according to an infrastructure, e.g., road map or building layout. It models 

the  spatial  environment  as  a  graph.  The  example  graph  for  our 

simulations models  a  typical  city  center,  as  it  can  be  found  in  Central 

Europe. The model contains 115  locations on an area of 2462 m x 1733 m 

interconnected with 150 edges. Figure 4 shows a sketch of the city graph 

used.  

In several scenarios different numbers of mobile nodes as well as sensor 

nodes, each providing one piece of information, were placed randomly on 

the graph. Destinations were chosen randomly out of the 115 locations in 

the graph  scenario or  randomly  in  the RWP  scenario. The mobile nodes 

moved around at normal pedestrian speed, i.e., between 3 and 5 km/h. 

 

Figure 4.4: City Center Graph 

 

On reaching a destination, mobile nodes stayed there for 12 to 20 minutes, 

representing pedestrians stopping at a shop or station, before choosing a 

new  random  destination.  The  sensor  nodes  remained  stationary, 

broadcasting their sensor information to mobile nodes within transmission 

range.  The mobile  nodes  all  used CMDPN  as  the  protocol  for message 
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exchange. The time needed to discover a node in transmission range was 

assumed to be between 2 and 3 seconds, which corresponds, for example, 

to  average  Bluetooth  discovery  times  [KL01].  All  scenarios  used  a 

transmission range of 75m.  

The  simulation  runs were  terminated when a  certain  level of  information 

spreading was reached. The information spreading is calculated by  

where M denotes the set of mobile nodes and S denotes the set of sensor 

nodes  that each  introduced a single message  (500 bytes)  into  the system. 

The function databasesize(m) sums up all the messages stored on the mobile 

node m. 
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Figure 4.5: Time in Communication Range Depending on the Transmission Range 

between Mobile Nodes and Stationary Sensor Node 
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Figure 4.6: Time in Communication Range Depending on the Transmission Range, 

between Mobile Nodes 

We have  integrated the graph shown  in Figure 4.4  into our simulator for 

MANETs  in order  to simulate  realistic mobility patterns of users. A  first 

interesting  result  concerning  the  relation  between  communication  time 

and transmission range is shown in Figure 4.5 and Figure 4.6. We placed 

100  sensor  nodes  in  the  city  center  scenario  and measured  the  average 

time  of  communication  between  1000 mobile  nodes  and  the  100  sensor 

nodes. The figures are based on a one hour simulation of the scenario. 

Figure  4.5  shows  the  distribution  of  time  mobile  nodes  are  in 

communication range with any sensor node. Assuming a communication 

range  of  75 meters most  nodes  have more  than  50s  per  connection  to 

communicate, whereas 10m  transmission range allows only  less  than 15s 

for most connections.  

Figure  4.6  shows  the  distribution  of  communication  time  between  the 

mobile nodes. Here the results are slightly worse for the 10m transmission 
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range,  since  the mobility  of  nodes  shortens  the  transmission  time  to  7 

seconds,  whereas  for  75m  most  nodes  still  have  more  than  50s  per 

meeting.  Information  dissemination  in  such  ad  hoc  networks  has  to  be 

aware of  these  small  slots  for  communication,  i.e., not  relying  on  stable 

routes and long‐term communication relations 

4.8. Simulation Results 

This  subsection  presents  the  simulation  results  of  the  aforementioned 

diffusion  algorithm  based  on  random waypoint  versus  the  graph‐based 

mobility model. 
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Figure 4.7: Information Spreading over Time for Random Waypoint Movement with 100 

Sensor Nodes 

 

Figure  4.7  and  Figure  4.8  present  the  simulation  results  for  the  RWP 

scenario based on a transmission range of 75m. The simulations were run 



  103

until 95% information spreading was reached, meaning that every mobile 

node carried almost all the information disseminated by the sensor nodes. 

The  results  show  that  a  higher  number  of mobile  nodes  supports  the 

information spreading. Nevertheless even a small number of nodes  leads 

to  a  reasonably  fast message  replication  considering  the  large  area:  100 

mobile nodes discovered 100 sensor nodes on an area of approximately 4 

square kilometers reaching an information spreading of 95% in only little 

more  than  two  hours moving  at  pedestrian  speed. A  larger  number  of 

mobile nodes (500) reaches the same amount of information spreading in 

less than half an hour. Remember that 500 people in a city center is still a 

fairly small number. 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1000 2000 3000 4000 5000

time [s]

in
fo

rm
at

io
n 

sp
re

ad
in

g 
[%

]

100x1 200x1 500x1

Ratio  Mobile 
Nodes to Sensor 
Nodes

 Figure 4.8: Information Spreading over Time for Random Waypoint Movement with One Sensor 
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Figure 4.9 shows  the results of  the simulations performed with  the GBM 

pattern.  The  obtained  results  show  a  significant  improvement  over  the 

results  of  the RWP  pattern.  The  graph‐based  simulations  showed  to  be 

approximately  twice  as  fast until  the  information  spreading of  95% was 

reached. The major reason for this improvement is the fact that the mobile 

nodes  only move  along  the  edges  of  the  graph  and  do  not  occupy  the 

whole  area  as  they  do  in  the  RWP  model.  Since  the  GBM  pattern 

represents  our  initial  outdoor  scenario  better,  we  expect  CMDPN  to 

behave towards those results in a “real world deployment”. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000 2500 3000

time [s]

in
fo

rm
at

io
n 

sp
re

ad
in

g 
[%

]

100x100 200x100 500x100

Ratio Mobile 
Nodes to 
Sensor Nodes

 

Figure 4.9: Information Spreading over Time for Graph Walk Movement with 100 Sensor 

Nodes 

 

A second set of simulations with only one sensor node was conducted to 

investigate the effect of the spreading of a single information item. Figure 

4.8 and Figure 4.10 show the results obtained with RWP and GBM pattern 

respectively. The results show that, once the information has been picked 
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up and passed on a  few  times,  the  steepest  rise of  the  curve  is  reached. 

This shows that the  information  is spread very quickly around  its source 

supporting  the  locality  aspect  of many  information  items  in  ubiquitous 

computing. 
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Figure 4.10:  Information Spreading over Time for Graph Walk Movement with One 

Sensor Node 

 

4.9. Discussion 

The  simulation  results  show  that,  assuming  realistic  values  for  the 

transmission range and the density of mobile nodes, the distribution of an 

update  in  the  vicinity  of  an  information  source  is  a matter  of minutes. 

Reaching  an  almost  complete  spreading  of  information  can  also  be 

achieved within less than an hour.  

The difference between the simulation results based on different mobility 

models shows  the  importance of using realistic mobility models  in order 

to get realistic simulation results. 
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4.10. Related Work 

Applications based on message exchange  in  infrastructure‐based systems 

such as  the Usenet have been used  for a very  long  time. More  recently, 

peer‐to‐peer  file  sharing  application  like Gnutella  [Kan01]  have  become 

popular.  However,  as  we  are  interested  in  systems  based  on  ad  hoc 

networks with mobile nodes, we want to mostly restrict our discussion in 

the following on systems fitting those characteristics. 

In  the area of collaborative wearable computing,  the ad‐hoc exchange of 

information  between  mobile  users  during  chance  encounters  has  been 

investigated.  Application  scenarios  including  the  exchange  of  tasks 

between user agents [KSS+99] and the dissemination of trust  information 

[SKJ+00]  have  been  simulated.  In  those  scenarios  the  information 

distributed  is  much  more  specialized  than  in  ours  and  exchange  of 

information depends much more on the individual users themselves, even 

though the underlying mechanisms are very similar. 

Much  work  has  been  done  on  routing  in  MANETs,  where  messages 

between sender and receiver are exchanged on [DGH+87] an unstable path 

built  of  mobile  nodes  (see,  for  example,  [PB94]  or  [Joh94]).  Usually, 

however, a fully connected path from the sender to the receiver is required 

to be able to forward a message. In [VB00] a general routing protocol for 

partially connected networks is discussed, which, similar to our approach, 

uses the moving mobile nodes to relay messages. Their results show, that 

such an approach  is  feasible,  transmitting 100% of  the messages  in most 

cases in reasonable time. 

Recently,  information diffusion has been discussed  in  the area of  sensor 

networks.  There,  information  is  exchanged  between  a  number  of 

randomly  placed  non‐mobile  nodes,  which  acquire  a  model  of  their 

environment  using  built‐in  sensing  systems  (e.g.,  for  seismic  data  or 

images). Algorithms in this area have to be able to cope with the failure of 



  107

single  sensors.  Different  variants  of  broadcast  algorithms  have  been 

discussed for such sensor networks with the goal of reducing bandwidth 

and  energy  consumption  [XWC02].  In  [KHB99]  a  family  of  negotiation‐

based  protocols  for  sensor  networks,  called  SPIN,  are  discussed.  It  is 

shown  that  they  perform  better  regarding  performance  and  energy 

consumption than the more simple broadcast protocols. 

More closely related to our approach regarding the dissemination of data 

is  the  7DS  system  [PS01].  Their  underlying  data  model  relies  on  a 

hierarchy  of  web‐caches  and  the  information  can  be  accessed  via  a 

client/server‐based  approach  from  an  infrastructure  if  available.  If 

network  partitions  occur,  the mobile  nodes  rely  on  their  cached  data, 

which  can  be  updated  similar  to  the  diffusion  algorithm  that we  have 

presented here. Cooperation among the mobile nodes allows the access of 

information  in  other  caches. Queries  trigger  a  diffusion  process  of  data 

through  the mobile  nodes which update  their  cache with  the  requested 

information.  The  mobility  model  is  a  strict  random  waypoint  model 

neglecting  spatial  constraints.  However,  their  objective  relates  to  the 

fragmented  data  storage.  Replication  of  the  data  on  every  node  and 

restricting  the coverage of  the  information dissemination, e.g.,  to an area 

or a number of nodes, is not an issue there. 

4.11. Conclusion and Outlook 

In  this  chapter we  have  shown  that  the  dissemination  of  data  in  large 

MANETs  is  feasible.  Simulation  results  show  that  information  can  be 

spread  among  several  hundred  users  in  a  city  center  scenario  within 

approximately 10 to 60 minutes from its initial creation at the sources. This 

time interval is appropriate for many types of information that may be of 

interest to a pedestrian walking through a city, such as information about 

current  events  or  specials  on  sale.  A  1‐to‐many  message  exchange 

application, like our Usenet‐style prototype for PDAs, can be implemented 
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using devices and technologies which will soon be deployed among many 

(millions of) users. 

It can be concluded  that  information can be made available  in MANETs 

through  the dissemination of messages using a diffusion algorithm. This 

means that in a lot of cases it is not necessary to access an infrastructure in 

order to obtain information concerning the current proximity. 

After  showing  the general  feasibility,  there are  still many questions  that 

remain  unanswered.  Our  simulations  show  that  the  time  it  takes  to 

disseminate  information  among  users  varies  depending  on  how  the 

mobile nodes,  i.e., the users, move around. This strengthens the need for 

realistic  user mobility models  in  order  to  obtain  a  reliable  performance 

prediction of new systems prior to deployment. 

More  simulations  are  needed  to  show,  if  limiting  the  scope  of  the 

information  by  hop  counts  successfully  approximates  the  locality  of 

information  as we  expect.  In  any  case,  this  solution  gives  only  a  very 

coarse  resolution  of  locality.  A  more  sophisticated  solution  here  is  to 

employ a more detailed world model  [BBR01] and  location sensors, e.g., 

GPS, to locate the mobile nodes. Then, the spatial scope of an information 

could  be  specified  directly  and  precisely,  e.g.,  information  could  be 

interesting for users on the same floor only, but not for those on the floor 

below, yet the people there might be closer concerning the communication 

if only distance is taken into account. 

In our  simulations we have  assumed  that  every user  is  interested  in  all 

channels, i.e., we completely replicated all messages. If we assume a large 

variety  of  topics  for  channels  in  a  real‐world  system,  it  is  evident  that 

complete replication does not work due  to resource restricted devices on 

the one hand and users that are not willing to carry unwanted information 

on  their devices on  the other. A  technical compromise  is  that every user 

allots some portion of his systems memory and communication  time  for 
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information that is not of (high) interest to him. The question here is: how 

much  is  technically necessary  for  the system  to work and how much are 

users willing to contribute. 

Since  our  system  is  based  on  the  assumption  that  the  number  of 

participants  is  large,  the  social  situations  in which  a  user  sees  a  clear 

benefit  and  therefore  uses  this  interaction  style  has  to  be  investigated. 

This, we believe, can only be answered by appropriate user studies. 
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5. A Protocol for Data Dissemination in Frequently 

Partitioned Mobile Ad Hoc Networks 
Distribution  of data  in mobile  ad hoc networks  is  challenged 

when the mobility of nodes leads to frequent topology changes. 

Existing  approaches  so  far  address  either  the  network 

partitioning problem or are capable of handling large amounts 

of data, but not both at the same time.  

In this chapter a novel approach is presented which is based on 

a negotiation scheme enhanced by an adaptive repetition strat‐

egy. Different  strategies  for  the  selection  of  repeated data  are 

presented and evaluated. Simulation results show a reduction 

of  data  transfer  volume  compared  to  hyper‐flooding  by  30  to 

40% even in the presence of frequent network partitions. 

5.1. Introduction 

Mobile ad hoc networks  (MANETs) are going  to be a  reality  in  the near 

future with more  and more mobile  devices,  e.g.,  PDAs  or  cell‐phones, 

being  equipped with  short  range  radio  technology,  e.g.,  as Bluetooth or 

802.11. In our daily environments such MANETs will not only contain the 

mobile  nodes  which  are  typically  carried  by  their  users  but  also 

incorporate devices being  fixed  in  the  infrastructure,  such  as  sensors  or 

information  provision  points,  e.g.,  info‐stations.  Applications  in  such 

environments can make use of the information being available through the 

sensors and other nodes. Examples are tracking applications in production 

plants  capturing  the  location  of  production  material  and  the  state  of 

manufacturing machines, communication on a construction site, missions 

from  civil  services,  e.g.,  collaborative  fire‐fighting,  but  also  convenience 

applications such as smart city/shopping guides. 
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Typically, information in such networks itself is spatially scoped, i.e., only 

from interest within a distinct area nearby the information source. Sensor 

networks, i.e., ad hoc networks with typically stationary nodes, can setup 

links  between  information  sources  and  sinks.  Mobility  challenges  the 

information  dissemination  in  such  networks,  since  network  partitions 

cannot  be  treated  as  errors  because  they  happen  regularly.  In  order  to 

supply  applications  on  nodes with  information  of  their  environment  a 

robust  mechanism  to  deliver  data  is  needed.  In  order  to  increase 

availability of data,  replication  is a candidate  to achieve  this goal with a 

trade‐off to consistency.  

In  this  chapter we present an algorithm  for updating  replicated data on 

mobile nodes which  is gathered by  information provided by sensors. We 

refer  to  such data as model‐data,  since  the  sensor  information provides a 

model of real‐world’s state. The consistency of the replicated data is weak, 

due to unpredictable network partitioning, aiming at delivering the most 

current  state  of  an  information  entity  and  not  providing  single‐copy 

consistency.  Current  information  shall  replace  older  one  and 

inconsistencies are  tolerated as  long as  the most current  information will 

finally  be  propagated.  Using  a  hyper‐flooding  [OT98]  approach  as  the 

foundation  of  a  three‐way‐handshake  protocol  enables  our  protocol  to 

overcome network partitions. The negotiation of transferred data leads to 

a  significant  reduction  of  the  data  transfer  volume  compared  to  plain 

hyper‐flooding by 30 to 40%. 

Next we will  introduce  the  system model. After a discussion of existing 

flooding  techniques  for  data  propagation  in  ad  hoc  networks  our 

algorithm  is  described.  Performance  results  from  simulations  are 

presented based on  two  scenarios before  the discussion of  related work 

and an outlook to future work concludes the chapter. 
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5.2. System Model 

The  system  consists  of  two  kinds  of  nodes:  observer  nodes  and mobile 

nodes. Observer  nodes  are  equipped with  a  synchronized  real‐time  clock 

(e.g.,  GPS  clock)  or  an  appropriate  clock  synchronisation  algorithm 

[Roem01], and  sensors allowing  to make observations  in  their proximity 

that describe properties of  the  real world. Every  observation  represents a 

state change of an object that has a unique object ID (oid), and has a time to 

live  (TTL)  that depends  on  the  type  of  observation. Each  observation  is 

timestamped  with  tobs  by  the  observer  node  to  indicate  when  the 

observation was made. Additional information (info) may be added by the 

observer  node  to  describe  precisely  what  kind  of  state  change  was 

observed,  e.g.,  the  position  (state  change  described  in  info)  of  a  person 

(object) or the temperature  inside a room. The tuple (oid, TTL, tobs,  info)  is 

called  meta‐data  because  it  describes  the  „what  and  when“  of  an 

observation. The actual distinction of objects on the sensor level is not part 

of this paper. 

Mobile nodes maintain a  local copy of  the most  recent  state of all objects, 

observed within a distinct area. The copies of state information on mobile 

nodes form a replicated database. The replicated database maintains weak 

consistency where mobile nodes may keep and use stale information, but 

any update made to a local copy will add more recent information to the 

database.  The  size  of  such  a  database  is  limited  due  to  the  locality  of 

information and the resource restrictions of the mobile devices. 

The  synchronized  clocks  of  observer  nodes  are  necessary  to  be  able  to 

compare  two  or  more  independent  observations  of  the  same  object 

accurately.  The  high  accuracy  of,  for  example,  GPS  clocks  of 

approximately 360ns [GPS] is sufficient to distinguish many observations 

made  in the real world, e.g., people’s movements. It would, for example, 

not be accurate enough  to observe  the direction of a  light beam passing 
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two independent observer nodes equipped with a light sensor. In general 

the accuracy needed is driven by the type of observations that need to be 

made. 

Mobile nodes use local real‐time‐clocks (RTC) to determine when the TTL 

of  an  observation  record  expires.  Those  clocks  do  not  have  to  be 

synchronized, since they are only used to measure how long a record has 

been kept  locally. Assuming  a  typical  clock  skew  of  a  simple hardware 

RTC  of  5  to  15  seconds  per  day  [DALLAS],  it  would  be  sufficient  to 

synchronize a few times a day (e.g., when passing any observer node)  in 

order to correct the clock drift and to measure the time a record has been 

kept accurately enough. 

All nodes are equipped with a symmetrical short range RF communication 

technology that offers a device discovery mechanism and allows two way 

communication. The RF technology is used to locally broadcast messages, 

i.e.,  every neighbor  in  the  transmission  range of  the  sender may  receive 

the message. Additionally, we  assume  that  the MAC protocol  follows  a 

CSMA/CA  approach  that  detects  collisions. Mobile  nodes  and  observer 

nodes  thereby  form  a MANET which  is  assumed  to be partitioned very 

frequently due to short transmission ranges and the mobility of nodes. 

5.3. Forwarding Strategies 

For  the  task  of  distributing  observations  to  mobile  nodes  a  robust 

forwarding mechanism is needed that can cope with the frequent topology 

changes and network partitions  in a MANET. The evaluation of flooding 

in such environments  [HOT+99] has shown  that  it provides a good basis 

for  distributing  information  in  highly  dynamic  and  sparsely  populated 

MANETs.  Different  possibilities  for  flooding  have  been  proposed  and 

shall be briefely described here since they will be used for our algorithm 

presented in Section  5.4. 
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Plain Flooding: The basic version of flooding is a robust way to broadcast 

information  in  a  network.  Every  node  forwards  an  incoming message 

unless it has done so before or some knowledge of the network diameter is 

available  to add a maximum hop count  to  the message. Although  this  is 

very  reliable, plain  flooding  cannot  cope with network partions or very 

high mobility [HOT+99].  

Selective Flooding and Gossiping: Selective flooding has been proposed 

to  reduce  the  number  of messages  in  comparison  to  the  plain  flooding 

approach. The general  idea  is  that a node  forwards a message only  to a 

subset of its neighbors [Tan96]. Gossiping is a variant of selective flooding 

where the message is sent to a subset of neighbors that is chosen randomly 

[HKB99]. This reduces the number of messages sent with the trade‐off of 

being  less  robust,  especially  in  networks  with  a  low  node  density. 

Selective flooding is based on plain flooding and thus does not cope with 

network partitions. 

Hyper  Flooding  is  a  modification  of  flooding  proposed  in  [OT98].  It 

allows nodes to forward a message more than once if the set of neighbors 

changes within a given validity period of the message. This improves the 

delivery  performance  over  plain  flooding  in  scenarios  with  frequent 

topology changes (e.g., due to high mobility) and network partitions that 

are rejoined within the validity period of the message. 

5.4. Negotiation-based Ad hoc Data Dissemination 
Protocol: NADD 

This  section  describes  an  algorithm  suitable  for  exchanging  observation 

data  in MANETs with  frequent  topology  changes.  First, data  structures 

relevant  to  the  algorithm  are  explained.  Second,  the  algorithm  itself  is 

described. Crucial to the algorithm is when and which data is (re‐)sent. A 

deeper discussion of selection strategies of data to be resent is presented. 
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5.4.1. Data Structures 

Every observer node  stores an observation  record  for  each object  that  is 

currently within  its observation  range. An  observation  record  contains  the 

following elements: 

•   Object ID (oid) of the observed object 

•   Time‐to‐live (TTL) of the observation 

•   Timestamp of the last observation of a state change (tobs) 

•   Information that indicates the replication progress of a record (d) 

•   Additional meta‐data (info) 

•   State of the observed object 

The  oid  kept  in  the  observation  record  is  a  unique  identifier  for  a  real‐

world  object  such  as  a  room  or  a person. Additional meta‐data may be 

added to describe in more detail what kind of information is represented 

in the record, e.g., the temperature in a room or a person’s position. In the 

context  of  this  paper,  different  oids  represent  information  about 

distinguishable  objects.  The  type  of  information  represented  is  of  no 

further concern for this paper. The TTL is initialized by the observer node 

and  is  continuously decremented by each node  that holds a  copy of  the 

record. Its initial value depends on the type of observation made (e.g., part 

of  the meta‐data) and  is supplied by  the observer node. The observation 

time tobs is recorded by the observer node that has created the observation 

record originally,  i.e.,  that has  actually made  the observation.  In  case of 

multiple observers of the same object nodes create different records about 

the same object. These records can be ordered due to the assumption that 

all  observers  have  synchronized  clocks.  The  precise  description  of  d  is 

given in Section 5.4.2.2. 
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5.4.2. Protocol 

In  the proposed protocol, messages  are  sent  from  a  sender  to  all direct 

neighbor  nodes  (local  broadcast).  The  mechanism  used  to  forward 

observations  is  implemented  using  a  three‐way‐handshake  where 

observations stored locally in a node’s database (DB) are advertised in ADV 

messages,  requested  in  REQ messages  from  nodes  that  do  not  have  the 

advertised information in their DB, and sent with DATA messages by the 

advertising  node  as  shown  in  Figure  5.1.  Since  the  state  information 

provided  by  observer  nodes may  become  large,  this  approach  has  the 

advantage that state data is only exchanged  if at least one neighbor node 

requests  it.  Additionally,  the  three‐way‐handshake  allows  the 

optimization  of  advertising many  observation  records  in  a  single ADV 

message. 

latest repetition

out: AD V message

Local D B

Meta-data
late st r ep etit ion

in : RE Q m essa ge

L ocal D B

ou t: D ATA m essage

Loc al D B

Data1 Data2 Data3

 
Figure 5.1: Interaction pattern of a node while advertising 

An  ADV message  contains multiple  tuples  (oid,  tobs,  TTL,  d)  describing 

information  available  in  the  DB  of  a  node.  A  REQ  message  contains 

multiple  tuples  (oid,  tobs)  of  observation  records  needed  by  a  node  in 

response  to  an ADV message. A DATA message  is  a  set of observation 

records  that have been  requested by any neighbor. Figure  5.3  shows an 

overview of the protocol in pseudo‐code. 

5.4.2.1. Interaction Between Nodes 

A new  information entity,  i.e., a new or updated observation record  that 

was either received by a mobile node or observed by an observer node, is 
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offered to all neighbors of such a node by sending an ADV message. Any 

neighbor node may  send  a REQ message  in  return  to  indicate  that  it  is 

interested  in  some  of  the  data.  On  receiving  a  REQ  message,  a  node 

broadcasts the corresponding state information. The protocol as described 

so far uses plain flooding on top of a three‐way handshake. This results in 

the disadvantages of not overcoming the boundaries of network partitions 

as mentioned  in Section 5.3. To disseminate  information across partitions 

an  approach  similar  to  hyper‐flooding  is  added:  whenever  a  node 

discovers a new neighbor, it is allowed to re‐advertise observations as long 

as the TTL has not expired. The TTL is decremented continuously by each 

node that holds a copy of an observation record. If the TTL equals 0, the 

item is removed from the DB. 

The number of  items  that can be advertised  in a  single ADV message  is 

limited  to  keep  messages  short  and  thus  to  reduce  the  probability  of 

collisions on the MAC layer. On the other hand, replication performance is 

improved by  letting a node  send more  than one ADV.  In our algorithm 

nodes may ask any node that replies to their ADV message with a request 

to  issue  another  ADV message.  In  the  current  implementation  a  node 

always requests another ADV message with each REQ message sent. This 

process  stops  if no  items offered  in an ADV message are  requested or  ‐ 

obviously  ‐ when the two nodes  leave each others communication range. 

This mechanism is backed up by the creation of ADV messages if the set of 

neighbors  of  a  node  does  not  change  for  a  predefined  period  of  time. 

Figure 5.1 gives an overview of the basic interaction scheme. 

5.4.2.2. Advertising Strategies 

For a  large number of different observations  the  size of each DB  replica 

will  soon  be  large,  making  it  impossible  to  advertise  all  observation 

records in a single ADV message. Therefore an advertising node has to be 

able  to select a sub‐set of  the data  from  its  local DB when composing an 
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ADV  message.  This  leads  to  the  problem  of  finding  an  appropriate 

selection strategy that ensures a reliable overall replication process. 

As a first approach we applied a strategy mix where information that has 

never been advertised by a node  is selected  to be advertised  first.  If  this 

number  is smaller  than  the number of  items an ADV message can hold, 

the  remainder of  the ADV message  is  filled with advertisements of data 

that  has  already  been  sent  based  on  a  round‐robin  strategy  in  the 

database.  This  ensures  that  new  data  has  priority  over  data  that  has 

already been offered. 

In a second class of strategies, we replaced the round‐robin selection with 

a more sophisticated demand driven selection policy. When a new record  is 

created  by  an  observer  node,  it  is  important  to  give  priority  to  the 

propagation  of  this  record  in  order  to  support  its  replication.  An 

approximation  for  that  property  can  be made  locally  on  any  node  by 

taking into account the number of data messages including the particular 

record,  that have already been  sent by  the node. A  low number of  such 

messages indicates that not many replicas have been initiated by the node 

and  therefore  priority  has  to  be  given  to  that  record  when  sending 

advertisements. On  the other hand,  this  indicator  is not  sufficient when 

the  record  has  already  been  replicated  on  almost  every  node.  In  this 

situation a node  that  received a copy of an almost completely  replicated 

record  r  late  will  prefer  such  a  record  over  a  record  r’  that  has  been 

replicated  only  a  few  times,  since  the  number  of  data  messages  that 

include  r will  soon be outrun by  those  that contained  r’ and will hardly 

increase. This  is due  to  the  fact  that almost no other node will  request  r 

and more  nodes will  request  r’.  To  take  this  into  account we  keep  the 

difference  d=#adv‐#data  for  every  record  r, where  #adv  is  the  number  of 

ADV messages  sent  that  included  r  and  #data  is  the  number  of DATA 

messages. A large d indicates that the record has been advertised and only 
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relatively  few  requests were  received  that  lead  to  DATA messages.  A 

small d indicates that an item has been requested regularly in response to 

advertisements.  To  approximate  the  global  replication  progress  of  a 

particular observation record,  the value of d calculated by other nodes  is 

taken  into  account on  the  reception of  every ADV  and DATA message. 

The node receiving such a message re‐calculates its own 

dnew=(alpha*dold)+(1‐alpha)*dremote, 

where dold  is  the previous  local value  for  the observation and dremote  is  the 

value  for  the  same  record  on  the node  that  sent  the message.  alpha  is  a 

weight, with 0<alpha<1 that defines how much remote information is taken 

into account. 

latest
records

f*(k-n) (1-f)*(k-n)n

k

Selected from
subset L of DB

Selected from
subset H of DB

 

Figure 5.2: Structure of an ADV message for the demand driven selection strategy 

 

Figure 5.2 shows the structure of an ADV message for the second selection 

strategy determined by a tuple (k, f, g). The message can contain at most k 

entries, where n are occupied by new  information,  just as  in  the  round‐

robin selection strategy. The remainder is split into two parts, determined 

by the fraction f with 0<f<1. The DB is split into two subsets L and H with  

DB H L∪=( ) H L∩ ∅=( )∧  

L  contains  a  fraction  g  of  all  records  in  the  local DB  such  that  d  for  all 

records in L is smaller than the lowest d of any record in H. Records from L 

and H are selected randomly  (uniform distribution)  to  fill  f*(k‐n) and  (1‐

f)*(k‐n) slots in the ADV message respectively. If any subset contains less 

messages, the remainder will be filled with information from the other set.  
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5.4.2.3. Randomized Messages Transmission 

To  reduce  the  number  of  messages  and  to  avoid  broadcast  storms 

[NTC+99],  randomization  is used  to delay messages before  they  are  sent. 

ADV messages issued by mobile nodes are delayed to avoid that a group 

of nodes advertises  the  same observation at  the  same  time and  location. 

REQ messages are delayed, because it is sufficient that one node requests 

an observation, while other nodes can pick up the DATA message without 

requesting  it.  DATA  messages  are  delayed  to  avoid  that  many  nodes 

answer a REQ message. Delaying messages in the described way results in 

a  flavor  of  selective  flooding,  since  not  every  node  that  receives  a  new 

information  entity  re‐advertises  it. Whenever  the TTL  of  an  observation 

expires any node that holds it, drops it. 

 

ON_NEW_DATA or ON_NEW_NEIGHBOR: 
 a = prepareAdvMsg() // compose ADV message a from local DB 
 schedule_for_send(a) // send within a randomized time interval 
ON_RCV_ADV(m: AdvMsg): 
 p = 1 // probability for ADV requesting 
 r = prepareReqMsg(m, 1) // build REQ based on local DB and ADV diff 
 if r contains at least one request then 
  schedule_for_send(r) // send within a randomized time interval 
ON_RCV_REQ(m: ReqMsg): 
 d = prepareDataMsg(m) // prepare DATA based on incoming REQ 
 schedule_for_send(d) // send within randomized time interval 
 if m.sendAnotherAdv then // additional ADV prepared on demand 
  a = prepareAdvMsg() 
  schedule_for_send(a) 
 fi 
ON_RCV_DATA(m: DataMsg): 
 store(m) // update local DB with requested data 
ON_IDLE: // send messages from send buffer 
 if first_item( fifo_send_queue ).send_time <= current_time 
 then 
  send_and_remove(first_item(fifo_send_queue)) 
 fi 
schedule_for_send(m: msg) // send buffer with randomized schedule 
 rnd = random_int(k*msg_time, 2*k*msg_time) 
 if isempty(fifo_send_queue) then 
  append(fifo_send_queue, {current_time+rnd, m}) 
 else 
  append(fifo_send_queue, {last_queue_time+rnd, m}) 
 fi 

Figure 5.3: Pseudo‐code of our NADD 
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5.5. Simulation 

The  proposed  algorithm  was  tested  in  simulations  to  evaluate  its 

performance  with  respect  to  replication  latency,  i.e.,  the  time  until  a 

certain  fraction  of  the  data  is  replicated  on  all  nodes,  and  the message 

overhead imposed by the algorithm. 

In order to compare the discussed selection strategies, optimal selection is 

simulated. Nodes  only  advertise data  that  is missing  in  the database  of 

other  nodes.  This  ensures  maximum  efficiency  in  the  data  exchange, 

which is only influenced by the mobility of the nodes and the underlying 

communication technology. 

5.5.1.1. Simulation Environment 

The  simulations were  done  using  a  discrete  time‐step  approach. At  the 

MAC  layer  a  simple  carrier  sense,  collision  avoidance  mechanism 

(CSMA/CA) prohibits one node  to send  if  it  is within  the  radio  range of 

another node that is already sending. In this case the message is scheduled 

to be resent  later. If retransmission fails for the third time the message  is 

dropped. If both senders are out of each others radio range, simultaneous 

transmissions are allowed, though the message does not reach receivers in 

the  intersection  of  both  ranges.  If  two  or  more  senders  start  sending 

simultaneously,  again  messages  in  the  intersection  of  any  two  radio 

ranges are extinguished and do not reach  their receivers. ADV and REQ 

messages have a size of 32 bytes per item advertised or requested. DATA 

messages have a  size of 512 bytes per  item  transfered. The  transmission 

speed is 128 kbit/s with 10 m transmission range. Mobile nodes follow the 

random waypoint mobility pattern [BMJ+98] with a pedestrian speed of 3‐

5  km/h  and  intermediate  stays  of  72‐120  seconds.  Observer  nodes  are 

placed  in a  regular grid and  remain  stationary during a  simulation  run. 

The total area simulated is 100 m by 100 m to represent a large building. 
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Scenario Strategy Max.  
ADV size 

Remark 

RR-6 round-robin 6  
RR-12 round-robin 12  

SEL-6 selection 6 alpha=0.5, f=0.65,  
g=0.5, k=6 

SEL-12 selection 12 alpha=0.5, f=0.65,  
g=0.5, k=12 

OPT-6 optimal knowledge 6  

OPT-12 optimal knowledge 12  

Table 5.1: Scenario Overview 

In all scenarios observers can advertise at most 6 or 12 observation records 

per ADV message. This represents a message size of 224 (=32+6*32) or 416 

bytes for ADV and REQ messages and a maximum of 3104 (=32+6*512) or 

6176  bytes  for  DATA  messages,  respectively.  Thereby  messages  for 

advertisements and requests are short to keep the probability of collisions 

low.  The  TTL  of  all  observation  records  is  set  to  a  value  that  does  not 

invalidate  the  item during  the  time of  the  simulation. All updates were 

done  by  the  observer  nodes  at  the  start  of  the  simulation.  Future 

investigation will  have  to  evaluate  the  effect  of  temporally  overlapping 

replication processes. 

All scenarios contain 10 mobile nodes and 9 observer nodes. Each observer 

node  makes  80  observations,  resulting  in  a  database  size  of  720 

observation records. The scenarios vary in the selection strategy chosen for 

advertisements and the maximum number of entries in an ADV message. 

All simulations were run for 3600 seconds. Table  5.1 gives an overview of 

the scenarios evaluated. 

5.5.2. Replication Latency 

This section presents the growth of the database copies carried on mobile 

nodes over time. The results of Figure 5.4 show the replication latency for 

the scenarios where at most 6 items can be advertised in an ADV message. 

With  the  optimal  strategy OPT‐6  it  takes  approximately  800  seconds  to 

perform a complete replication on all nodes. This result solely influenced 
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by  the  mobility  of  the  mobile  nodes,  since  each  advertising  node  is 

assumed  to know  the  contents of  the database of  the node  it  is offering 

data to. The round‐robin strategy RR‐6 uses a simple advertising schedule 

that only depends on what has locally been advertised before. This results 

in  a  very  slow  propagation,  because  the  advertising  behavior  of  other 

nodes  is not taken  into account at all. The demand driven strategy SEL‐6 

shows improvements over the round‐robin strategy and results in a faster 

data replication, especially in the time span where 40% to 80% of the data 

is replicated. 

Compared to the results described above, the scenario SEL‐12, which uses 

12  entries  per ADV message  shows  a  significantly  faster  growth  of  the 

database copies  in  the  time span where 60%  to 95% of  the data has been 

replicated  on  each  node.  The  optimal  scenario OPT‐12  shows  the  same 

behavior as  its  counterpart OPT‐6, because  it  is also only  limited by  the 

mobility  of  the  nodes.  The  round‐robin  strategy  shows  about  the  same 

replication  latency  in both  cases, but varies  in  the message overhead  as 

described in the next section 
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Figure 5.4: Average replication latency with ADV size 6 
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Figure 5.5: Average replication latency with ADV size 12 

5.5.3. Message Overhead 

This section discusses the message overhead imposed by our protocol. The 

results of Table 5.2 give an overview of  the average number of messages 

and their total size per node sent by each node in the different scenarios. 

The message  sizes  show  the  average  transfer  volume  per  node  divided 

into ADV, REQ,  and DATA  volume  sent. Here  the messages  sent  have 

been weighted according to their size, where one ADV or REQ entry has 

32 bytes, and one DATA item has 512 bytes. Each message has a constant 

overhead of 32 bytes. It has been assumed that every message includes the 

maximum of 6 or 12 entries. The optimal strategy has the lowest message 

overhead, since  it only advertises data  if necessary.  It does not show  the 

same results  for ADV, REQ, and DATA messages since messages can be 

lost  due  to  collision  on  the MAC  layer  and  the mobility  of  nodes.  The 

round‐robin  strategy  needs  about  twice  as  many  ADV  messages 

compared  to OPT. Many  of  those messages  do  not  contain  data  that  is 

needed and therefore only little more REQ messages are sent compared to 

OPT. The SEL  strategy has  the highest message overhead because many 

ADV  messages  contain  information  that  is  requested  and  therefore 

additional ADV messages are  triggered. On  the other hand  this  strategy 

shows a very good replication latency, as stated above. 



125 

Table 5.2 shows how much  transfer volume would have been needed  if, 

instead  of  the  three‐way‐handshake,  only DATA messages would  have 

been used  to propagate  the observation records  (i.e.,  in a hyper‐flooding 

approach  without  negotiation).  The  advantage  of  the  three‐way‐

handshake over the plain data message approach with respect to transfer 

volume is 30‐40% (see Table 5.2 and Table 5.3).  

  Num 
ADV 

Num 
REQ 

Num 
DATA 

Size 
ADV 

Size 
REQ 

Size 
DATA 

Total  
size 

RR-6 225 83 88 50kB 18kB 269kB 337kB 

SEL-6 497 241 247 110kB 54kB 768kB 932kB 

OPT-6 101 70 75 22kB 15kB 233kB 270kB 

RR-12 168 47 50 70kB 19kB 340kB 429kB 

SEL-12 377 181 176 157kB 75kB 1091kB 1323kB 

OPT-12 54 37 38 22kB 15kB 237kB 274kB 

Table 5.2: Message overhead in number and size of messages 

 
 

Assumed transfer volume using DATA 
instead of ADV messages 

Num 
DATA 

Vol/ kB 

RR-6 225 682 

SEL-6 497 1506 

OPT-6 101 306 

RR-12 168 1013 

SEL-12 377 2273 

OPT-12 54 325 

Table 5.3: Transfer volume with DATA messages only 

 

5.6. Related Work 

The SPIN protocol family [HKB99] uses a a three‐way‐handshake protocol 

similar  to  our  protocol.  SPIN  addresses  sensor  networks,  i.e.,  ad  hoc 

networks with stationary nodes. Since it does not take temporary network 

partitions  into  account  and  therefore  does  not  deal  with  the  resulting 

problem  of  choosing  a  selection  strategy  the  advertisement  of data will 

only work in environments with low node mobility. 
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In  various  situations  it  has  been  proved  that  flooding  is  a  robust 

mechanism  to  distribute  information  to  all  nodes  in  MANETs.  In 

[HOT+99] flooding has been evaluated as a basis for multicast protocols in 

MANETs. Hyper‐flooding  has  been proposed  as  a method  to  overcome 

network  partitions  in  ad  hoc  multicast  routing  if,  besides  other 

parameters, the TTL for a message and the approximate network diameter 

are known [OT98]. In our protocol, the replicated model data already has 

a  TTL  included  in  its  meta‐data.  The  diameter  of  the  network  is  not 

needed because nodes can decide to drop information solely based on the 

TTL, since model data is assumed to be valid for a long period of time in 

comparison  to  messages  used  in  routing  protocols.  Additionally,  our 

protocol does not perform hyper‐flooding on a per‐message basis but on 

the  basis  of  a  three‐way‐handshake,  where  advertisements  are  hyper‐

flooded by re‐advertisements according to the selection strategies.  

In  [VB00]  an  epidemic  protocol  was  introduced  to  solve  the  routing 

problem in a partially connected network. They use a similar mechanism 

to  exchange  information  between  two  neighbor  nodes.  However,  their 

goal  is  to  deliver  messages  to  any  node  without  establishing  a  route 

between  sender and  receiver and not  the  replication of model data. The 

data considered is typically short‐lived, i.e., if routing of a message fails a 

retransmission is issued. 

A combination of so called rumor‐mongering and anti‐entropy is used in 

[DGH+87] to replicate information in databases in wired networks. In our 

protocol, we combine new information and, if free space is available in an 

ADV messages,  older  information. This  results  in  a  partial  anti‐entropy 

session, because some differences between hosts are resolved with new in‐

formation  first  (i.e.,  rumors) and older  information  (i.e., part of  the anti‐

entropy). 
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In [XWC00] the distance between any two versions of a data item and the 

communication  cost  is  used  as  the  basis  for  a  cost model  in  order  to 

determine the estimated benefit of forwarding the data. In this approach it 

is necessary that every node has a notion of „distance“ which depends on 

the semantics of the data. The authors also make the assumption that only 

a single node updates a particular object. 

5.7. Conclusion 

We presented a protocol  for  information dissemination  in mobile ad hoc 

networks. The protocol replicates information stored in local databases of 

nodes. In order to reduce the data transfer volume, negotiation is used to 

advertise  and  request data  among mobile nodes. Network partitions,  as 

they appear due  to node mobility or  low node density,  can be  tolerated 

since  data  is  advertised  more  than  once.  The  selection  strategy  that 

determines which data is re‐advertised, influences the performance of the 

protocol with  respect  to  the  propagation  latency  and  the  data  transfer 

volume. The demand driven selection policy shows a reduction of the data 

transfer  volume  by  30  to  40%  compared  to  a  plain  hyper‐flooding 

approach  which  does  not  use  negotiation.  The  replication  latency 

performs nearly optimal  till  80%  replication of  the data  is  achieved  and 

slows down for the last 20%. 

So  far,  we  have  investigated  the  impact  of  different  data  selection 

strategies  on  replication  latency  and message  overhead.  In  future work, 

we will  investigate what  parameters  can  be  used  to  adjust  the  hyper‐

flooding nature of advertisements, e.g., depending on the node density, in 

order  to  achieve  further  reduction  of  advertisement messages  in  dense 

networks.  Mobility  models  of  mobile  nodes  have  impact  on  the 

performance of  routing protocols  [THB+02]. We will examine  the  impact 

of mobility models  on  our  protocol  and  the  improvements  that  can  be 

made if such knowledge is exploited. 
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6. From Home To World: Supporting Context-Aware 

Applications through World Models 
In  the  vision  of  pervasive  computing  smart  everyday  objects 

communicate  and  cooperate  to  provide  services  and 

information  to  users.  Interoperability  between  devices  and 

applications  not  only  requires  common  protocols  but  also 

common  context  management.  In  this  chapter  we  discuss 

requirements on the context management based on the Georgia 

Techʹs  Aware  Home  environment  and  the  global  context 

management perspective of the Nexus project. Our experiences 

with  integrating  the  Aware  Home  Spatial  Service  into  the 

Nexus platform show how  federation concepts and a common 

context model  can provide  applications with uniform  context 

information  in  different  administrative  and  application 

domains. 

6.1. Introduction 

Pervasive computing has drawn increasing attention of researchers in the 

past years. As  a  result,  a multitude of  applications has been developed. 

These  applications  cover  different  domains,  such  as  tourist  guides 

[CDM+00a],[AAH+97]  indoor  information  systems  [Cooltown],[CKW01] 

and smart environments, e.g.,  the Georgia Tech Aware Home  [KOA+99], 

to  name  a  few.  A  variety  of  supporting  infrastructures  have  been 

proposed,  which  facilitate  the  development  of  applications.  However, 

these infrastructures mostly address a distinct application domain, such as 

context  processing  based  on  sensors  [SDA99]  or  providing  application‐

specific context [STM00], [CDM+00a]. 

However, one cannot deploy any of the above‐mentioned applications and 

expect  them  to  cooperate  or  share  resources. Also, when  new  services, 
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hardware or environmental information such as maps become available to 

an application, other existing applications can not automatically use them. 

Interaction  between  different  applications  based  on  their  context,  e.g., 

identity, location, or state, is not possible if they do not rely on a common 

representation of this context. 

In  this  chapter we discuss  the  requirements  on  application‐independent 

context management  in  order  to provide  a platform where  applications 

can seamlessly share their context. Two approaches for such platforms are 

presented. One addresses the context management in the scope of a smart 

home  environment  based  on  the  Georgia  Techʹs  Aware  Home  project 

[AAH+97] while the other approach addresses global context management 

from  the perspective of  the Nexus project  [HKL+99]. We have  integrated 

both  approaches  and  discuss  our  experiences  regarding  the  context 

representation. Crucial to the integration of both approaches is a common 

context model and a federation concept for the local context management. 

The chapter  is  structured as  follows. First we motivate  the  requirements 

on  context  management  to  achieve  interoperability  based  on  typical 

applications  in a smart home environment. Following  to  that,  the related 

work  is presented.  In section 6.4 and section 6.5, we describe  the context 

management for the Aware Home and the Nexus platform. An assessment 

of  context modeling  and  the platform  integration  is given  in  section  6.6 

based  on  the  integration  of  the  Aware  Home  Spatial  Service  into  the 

Nexus  platform.  Finally, we  close with  a  summary  and  outline  future 

work. 

6.2. Requirements 

In  this  section we derive  requirements  based  on  a  scenario  and discuss 

what follows from that for context modeling. 
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6.2.1. Scenario 

Consider the following scenario: You have a home that can sense what its 

inhabitants  are doing,  adapt  to  them  and  support  them with  their  task; 

e.g.,  the  Smart  Intercom  allows  you  to  reach  every  other  person  in  the 

house  ‐  regardless  of where  he  or  she  is  located.  So  if  you  are  in  the 

basement,  it  is  possible  to  say  ʺHouse,  I want  to  talk  to  Thomasʺ.  The 

house  then would  localize Thomas,  check  if  it  is  currently  acceptable  to 

contact  him  or  if  he  is  occupied  otherwise,  and  then  create  an  audio 

connection to him using the closest available audio  interface device. This 

could be  the phone on his desk or  the  speakers and microphones  in  the 

room. 

Now  you  want  to  add  another  application  to  your  home:  A  smart 

doorbell. Depending on whom a visitor is here to see, the Smart Bell finds 

the respective person and notifies her that a visitor is waiting at the door. 

Then  it  routes  a  video  feed  from  the  entrance  area  to  the wall  display 

closest to that position. Now you can decide whether the visitor should be 

let in. It is also possible to identify the visitor and to register him with the 

intercom system and other systems of the house. 

Also, you want to add a smart alarm system. Because the house knows the 

identities and the locations of its inhabitants, it can continuously monitor 

whether unauthorized persons are in the house and notify the authorities 

accordingly. Then it would provide the authorities with information about 

the situation within your house  ‐ e.g.,  the  layout of  the house, where  the 

inhabitants and where the intruders are located.  

In  the  remainder  of  this  section, we  discuss  requirements  for  the  data 

model of these applications and for the infrastructure that supports them. 
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6.2.2. Derived requirements 

Based on  the scenario we derive requirements regarding  the  information 

model,  information  access,  consistency,  the  abstraction  from  resources, 

and interoperability. 

Information Model: 

The  applications  in  the  scenario  need  certain  information  to  fulfill  their 

tasks. Mobile objects, such as users with  their  identity and position, and 

stationary objects, such as  furniture or  input/output devices, are relevant 

for  context‐aware  applications.  These  objects  have  to  be managed with 

respect to their spatial environment, e.g., the floor plan of a smart house or 

the  layout of a city center. Additional attributes of  these objects, such as 

user  preferences  or  a  functionality  description,  can  be  used  by 

applications. The information model should be easily extensible, since new 

applications are likely to require additional or specialized objects. 

Information Access: 

Applications  access  the  information  in  the  information model  through 

queries,  predicates,  and  functions  operating  on  the  information model. 

Queries  are  used  to  access  objects  via  their  identity  or  their  current 

location, e.g., a range or a neighborhood. The interpretation of a range or a 

neighborhood requires spatial knowledge which has to be provided by the 

underlying information model. Spatial predicates are constantly evaluated 

and  signal distinct correlations between mobile and  stationary objects  to 

an  application,  e.g.,  a  user  entering  a  room  or  a  certain  user meeting 

another  user.  Applications  can  modify  information  in  the  information 

model via updates. 

Consistency: 

The  information  about  people,  house  and  resources,  e.g.,  as  gathered 

through  sensor  systems  in  the  infrastructure,  has  to  be maintained  and 

kept consistent among all applications.  If  real world objects or  resources 
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are moved  or  removed,  the  information  in  the  infrastructure  has  to  be 

updated. 

Abstraction from Resources: 

The variety of possible information sources and services, such as sensors, 

actuators,  and  user  interfaces,  should  be  transparent  to  applications. A 

layer  of  abstraction  should  be  provided  to  facilitate  the  easy  change  of 

resources,  such  as  upgrading  a  positioning  system.  Newly  integrated 

resources should be made available to applications. 

Interoperability: 

One of  the main requirements  for  the  infrastructure  is  interoperability  in 

three dimensions. First, interoperability between resources, e.g., the audio 

speakers should be able to work with the TV to display the video feed of 

the  Smart  Doorbell.  Secondly,  applications  that  communicate  using 

information or resources: e.g.,  the Smart Doorbell  inserts a new  ʺpersonʺ 

into  the  house  and  the  Smart  Intercom  should  be  able  to  use  this 

information.  Thirdly,  the  interoperability  between  applications:  e.g.,  the 

Smart Doorbell  notifies  the  Smart  Intercom  that  it  has  to use  the  audio 

speakers to signal into the room. 

6.2.3. Context modeling 

The  information model as discussed  in  the previous section  is concerned 

with context data. A number of different definitions for context exist, e.g., 

[CK00][DA99]. Our view on context  is similar to the definition presented 

in  [DA99]:  Context  is  the  information which  can  be  used  to  characterize  the 

situation  of  an  entity.  Entities  are  people,  locations,  or  objects  which  are 

considered  to  be  relevant  for  the  behavior  of  an  application. The  entity  itself  is 

regarded as part of its context.  

When context is stored in a context model it is necessary that applications 

can access it. As the examples have shown, applications typically consider 
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information  about  a distinct  location  or  an  entity,  e.g.,  a user  or  object. 

Hence, such a model must allow  for access  to context  information based 

on  location and  the  identity of objects. Additionally,  context models  can 

incorporate  the  time  dimension,  i.e.,  capture  history  or  provide  a 

prognosis. In general, a combination of either identity and time or location 

and  time  is  needed  to  access  context  information  in  a meaningful way. 

However, time can also be defined implicitly as the current point in time. 

Based  on  the  selection  of  objects via  identity,  location,  and  time  further 

information, such as the activity of a user or the state of an object, can be 

derived.  Using  location  as  index  imposes  new  challenges  on  the 

representation  of  the  index  and  its  processing.  The  underlying  spatial 

structure has to be reflected in the index. 

A  variety  of  different  location models  exist, which  can  be  classified  as 

topographical,  topological, or hybrid models. Topographical models use 

geometry  to model  space.  They model  the  spatial  entities  as  geometric 

shapes that are placed within a coordinate system. The relations between 

the  entities,  e.g.,  which  entities  are  next  to  each  other,  are  implicitly 

defined  by  their  location.  Topological  models  describe  the  relations 

between spatial objects explicitly without  localizing  them  in a coordinate 

system.  Hybrid models  combine  the  localization  of  the  spatial  entities 

within a  coordinate  system with  the explicit modeling of  their  relations. 

The  complexity of  the models differs widely, e.g.,  regarding  the  level of 

detail  and  the  available  functionality.  Common  tasks  are  querying  for 

objects within a distinct area as well as determining the nearest object with 

respect  to  a  given position. Hence,  the  context model  requires  a  spatial 

structure. Since our  context models  take  the  spatial  structure of  the  real 

world as their basis, we also call them world models. 
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6.3. Related work 

Context‐aware applications have attracted the interest of researchers over 

the past years. A number of different applications have been developed 

exploring  different  application  domains.  Tourist  guides,  e.g.,  Guide 

[CDM+00a]  or  CyBARguide  [AAH+97],  provide  information  to  mobile 

users  about  typically  stationary  objects  in  their vicinity,  such  as distinct 

sights.  Indoor  information  systems,  e.g.,  Cyberguide  [AAH+97],  ETH 

World  [ETH], or  conference  room  reservation  [CKW01], provide  similar 

services in the indoor domain. 

Another  class  of  pervasive  computing  applications  presents  location‐

dependent  information  to  users.  Virtual  Information  Towers  [LKR99] 

provide  information  for  a  distinct  area  through  posters, while  Stick  E‐

Notes  [Pas97] and Geo‐Notes  [EPS+01] offer a Post‐It metaphor allowing 

users to leave messages at a distinct location. These systems typically are 

not  concerned with  the  relations  between  different mobile  objects,  e.g., 

users,  and  they  only  require  simple  spatial  models.  Abstraction  from 

resources is typically not necessary, since the information is not captured 

via  sensors and actuators are not  supported.  Interoperability  is  typically 

not an issue in such systems. 

For another class of applications, an underlying spatial model is required. 

The  Teleporting  project  [HHS+99]  requires  a  spatial model  in  order  to 

redirect output to the devices that are closest to users. Similar to that, the 

Family  Intercom  [NKO+01]  also  requires  spatial  knowledge. While  the 

Family Intercom does not intend to share its spatial model, the Teleporting 

project has developed a platform which provides a data model  linked  to 

locations  obtained  via  fine‐grained  location  and  spatial  monitoring 

systems. This platform  already meets  some  of  our  requirements, but  its 

scalability  is  targeted  at  larger  buildings. There  is no given  structure  of 

data objects though, leading to reduced interoperability. 
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The Context Information Service (CIS [JS03]) of the Aura project [GSS+02] 

also  aims  at  providing  context  information.  The  underlying  location 

model  is based on a mapping onto geometric coordinates  [JS02]  thus not 

allowing purely symbolic coordinates. The  information model  is targeted 

at technical information of the network and its entities, such as printers or 

bandwidth,  and  reflects  their  properties  via meta  data.  The  location  of 

people is also provided. This centralized architecture is limited to building 

size  scalability  although  caching  techniques  provide  improved 

performance. 

Other kinds of infrastructure are targeted at distinct domains. The Context 

Toolkit [SDA99] provides abstractions to integrate various sensor devices 

and  facilitates  sensor  fusion.  Guide  [CDM+00a]  also  provides  an 

infrastructure which enables classes of applications from the navigation or 

outdoor  domain  to  rely  on  an  extensible  data  model.  However,  the 

location  model  is  cell‐based  and  depends  on  the  communication 

infrastructure. 

Most  of  the  above‐mentioned  approaches  do  not  allow  for  flexible 

integration  of  different  spatial  models.  Such  spatial  information  is 

represented  by  location  models,  reflects  application  requirements,  and 

depends on  the modeled environment  [BBR02]. Easy Living  [BMK+00]  is 

targeted at  the  indoor domain and provides an  infrastructure  for  spatial 

access  to  information  similar  to  QoSDream  [NC01].  Abstractions  of 

hardware providing context information or a common data model are not 

addressed by either approach. 

As we have seen, there are a variety of different approaches which address 

some of the requirements derived in Section 2. A comprehensive solution 

is  still  missing.  In  particular,  the  scalability  of  the  infrastructure  and 

interoperability  of  applications  are  still  open  research  questions.  The 
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answers  to  these questions are crucial  to provide users with applications 

which operate in varying environments.  

6.4. AHSS - A local architecture 

We have designed and implemented a context management infrastructure, 

the  Aware  Home  Spatial  Service  (AHSS),  at  the  Georgia  Tech  Aware 

Home,  based  on  the  requirements  presented  in  section  6.2  and  the 

feedback  from  the  developers  at  the  Aware Home.  One  of  their main 

requirements for developing applications was flexibility. As their research 

environment  is very dynamic,  they did not want  to be obstructed by  too 

inflexible  frameworks  and  standards,  preferring  direct  interaction  and 

agreement between developers  instead. Scalability, on  the other hand,  is 

not  such  a  big  issue  for  prototype  applications  in  the  Aware  Home. 

Therefore, the Aware Home Spatial Service is targeted at small to mid‐size 

smart home environments.  

The  ʺintelligenceʺ  in  such  settings  is usually not  concentrated  in mobile 

devices like PDAs, cellular phones or wearable computers. It is typically in 

stationary  systems  in  the house  that  serve  the  area  of  the house.  In  the 

smart  home we  are  considering,  a  variety  of  platforms  are  in  use.  The 

main  language  for most systems  in our setting  is  Java. Some application 

areas like computer vision necessitate the use of other languages like C or 

C++. 

6.4.1. Spatial model 

The AHSS  spatial model defines and  implements a standardized way  to 

model context  information structured along the dimension of space. This 

spatial model  is  topological, similar  to  the one proposed  in  [BBR02]  that 

we have adapted and extended by topographic aspects. 
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Figure 6.1: AHSS conceptual view 

As shown  in Figure 6.1, the spatial model represents context  information 

from the real world. All applications can use the same spatial model. The 

model  consists  of  a  graph,  with  locations  as  vertices  and  relations  as 

edges. Locations describe relevant spatial objects, rooms, furniture or even 

people. An AHSS  Location  has  an  ID  that  is  unique within  the  spatial 

model, a  type  that  is associated with  it, some standard attributes and an 

optional  spatial  attribute.  This  spatial  attribute  can  be  a  point,  a  line,  a 

polygon or  any other geometry  type  specified  in  the OpenGIS  standard 

[OpenGIS].  It  represents  the  topographic  aspect  of  the  model.  For 

example, it is possible to attach the shape of a room (i.e., its geometry) to 

the Location representing it. Spatial attributes provide a variety of spatial 

operations  like  union,  intersection  etc.  Furthermore,  Locations  are 

extensible.  Applications  can  add  arbitrary  attributes  with  application‐

specific semantics. 

Locations are connected by relations, to allow modeling of explicit spatial 

relations.  They  have  a  type  and  a  weight  that  can  be  used  to  model 

distances  that  are not geometric:  two  rooms might be very  close  from  a 

geometric point of view, but if there is a wall between them, or a door that 

can only be used  in  case of  an  emergency,  they may  in  fact be very  far 

apart. 

Also,  locations are organized within  levels of detail  (LOD)  that structure 

the  spatial  model  hierarchically.  This  is  important  because  not  every 

application needs to deal with the model on the same level of detail. One 
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application might  only  need  the  coordinates  of  a  house, while  another 

application might need more detailed  information, e.g.,  the  layout of  the 

rooms  in  the  house.  Figure  6.2  illustrates  this. On  every  Location,  it  is 

possible  to  generalize  (get  the  equivalent  Location  on  a  lower  LOD)  or 

specialize  (get  the  gateway  Location  on  a  higher  LOD).  For  example, 

generalizing  the kitchen would yield  the  first  floor,  specializing  the  first 

floor could yield the staircase. 

 
Figure 6.2: Levels of detail in the AHSS spatial model 

6.4.2. System architecture 

If multiple applications are concurrently using the same spatial model, the 

model has to be kept consistent among those applications. The AHSS uses 

a centralized approach  to accomplish  this  ‐  the Spatial Server,  that stores 

the current spatial model (see Figure 6.3). This centralization allows us to 

keep  the architecture of  the system relatively simple. However,  it should 

be noted  that  a  centralized design  is not  required by our  spatial model. 

Sharing  and  consistency  of  our  model  could  also  be  provided  by  a 

distributed infrastructure. 
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The spatial server has  to store a potentially  large amount of  information 

that has a spatial component in a persistent way. Instead of implementing 

a proprietary data storage, we rely on a database system. As we have seen 

in section 6.2.3, the information we are dealing with is structured by space. 

Therefore, the AHSS spatial server uses a spatially‐enabled database. This 

allows  us  to  model  the  spatial  components  of  our  data  much  more 

naturally.  It  also  improves  query  performance  because  many  spatial 

databases  support  spatial  indexing.  There  is  a  variety  of  commercial 

spatially‐enabled databases available (e.g., IBMʹs Spatial Extender for DB2 

or Oracle Locator), but those products tend to have a  large footprint and 

are  generally  expensive. We  decided  to  use  the  open  source  database 

PostGIS [PostGIS], a spatially enabled version of PostgreSQL. 

 
Figure 6.3: Architecture of the AHSS 

The communication between the spatial server and its clients utilizes IIOP. 

This allows Java clients the access via RMI/IIOP, while other clients, e.g., 

written  in  C++,  can  use  CORBA.  Using  RMI‐IIOP  callbacks,  the 

infrastructure also offers an event concept. Applications can define events 

on locations in the spatial model. Other applications can then subscribe to 

those events, and get notified when the events are triggered. 
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6.4.3. Experiences 

The  Aware  Home  Spatial  Service  provides  a  simple  infrastructure  to 

model context information that is structured along the dimension of space. 

It allows us  to store spatial  information  in a central  infrastructure and  to 

reuse  it  across  multiple  applications.  Applications  can  exchange 

information  through  the  spatial model  and  they  can  notify  each  other 

using events. 

As  shown  in  Table  6.1  AHSS  meets  our  requirements  as  they  were 

introduced in Section 6.2. 

Requirements 
Requirement Realization 
Information 

Model 
Support for location and identity as indexes - allows queries for stationary and 
mobile objects based on the spatial layout of the smart home. 

Information 
Access 

The spatial layout of the AHSS allows the calculation of spatial relations, e.g., 
the distance between two objects. Querying and updating of information is 
supported by the database. 

Consistency The centralized architecture of the AHSS provides a consistent view on the 
modeled information. 

Abstraction from 
Resources 

Since applications only rely on the information stored in the AHSS the 
information source, e.g., a sensor device or a fusion of sensor data, as provided 
by the Context Toolkit [SDA99], is shielded from the information consumer. 
Resource discovery is automatically provided by processing queries on the 
database which is constantly updated. 

Interoperability 
Applications sharing information stored in the AHSS rely on the same 
information model and thus become interoperable. However, the AHSS does 
not define any interoperability protocol between applications themselves. 

Table 6.1: Requirements 

 
Although  all  of  our  requirements  are met,  there  are  some  issues worth 

noting.  The  AHSS  does  not  rely  on  an  explicit  model  of  the  context 

information that is managed. Different instances of an AHSS, as they can 

occur in different administrative settings, will therefore not automatically 

become  interoperable.  Hence,  the  interoperability  of  application  gets 

restricted to a distinct information model of the underlying AHSS.  

However,  the AHSS  is a suitable platform  for  local context management. 

In  the next section we discuss a global context management architecture. 

A common context model allows the integration of different local context 
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models into a federated, global context management platform. In Section 6 

we show how AHSS can be integrated into such a global context model. 

6.5. Nexus - A global architecture 

If  we  want  to  extend  the  scope  of  interoperable,  context‐aware 

applications beyond a closed environment  like a single home, we need a 

common context model that is suitable for a wide range of context‐aware 

applications.  To  achieve  this  goal,  we  need  to  address  two  major 

challenges: modeling  standards  (how  can A understand what B models) 

and infrastructure (how can such a huge model be managed efficiently). 

Since no single person or corporation will model the entire world in detail, 

our  approach  in  the Nexus  project  at  the  University  of  Stuttgart  is  to 

investigate  how  context‐aware  applications  can  be  supported  by  the 

federation of local context models. Hence, the infrastructure should allow 

for the integration of context models from different providers. 

The  federation  of  different  context models  from  a  variety  of  providers 

requires a common information model which states the type and structure 

of  information objects  as well  as  the  access  to  the objects,  i.e.,  a unified 

model of object identities and the location model. 

For  the  Nexus  platform,  the  information  model  is  called  Augmented 

World  Model.  The  Augmented  World  Model  is  a  global  object‐based 

ontology  that  defines  how  context  information  can  be  shared  between 

applications and data providers. It contains real world objects like rooms, 

sensors,  streets  or  persons  as  well  as  virtual  objects  like  Virtual 

Information Towers (VIT) [LKR99] or virtual Post‐Its [Pas97] that are used 

to  represent  digital  information  in  the  world.  The  Augmented World 

Model is not stored explicitly. Instead, it is a federated, global view on all 

compliant local context models. Those local models are called augmented 

areas (AA) (see Figure 6.4). An AA has a certain extent that describes the 

geographical area in which its objects reside. There is no restriction on the 
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size or the number of objects an AA can host. AAs can overlap or model 

the same real world entity. The Augmented World Model is the federated, 

global  view  on  all Augmented Areas. An  application  does  not  need  to 

know from which AA the context information comes, and it can use data 

that  is  combined  from  different  AAs.  This  federation  is  only  possible 

because the AAs rely on a common data schema called the Standard Class 

Schema (SCS). 

 
Figure 6.4: Augmented Areas 

The  SCS  defines  the  types  and  attributes  of  objects  of  the Augmented 

World. These are ordered in a hierarchical ʺis‐aʺ relationship (inheritance). 

In  Figure  6.5,  you  can  see  an  excerpt  from  the  top  levels  of  the  SCS: 

dataobject is the root that defines a unique object identifier and locator for 

each  object  called  the Nexus Object  Locator  (NOL). Objects  of  the  type 

spatialobject  all  have  a  geographical  position  and  optionally  an  extent. 

Because the spatial context is our primary index and therefore is crucial to 

performance, we distinguish between static and mobile objects.  

While  static  objects  seldom  change  their  location  and  therefore  can  be 

managed  in  a  single  AA,  mobile  objects  move  around  and  cross  the 

borders of AAs which leads to handovers. In total, the SCS defines about 

250 classes or types for context‐aware data objects. We have designed that 

model by doing a use case analysis on different applications [NM01]. An 

AA provides the attribute, the type and the meaning of the attributes of its 

objects. 
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Figure 6.5: Excerpt from the top part of the Standard Class Schema 

To provide extensibility, any data provider can define an Extended Class 

Schema (ECS). The classes of the ECS are derived from appropriate classes 

of  the  SCS.  For  example,  if  somebody  wants  to  integrate  LivingRoom 

objects  into  an  AA,  then  she  can  extend  the  SCS  type  Room with  the 

necessary additional attributes (see Figure 6.6). An advanced LivingRoom 

application can now access this information, whereas normal applications 

knowing only the SCS could treat the object as its parent class Room. 

 
Figure 6.6: Standard and extended class schema 
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6.5.1. Platform architecture 

 
 

 
Figure 6.7: Architecture of the Nexus platform 

As  we  have  seen,  a  global  context  model  like  the  Augmented World 

Model  is  feasible  if  independent  providers  can  build  their  local models 

based on a flexible standard and make them available to a federation that 

integrates  all  local models  into  a global view. Now we will describe  an 

open  infrastructure  that  is able  to manage  the Nexus Augmented World 

Model. As depicted in Figure 6.7, the Nexus Platform is built in three tiers: 

the service  tier contains data and service providers  for Augmented Area 

models. The federation tier integrates the AAs and supports value added 

services on the Augmented World Model. Applications are located in the 

application tier and use the services of the federation. 

6.5.2. Spatial model servers 

Spatial  Model  Servers  (SpaSes)  host  Augmented  Areas.  Objects  are 

modeled in AWML (Augmented World Modeling Language) and queried 

using a simple spatial query  language called AWQL  (Augmented World 

Query Language), which  is used  to  specify  the objects of  interest and  to 
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filter  the attributes. AWQL  supports  spatial predicates  (overlaps,  inside) 

and nearest neighbor queries as well as data manipulation (insert, update, 

delete). AWML and AWQL are both XML languages. Note that AWQL is 

not an XML query  language  like XQuery  ‐ AWQL  is  suitable  for  spatial 

objects, not for hierarchical XML documents. 

Depending  on what  kind  of  context  information  a  SpaSe  provides,  the 

implementation of  the spatial server which processes  the AWQL/AWML 

can  differ  to  a  large  degree.  For  static  objects  and  large‐scale  spatial 

models, we use a full‐grown database with a spatial extension (IBM DB2 

7.1  +  Spatial Extender). AWQL  can be  easily  transformed  to  SQL by  an 

XSLT  style  sheet. Mobile  objects  are managed  by  the  Location  Service 

[LR02]. Because position data  is highly dynamic and does not need to be 

persistent, main memory data structures are better suited for this task. The 

Location Service consists of hierarchically structured servers that manage 

objects within  a  certain  area. When  the  object moves  out  of  this  area, 

handovers are performed. 

6.5.3. Nexus nodes 

The Nexus nodes  in Figure 6.7 mediate between Nexus applications and 

Nexus services. They are  responsible  for distributing queries  to different 

data  providers  and  for  composing  the  results,  thus  providing  the 

Augmented World Model  for  the  applications.  The  nodes  do  not  store 

persistent data, a fact that allows replicating them for load balancing. 

For query distribution and service discovery, a Nexus node uses the Area 

Service  Register  (ASR).  This  service  is  a  directory  of  the  available 

augmented areas and stores the address of the server, the available object 

types and  the  extent  to  the AA. The Nexus node  computes  the  targeted 

region and the object types of the application query and queries the ASR 

to  find out which Spatial Model Servers  cover  the  requested  region and 
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store objects of the requested types. Then the node distributes the query to 

the  relevant data providers named by  the ASR and merges  their  results. 

More details about the federation tier can be found in [NGS+01]. 

6.5.4. Value added services 

In addition to the query functionality, every Nexus node supports value‐

added  services.  They  use  the  federated  context  model  to  implement 

advanced services and have their own interface. In Figure 6.7, you can see 

three  different  value‐added  services  of  the  Nexus  platform:  the  event 

service monitors spatial events, combining basic events into more complex 

events. This allows the processing of spatial predicates, such as ʺtwo of my 

friends meetʺ. The map  service provides maps based on  a  selected  area 

and  the  navigation  service  provides  a  navigation  route  from  a  starting 

point to an endpoint. 

6.6. The NexusScout application 

In  this  section  we  briefly  describe  NexusScout,  a  location‐based 

application  that  runs  on  the Nexus  platform.  It  is  based  on  the Virtual 

Information Tower application [LKR99]. We have added several advanced 

functionalities  that  show  the  power  of  the  platform  and  are  useful  for 

mobile,  context‐aware applications. NexusScout  runs on a notebook and 

we  have  also  just  ported  it  to  a  PDA.  It  uses  WLAN  for  wireless 

communication.  Outdoor  positioning  is  done  via  GPS,  while  indoor 

positioning uses infrared beacons.  

The NexusScout provides maps  to users  showing  their position. Virtual 

Information  Towers  (VIT)  provide  information  (web  pages)  that  is 

relevant  at  the  given  location.  Based  on  the Nexus  Augmented World 

Model nearest‐neighbor queries for objects, e.g., restaurants, are possible. 

The  integration  of  the  navigation  and  map  services  allows  to  use  the 
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Neuxs  as  navigation  system  as well  as  register  spatial  predicates,  e.g., 

ʺnotify me when my colleague enters the buildingʺ. 

 
Figure 6.8: Screenshot of the NexuScout 

6.7. AHSS in Nexus 

As  we  have  seen  in  Section  6.4.3,  a  local  context model  like  AHSS  is 

suitable  for  small‐  to mid‐size  home  environments, where  flexibility  is 

very  important  to  quickly develop  and  evaluate prototype  applications, 

and  where  developers  can  easily  interact  and  agree  on  the  modeling. 

However,  if we have  applications  for which  the  context  is  to be  shared 

over  larger  areas  and  possibly  multiple  administrative  domains,  e.g., 

multiple  aware  homes,  the AHSS  is  no  longer  sufficient,  as  it  does  not 

provide  the necessary scalability and agreements between developers on 

how the world should be modeled. Our approach to mitigate this problem 

is to integrate AHSS into our Augmented World Model. 
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6.7.1. Conceptual integration 

We decided to integrate AHSS into Nexus as a spatial server. This way, an 

area which  is served by AHSS appears  to be an Augmented Area  to  the 

Nexus  federation.  The  major  challenge  is  to  integrate  the  concepts  of 

Nexus  and AHSS. The  integration does not have  to be  complete: While 

AHSS needs  to support all  the concepts of Nexus  in order  to  function as 

part of a Nexus federation, the reverse is not necessary. In our approach, 

we  map  Nexus  objects  to  AHSS  Locations.  Basic  attributes  of  Nexus 

attributes  like  the  object  id  and  the  type  are  mapped  to  their  AHSS 

counterparts.  Nexus  attributes  that  have  no  standardized  AHSS 

counterpart are mapped to extended AHSS attributes. We are now going 

to describe the changes we have made to AHSS in order to integrate it into 

Nexus. 

6.7.2. Technical integration 

To work as part of a  federation,  the AHSS  spatial  server has  to perform 

several  tasks.  First,  it  needs  to  register  with  the  Nexus  Area  Service 

Register  to  give  the  federation  the  information  it  needs  to  dispatch  the 

queries. It has  to specify which area  the spatial server covers, and which 

Nexus object  types  it provides. The Nexus  federation queries  the  spatial 

servers by using AWQL. Thus we had to implement an AWQL interface to 

Nexus which processes the query and update operations against the AHSS 

data. Also,  the Nexus  Federation  expects  the  replies  in AWML  format. 

Therefore  the AWQL  interface has  to map  the AHSS Locations  to Nexus 

objects, and then has to serialize them into AWML. AWQL queries specify 

the class schemata the client understands. The replies have to contain only 

objects that conform to these class schemata. Also, if a Nexus client queries 

e.g., for BuildingElements, objects of descendants of BuildingElement that 

match the query have to be returned. So it is necessary for AHSS to know 
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the Augmented World Model  (AWM),  the  Standard Class  Schema  plus 

appropriate Extended Class  Schemas, which  are  both modeled  in XML. 

We  have  therefore  added  an  AWM  interpreter  which  reads  the 

appropriate  AWM  specified  in  the  query.  It  then  handles  the  AWM 

inheritance  hierarchy  issues  of  the  query  and  strips  the  resulting AHSS 

Locations  of  all  attributes which  are  not  part  of  the  class  schema.  If  a 

Nexus  application  is  interested  in  getting  all  the  spatial  objects with  all 

their  attributes  from  the  infrastructure,  it  can  specify  that  the  results 

should  conform  to  the  ʺGenericʺ  class  schema.  Then  all AHSS  Location 

attributes  are  returned.  Figure  6.9  gives  an  overview  of  the  necessary 

changes to the AHSS architecture.  

6.7.3. Experiences 

The  integration  of  AHSS  into  the  Nexus  federation  provides  various 

advantages. First of all, AHSS becomes part of the Nexus federated world 

model. Nexus applications can then use context information that is stored 

within the AHSS. This makes it possible to use existing Nexus applications 

with the AHSS. For example, the NexusScout can use AHSS without any 

modifications.  Also,  Nexus  applications  can  store  their  context 

information into the AHSS. This information can further enrich the context 

model which AHSS applications can access. The local AHSS interfaces are 

still  available,  so  local  applications  can  access AHSS  either  through  the 

local interfaces or through the Nexus AWQL interface. 

This approach makes it possible to use simple, specialized infrastructures 

to support local applications, while using the Nexus federation to support 

greater  scalability  needs.  The  context  model  of  each  specialized 

infrastructure has to support topographic modeling and has to be flexible 

enough to store the attributes which are required by Nexus. 
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Figure 6.9: The extended AHSS architecture 

6.8. Conclusion and future work 

In  this chapter we have shown  that shared context models are a suitable 

basis  for  building  context‐aware  applications  that  operate  in  the  same 

environment  and  rely  on  the  same  context  information.  We  have 

presented the Aware Home Spatial Service (AHSS) that was designed for 

a  single  smart home  environment. For  context management on  a global 

scale,  we  have  developed  the  Nexus  platform  that  federates  different 

context models based on a common standard  for modeling objects and a 

topographic modeling of space. Finally, we have shown how an existing 

local spatial model like AHSS can be integrated into the Nexus platform. 

The current version of the extensible Nexus standard class schema is only 

the first step towards defining a common standard for context models  in 

general. The  integration  of  further  application models  currently used  in 

smart environments will  lead  to a better understanding of world models 

and how to build them. To support further classes of applications we have 

to go beyond modeling  sensor  information  as model data  and  integrate 

hardware  abstractions  and  discovery mechanisms  into  our model,  e.g., 

provide  access  to  standardized  interfaces  for  complex  actuators  and 

sensors like cameras. So far the Nexus platform has focused on providing 

efficient  and  scalable  access  to  two  dimensional  topographical  world 

models.  In  the  future,  we  will  investigate  complex  three  dimensional 
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models  and  also  full‐fledged  support  for  topological models. Federating 

different models modeling  the  same  real world  objects  ensures  internal 

consistency of the model information. Consistency between the model and 

the real world is also an important focus of our future research. 

For a more widespread use of world models in smart environments tools 

for  creating  such  models  have  to  be  developed.  Having  larger  smart 

environments allows more useful evaluations in real world situations. We 

plan  to  investigate  security,  privacy  and  acceptability  issues  in  such 

settings. 
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7. Middleware and Application Adaptation 

Requirements and their Support in Pervasive 

Computing  
Pervasive  computing  environments  are  characterized  by  an 

additional  heterogeneity  compared  to  existing  computing  in‐

frastructures. Devices  ranging  from  small  embedded  systems 

to  fullfledged  computers  are  connected  via  spontaneously 

formed networks.  In  this  chapter we  analyze  requirements  of 

applications and system software to cope with the dynamically 

changing  execution  environment. Based  on  our microbroker‐

based middleware BASE a component framework for pervasive 

computing supporting application adaptation is proposed.  

7.1. Introduction  

In  the  recent  past,  middleware  platforms  have  been  the  target  of 

researchers in order to provide flexibility with respect to the configuration 

of  the  middleware  itself.  Requirements  on  such  reconfigurable 

middleware systems arose mainly  from  the domain of Quality of Service 

(QoS) management. Different application requirements on non‐functional 

aspects, such as QoS,  lead  to mechanisms of  the middleware  to ensure a 

distinct QoS property.  

The vision  of ubiquitous  or pervasive  computing  adds new  complexity. 

Our  everyday  environment  becomes  populated  with  smart  everyday 

items. That is, processors are integrated into the environment and allow to 

access  information related  to  the real world as well as  to control distinct 

functionality.  The  end  systems  in  such  scenarios  are  far  more 

heterogeneous  than  in  classical  computing  environments.  Sensors  will 

only need  limited  computing  and  communication  capabilities  and  other 

devices will be dedicated to a single purpose, i.e., a presentation system in 



153 

a video projector might contain a fullfledged computer but its software is 

specialized  for  presentation management.  Besides  the  involved  devices, 

the communication  technology will differ as well,  ranging  from  infrared 

connections over radio  links  to computers connected via static  links. The 

resulting  network  topologies  will  frequently  change  due  to  user  and 

device  mobility.  Information  and  services  available  are  bound  to  the 

location  of  the  device,  e.g.,  temperature  information  or  a  presentation 

system  of  a  far  away  place  are  typically  less  interesting  than  those 

available nearby.  

As  a  result,  the  requirements  on  adaptation  and  configuration  of  the 

underlying middleware  as  well  as  those  from  the  applications  change 

compared  to  those  requirements already present  in classical middleware 

systems. In  this chapter we will present an example scenario, derive and 

motivate  requirements  on  middleware  configuration  support  and 

application adaptation. Our approach to support these requirements via a 

microbroker based middleware – BASE – and a component model based 

on  an  application  framework  is  then  presented.  After  a  discussion  of 

related work  the  chapter  closes with  a  summary  and  outlook  on  future 

work.  

7.2. System model  

This  section will  first  present  a  pervasive  computing  scenario  and  two 

possible applications before the system model is defined.  

7.2.1. Scenario  

Let us  consider  a  scenario  as  it  is  common  in  the  envisioned  pervasive 

computing  systems.  Present  in  such  a  scenario  are  embedded  and 

specialized  devices,  e.g.,  sensors  providing  information  about 

temperature, position of users or  specialized  systems,  such as  the before 

mentioned  presentation  system.  All  these  devices  are  equipped  with 
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wireless  communication.  Along  with  these  stationary  devices,  mobile 

devices which  are  typically  carried  by  users  are  present.  Such  devices 

could be handheld devices, such as personal digital assistants  (PDAs) or 

cell phones, but  in  the  future  there might be  smart  clothes  as well. The 

computing  environments  of  today will  not  vanish  or  be  substituted  by 

these devices but complement such systems. In order to motivate the use 

of  such  environments  to  applications  two  possible  applications  are 

sketched:  

Support of  senior  citizens:  in order  to  support  the  life of  the  elderly  in 

their  home,  their  body  functions  and  positions might  be  captured  and 

evaluated at a designated home server. If a change in the health condition 

occurs,  information how  to behave  is presented  through  audio or video 

devices  in  the  room  where  the  person  currently  is  located.  In  serious 

health  conditions  an  ambulance  is  called  and  provided with  the  health 

status of the person.  

Office  support:  the  status  of  rooms  and  objects  could  be monitored  by 

sensors and propagated into the vicinity. Users nearby are thus provided 

with environmental information as well as vacancies of meeting rooms etc. 

Additionally,  locally available  services become accessible when a user  is 

nearby, e.g., a presentation system  is only of use, when the user  is  in the 

same room to make use of its output.  

 
Before we will derive  requirements  from  these  scenarios  the underlying 

system model will be presented.  

7.2.2. System Model  

Pervasive  computing  environments  can  be  classified  by  the  involved 

devices and the network characteristics. Furthermore, applications depend 

on  the  abstractions  provided  by  the  underlying  operating  system  or 

middleware  – which  is  referred  to  as  system  software. We will  briefly 
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sketch  the  characteristics  of  these  three  topics  in  the  remainder  of  this 

subsection.  

7.2.2.1. Devices.  

As  stated above, devices  range  from  sensors over  specialized  systems  to 

full fledged computers and mobile devices. Besides  their processing and 

storage properties – which may differ widely – devices provide different 

capabilities which can be used by applications running on  these devices. 

Examples are sensors, e.g., temperature as well as positioning, display or 

input  capabilities,  or  some  controlling  capability,  such  as  dimming  the 

light or adjusting the blind of a window.  

The  availability  of  a  device  capability might  be  restricted  in  space  and 

time. A GPS  sensor  is not  likely  to work within a building and at night 

sensors based on daylight will stop operating.  

7.2.2.2. Network.  

The wireless  connections  between  the devices differ with  respect  to  the 

underlying  technology  and  their  characteristics.  The  most  profound 

difference to classical computing environments is the spontaneous nature 

of  such networks, which  are  formed by nodes which  are  temporarily  in 

each  others  communication  range. Obstacles,  user mobility,  and  power 

saving  are  common  events  which  lead  to  a  reconfiguration  of  a 

spontaneous network.  

As  a  result,  services  located  on  a  device  that  is  not  in  the  current 

spontaneous network of a client, are not available. This prevents the usage 

of  centralized  lookup  or  trading  services. During  the  interaction with  a 

service,  the device providing  the  service might  leave  the network. Since 

devices  can be  equipped with different network  interfaces,  spontaneous 

networks will overlap, i.e., some devices might be reachable via more than 

one network interface at a time.  
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7.2.2.3. System software.  

The  support  of  system  software  clearly may  differ widely.  Specialized 

operating systems for embedded devices, common operating systems with 

middleware  support,  or  completely  proprietary  solutions  are  present. 

From an application point of view,  the abstractions how  to  interact with 

remote services – a typical middleware responsibility – and how to access 

device  capabilities, which  is  an  operating  system  task,  are  important  in 

order to be comprehensive and yet easy to use.  

Another relevant issue in distributed systems in general is interoperability 

which  is  typically  achieved  by  relying  on  interoperability  protocols. 

Interoperability  protocols  reflect  the  communication  model  of  the 

application  as  it  is  supported  by  a  middleware.  Remote  method 

invocations are  reflected by  request/response messages while events  can 

be  realized by oneway messages  containing  the  event. Requirements on 

the  underlying  transport,  such  as  an  error‐free  connection‐oriented 

channel, lead to a restricted usage if only oneway communication – via an 

optical link, or connection‐less communication – is available.  

7.3. Requirements  

In  this  section  we  will  derive  requirements  on  the  adaptation  of 

applications and its support by system software and component models.  

Applications  are  considered  to  be  executed  in  a  distributed  way. 

Standalone  applications  could  require  adaptation  support  as well,  e.g., 

when a device capability becomes unavailable (a GPS sensor indoor), but 

these kinds of adaptation  requirements are a  subset of  the more general 

ones of distributed applications.  

7.3.1. Application adaptation requirements  

Applications  in  a  spontaneous  networking  environment  have  to  cope 

with:  
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Changing  service  and  device  capability  availability:  With  devices 

becoming  available  their  services  should  be  used  by  an  application. As 

well,  if  a  service  becomes  unavailable,  an  alternative  service  should  be 

selected. This will only work, if applications are composed of services with 

clear  dependencies.  If  alternative  levels  of  an  application  are  defined 

which require different services the application can continue as long as at 

least on  set of  services  is available. Clearly,  this cannot be  supported by 

the  middleware  alone  but  requires  an  appropriate  framework  for 

applications.  The  same mechanisms  can  be  used  to  address  fluctuating 

sensor availability on a device.  

Different  abstractions  for  programming  of  device  capabilities: 

Middleware  and  operating  system  abstractions  for  remote  services  and 

device  capabilities  are  typically  different,  e.g.,  proxy  objects  vs.  system 

calls.  This  hardens  adaptation,  since  the  switch  of  a  local  to  a  remote 

device capability cannot be done with the same programming interface.  

7.3.2. System software adaptation requirements  

System  software  in  a  spontaneous  networking  environment  has  to 

support:  

Device  lookup  and  service  discovery  for  spontaneous  networks:  The 

device  lookup  depends  on  the  underlying  network  characteristics  and 

thus  requires  distinct  lookup mechanisms  for  each  supported  network 

interface.  Additionally,  services  might  require  distinct  interoperability 

protocols  which  also  depend  on  the  network  interface  and  hence  the 

service  lookup will have  to  take  this  into  account. The detection  of  lost 

devices and  thus  the unavailability of all  services  in use on  that devices 

have to be signalled to the application or an application framework.  

Flexible protocol support and selection:  If a network  interface  looses  its 

connection  to  another device,  communication  should be upheld  if  other 
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network  interfaces  can  provide  a  communication  channel.  Switching 

between different  interoperability protocols over networks with different 

characteristics  however  requires  adaptation  if  the  underlying  transport 

does  not  fullfil  requirements  of  the  interoperability  protocol,  e.g.,  IIOP 

requires connection‐oriented error‐free/signalling communication.  

Decoupling  of  application  communication model  and  interoperability 

communication model:  In order  to  allow different  communication  links 

for  outgoing  and  incoming  messages,  the  application  communication 

model,  e.g.,  RPC  or  events,  should  be  kept  independent  from  the 

communication  model  of  the  possible  interoperability  protocols.  For 

example  this  allows  communication  over  infrared  via  sending  out  a 

request  as  an  event  and  receiving  the  reply  as  a  reply message over  an 

RPC interoperability protocol based on TCP and IEEE 802.11.  

Uniform  abstraction  for  device  capabilities  and  services:  This  allows 

applications  to access  remote  capabilities  in  the  same way as  local ones. 

Moreover, a uniform abstraction to access services and device capabilities 

allows to mask the heterogeneity of devices.  

Flexible  integration  of  adaptation  mechanisms:  Since  different 

application requirements will need support  through mechanisms, e.g.,  to 

migrate  a  component  to  a  remote  host  to  increase  the  application 

performance  or  to migrate  it  to  the  local  node  in  order  to  save  energy, 

different mechanisms  should  be  easily  integrated,  configured,  and used 

either  directly  by  an  application  above  the  system  software  or  by  an 

application framework.  

A system software offering the above mentioned support is not sufficient 

to  help  application  programmers  to  conquer  the  heterogeneity  and 

dynamics of pervasive computing environments. Instead of programming 

towards  middleware  mechanisms  and  selecting  distinct  mechanisms 

manually,  application  programmers  should  rely  on  high  level  policies 
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which will result  in combinations of mechanisms of the system software. 

Examples  for  such policies are  ’EnergySaving’,  leading  to  fostering  local 

execution of application components and restricting radio communication 

that is costly in terms of energy, or ’IncreasingAvailability’, which would 

make  extensive use of  remote  services  in order  to  allow  the  application 

execution – as a tradeoff to energy.  

What is needed in addition to a middleware supporting the requirements 

stated  above  is  an  application  framework  that  will  provide  benign 

abstractions  for  choosing  appropriate  adaptation  policies.  In  order  to 

support  such  a  framework,  we  have  developed  a  microbroker‐based 

middleware, BASE  [BSG+03], which meets  these requirements. Currently 

we are developing a component system based on BASE which will allow 

the specification of component dependencies.  

In  the  following we will  sketch  the design of BASE  and  the  component 

system, which we are currently developing.  

7.4. BASE a Microbroker based Middleware  

Our middleware BASE  is  intended  to be a minimal platform suitable  for 

small  embedded  systems  but  extensible  to  make  use  of  abstractions 

available  on  resource‐rich  environments.  BASE  provides  application 

programmers with  suitable  abstractions  to  conquer  the  heterogeneity  in 

pervasive computing environments. Another objective of BASE is to form 

a  foundation  for  an  adaptation  supporting  component  framework. We 

will  briefly  sketch  the  overall  architecture  of  BASE.  More  detailed 

information is available in [BSG+03].  

The major design decision  in BASE was  to choose a microbroker design. 

Device  capabilities  as  well  as  local  and  remote  services  are  uniformly 

accessible  via  invocation  objects, which  carry  the  target  object, method‐

name, parameters, and a service context indication special handling of the 

invocation,  such  as  QoS  parameters.  The  microbroker  takes  incoming 
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invocations and dispatches them to either a local service via a skeleton, a 

remote  service  via  a  transport  module  which  connects  the  local  and 

remote device, or to a device‐local device capability. Hence, remote device 

capabilities can be accessed as services as well.  

Invocation objects can be created manually or – if a service provides a stub 

object – through a proxy (stub object) as conventional middleware systems 

typically  provide.  The microbroker  is  responsible  for  synchronizing  the 

caller  and  issue  invocations  and  receive  possible  replies  as well  as  an 

invocation. This allows the application to choose different communication 

models,  such  as  remote  procedure  calls  (RPC),  deferred  synchronous 

RPCs, or events via stub objects. Furthermore,  the utilization of different 

interoperability  protocols  becomes  possible.  Interoperability  protocols 

typically  reflect  the  applications  communication model. However,  since 

the  microbroker  maps  the  application  communication  model  to  an 

exchange of invocation objects, different protocols can be used as long as 

they  accept  an  invocation  object  and  transfer  it.  Using  the  same 

interoperability  protocol  for  outgoing  and  incoming  invocations  is  not 

necessary,  since  the  microbroker  keeps  track  of  expected  responses 

(modelled  as  incovations  as  well).  A  scenario  where  a  node  uses  two 

communication  technologies  for  the  outgoing  request  and  the  incoming 

reply is depicted in Figure 7.1.  

BASE  allows  the  integration  of  transport  plugins  during  runtime.  The 

dynamic  invocation creation along with  local service registries provide a 

simple reflection mechanism.  

The BASE prototype has been implemented in Java, making it suitable for 

a variety of  Java‐enabled  embedded  systems,  e.g., mobile phones or  the 

TINIBoard.  A  minimal  configuration  of  BASE  requires  130  KBytes  of 

memory. Due to buffer usage this can increase to a maximum of about 400 

KBytes.  Still,  this makes BASE  suitable  for many  small  embedded  Java‐
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based systems. The extensibility of the microbroker allows the integration 

of features available on resource‐rich computing environments.  

7.5. PCOM  

The  functionality  provided  by  BASE  offers  a  basic  abstraction  to  ease 

application development. Still, additional mechanisms on top of BASE are 

needed to enable the automatic adaptation of applications during runtime 

in  order  to  react  to  the  changing  availability  of  services  or  device 

capabilities according  to  the current application execution policy, e.g.,  to 

minimize  the  energy  usage  or  to  maximize  the  dependability  of  an 

application. 

 

.   

Figure 7.1. Request/response interaction in BASE 
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To achieve this, we propose an application model based on a component 

system  (named PCOM). The application model specifies  the architectural 

building  blocks  (modeled  by  components)  and  their  interdependencies 

(modeled  by  contracts  between  components).  At  runtime,  this 

specification is mapped to a concrete set of component instances where all 

mandatory  contracts  are  fulfilled.  Hence,  PCOMcomponents  offer  a 

distinct  functionality via  contractually  specified  interfaces  (following  the 

definition  of  [Szy98]).  The  functional  properties  of  the  contract  are 

modelled  in  the  interface  itself  whereas  additional  properties,  e.g., 

dependency  on  another  component,  QoS  requirements,  or  behavioral 

contracts  via  preand  postconditions,  are  explicitly modelled  as  contract 

types.  This  concept  has  been  proposed  in  the  realm  of  traditional 

component systems, e.g., [BJP+99, WBG+01]. Contract types are templates 

for  contract  instances  as  well  as  the  components  are  templates  for 

component  instances. When  components  are  instantiated,  contract  types 

are mapped to concrete contracts which either offer the desired property, 

e.g., negotiate a distinct QoS property or bind  to another  component, or 

indicate  a  contract  violation.  An  application  is  modelled  via  a  special 

component  (the  so‐called  application  anchor) which  specifies  the  set  of 

necessary  subcomponents.  These  components  depend  on  each  other 

according to the specified contract types.  

 

Figure 6.2. Health monitoring application in PCOM. 
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A  simplified  example  for  this  is  given  in  Figure  6.2.  Here,  a  health 

monitoring application  is shown, which outputs  information and advices 

whenever a suitable display  is  in  the vicinity. This application  is  formed 

by its application anchor and three subcomponent instances:  

The  health monitoring  component  is  used  to  retrieve  sensor  information 

such as blood pressure, pulse, etc.  

The presentation system component is responsible for presenting advices for 

certain  health  conditions,  e.g.,  to  calm  down,  take  a  distinct  kind  of 

medicine, on a display nearby.  

The  application  logic  component  depends  on  these  two  components.  It 

receives  sensor  information  from  the  health monitoring  component  and 

derives advices, which it sends to the presentation system component. For 

simplicity,  only  the  dependency  between  the  application  logic  and  the 

presentation  component  is  shown.  It  is  modelled  as  a  contract  which 

requires distinct size and resolution of the presentation system.  

Additionally, a policy regarding energy consumption  is shown, which  is 

assigned to the application.  

The  application  specification  has  to  be mapped  to  instances  on  devices 

which  realize  the  components. The different  components are mapped  to 

specific  services  residing  on  potentially  different  devices.  Contracts 

between components have to be negotiated when a binding is established. 

For  an  example,  before  using  or  acquiring  the  display  component  a 

negotiation ensures that the resolution and size fullfil the contract.  

The policy specifying the energy consumption is taken into account by the 

underlying  framework  when  tasks  that  need  a  lot  of  energy,  e.g., 

performing  calculations  or  accessing  remote  components,  are  executed. 

The  policies  lead  to  configurations  of  the  underlying  BASE which will 

enforce them, e.g., in selecting the transport requiring the least energy.  
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The mapping  of  application  policies,  the  contracts,  and  the  binding  of 

components  deployed  across  different  devices  shall  be  provided  by  the 

framework.  Currently,  we  have  implemented  BASE  and  designed  the 

above  sketched  application model. Our next  steps  involve  the design of 

the  underlying  framework  as  well  as  the  mapping  of  contracts  and 

policies to the services and mechanisms provided by BASE.  

The overall framework will allow adaptation of applications by activating 

those applications where the application anchor contract is satisfied. That 

is, all dependencies of  the applications  can be  fullfilled according  to  the 

application policies  and  contracts  involved. Adaptation  is  supported  by 

the  mechanisms  of  the  underlying  middleware  and  the  selection  of 

alternative  contracts.  The  execution  context  of  an  application  is 

determined by the services available on nearby devices and the associated 

component instances from the application specification.  

7.6. Related Work  

7.6.1. Middleware Systems  

In  the  past,  a  multitude  of  different  middleware  systems  has  been 

developed  (e.g.,  [OMG02a, SunRMI]) shielding application programmers 

not only from distribution of services but also different operating systems 

or  hardware  architectures.  Conventional  middleware  systems  are 

designed  for mostly stable environments,  in which service unavailability 

can  be  treated  as  an  error,  making  these  systems  unsuitable  for 

spontaneous networking environments.  

The latter can be achieved by extending conventional middleware systems 

to dynamically reconfigurable middleware systems  (e.g.,  [BG00, BCR+00, 

RKC01]), which  are  able  to  adapt  their  behavior  at  runtime,  e.g.,  how 

marshalling  is  done.  Still,  most  existing  reconfigurable  middleware 
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systems  concentrate  on  powerful  reconfiguration  interfaces  and  not  on 

supporting small, resource‐poor devices.  

The resource restrictions of such devices prohibit the application of a full‐

fledged middleware system. One way to address this is to restrict existing 

systems  and provide  only  a  functional  subset  (e.g.,  [OMG02b, RSC+99]) 

leading  to  different  programming  models  or  a  subset  of  available 

interoperability protocols. Another option  is  to structure  the middleware 

in  multiple  components,  such  that  unnecessary  functionality  can  be 

excluded  from  the  middleware  dynamically.  One  example  is  the 

Universally  Interoperable Core  (UIC)  [RKC01]. Like BASE, UIC  is based 

on  a  microkernel  that  can  be  dynamically  extended  to  interact  with 

different  existing  middleware  solutions.  However,  different 

communication models or different protocols  for outgoing and  incoming 

messages are not supported.  

7.6.2. Component Systems and Pervasive 

Computing  

Component systems strive for independence of software components from 

underlying platform properties  in order to allow their reuse. One way to 

achieve  this  is  to model explicit context dependencies, e.g., via contracts 

between components or contracts between the component container, such 

as  in  J2EE  [SunJ2EE].  Typically,  the  inter‐component  contracts  can  be 

negotiated  and  various  solutions  exist,  to  ease  the  integration  into  the 

application  framework,  such  as  the  aspect‐oriented  programming 

paradigm [BG00, BA01]. While such approaches can be appropriately used 

to handle the inter‐component contracts the component container contract 

typically  relies  on  a fixed  common  abstraction, making  it unfeasible  for 

pervasive  computing  environments  where  the  container  contract  can 

change.  
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In the realm of ubiquitous computing the first approaches for component 

based systems are emerging. While Pebbles [Oxygen] is at a stage where it 

is  hard  to  judge  which  requirements  will  be  met,  the  Aura  project 

[CGS+02] proposes a component framework similar to ours. The resource 

dependency  of  the  Aura  system  is  not  addressed  by  the  underlying 

middleware  but  by  hand  tailored  resource  monitors.  Hence,  only  a 

comprehensive support of adaptation at  the application  layer, not on  the 

middleware layer, is intended. Similar to Aura, One.world [GAB+00] and 

the Gaia system [RC00] shift the complexity of applicication adaptation to 

the programmer. Support of the underlying middleware is only provided 

with respect to communication issues.  

7.7. Conclusion and Outlook  

Pervasive  computing  environments  differ  from  existing  ones  in  the 

increasing  heterogeneity  of  devices  and  networks.  The  spontaneous 

networking  leads  to  situations, which  are  treated  as  errors  in  classical 

computing,  but  require  distinct  precautions  since  they  can  happen 

regularly. Based on typical scenarios we have derived a system model for 

pervasive  computing  and  the  support  from  system  software  and 

application  adaptation.  We  have  presented  an  extensible  middleware 

platform which  already  provides  basic  abstractions  to  ease  application 

development.  The  automatic  adaptation  of  applications  should  be 

supported  by  a  component  model  based  on  a  framework.  The  basic 

abstractions of our middleware BASE can be used  to build a  framework 

for  a  component model. A  contract  concept  is  not  only  used  to  specify 

required  properties  for  component  interaction  but  also  to  indicate 

application  configurations  leading  to  a  component‐based  application 

model.  Adaptation  of  application  is  reduced  to  validating  required 

contracts  and  activating  applications  where  all  contracts  are  fullfiled. 

Contract enforcement and mechanisms to adapt are provided by BASE.  
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Currently, we  have  designed  and  implemented  BASE. We  are  building 

prototypes  for  applications  using  BASE  in  order  to  gain  experience  on 

how the framework can support our application model. In the next steps 

of our work we will aim at completing the framework.  
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8. BASE - A Micro-broker-based Middleware For 

Pervasive Computing  
Pervasive  computing  environments  add  a  multitude  of 

additional  devices  to  our  current  computing  landscapes. 

Specialized  embedded  systems  provide  sensor  information 

about  the  real  world  or  offer  a  distinct  functionality,  e.g., 

presentation on a “smart wall”. Spontaneous networking leads 

to  constantly  changing  availability  of  services. This  requires 

middleware  support  to  ease  application  development. 

Additionally, we argue that an extensible middleware platform 

covering  small  embedded  systems  to  full‐fledged  desktop 

computers  is needed. Such a middleware should provide easy‐

to‐use abstractions to access remote services and device‐specific 

capabilities. We present a micro‐broker‐based approach which 

meets these requirements by allowing uniform access to device 

capabilities and services through proxies and the integration of 

different  interoperability protocols. A minimum configuration 

of  the  middleware  can  be  executed  on  embedded  systems. 

Resource‐rich  execution  environments  are  supported  by  the 

extensibility of the middleware.  

8.1. Introduction  

Existing middleware platforms  are  characterized by  their precautions  to 

overcome heterogeneity of computer systems with respect to the hardware 

platforms and programming  languages. However,  the computer systems 

on which applications are executed are mostly homogeneous according to 

their processing and storage capabilities. The vision of ubiquitous or per‐

vasive  computing  [Wei91]  creates  a  world  populated  not  only  by 

computers  as  we  know  them  today  but  also  with  sensors  and  smart 
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“everyday  items”.  The  heterogeneity  added  by  these  smart  things  is 

characterized by an additional property: the embedded systems integrated 

in the environment are typically tailored to distinct purposes. Hence, not 

only  processing  and  storage  capabilities  differ widely  but  local  device 

capabilities,  such  as  different  sensor  types  for  temperature,  pressure  or 

positioning, are also device‐specific. Communication between the different 

end‐systems  can  take  place  over  different  kinds  of  network  interfaces, 

such  as  infrared  communication  or  radio  links,  e.g.,  Bluetooth  or  IEEE 

802.11,  and  additionally  via  different  interoperability  protocols,  such  as 

IIOP, RMI, or simple event‐based protocols.  

The availability of resources, remote ones as well as local ones, can change 

over  time,  due  to  network  connectivity  as  well  as  sensor‐specific 

properties,  e.g.,  it  is  unlikely  that  a GPS‐based  positioning  system will 

work indoors.  

In order to provide application programmers with support for conquering 

the additional complexity in pervasive computing environments, we have 

developed a micro‐broker‐based middleware. Our middleware will serve 

as a foundation for applications as well as component systems, hence the 

name  BASE.  Key  features  of  BASE  are  the  uniform  access  to  remote 

services and device‐specific capabilities, the decoupling of the application 

communication model and the underlying interoperability protocols, and 

its dynamic extensibility supporting the range of devices from sensors to 

full‐fledged computers.  

The  chapter  is  structured  as  follows.  Next,  we  will  motivate  the 

requirements  for such a middleware and  introduce an example scenario. 

Existing  approaches  are  classified  and  discussed  in  the  related  work 

section before we will sketch the overall design rationale of our approach 

BASE.  Some  implementation  details  of BASE  and  an  evaluation will  be 
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presented before we close  the chapter with a conclusion and outlook on 

future work.  

8.2. Requirements  

In  order  to  clarify  our  system model  and  derive  our  requirements, we 

want to sketch a small scenario. In a future “pervasive computing world”, 

a building,  e.g.,  an office,  contains  a huge number of highly  specialized 

and therefore very heterogeneous computing devices. While some of them 

are stationary, e.g., placed  in a room, others are carried by users, e.g., as 

wearable  computers.  Devices  range  from  small  embedded  sensors  to 

classic  stand‐alone  computers. Clearly,  the  resources  and  capabilities  of 

such devices differ widely, due to cost and size restrictions. Note, that the 

capabilities  of  a  mobile  device  can  also  change  dynamically.  As  an 

example, a GPS‐sensor will stop functioning when entering a building. To 

summarize, a pervasive computing environment consists of a multitude of 

heterogeneous  devices,  both  stationary  and mobile,  with  different  and 

dynamically changing capabilities and specific ways to access them.  

One essential device capability  is the ability to communicate and  interact 

with  other  devices.  This  is  achieved  by  forming  spontaneous  networks 

with  changing  members  due  to  the  communication  range.  Following 

[KF02] we prefer to use the term  ’spontaneous’  instead of  ’ad‐hoc’ as ad‐

hoc tends to be restricted to specific lower level functionality like routing. 

The  network  interfaces  used  are  highly  heterogeneous  ranging  from 

infrared  communication  over  radio  links  to  wired  connections. 

Interoperability protocols are tailored to specific requirements as well, e.g., 

a sensor does not need  to  implement a complex  interoperability protocol 

but can simply emit its data periodically as events. To summarize, devices 

interact  by  forming  spontaneous  networks  using  different  network 

interfaces and interoperability protocols. Membership in these networks is 
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temporary  and  network  related properties  like  communication  cost  and 

bandwidth change dynamically.  

Distributed  applications  in  this  scenario  are  structured  into  application 

objects, or services, interacting with each other. Services in turn use device 

capabilities  or  further  services, which  are  provided  by  either  the  local 

device, or by remote interaction with other devices. From the application’s 

point of view, one of the main challenges is to use services and capabilities 

with  changing  availability. As we  have  seen,  this  is  true  for  local,  e.g., 

GPS, as well as remote cases, e.g., due to reachability. In addition, even a 

service that is both functional and reachable can become unavailable. Take 

for example a presentation system integrated into a video projector. If the 

user  leaves  the  room,  the  presentation  system  becomes  unavailable, 

because the user cannot see its output anymore.  

Existing  middleware  platforms  typically  address  portability  of 

applications  via  standardized  interfaces  for  remote  service  interaction, 

e.g.,  via  stub  and  skeleton  objects,  and  interoperability  of  applications 

across different middleware platforms via  interoperability protocols. We 

derive three additional requirements:  

1.  Uniform  programming  interface:  while  classical  middleware 

addresses uniform access  to remote services  the additional heterogeneity 

of specialized device capabilities requires similar abstractions, e.g., proxy 

objects,  in  order  to  access different device  capabilites  in  a uniform way 

independent of the underlying platform.  

2.  Flexible protocol support: the service model of a middleware, e.g., 

remote  procedure  call  or  events,  is  typically  reflected  in  its  underlying 

interoperability  protocol,  e.g.,  using  request/response  messages  or 

emitting event messages. The devices and systems in the above‐mentioned 

scenario would need  the  integration of  a variety of  such  service models 

which  are  reflected  by  their  correspondent  interoperability  models.  A 
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decoupling of the service model from the  interoperability model used by 

the  middleware  can  help  to  bridge  these  interoperability  domains. 

Additionally, this allows different communication paths for the incoming 

and  outgoing  messages.  As  an  example  think  about  two  devices 

communicating via  infrared  in order  to  save  energy.  If  the  infrared  link 

breaks due  to obstacles or distance  and  a wireless  radio  link  still  exists, 

communication  can  continue.  This  can  be  either  achieved  by  providing 

one  interoperability protocol over different network  interfaces or by  the 

abstraction  of  different  interoperability  protocols  which  allows  flexible 

usage of existing technologies.  

3.  Tailorable: To be useable on  all kinds of devices  found  in  future 

scenarios,  the middleware  has  to  be  tailorable  to  the  device  at  hand,  a 

sensor device  as well  as  a mainframe. The  core  functionality  should  be 

small enough to be executed on a sensor platform, but easily extensible to 

use the capabilities of resource richer devices.  

 

Nowadays middleware  platforms  already  provide  high  abstractions  for 

programming distributed systems. Some platforms are already targeted to 

the above mentioned scenarios. The next section will discuss related work 

before we will present our approach.  

8.3. Related Work  

8.3.1. Conventional Middleware Systems  

Device  heterogeneity  is  not  a  unique  characteristic  of  pervasive 

computing,  but  can  be  found  in  conventional  systems,  too.  Different 

middleware  systems  like  CORBA  [OMG02b],  Java  RMI  [SunRMI]  or 

DCOM [EE98] have been developed to provide a homogeneous access to 

remote  entities  independent  of  e.g.,  operating  systems  or  hardware 

architectures. Typically, these middleware systems try to provide as much 
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functionality  as  possible,  which  leads  to  very  complex  and  resource 

consuming systems, that are not suitable for small devices. Approaches to 

solve  this  problem  exist  and  are  discussed  below.  Conventional 

middleware  systems  are  designed  for  mostly  stable  network 

environments,  in which  service unavailability  is a  rare event and can be 

treated as an error.  

8.3.2. Dynamically Reconfigurable Middleware  

Extending  conventional  middleware  systems  to  dynamically 

reconfigurable  middleware  systems  (e.g.,  [BG00],  [BCA+01],  [BCR+00], 

[Led99],  [RKC99],  [RKC01])  enables  such  middleware  to  adapt  its 

behavior  at  runtime  to  different  environments  and  application 

requirements,  e.g.,  how  marshalling  is  done.  Still,  different 

communication models or different protocols  for outgoing and  incoming 

messages are typically not supported. As one exception, the Rover toolkit 

[JTK97] provides  this  functionality  for  its  queued RPC  (QRPC)  concept, 

layered  on  top  of  different  transport  protocols.  However,  Rover  only 

supports  the QRPC  and  addresses potentially disconnected  access  to  an 

infrastructure and not spontaneous networking.  

A  further  difference  from  BASE  is  that  most  existing  reconfigurable 

middleware  systems  concentrate  on  powerful  reconfiguration  interfaces 

and not on supporting small, resource‐poor devices. A notable exception 

to this is UIC [RKC01], which is discussed below. 

8.3.3. Middleware for Resource-Poor Devices  

The  resource  restrictions on mobile devices prohibit  the application of a 

full‐fledged middleware  system. One way  to  address  this  is  to  restrict 

existing  systems  and  provide  only  a  functional  subset  (e.g.,  [OMG02a], 

[RSC+99], [TAO]) leading to different programming models or a subset of 

available  interoperability  protocols.  Another  option  is  to  structure  the 
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middleware  in multiple components, such  that unnecessary  functionality 

can be  excluded  from  the middleware dynamically. One  example  is  the 

Universally  Interoperable Core  (UIC)  [RKC01]. UIC  is based on a micro‐

kernel that can be dynamically extended to interact with different existing 

middleware solutions. Still,  the used protocol stack  is determined before 

the  start of  the  interaction and  cannot be  switched between  request and 

reply as in BASE and abstractions are only provided for remote services.  

8.3.4. Middleware for Pervasive Computing  

Most  pervasive  computing  middleware  systems  (e.g.,  [ACH+01], 

[CPW+99],  [Moz98],  [RC00])  try  to  establish  some  kind  of  integrated, 

preinstalled  technical  infrastructure  in  a  physical  area,  e.g.,  a  room  or 

building, often  called  an  intelligent  environment  (IE),  in which  the user 

and  his/her mobile  devices  are  integrated  on‐the‐fly when  entering  the 

area. The IE offers a huge variety of different capabilities and middleware 

services that can be used, once the device of the user is integrated.  

As an example, the goal of the Gaia system [RC00] is to enhance physical 

spaces with computers to ActiveSpaces. Gaia provides an infrastructure to 

spontaneously  connect  devices  offering  or  using  services  registered  in 

Gaia.  To  integrate  existing  systems,  like  CORBA,  interaction  between 

application  objects  is  done  via  the Unified Object  Bus  [RC01], which  is 

layered  on  top  of  these  systems.  As  essential  system  services,  such  as 

discovery  and  lookup,  are  provided  by  the Gaia  infrastructure, mobile 

devices cannot cooperate autonomously without the infrastructure.  

In  contrast  to  this,  we  aim  at  supporting  the  cooperation  of  nearby 

devices,  i.e.,  using  only  temporarily  available  hardware  and  software 

capabilities of nearby devices, independent of the presence of an external 

infrastructure. An  infrastructure,  such  as  an  IE, may  be  included  into  a 

spontaneous network as temporarily available services, but the other way 
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round  ‐  without  the  infrastructure  ‐  spontaneous  networking  requires 

additional support.  

8.4. BASE  

Before we describe the architecture and implementation of BASE, we first 

want to motivate our design rationale.  

8.4.1. Design Rationale  

One key idea behind BASE is the uniform abstraction of services as well as 

device capabilities via proxies as  the application programming  interface. 

Consequently,  the middleware delivers requests  to either device services 

in  the  middleware  or  transport  protocols.  Allowing  different 

communication  models  with  respect  to  the  transactional  pattern 

(request/response,  event,  synchronous,  asynchronous,  etc.)  results  in  the 

middleware  to  provide  the  synchronization  independent  of  the  under‐

lying protocols. Our approach  is  inspired by micro‐kernels as  they were 

introduced into the realm of operating systems (e.g., [RJO+89], [TKR+91]) 

and  had  some  first  applications  in  the  middleware  area  as  well  (e.g., 

[PR00],  [RKC01]).  Only  minimal  functionality,  i.e.,  accepting  and 

dispatching requests (so‐called invocations), is located in the micro‐broker. 

Interoperability protocols  as well  as  object  lifecycle management  can be 

added as additional services, realized as plug‐ins.  

The  micro‐broker  accepts  requests  represented  as  so‐called  invocation 

objects.  In  the  following,  we  will  refer  to  the  invocation  object  when 

talking about an invocation. An invocation is composed of a source and a 

target address, an operation with parameters, and additional information 

concerning  the  handling  of  the  invocation.  The micro‐broker dispatches 

the  invocation  to  either  a  local  service,  a  local  device  capability  or  a 

transport  plug‐in,  which  transports  the  invocation  to  a  remote  micro‐

broker. Transports which  receive  an  invocation or  a  reply  to  a previous 
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invocation – also represented by an invocation – submit them to the micro‐

broker  to  initiate  the  dispatching  to  the  corresponding  local  service  or 

device  capability.  Invocations  can  be  either  generated  by  proxies, 

representing  a  service  or  a  device  capability,  or  manually  by  the 

application  programmer,  e.g.,  like  the  request  object  in  the  dynamic 

invocation  interface  in CORBA  [OMG02b]. Figure  8.1 depicts  the micro‐

broker in a typical setting, where invocations are dispatched to (a) device 

capabilities and (b) transport plug‐ins for the remote processing on other 

nodes. Remote service interaction follows the same pattern and is depicted 

in Figure 8.4.  

Let  us  briefly  argue  why  we  have  chosen  this  approach.  Clearly,  the 

requirement  for  uniform  access  of  device  capabilities  as well  as  remote 

services can be easily established by our approach.  

 
(a) accessing a local device capability (b) accessing a remote device capability  

Figure 8.1: Local and remote capability usage. 

The micro‐broker allows the flexible integration of new transport plug‐ins 

and device capabilities by simply  registering a new entity which accepts 

an  invocation. This  allows  to provide  access  to  all  features  available  on 

resource‐rich computer systems. The minimal  functionality of  the micro‐

broker  itself allows  the deployment of  the middleware on  resource‐poor 

devices  as  well.  To  sum  up,  the  uniform  programming  abstraction  is 

provided by  the  service abstraction  for  remote  service access and device 

capabilities. Together with the extensibility of the micro‐broker this fullfils 
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the first and third requirement that we have identified. The micro‐broker 

allows in‐ and out‐going messages over different transport protocols that 

can  be  dynamically  loaded  and  configured  through  the  invocation 

abstraction,  which  satisfies  the  second  requirement.  Although  our 

implementation  does  not  rely  on  reflection,  the  dynamic  composable 

invocations along with  the service registries provide means  for reflection 

about services registered with the middleware.  

The prototype of BASE is implemented in Java but relies only on features 

available  in  the  Java Microedition. This allows  the deployment on  small 

Java‐based  embedded  systems  (e.g.,  [Loo01])  or  specialized  Java 

processors  (e.g.,  [JStamp]).  The  proliferation  of  end‐systems  besides 

classical  computers  capable  of  executing  Java,  such  as  cell‐phones  or 

PDAs,  and  the  aforementioned  embedded  systems make  Java  a  suitable 

starting point providing a uniform abstraction for our middleware.  

The  benefit  of  our  micro‐broker  approach  compared  to  existing 

middleware  platforms  is  the  minimal  footprint  needed  for  a  basic 

configuration which qualifies it for small embedded systems as well as the 

extensibility  providing  the means  to  use  features  of more  sophisticated 

computers.  The  configurability  that  reflective  middleware  typically 

provides  is  also  supported  by  BASE.  A  major  difference  to  existing 

middleware platforms is the support of different communication models, 

such  as RPC  or  events with different  synchronization  semantics,  by  the 

micro‐broker, which allows these communication models over a variety of 

different  interoperability  protocols.  Typically,  the main  communication 

model of  a middleware  is  reflected  in  its  interoperability protocols,  e.g., 

CORBA’s IIOP reflects the RPC by request/response messages. The BASE 

micro‐broker  only  requires  a  transport  plug‐in  to marshal  and  send  an 

invocation.  If  responses are expected  they may be  received by any other 

transport plug‐in.  
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8.4.2. BASE Architecture  

Figure  8.2  depicts  the  overall  architecture  of  BASE.  Four  layers  are 

involved. The micro‐broker is the central part of the system, consisting of 

the  invocation  broker  and  two  registries  for  local  services  and  devices 

which can currently be reached.  

The  micro‐broker  accepts  invocations  which  are  either  manually 

assembled or generated by a stub‐call. Additionally, an invocation can be 

used to access the registries for service lookups.  

 

 

Figure 8.2: BASE architecture.  

The plug‐in layer maintains plug‐ins which represent the entities capable 

of receiving invocations. Examples for plug‐ins are transport protocols or 

encapsulations  of  device  capabilities,  such  as  sensor  systems  like 

positioning or temperature, or other services depending on the device, like 

input/output  capabilities  such  as  printing  or  video  projection.  Plug‐ins 

typically  involve  interaction  with  the  underlying  operating  system  or 

directly  with  the  hardware  to  offer  access  to  a  device  capability  or 

transport.  The  invocation  broker  accesses  the  plug‐ins  via  invocations. 

Thus the underlying platform is encapsulated by the plug‐ins. The device 
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capability layer represents the device platform by its supported hardware 

and software.  

In the remainder of this section the layers sketched above are discussed in 

more  detail  starting with  invocations,  the  invocation  broker,  registries, 

stubs and skeletons, and the plug‐in layer.  

8.4.2.1. Invocation 

Invocations  are  similar  to  dynamic  invocation  interface  requests  in 

CORBA.  Figure  8.3  shows  the  elements  of  an  invocation. Naturally,  an 

invocation is represented as an object. Device and service IDs are used to 

denote a sender and receiver of an  invocation. Services are given unique 

IDs that are local to a device. This ID is combined with a unique device ID 

to  form  a  globally  unique  ID.  The  message  IDs  are  needed  for 

synchronization issues and are described in the paragraph discussing the 

invocation  broker.  A  service  context  field  allows  the  specification  of 

additional parameters  that  indicate properties  relevant  to  the processing 

of  the  invocation  in  the middleware  such  as  synchronization  issues  or 

Quality of Service parameters. Basically,  the  context  is a name‐value  list 

where  parameters  can  be  added  freely.  The  payload  contains  the 

operations and parameters. In the case of event‐based communication no 

receiver needs to be specified and the operation denotes the event‐type on 

which  applications  can  subscribe.  The  parameters  then  carry  additional 

information of the event. In point‐to‐point communication the operations 

and parameters are interpreted as a remote method invocation.  

 

Figure 8.3: Invocation object structure.  
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8.4.2.2. Invocation Broker 

Central  to  the  system  core,  the  invocation  broker  realizes  the  core 

functionality  of  the  micro‐broker.  Invocations  are  accepted  and 

dispatched. In order to separate the control flow between application and 

the processing of an invocation in a plug‐in, a thread pool is maintained. 

Incoming  calls are entered  into  the  invocation  table, assigned a message 

ID in order to identify parallel invocations of the same client. The context 

field  contains,  among  other  information,  the  communication model,  i.e., 

synchronity  and  transactional  pattern  (request‐response/event)  of  the 

invocation.  Depending  on  the  communication  model,  the  invocation 

broker blocks the incoming thread in case of a synchronous invocation. A 

new  thread  from  the  thread‐pool  is  taken  and  the  delivery  of  the 

invocation  to  the  responsible  plug‐in  (see  below)  is  executed. After  the 

plug‐in  has  processed  the  invocation  by  either  a  local  action,  e.g., 

retrieving a sensor data, or a remote action, i.e., marshalling and sending 

the  request  to  a  remote  peer,  the  thread  returns  and  is  added  to  the 

threadpool  again.  In  case  of  a  remote processing,  an  invocation may be 

sent back to the initial caller. The invocation broker receives the invocation 

from a plug‐in for remote interaction, which may be different from the one 

that has processed the outgoing invocation, as shown in Figure 8.4.  
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request: 

 
response: 

 

Figure 8.4: Request / response in BASE.  

The invocation carries the target object and its message ID. If a message ID 

is  contained  in  the  receiver  field  of  the  invocation,  this  indicates  that  a 

caller  is  either  blocked  or  awaiting  an  asynchronous  delivery  of  the 

invocation.  In  case of  a blocked  call  the waiting  thread  is  freed  and  the 

invocation is provided as return. In the asynchronous case the invocation 

broker  takes  a  thread  from  the  thread‐pool  and  calls up  the  application 

through  a  callback.  In  this  case  the message  ID  is used  to designate  the 

application callback registered at the invocation broker.  

Notice  that  the  explicit  handling  of  synchronization  depending  on  the 

communication model retrieved from the service context is a major design 

decision  in  BASE.  This  decouples  the  communication  model  from  the 

underlying  interoperability  protocols.  A  request/response  based 

communication model can be realized over two event‐protocols as well as 

an event can be sent as a single request  in an RPC‐based  interoperability 

protocol. An  interaction  can  take place over different  transport plug‐ins 

for out‐going and incoming invocations.  
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So  far, BASE only supports a  limited number of communication models, 

but an extension  to different synchronization models, see e.g.,  [OMG98], 

can easily be established with the underlying concept.  

In order to determine the target of an invocation or to provide applications 

with service lookup two registries are maintained and described below.  

8.4.2.3. Service and Device Registry 

The  service  registry maintains  all  locally  available  services  on  a device. 

Services ‐ as mentioned before ‐can be either application objects offering a 

service or device capabilities. Applications can query for available services 

by either specifying a name or the functional properties, i.e., the interface. 

Hence, a simple name and trading service is provided. Due to the nature 

of  spontaneous  networks,  the  availability  of  a  lookup  service  cannot  be 

assumed.  The  device  registry maintains  a  list  of  all  currently  reachable 

devices  and  the  transport plug‐ins which  provide  the  access  to  another 

device.  If multiple  transport  plug‐ins  are  possible  for  the  same  device, 

they are also entered into the list. This allows for a simple service lookup 

in the vicinity of a device. If a service request cannot be fullfilled  locally, 

registries  of  nearby devices  are  queried  and  the  result presented  to  the 

application.  

The  information  of  the  device  registry  is  also  used  by  the  invocation 

broker  in  order  to  determine which  transport  plug‐in  should  be  used. 

First, without any further information, any of the available transport plug‐

ins can be used. As long as there is a connection between two devices, i.e., 

the device is listed in the device registry and at least one transport plug‐in 

is  provided,  invocations  can  be  exchanged.  Notice,  that  even  if  the 

transport plug‐in  by which  a  request  invocation  has  been  sent  becomes 

unavailable replies can be received, if another transport plug‐in exists. The 

service context sent with an invocation can be used to control the selection 

of  specific  transport  plug‐ins,  e.g.,  in  order  to  save  energy  or  require  a 
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distinct  bandwidth. We plan  to  extend  this  concept  by  strategies which 

will provide application‐specific selection of transport plug‐ins according 

to policies, e.g., energy awareness.  

Although the current  implementation of the service and device lookup is 

rather  simple,  the  underlying  concept  is  designed  to  be  extensible 

allowing  the  integration  of  other  lookup mechanisms,  e.g.,  Jini  [Wal99] 

and UPnP [Mic00].  

8.4.2.4. Stubs and Skeletons 

A common abstraction in middleware systems are local proxies for remote 

entities providing  local access for application objects  ‐ stubs representing 

the remote service to clients and skeletons issuing local calls to services. In 

BASE,  stubs  and  skeletons  rely  on  the  invocation  abstraction.  Stubs 

generate  invocations  upon  method  calls  and  skeletons  generate  local 

method calls upon a received invocation. Notice, that the generation of an 

invocation does not result  in  the marshalling of  the parameters. This  is a 

responsibility  of  the  transport  plug‐ins.  Invocations  are  used  here  to 

provide  a  common  concept  for  interaction  with  the  micro‐broker. 

Applications can, however, omit the use of stubs and skeletons and com‐

pose and interpret invocations directly.  

In  contrast  to  systems  like  Jini  [Wal99],  where  stub  and  skeleton  can 

include  a  service  specific  protocol  stack  this  is  not  provided  in  BASE. 

Instead a service specific protocol would be realized as a transport plug‐in 

and thus become re‐usable for other services as well.  

8.4.2.5. Plug-In Manager  

The  plug‐in  layer  is  essential  for  the  abstraction  BASE  presents  to  an 

application  developer.  Plat‐form‐specific  capabilites,  e.g.,  device 

capabilities  and  transports,  are  represented  as  plug‐ins  and  become 

accessable  to  the  application  programmer  as  services.  The  plug‐in 

manager  allows  the  dynamic  loading  and  integration  of  new  plug‐ins. 
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Device  capabilities  are  registered  at  the  local  service  registry,  and 

transport protocols at the invocation broker itself.  

Plug‐ins provide an abstraction of device‐specific resources. Depending on 

the platform interface that allows the access of the device capability layer 

they can be portable among devices. Thus, an application on top of BASE 

will  only  interact  via  invocations,  either  dynamically  constructed  or 

generated by stubs, with device‐specific capabilites.  

Transport plug‐ins are responsible for accepting an invocation, marshal it, 

and  transmit  it  as  a  protocol  data  unit  to  a  remote  peer,  which  then 

constructs an invocation by demarshalling it. The simplest transport plug‐

in would  use  object  serialization  to marshal  an  invocation  into  a  byte‐

buffer  and  send  the  buffer  via  a  transport  protocol,  e.g.,  TCP/IP. Other 

transport  plug‐ins  could  rely  on  existing  interoperability  protocols  and 

marshal and represent the invocation accordingly, e.g., map it to a request‐

message  in  IIOP  and  marshal  the  parameter  by  CDR,  which  allows 

interoperability with CORBA‐based systems.  

As  long  as  the  context  of  an  invocation  does  not  require  a  distinct 

transport plug‐in, the invocation broker may use any transport plug‐in to 

send an invocation to a remote device. The device registry maintains a list 

of  all  currently  available  transport  plug‐ins  to  a  specific  device. Hence, 

communication  can  take  place  as  long  as  at  least  one  transport  plug‐in 

allows the communication.  

8.5. Implementation Status and Evaluation  

This  section  will  present  the  current  status  of  our  prototype 

implementation  and  discuss  memory  size  and  execution  performance 

measurements.  
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8.5.1. Implementation Status  

Our  prototype  has  been  implemented  in  Java  to  rely  on  its  platform‐

independence. Although,  for small devices C or C++ would seem  to be a 

better choice at first, we found that Java allows us to run our middleware 

on  a  multitude  of  different  devices,  if  the  used  Java  features,  like 

reflection,  etc. are  carefully  restricted. A Tini minicomputer  for  example 

can  execute  only  a  subset  of  Java Version  1.1. Other devices,  like  smart 

phones or PDAs are limited to the Java Microedition [SunJ2ME].  

So  far,  our  prototype  implements  the  basic  concepts.  Namely  the 

invocation  broker,  the  service  and  the device  registry  are  implemented. 

The invocation broker handles different synchronization concepts and the 

service  context  is used  to  indicate  the  synchronization of RPC  calls. For 

synchronous invocations, stub and skeleton support is implemented. Two 

transport  plug‐ins  are  realized  so  far,  one  based  on  the  Java  standard 

serialization mechanism  on  top  of  TCP/IP  and  a  second  based  on  Java 

RMI. Others  are  under way.  The  plug‐in manager  is  implemented  and 

allows the dynamic and static configuration of a BASE system.  

8.5.2. Memory Size  

The memory footprint of a minimal BASE configuration is crucial in order 

to  allow  the  installation  on  small  or  embedded  devices.  We  have 

measured  the memory  footprint  of  such  a  configuration,  containing  the 

micro‐broker  (invocation  broker  and  registries)  plus  a  TCP‐based 

transport  plug‐in.  The  measurements  where  done  using  the  IBM  J9 

implementation  of  the  Java  Microedition,  more  specifically  the  Java 

Microedition  with  the  Connected  Device  Configuration  and  the 

Foundation  Profile.  First,  in  order  to  determine  the  memory  footprint 

without  additional  dynamic  memory  consumption,  i.e.,  BASE  in  idle 

mode, we use the Windows Task‐Manager, as suggested in [Wk00]. In this 
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mode  132  KByte  are  used.  During  runtime,  when  invocations  are 

exchanged, the system uses up to 420 KBytes, which was measured using 

the J‐Sprint profiler [JSprint].  

8.5.3. Execution Performance Overhead  

To  measure  the  execution  performance  overhead  introduced  by  the 

additional  communication  via  the  BASE micro‐broker, we  compared  a 

BASE configuration sending invocations via a Java RMI transport plug‐in 

with a pure  Java RMI‐based system. The measurements were conducted 

for a synchronous RPC communication by transmitting invocations for an 

operation  testOperation,  that  takes  a  single  string  input  parameter  and 

returns immediately. The string size was either 0 or 1000 characters. This 

was done for local as well as remote invocations. The results are shown in 

Figure  8.5  and  Figure  8.6.  Each  value  given  is  the  average  of  12750 

measurements. Measurement was  done  in  50  rounds with  roundnumber 

×10  invocations per  round,  leading  to  a  total number of  ∑10  ×i  =  12750; 

i=1..50  measurements.  

 

Figure 8.5: Local communication performance.  
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8.5.3.1. Local Invocations.  

In  the  local case, BASE  is clearly  faster  than RMI. This  is due  to  the  fact, 

that RMI  in  this case uses  the  loop‐back  interface  including  the RMI and 

TCP protocol stack while the BASE micro‐broker forwards the call directly 

to the service skeleton and does not use the RMI‐based transport plug‐in 

at all.  

8.5.3.2. Remote Invocations 

In the remote case, BASE introduces an additional performance overhead 

of  about  20%.  Taking  into  account  the  creation  of  invocations  from  the 

stub  objects  and  their  interpretation  by  the  skeletons,  this  seems 

acceptable. However, the absolute end‐to‐end latency measured for BASE 

is about 4 ms per  remote  invocation with a  string  size of 1000, which  is 

rather long. Therefore, we did some additional measurements to compare 

this  to  the  end‐to‐end  latency  of  pure  RMI,  i.e.,  calling  the  remote 

operation directly through RMI without marshalling the invocation object. 

The pure RMI  call only needed about 0,95 ms or 25% of  the  time BASE 

needed. This is due to the fact that we have used the standard Java object 

serialization mechanism  in our prototypical RMI plug‐in  to marshal  the 

invocation  object. Note,  that  this  is  not  a  problem  of  the micro‐broker 

itself,  but  of  the  current  RMI  plug‐in  implementation.  Currently,  other 

transport plug‐ins are under development  to overcome  this performance 

bottleneck.  
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Figure 8.6: Remote communication performance.  

8.6. Conclusion and Future Work  

We have presented the concept and design of BASE, a flexible middleware 

supporting  the  additional  requirements  of  pervasive  computing 

environments.  Based  on  a  micro‐broker  design,  BASE  allows  minimal 

installations on embedded devices or specialized platforms as well as the 

integration of features available on resource‐rich devices, such as personal 

computers. Application programmers can rely on a uniform abstraction to 

access  remote  and  local  services  as well  as  device‐specific  capabilities. 

Thus BASE supports  the portability of applications across heterogeneous 

devices.  The  middleware  shields  applications  from  the  multitude  of 

different  communication  technologies  and  interoperability  protocols  by 

separating  the  communication  model  of  the  application  and  the 

interoperability protocols used. This allows  the usage of nearly arbitrary 

interoperability protocols.  

The current implementation status of BASE is promising. Currently we are 

adding  further  support  for  different  interoperability  protocols  and  port 

BASE to some specialized devices. Further experience will be gained from 
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doing prototypical  implementations of pervasive computing applications 

in our lab.  

Using  BASE  as  a  middleware  already  will  ease  the  design  and 

implementation of applications. In further research directions we want to 

design  a  component  system  based  on  BASE  that  will  support  the 

adaptation of applications due to their execution environment. BASE will 

be  extended  by  mechanisms  to  enforce  adaptation  strategies  in  the 

component  framework,  such  as migration or  service  selection  strategies. 

The extensibility of  the micro‐broker approach seems to be a good BASE 

here.  
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9. PCOM – A Component System for Pervasive 

Computing 

Applications  in  the  Pervasive  Computing  domain  are 

challenged  by  the  dynamism  in  which  their  execution 

environment  changes,  e.g., due  to user mobility. As  a  result, 

applications have to adapt to changes regarding their required 

resources.  In  this  chapter  we  present  PCOM,  a  component 

system  for  Pervasive  Computing.  PCOM  offers  application 

programmers  a  high‐level  programming  abstraction  which 

captures  the  dependencies  between  components  using 

contracts.  The  resulting  application  architecture  is  a  tree 

formed  by  components  and  their  dependencies.  PCOM 

supports  automatic  adaptation  in  cases  where  the  execution 

environment  changes  to  the  better  or  to  the  worse.  User 

supplied as well as system provided strategies take users out of 

the control loop while offering flexible adaptation control. 

9.1. Introduction 

Pervasive Computing is characterized by the interaction of a multitude of 

highly  heterogeneous  devices,  ranging  from  powerful  general‐purpose 

servers  located  in  the  infrastructure,  to  tiny mobile sensors,  integrated  in 

everyday  objects. Devices  are  connected  to  each  other  on‐the‐fly  using 

wireless communication technologies like Bluetooth, IEEE 802.11 or IrDA 

and  share  their  functionality. A  sensor  could  for  instance  use  a  nearby 

display to present its data to the user.  

Developing  and  executing  applications  in  such  environments  is  a  non‐

trivial  task.  Apart  from  the  device  heterogeneity,  the  hardware  and 

software  resources,  i.e., devices  and  services,  available  to  an  application 

are highly dynamic, due to factors like user mobility, fluctuating network 
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connectivity  or  changing  physical  context.  This  forces  applications  to 

adapt  themselves  constantly  to  their  ever‐changing  execution 

environments.  User‐interaction,  e.g.,  for  adaptation  control  or 

administrative  tasks, should be minimized,  thus removing  the user  from 

the control loop [WPT03].  

To  ease  application  adaptation,  we  have  developed  BASE,  a  flexible 

middleware for Pervasive Computing environments (see e.g., [BSG+03] for 

details).  It  provides  adaptation  support  on  the  communication  level  by 

dynamically  (re‐)  selecting  communication  protocol  stacks,  even  for 

currently running interactions.  

BASE  offers  no  support  for  adaptation  at  higher  levels,  e.g.,  by 

automatically  reselecting  services  and  devices.  Therefore,  we  have 

designed and developed PCOM, a light‐weight component system on top 

of BASE. PCOM  allows  the  specification of distributed  applications  that 

are made  up  of  components with  explicit  dependencies modeled  using 

contracts. An application can be executed  if all of  its components can be 

executed – either local or remote – meaning that all dependencies between 

components can be fulfilled. In order to automatically choose alternatives 

if multiple  suitable  components  are  available,  strategies  are  employed. 

This  allows  adaptation  without  prompting  the  user.  The  main 

contribution of  this chapter  is  the definition and evaluation of  this  light‐

weight component system for strategy‐based adaptation in spontaneously 

networked Pervasive Computing environments.  

The  remainder  of  the  chapter  is  structured  as  follows.  Next,  we  will 

present our system model and briefly sketch BASE. Models for application 

adaptation are discussed  in  section 9.3. The  requirements on application 

adaptation, especially those that are not fulfilled by BASE, are derived in 

section 9.4. Section 9.5 presents the architecture of PCOM,  its application 

model  and  the mechanisms  that  enable  adaptation. As  an  indication  for 
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the  validity  of  our  approach,  an  evaluation  of  PCOM,  including  a 

comparison  of  application  adaptation  in  BASE  and  PCOM  is  given  in 

section 9.6. After discussing related work  in section 9.7, we conclude  the 

chapter and provide an outlook on future work in section 9.8. 

9.2. System Model 

 

Our  work  focuses  on  spontaneously  networked  Pervasive  Computing 

environments  in which devices  are  connected on‐the‐fly,  typically using 

some kind of wireless technology. Such environments are highly dynamic. 

Connections  between  devices  are  not  permanent,  the  topology  of  the 

network  is  constantly  changing,  and  there  is  no  central  or  coordinating 

element. We do not assume the presence of a smart environment like Gaia 

[RC00], Aura [GSS+02] or iROS [JFW02]. Although such an infrastructure 

could be available at certain times, devices cannot rely on it. 

In our system model communication and  thus  interaction  is restricted  to 

devices  that  are  currently  reachable  by  the  network  (e.g.,  due  to 

communication  technology). As  a  result,  systems  in  these  environments 

are  inherently  location‐aware  as  communication  is  typically  spatially 

limited.  The  devices  have  different  specializations  and  resource 

limitations. Besides resource‐poor and specialized devices such as sensor 

nodes,  resource‐poor  general  purpose  devices  could  be  present,  e.g., 

PDAs. Also  resource  rich‐devices  can  either  provide  a  general  purpose 

platform or they can provide single services such as a presentation system. 

Due  to  the  lack  of  a  central  or  coordinating  element,  applications  are 

dynamically composed of services provided by devices that are part of the 

currently  reachable  environment.  As  an  example,  consider  an  instant 

messaging application that requires an input service such as a keyboard or 

a  touch  screen  to  write  messages  and  an  output  service  to  display 

messages, e.g., a monitor, a video projector or an audio channel. During 
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start  up,  the  application  scans  the  current  environment  for  available 

services  and  connects  to  suitable  instances.  At  execution  time,  the 

application  uses  the  services  and  adapts  to  changes  regarding  their 

availability or quality. Possible adaptations could include for instance the 

reselection of the output service whenever it becomes unavailable. 

 

9.2.1. BASE. 

 In  order  to  provide  basic  support  for  services  that  enable  such 

applications, we have developed BASE. BASE is written in Java using the 

Java  2 Micro Edition with  the Connected Limited Device Configuration 

(CLDC). It assists application programmers by providing mechanisms for 

device discovery  and  service  registration  that  can be used  to  locate  and 

access  local  as well  as  remote device  capabilities  and  services. Since  the 

availability  of  services  and  capabilities  can  fluctuate  in  spontaneously 

networked  environments, BASE provides  a  simple  signaling mechanism 

to  determine  their  availability.  Communication  protocols  and  device 

capabilities  can  be  extended  flexibly,  since  BASE  is  structured  as  an 

extensible micro‐broker. This allows  the middleware  to  run on  resource‐

poor devices and benefit from resource‐rich devices. In the context of this 

work, BASE  is used  as underlying  communication middleware, offering 

communication  and  discovery  on  a  wide  range  of  devices.  More 

information on BASE can be found in [BSG+03] and [BS03b]. 

9.3. Adaptation Models  

To  provide  application  adaptation  support  for  Pervasive  Computing 

systems,  three  main  levels  of  support  can  be  distinguished.  This 

classification is similar to the one given in [OGT+99]. 

Manual  adaptation:  here,  adaptation  is  done  by  the  end  user.  If  an 

adaptation  is  performed,  the  system  presents  different  choices  and  the 
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user selects the most appropriate one. For the instant messenger described 

previously,  this means  that  the user has  to explicitly select  the output or 

input  service used by  the application, whenever a used  service becomes 

unavailable or a new service is discovered. Clearly, this is time‐consuming 

and irritating, especially for environments with a high level of dynamism 

and a large number of different devices and services. 

Application‐specific automatic adaptation:  to  lessen  the  involvement of 

users,  application  adaptation  should  be  executed  with  as  little  user 

interaction  as  possible.  This  can  be  realized  by  shifting  the  adaptation 

decision  into  the  application.  As  a  result,  the  system  must  support 

adaptation by  signaling  changes  in  the environment and  the application 

programmer  has  to  explicitly  handle  resource  availability  on  a  per‐

resource  base,  leading  to  complex  and  error‐prone  adaptation  routines. 

Regarding  the  instant messenger scenario  the programmer must provide 

routines  that  reselect  the  input  and  output  service whenever  the  used 

services become unavailable. Such a reselection may be necessary at any 

point during the usage of a service. Therefore, the code of the application 

will be  cross‐cut by  adaptation  routines  that  are  effectively  reducing  its 

readability and maintainability. 

Generic automatic adaptation: at the highest level of support, application 

adaptation  is done without  stressing users  or  application programmers. 

The  programmer  only  specifies  the  functional  and  non‐functional 

properties of services required by the application and the user controls the 

adaptation  process  by  stating  adaptation  goals.  Thereafter,  the  system 

monitors  service  availability  and  selects  the  optimal  services.  The 

programmer of  an  instant messenger  simply  specifies  the parameters of 

the  input  and  output  service,  e.g., minimum  screen  resolution,  and  the 

user defines the adaptation preferences, e.g., highest available resolution. 

At  runtime,  the  system  automatically  tries  to  find  services  with  an 
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acceptable quality. In cases where multiple services fulfill the requirement, 

the system performs the selection based on the preferences of the user.  

9.4. Requirements 

BASE offers generic automatic adaptation support at  the communication 

layer.  With  PCOM  we  aim  at  providing  further  generic  adaptation 

support  at  the  application  layer.  PCOM  should  enable  application 

programmers  to  extend  the  system with  application‐specific  adaptation 

logic  if  needed.  This  enables  a  rather  straight  forward  specification  of 

application  dependencies  along  with  standard  adaptation  strategies 

resulting in a simple core system which can be customized to the needs of 

an  application  programmer.  From  these  objectives  the  following 

requirements can be derived: 

Application  specification:  applications  should  be  specified  in  terms  of 

their required services. Services should clearly denote their dependencies 

to  other  services  and  the  platform.  Non‐functional  properties  of  the 

dependencies  should  be  explicitly  stated.  The  composition  of  an 

application from services should allow the specification of alternatives  in 

order to support the system to automate adaptation decisions. 

Service monitoring: the system has to monitor the availability of services 

in order to detect currently used services that change their non‐functional 

properties or become unavailable as well as to detect new services. 

Strategy based adaptation: the system has to provide means for automatic 

adaptation of an application.  If alternatives of services are present  in  the 

current execution environment,  strategies decide which  service  to  select. 

Besides  standard  strategies,  e.g.,  to  optimize  energy  consumption, user‐

defined  policies  should  be  integrated.  At  the  core  of  adaptation,  the 

application  lifecycle  and  the  lifecycle  of  single  services  have  to  be 

managed.  
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Minimalism  and  extensibility:  to  meet  the  resource  heterogeneity  of 

Pervasive Computing the resulting system has to be minimal with respect 

to required resources, e.g., processing power and memory, and it has to be 

extensible to exploit the advantages of resource‐rich devices. 

9.5. PCOM 
 

 
 

Figure 9.1: PCOM Architecture 

In the following we will present our component system PCOM (see Figure 

9.1).  PCOM  provides  a  distributed  application  model  and  supports 

automatic  application  adaptation  based  on  signaling  mechanisms  and 

adaptation  strategies. Applications  are  composed  of  interacting  entities, 

so‐called  components,  which  dependencies  are  explicitly  specified  as 

contracts.  The  PCOM  container  hosts  components,  manages  their 

dependencies,  and  thus  acts  as  a distributed  execution  environment  for 

applications.  Each  container  defines  a  remote  container  interface  that 

exports locally available components by their contracts and allows remote 

containers to negotiate new contracts and access the components. To reuse 

the  communication  and discovery  capabilities of our middleware BASE, 

the  container  is  implemented  as  a  single  service  on  top  of  BASE. As  a 
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result,  a  container  is  automatically  capable of detecting  and using other 

containers.  

In  the  following  we  will  further  describe  our  application  model  and 

present  components  along  with  their  contracts.  After  that,  we  discuss 

application adaptation in PCOM and its realization. 

9.5.1. Application Architecture 

Applications  in  PCOM  are  composed  of  components,  that  interact with 

each other  in order  to  fulfill  their dependencies. Components are atomic 

with  respect  to  their  distribution  but  can  rely  on  local  or  remote 

components, resulting in a distributed application architecture. 

An application is modeled as a tree of components and their dependencies 

where the root component (the so‐called application anchor) identifies the 

application.  The  application  tree  reflects  the  dependencies  between 

components  where  the  successors  of  a  component  identify  its 

dependencies  in  order  to  fulfill  the  service.  PCOM  uses  a  tree  as 

application model, because arbitrary graphs cause several complications. 

For  instance,  the multiple use  of  the  same  component  requires merging 

probably  conflicting  requirements.  As  another  example,  cycles  of  the 

graph could cause infinite loops during the composition of applications. 

The  life  cycle  of  an  application  is  reflected  by  the  life  cycle  of  its 

application  anchor.  Next,  we  will  explain  components  in  more  detail, 

including the modeling of dependencies via contracts and their life cycle. 

9.5.2. Components  

Components  in  PCOM  are  units  of  composition  with  contractually 

specified  interfaces  and  explicit  context  dependencies.  PCOM’s 

components enclose contracts that describe their offered functionality and 

requirements regarding the platform and other components. Components 

are atomic with respect to distribution and may use other components in 
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order  to  provide  their  service. Note  that  PCOM  does  not  regulate  the 

granularity  of  components. Therefore,  the  granularity  could  range  from 

single functionalities to complete applications.  

 

9.5.2.1. Contracts.  

Contracts  consist  of  two  distinct  parts:  The  first  part  specifies  the 

corresponding component’s requirements on the executing platform, e.g., 

required  libraries or memory. The second part specifies  the  functionality 

provided by the component and its dependencies on other components. A 

dependency between two components has a direction and reflects the fact 

that  one  component  either  requires  certain  service  interfaces  (pull)  or 

listens  to  some  events  provided  by  another  component  (push).  Thus, 

PCOM  supports  push  and  pull  communication  models  between 

components.  

In order to describe dependencies, contracts in PCOM specify the service 

interfaces and  the events  that are offered and  required by a  component. 

Along  the  syntactical  interface  specification  of  events  and  services  that 

define a functional dependency, non‐functional parameters can be added 

to express further properties, such as a screen‐size, energy consumption or 

performance related parameters. In contrast to the functional specification 

that  is  known  at  compile  time,  non‐functional  parameters  can  vary  at 

runtime  and might depend on  the offer of  components  that  are used  to 

satisfy  the dependencies. Thus,  non‐functional parameters  can  be  either 

static or dynamic. 

At runtime, contracts  in PCOM are represented as object graphs. To ease 

the specification of these graphs, we use a compiler to transform an XML 

document into code that creates the desired structure. This representation 

is used for the comparison of offers and requirements. By applying them, 

it is possible to determine whether the offer of one component can be used 
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to  satisfy  the  requirements  of  another  component. Due  to  the  possibly 

large number of comparison operators that is needed to support arbitrary 

non‐functional parameters,  the underlying object model provides only  a 

small set of operators that can be extended by application programmers. 

 
Figure 9.2: Exemplary Contracts 
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9.5.2.2. Example.  

Figure  9.2  shows  XML‐based  contract  specifications  for  an  exemplary 

instant messenger  component and a keyboard  component. First, we will 

have  a  look  at  the messenger’s  contract.  It  specifies  that  the messenger 

component does not offer any service to other components (a) and that it 

depends  on  an  input  component  offering  a  given  service  interface  and 

event  type  (b).  Additionally,  the  messenger’s  contract  states  the  non‐

functional  requirement  that  the  input  component’s  language  must  be 

English  (b). Next,  the platform dependency declares,  that  the messenger 

must be executed by a container that has at least 10 Kbytes of free memory 

and  provides  a  CLDC  (c).  The  last  section  of  the  contract  contains 

information about the component’s internals used by the container (d).   

In contrast to the messenger’s contract, the keyboard component’s contract 

specifies  an  offer  that  consists  of  two  interfaces  and  two  events  (e). 

Additionally, the offer also contains non‐functional attributes that describe 

the  available  keys  and  the  supported  language.  Apart  from  the 

requirements  on  the  platform  (f)  the  keyboard  does  not  have  any 

requirements. Again,  the  last section of  the contract contains  information 

about the component implementation (g). 

At  runtime,  these  XML‐based  contracts  are  transformed  into  an  object 

model  that  allows  matching  the  instant  messenger  component’s 

requirements with the offer of the keyboard component. As the keyboard 

offers all required functional and non‐functional features, it can be used to 

satisfy  the  messenger’s  dependency.  After  the  components  have  been 

combined at  runtime  (h),  the  instant messenger component  is capable of 

placing calls to the interface provided by the keyboard component (i) and 

the  keyboard  component  can  send  the  requested  event  to  the  instant 

messenger  (j). The  additional  interface  (k) and  event  (l) of  the keyboard 

component will never be used.  
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9.5.2.3. Component Lifecycle 

 To  consistently  embed  components  into  applications,  the  container 

defines  and  manages  the  lifecycle  of  components.  Conceptually,  this 

lifecycle  consists  of  the  two  states  STARTED  and  STOPPED.  The  state 

transitions  are  controlled  by  the  container.  The  container  loads  a 

component by first loading the object graph that represents its contract. It 

then  determines  whether  it  can  fulfill  the  component’s  requirements 

towards  the  platform.  If  they  can  be  satisfied,  the  container  adds  the 

contract  to  the  set of exported contracts.  Initially  the  component  rests  in 

the STOPPED state. Once a component  is about  to be embedded  into an 

application,  the  container  tries  to  resolve  and  initialize  the  component’s 

dependencies by selecting suitable components to fulfill them. This initial 

resolution of dependencies can be seen as a special case of adaptation. A 

more detailed description of  the  selection process  is given  in  subsection 

9.5.3. After all dependencies are fulfilled, the container triggers a transition 

to  the  STARTED  state.  In  this  state,  the  component  provides  its 

functionality  and  the  container  provides  signaling  and  adaptation 

support. When  the  state  changes  to STOPPED,  the  container  releases all 

resources held by the component.  

9.5.2.4. Contract Exchange and Negotiation 

As  soon  as  a  component  is  about  to  be  executed,  the  container  has  to 

determine whether its dependencies – both, functional and non‐functional 

– can be satisfied. In order to find components that can potentially be used 

to satisfy a dependency, the container sends the contract that contains the 

requirements  to  the  containers  available  in  the  environment.  These 

containers reply with the contractual offers of their components that could 

fulfill the requirements.  
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As  mentioned  earlier,  there  are  non‐functional  parameters  that  a 

component  cannot determine without knowing  the  components  that  are 

used  to  satisfy  its dependencies.  In order  to determine  such parameters, 

PCOM  containers  also  support  a  negotiation  phase  that  recursively 

determines  the  non‐functional  parameters  of  a  component  without 

starting  it. To  enable  this,  containers  rely  on  so‐called  factories  that  are 

representatives  for  locally  installed  components.  Factories  provide  the 

capability  to  determine  the  actual  value  of  a  non‐functional  parameter 

based on  the set of components  that  is currently available. While PCOM 

provides a simple standard factory, application programmers can provide 

component‐specific  factories  by  declaring  them  in  the  component 

contract’s implementation section (see Figure 9.2 (d)).  

The algorithm for contract negotiation is a post‐order traversal of the tree 

of  matching  offers  and  requirements,  where  factories  implement  the 

functionality  that  determines  the  values  of  non‐functional  parameters 

from the available offers. 

9.5.3. Adaptation 

In  ever‐changing  environments,  component‐based  applications  have  to 

deal  with  fluctuating  availability  and  quality  of  components.  Changes 

regarding  the  availability  and  quality  of  components  can  either  have  a 

positive  or  a  negative  impact  on  the  application.  This  means  that  the 

quality of a used component’s functionality can either increase or decrease 

during  the execution. Also, used  components might become unavailable 

and new components that could deliver a required functionality might be 

discovered at any time. 

In  order  to  adapt  to  fluctuations,  a  component  has  to  have  means  of 

detecting  changes  with  respect  to  quality  and  availability  of  other 

components  that  either  depend  on  or  are  required  by  the  component. 
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PCOM defines three signaling mechanisms that detect changes regarding 

availability and quality. 

9.5.3.1. Signaling Mechanisms 

 The  first  signaling  mechanism  is  targeted  at  the  availability  of  used 

components. Whenever  a  used  component  becomes  unavailable,  a  so‐

called  communication  listener  is  notified.  Application  programmers  can 

register  communication  listeners  for  every dependency  of  a  component. 

As PCOM uses a soft‐state lease mechanism to maintain the dependencies 

between components, the detection of an unavailable component is either 

a  result  of  an unsuccessful  call placed  by  the using  component  or  by  a 

heart‐beat message sent by the runtime system.  

The  second mechanism  detects  the  availability  of  new  components.  In 

order  to receive notifications about components  that could potentially be 

used  to  replace  a  currently  used  component,  programmers  can  define 

discovery  listeners  for  each  dependency. Whenever  BASE  detects  a  new 

device, PCOM checks whether the device hosts an instance of PCOM. If a 

new  instance  is  discovered,  PCOM  determines  whether  the  new 

components could be used to replace a dependency of a  locally executed 

component. The comparison of the requirements of a running component 

and the offer of a newly discovered component is solely based on the static 

parameters  of  the  offer,  significantly  reducing  the  discovery  overhead. 

Once a discovery listener is called, an adaptation strategy can decide, if a 

full  negotiation  of  the  dynamic  parameters  should  be  done.  Hence, 

negotiation  is  performed  only  if  an  application  may  profit  from  a 

component change. 

The  last signaling mechanism provided by PCOM aims at fluctuations  in 

the  quality  provided  by  a  component.  As  mentioned  above,  non‐

functional  parameters  can  change  over  time.  Therefore,  PCOM  allows 
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application  programmers  to  specify  contract  listeners  that  are  notified 

whenever a parameter changes. 

9.5.3.2. Options for Adaptation 

Application programmers can use the described signaling mechanisms as 

hooks to specify their own actions for adaptation or use system provided 

mechanisms.  PCOM  offers  two  generic  mechanisms:  execution 

discontinuation  and  component  reselection.  Application  programmers  are 

provided  with  means  to  implement  further  options,  e.g.,  modifying 

contracts  or  retransmitting  messages  in  case  of  a  transient  network 

partitioning.  

The  first generic  adaptation mechanism  is  simply  the discontinuation of 

an  executed  component. Whenever an  executed  component  is no  longer 

able to provide its functionality, it can stop its execution. This will result in 

an  event  that  is  received  by  the  communication  listener  of  the  using 

component. With respect to the application model defined by PCOM, this 

means that a problem in a component is escalated to the next, i.e., higher, 

level of  the  tree. The escalation continues until a component resolves  the 

conflict by either reselecting a component (see below) or applying a user‐

defined  strategy.  If  the  escalation  leads  to  the  discontinuation  of  the 

application anchor, the execution of the application stops. 

The second generic mechanism supports the reselection of components at 

runtime. This  is enabled by  two  features. First, components specify  their 

dependencies  explicitly which  allows matching  a  contractually  specified 

requirement  and  its  corresponding  offer.  Second,  PCOM  allows  the 

definition of strategies  that prioritize possible components based on user 

preferences. Therefore, if a component initiates the reselection of a certain 

dependency,  PCOM  can  automatically  determine  the  possible 

replacements  that  match  the  programmer’s  requirements.  If  there  are 

several possible replacements, a user defined strategy  is applied to select 
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the  best  replacement  according  to  the  user’s  current  selection  goals. 

Clearly,  a  simple  reselection will  only  be  possible  if  the  corresponding 

component  is  stateless.  For  stateful  components,  the  application 

programmer  still  has  to  provide  additional  routines  that  establish  the 

desired state. Nevertheless, the programmer does not have to  implement 

the reselection algorithm and can use the signaling mechanisms to add an 

application‐specific adaptation routine. 

 

So far we have seen, how PCOM allows for generic application adaptation 

support via predefined as well as user‐supplied strategies. The container 

realizing PCOM’s runtime system resides on top of BASE, our middleware 

for  Pervasive  Computing.  In  the  next  section  we  will  compare  the 

abstractions  provided  by  PCOM  with  the  support  BASE  offers.  The 

additional  overhead  for  communication  and  application  adaptation  is 

presented based on measurements. 

9.6. Evaluation 

As stated  in Section 9.4  the main requirements on PCOM are application 

specification  and  support  for  strategy‐based  adaptation.  In PCOM  these 

requirements  are  realized  through  components  with  contractually 

specified  dependencies.  As  shown  in  Section  9.5.3,  a  crucial  task  for 

adaptation is the (re‐)selection of services. Therefore, we will evaluate the 

service selection in PCOM and BASE. We compare the necessary tasks of a 

programmer and  the assistance  for  service  selection provided by PCOM 

and BASE. Next, the time needed for service selection is presented which 

includes  contract  evaluation,  communication,  and  component 

instantiation.  Finally,  the  additional  requirements  of  PCOM  regarding 

remote communication, memory, and computing power are discussed. 
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9.6.1. Service Selection 

Selecting  a  service  that  will  be  used  by  an  application  comprises  two 

fundamental  tasks. First of all, an application has  to determine  the set of 

services  that  is  available  in  a  given  environment.  Thereafter,  it  has  to 

determine  the  suitability  of  each  service  and  select  the  best  service 

possible.  

 
 

Figure 9.3: Component Selection in PCOM 

 
To  allow  determining  the  suitability,  BASE  and  PCOM  support  non‐

functional parameters  that allow a more detailed description of services. 
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The suitability of a service could recursively depend on  the suitability of 

the services used by it. As mentioned earlier, PCOM supports negotiation 

of dynamic parameters to model such dependencies. But since BASE does 

not  deal  with  dynamic  parameters,  we  restricted  all  parameters  used 

during  the  evaluation  to  parameters  that  are  static  and  thus,  do  not 

require negotiation.  

Figure 9.3 shows  the units of PCOM  that are  involved  in  the component 

selection process. An application programmer specifies  the  requirements 

of  a  component  using  a  contract  (a).  At  runtime,  PCOM  provides  the 

application programmer with a handle  for each component requested by 

the contract. Using this handle, a programmer can simply initiate the (re‐) 

selection by calling the rebind‐method (b). Typically, this method will be 

called within one of  the  listeners discussed above. When a  reselection  is 

initiated, PCOM uses contract matching to find suitable components and it 

uses  a  strategy  to  prioritize  possible  replacements  (c).  The  distinction 

between  contract  and  strategy  separates  the  requirements  that must  be 

met  to  ensure  the  desired  component  behavior  from  user  preferences. 

Notice,  that  (a)  and  (b)  are  supplied  by  a  programmer, while  (c)  is  a 

configurable and thus re‐usable strategy that is integrated in the system.  

Figure 9.4 shows how a similar behavior can be implemented using BASE. 

An application programmer provides a selection routine  for  the required 

service  that  specifies  its  properties  and  priorities  (d).  Whenever  a 

reselection  must  take  place,  the  application  calls  this  routine  (e).  In 

contrast  to  PCOM,  the  selection  routine  provided  by  the  application 

programmer encapsulates both, service requirements and preferences.  
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Figure 9.4: Service Selection in BASE  

 
The  comparison  of  these  two  implementations  shows  that  ‐  from  an 

application programmer’s point of view ‐ using a service in BASE is more 

complex  than  using  a  component  in  PCOM.  While  application 

programmers in BASE have to provide the functionality for searching and 

selecting  required  services,  programmers  in  PCOM  are  provided  with 

handles  that  hide  the  details  of  this  selection.  Instead  of  providing  the 

specific algorithm  that  searches and prioritizes components,  they  simply 

specify  the parameters  that denote application‐specific  requirements and 

thus,  they do not have  to  reason  about user preferences. This means  an 

additional  flexibility  which  would  be  hard  to  achieve  in  a  BASE 

implementation.  Note  that  other,  more  complex  features  like  contract 
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negotiation  or  PCOM’s  signaling  mechanisms  are  even  harder  to 

implement on top of BASE because of the lack of dynamic attributes.  
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Figure 9.5: Component vs. Service Selection 

 
Clearly,  the  extraction of  functionality  for  selection  causes  an  additional 

performance  overhead.  To  quantify  the  impact  on  performance,  we 

measured  the  time  for  a  reselection  in  PCOM  and  in  BASE.  Figure  9.5 

shows the average time for reselecting a service respectively a component 

(using  the  strategies and algorithms described  in Figure 9.3/9.4)  in  cases 

where suitable components (or services in BASE) were available on 1 to 5 

remote  systems.  The  measurements  have  been  conducted  on  PCs 

(Pentium  III/600MHZ)  connected with  a  100 MBit  network  in  order  to 

show the fundamental effort without experiencing additional delays, such 

as Bluetooth discovery. The numbers shown in Figure 9.5 are the result of 

measuring 10 independent runs with 100 reselections each and varying the 

number  of devices  offering  services  (BASE)  and  containers  (PCOM). To 

reduce  fluctuations  as  far  as  possible,  we  disabled  Java’s  just‐in‐time 

compiler.  The  remaining  fluctuations  were  below  10  percent  of  the 
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average  time  of  a  run  and  are most  likely  side‐effects  of  the  operating 

system’s scheduler and Java’s built‐in garbage collector.  

The total selection time is determined by the time for obtaining offers from 

neighbors,  choosing  an  offer,  and  instantiating  the  chosen  service  or 

component. While  the  time  for  obtaining  offers  and  choosing  an  offer 

increases  linearly with  the  number  of  neighbors  the  instantiation  of  the 

chosen  offer  is  constant.  The  measurements  in  Figure  5  show  that, 

although  reselection  in  PCOM  is  slower  than  in  BASE,  the  relative 

overhead  decreases  with  the  number  of  neighbors.  This  is  due  to  the 

higher  cost  for  instantiating  a  PCOM  component  compared  to  a  BASE 

service.  The  absolute  overhead  for  a  selection  of  approximately  30 ms 

however, is unlikely to be a bottleneck for realistic applications.  

In  addition  to  these  measurements  on  resource‐rich  devices  we  have 

performed  experiments  on  a  JStamp  embedded  system5  connected  by  a 

19200 baud serial line. The average selection time was 3300 ms, which still 

may  not  impose  serious  problems,  since  a  constant  change  of  an 

application configuration, such as switching a monitor, will be annoying 

to the user. 

In  summary,  comparing  service  and  component  selection  shows  that 

separating requirements and preferences using contracts and strategies is 

not  for  free.  Although  the  overhead  is  noticeable,  we  believe  that  the 

gained flexibility is worth the performance penalty.  

9.6.2. Communication 

In order to compare the communication performance in BASE and PCOM, 

we measured  the  cost  for  a  single message  transfer using both  systems. 

Our  measurements  showed  that  PCOM  basically  does  not  induce 

overhead  on  calls  between  components  as  it  does  not  introduce 

                                                 
5 http://www.jstamp.com 
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indirections  in  the  dispatch  chain.  This  in  turn  is  a  result  of  carefully 

integrating proxies and skeletons of BASE and PCOM. 

In  terms  of  general  communication  overhead,  three  mechanisms 

introduced  by  PCOM  require  additional  remote  communication.  In 

contrast  to  services  in  BASE,  components  in  PCOM  use  a  soft‐state 

protocol  to  detect  the  (un‐)availability  of  components.  This  protocol 

transparently  exchanges  additional  keep‐alive  messages  if  no  other 

messages  have  been  exchanged  during  a  lease  period.  These messages 

represent  an  additional  communication  overhead  for  components  that 

communicate  infrequently.  The  second mechanism  that  introduces  new 

messages  is  the discovery  listener  as  it  retrieves  relevant  contracts  from 

devices  that  have  been  newly  discovered.  The  last  mechanism  that 

requires  additional  remote  communication  is  the  contract  listener.  It 

creates a message for every modification of an offer or a requirement that 

is specified in a contract.  

Clearly,  all  three mechanisms do  not  only  create  overhead,  but do  also 

provide necessary  features.  It  is  conceivable  that  realistic applications  in 

dynamic  environments must  rely  on  soft‐state  protocols  to  reduce  the 

amount of wastefully reserved resources. Similarly, components that have 

changing  requirements  or  offers  need  to  communicate  them.  Finally, 

optimization of executed applications requires notification about changes 

that could have positive impact. 

Obviously,  all  three  mechanisms  could  also  be  implemented  in  the 

application space, but it is questionable whether the possible performance 

benefit  would  outweigh  the  memory  and  engineering  overhead  of 

implementing all mechanisms within each component. 
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9.6.3. Resource Overhead 

Apart from the cost of single mechanisms, PCOM has additional memory 

and processing requirements. In terms of memory usage, PCOM adds 30‐

40KB on  top of 90‐120KB required by BASE, resulting  in a  total memory 

usage of 120‐160KB. With  respect  to processing, component  instantiation 

and contract evaluation as well as all  three mechanisms described  in  the 

previous  section  lead  to  increased  requirements.  The  overhead  for 

comparing  contracts  and  instantiating  components  has  already  been 

discussed  in  the  comparison  of  service  and  component  selection.  The 

processing  requirements  for  the  other  mechanisms  vary  heavily 

depending on the applications and the environment and thus are hard to 

quantify.  

 

In summary, the evaluation shows that the application of PCOM is not for 

free,  but  our  results  are  promising.  Compared  to  the  baseline memory 

requirements of BASE, PCOM adds only  little additional overhead. With 

respect to communication, the requirements do not change. Although the 

reselection overhead is more noticeable, we believe the gained flexibility is 

worth the cost. 

9.7. Related Work 

We  will  discuss  related  work  in  the  areas  of  component  systems, 

architectures  for  adaptation  and  evolution  as  well  as  recoverable 

computing, and pervasive computing. 

Component  Systems:  Szyperski  defines  components  as  units  of 

composition with  contractually  specified  interfaces  and  explicit  context 

dependencies  only  along with  other  properties  [Szy98].  This  definition 

conforms  to our definition  introduced  in section 9.5. Existing component 

systems,  e.g., CORBA CCM  [OMG02c],  Enterprise  Java  Beans  [SunEJB], 
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conform  to  this  definition  by  introducing  container  abstractions  to 

decouple components from the underlying platform and by providing – at 

least  functional  –  contracts  between  components  via  interfaces.  Such 

systems  typically provide persistency and  transactional behavior and are 

targeted  at  enterprise  software  rather  than  on  resource  constrained  and 

dynamic environments, such as Pervasive Computing. 

Adaptation  Architectures  and  Recoverable  Computing:  The  self 

configuration  of  software  is  addressed  by  a  number  of  projects  in  the 

research area of application architectures.  In  contrast  to our work,  these 

projects typically consider adaptation to be a rather rare event, caused by 

errors or changes in the software’s mission.  

The Weaves  approach  [OGT+99]  provides  a  general  graph  structure  to 

model  component  dependencies.  This  leads  to  complex  algorithms  and 

additional  specifications  to  support  adaptation decisions. Therefore,  this 

approach  is  too  heavy‐weight  for  resource  poor  devices  and  frequent 

adaptations. 

The  recursive  restartability  approach  [PBB+02], proposed  in  the domain  of 

recoverable computing, uses a tree‐based application model quite similar 

to the PCOM model. Still, this model is specifically designed to allow the 

restart of  failing components. The partitioning of  the application  follows 

the encapsulation of restartable units – not units of composition – and the 

only  supported  adaptation  is  a  component  re‐instantiation.  PCOMs 

application model  is different  in  that  it models  the  functional  and  non‐

functional properties of inter‐component dependencies.  

Pervasive Computing: The necessity of application adaptation is realized 

by a variety of projects  that differ widely  in  their support  for adaptation 

and  the  abstractions  provided  to  application  programmers.  The  system 

model considered is often based on smart environments, providing a set of 

services,  such  as  lookup  and  persistent  storage  to  devices  that  connect 
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temporarily or permanently to the smart environment. In contrast to this, 

our system model does not assume connectivity  to a  smart environment 

but spontaneous connectivity to devices in the vicinity. 

The  iROS  [JFW02] application model consists of atomic application parts 

which communicate via an event heap, realized as a tuple space. The event 

heap decouples distributed parts of an application.  If  functionality  is not 

present,  the  request  in  the  event  heap  is  purged  using  an  aging 

mechanism. Adaptation of applications is implicit, as functionality is only 

presented to the user if the application receives an answer to its request in 

the event heap. 

One.world [GAB+00] is also based on a tuple space to allow communication 

between distributed parts  of  an  application via  events. Applications  are 

composed  of  nested  environments.  Environments  isolate  applications 

from  each other and  serve as  containers  for persistent data. Conquering 

failure  and  selective  availability  is  supported  by providing mechanisms 

for  application‐specific  automatic  adaptation,  such  as  migration  or 

checkpointing along with persistent storage. Generic automatic adaptation 

is not supported. 

Gaia [RC00] provides an application model based on a generalized model 

view controller pattern. An abstract definition of required functionality is 

mapped  to  the  services  available  in  a  distinct  smart  environment  (an 

active  space). A  coordinator  component  ensures  that  the  application  is 

executed as long as their integral parts are available. Adaptation is mainly 

considered to happen when a user moves to another active space and the 

matching of non‐functional parameters is solely used to create a mapping 

between them. 

The  application  model  of  Aura  [GSS+02]  provides  a  high  level,  user 

oriented  task  scheduler.  Like  PCOM,  Aura  aims  at  providing  generic 

automatic  adaptation  support,  but  assumes  a  variety  of  services,  e.g., 
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remote  communication,  distributed  file  system,  between  remote  Aura 

environments. PCOM is intended for environments, where this cannot be 

assured. 

9.8. Conclusion 

In  this  chapter  we  have  presented  PCOM,  a  light‐weight  component 

system  supporting  strategy‐based  adaptation  in  spontaneous networked 

Pervasive  Computing  environments.  Using  PCOM,  application 

programmers  rely on  a  component  abstraction where  interdependencies 

are contractually specified. The  resulting application architecture  is used 

for  strategy‐based  adaptation  of  applications.  Our  results  so  far  are 

promising.  Based  on  our  middleware  BASE,  PCOM  adds  only  little 

memory overhead and basically no runtime overhead on communication. 

Overhead  is  introduced  by  the  instantiation  of  components  resulting  in 

higher  reselection  time.  However,  this  overhead  decreases  with  the 

number  of  involved  nodes. We  conclude  that  providing  a  component 

abstraction  along  with  generic  adaptation  support  is  possible  with 

reasonable overhead even for resource‐restricted devices.  

Besides  evaluating  PCOM  on  a  variety  of  different  devices  and 

communications  technologies  in  our  lab,  we  are  currently  evaluating 

PCOM’s  abstractions  by  developing  further  and  more  complex 

applications.  From  the  gained  experiences,  we  expect  to  identify 

additional generic adaptation mechanisms. Furthermore, we are working 

on  generic  adaptation  mechanisms  that  will  allow  the  reselection  of 

stateful components. In the near future different adaptation strategies will 

be developed and evaluated using our system.  
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10. Experiences: Minimalism and Extensibility in BASE  
In  the  vision  of  Ubiquitous  Computing  everyday  objects 

become  smart.  Technically,  this  requires  some  sort  of 

processing and communication  technology. We have designed 

and implemented a middleware for spontaneous networking in 

Ubiquitous  Computing  environments.  The  major  objectives 

were  minimalism  and  extensibility  in  order  to  deploy  the 

middleware on a variety of devices ranging from sensor nodes 

to classical general purpose computers. In this chapter we will 

assess the taken approach based on two follow‐up projects: the 

port of BASE to a small embedded system and the design and 

implementation of a component system on top of BASE. While 

the fundamental concepts and design principles of BASE have 

proven  to be  solid, both projects provided  insights  that  led  to 

minor conceptual and major technical changes. 

10.1. Introduction 

Ubiquitous Computing (UC) [Wei91] envisions spontaneous interaction of 

computerized  devices  in  order  to  achieve  complex  goals  and  support 

people’s  tasks. As  in  ordinary distributed  system  settings,  interaction  is 

achieved  through  the  exchange  of  data  and  therefore  is  based  on 

mechanisms that enable communication of computer systems. Support for 

communication in UC environments faces challenges that go beyond those 

of systems in static environments. Apart from the heterogeneity of devices 

which, to some degree, can also be found in ordinary distributed systems, 

UC  is  based  on  networks  that  form  spontaneously  and  change 

dynamically.  The  mobility  of  devices  makes  it  inevitable,  that  devices 

integrate  in  their ever‐changing surrounding networks  in order  to utilize 

the functionality provided by them. 
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Resulting from the need to enable communication between heterogeneous 

computer systems  in dynamic environments, a number of  infrastructures 

have  been  proposed.  These  infrastructures  are  designed  to  provide  an 

easy  and  efficient  way  of  building  and  executing  applications  for 

ubiquitous computer systems. Depending on the degree of device mobility 

anticipated, they can be classified into two categories. The first category of 

infrastructures is based on the concept of smart environments. Prominent 

examples  are  Gaia  [RC00],  Aura  [GSS+02]  and  iROS  [JFW02].  They 

provide means  to  integrate  small, mobile  devices  into  relatively  heavy 

weight  environments with  the  immense  processing  power  and  storage 

capacities  of  today’s  desktop  systems.  The  second  category  of 

infrastructures  is  targeted  at  supporting  mobile  devices  with  limited 

resources without relying on the processing power or storage capacity of 

the  environment.  Two  representatives  of  this  category  are  RCSM 

[YKW+02] and BASE  [BSG+03], a middleware  that supports spontaneous 

communication  between devices. BASE  has  been designed  to  support  a 

wide  range  of  devices  from  sensor  platforms  to  general  purpose 

computers. Its micro‐broker architecture allows the creation of a portable 

system  with  minimal  hardware  requirements,  but  it  makes  extension 

mechanisms  inevitable  in  order  to  optimally  utilize  the  capabilities  of 

different devices. 

In this chapter we present our experiences with porting BASE to a JStamp 

processor [Systronix], a Java‐based embedded system supporting only the 

Java  2  Micro  Edition  [SunJ2ME]  in  the  Connected  Limited  Device 

Configuration  (CLDC).  Further  experiences  where  gained  when  we 

designed and  implemented a component system  for UC on  top of BASE. 

Our experiences so far are promising. Both projects together enabled a first 

evaluation  of  minimalism  and  extensibility  of  BASE  and  led  to 
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optimizations  regarding  the  internal  mechanisms  and  external 

abstractions provided by this middleware.  

The  remainder  of  this  chapter  is  structured  as  follows.  Next,  we  will 

present an overview of BASE’s architecture. Section three briefly describes 

the projects that led to the experiences described in this paper. In the forth 

section  we  will  discuss  the  problems  that  we  have  encountered,  their 

solutions and lessons learned. Section five summarizes and concludes the 

chapter. 

10.2. BASE – A Micro-broker Based Middleware 

In order  to understand  the approach  taken during  the design of BASE’s 

architecture,  it  is  necessary  to  explain  the  underlying  requirements  and 

design rationales. As a complete description would go beyond  the scope 

of  this  chapter, and  can be  found  in Chapter 7. We only present a brief 

overview before presenting the architecture. A more detailed presentation 

of BASE can be found in [BS03a] and Chapter 8.  

10.2.1. Design Rationales 

BASE was designed  to  fulfill  three major requirements. First, application 

programmers should be provided with a uniform programming interface for 

accessing device capabilities,  like a GPS receiver, and application objects, 

both,  local  and  remote  ones.  This  allows  transparently  switching 

functionality  at  runtime  or  more  general,  adapting  to  changes  in  the 

availability  of  functionality  in  a  uniform  way,  e.g.,  by  switching  to  a 

remote  location  service  once  the GPS  receiver  stops  operating  indoors. 

Therefore,  in  BASE,  a  service  abstraction  is  provided  to  the  application 

programmer to access device capabilities and application objects.  

Second,  the  variety  of  different  devices will  likely  lead  to  a  number  of 

different interoperability protocols with different communication models, 

e.g., events, remote procedure calls  (RPC), etc. These should be decoupled 
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by the middleware from the application communication model. This allows for 

example  using  an  event‐based  interoperability  protocol  to  deliver 

request/response messages of an RPC. 

Last but not  least,  the middleware  should be minimal and  tailorable. This 

allows the installation on resource restricted devices, e.g., sensors, as well 

as  using  resources  on  more  powerful  devices,  such  as  presentation 

systems or desktop computers. 

 

 
Figure 10.1. BASE Architecture 

10.2.2. Architectural Overview 

The  architecture  of  BASE  is  depicted  in  figure  10.1.  BASE  offers 

application programmers a static (SII) and a dynamic invocation interface 

(DII). For the SII, stubs and skeletons are generated by a compiler and are 

used to map a method call to/from a so‐called invocation object. If the DII 

is used,  the  application  composes  invocation objects directly.  Invocation 

objects are  Java objects, containing  the unmarshalled  invocation parts,  like 

method name  and parameters  as well  as  further  information on how  to 

thread the invocation, e.g., which synchronization pattern should be used. 

While  marshalling  typically  is  a  stub/skeleton  responsibility,  it  was 

omitted on  this  layer and pushed down  to  the  transport plug‐ins  to give 
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the  middleware  maximum  flexibility  in  choosing  a  suitable 

interoperability protocol at runtime. 

In the system core layer, the invocation broker is responsible for delivering 

the  invocation  to  either  a  local device  capability  or  a  remote  service  by 

choosing  an  appropriate  plug‐in.  The  invocation  broker  relies  on 

information  from  the  service  registry  (local  services)  and  the  device 

registry  (currently  reachable  devices  and  the  corresponding  transport 

plug‐ins)  in  order  to  dispatch  an  invocation.  Since  plug‐ins  can  realize 

arbitrary  protocols  the  invocation  broker  has  to  synchronize  the 

invocation  according  to  the  application  programming  model  and  the 

underlying plug‐in.  

Plug‐ins can be dynamically loaded and thus allow the extensibility of the 

middleware. The  invocation broker  follows  the micro‐kernel philosophy 

by  only  offering  minimal  functionality,  i.e.,  how  to  find  a  service 

responsible for the invocation, dispatch it, and synchronize the invocation 

according  to  the  application  communication model.  Thus,  we  call  it  a 

micro‐broker. 

Since  all  plug‐ins,  i.e.,  for  device  discovery,  device  capability,  and 

transports rely on the same interface, i.e., handle invocations, applications 

can use the same programming interface (SII, DII) to access them. As stubs 

and  skeletons  do  not  provide  any  marshalling  functionality,  transport 

plug‐ins have to ensure the marshalling of parameters and construction of 

interoperability protocol messages. 

10.3. First Experiences 

The  first  prototype  of  BASE  was  developed  using  an  IBM  J9 

implementation  of  the  Java  2 Micro Edition with  the Connected Device 

Configuration  (CDC).  The  CDC  omits  a  variety  of  features  from  the 

Standard Edition, e.g., reflection, while others, such as object serialization, 

are  present.  Initial measurements  [BSG+03]  showed  a  reasonable  small 
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memory footprint of about 130 Kbytes but also that the initial marshalling 

resulted  in  two  to  three  times  overhead  compared  to  Java  RMI.  This 

overhead mostly  resulted  from  the naïve approach  taken,  i.e., serializing 

an invocation object with Java’s object serialization. 

10.4. Porting and using BASE 

After  the  initial  prototypical  implementation  that  built  upon  the  J2ME 

CDC  platform,  we  started  two  projects  related  to  BASE.  One  project 

ported  BASE  from  its  original  platform  the  JStamp.  The  other  project 

aimed  at  the development of  a  component  system on  top of BASE. The 

combined experiences created a picture that allowed an initial evaluation 

of both, the internal structure and the external abstractions.  

10.4.1. Porting BASE 

Although BASE  is targeted at systems of all sizes we decided not to deal 

with all complexities that arise from the application of extremely restricted 

platforms  during  the  development  of  the  first  prototype.  Therefore, we 

did  not  build  upon  the most  restricted  platform  defined  by  the  J2ME 

specification. Instead we used  the CDC, since  it has a range of advanced 

features  that  allowed  us  to  speed  up  the  initial  development.  These 

features  included  for  instance,  JVM  support  for  object  serialization  and 

dynamic  class  loading.  The  typical  hardware  that  provides  CDC  sized 

runtime environments are high‐end personal digital assistants or TV set‐

top boxes. Clearly, UC aims at devices that are even smaller. Therefore, we 

began to port BASE to the CLDC shortly after the first prototype was built 

successfully. The CLDC is targeted at devices including low‐end personal 

digital  assistants  and  embedded processors. Porting BASE  required  two 

tasks. First, we had  to remove or reconstruct all convenient  features  that 

were solely available on CDC enabled systems. Second, we had  to build 

platform  specific  transport  and  discovery  plug‐ins,  since  the  JStamp 
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processor did not  support our existing  IP‐based  transport and discovery 

plug‐ins.  Both  tasks  together  gave  us  a  chance  to  evaluate  the  internal 

structures when porting BASE to other platforms. 

10.4.2. BASE as a Platform for Components 

BASE aims at abstracting from platform specifics, but it leaves application 

programmers  with  only  basic  support,  when  dealing  with  fluctuating 

availability of local and remote services. As these fluctuations are inherent 

in  mobile  ad  hoc  networks,  code  of  stable  applications  is  necessarily 

tangled with code  that manages dependencies on  functionality provided 

by  services.  Since  this  kind  of  tangled  code  raises  the  complexity  of 

application  development,  we  decided  to  automate  dependency 

management  by  the  middleware  using  a  component  abstraction.  The 

resulting  component  system  used  BASE  as  means  of  communication. 

Since we did not want  to  change  the main mechanism  and  abstractions 

provided by BASE during its development, the component system can be 

seen as an application built on top of BASE. Therefore, this project enabled 

us to evaluate BASE’s external structures that are used during application 

development. 

10.5. Experiences 

Before we present  the  lessons  learned  from  conducting  the port and  the 

development  of  a  component  system,  we  will  describe  the  resulting 

modifications to BASE. The modifications can be divided into two classes 

depending on their effects. The first class has been foreseeable and did not 

have conceptual  impact. The second class  is more  interesting as  it affects 

the fundamental concepts of BASE. 
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10.5.1. Technical Modifications 

The additional  restrictions  imposed by  the CLDC  led  to  technical  issues 

that could be resolved in a straight forward manner. Most noteworthy we 

were facing the following difficulties: 

Class  loading:  the  initial  version  of  BASE  made  use  of  dynamic  class 

loading in order to locate and execute plug‐ins and services at runtime. As 

dynamic class  loading  is very  restricted by  the CLDC, we had  to  reduce 

this flexibility. Instead of dynamic class loading we modified BASE to use 

linked  classes. We  simplified  the  resulting more  complex  configuration 

process by providing a graphical configuration tool that generates desired 

configurations.  

Object serialization:  the CLDC does not provide means  for serialization of 

objects.  Since  plug‐ins  are  responsible  for  the  marshalling,  the  first 

prototype of BASE simply serialized the  invocation object. As mentioned 

before,  this resulted  in an unnecessary overhead and additionally,  it was 

not  possible  on  the  CLDC.  Our  solution  to  this  problem  is  straight 

forward. Via a serialization  interface  the marshalling code can access  the 

object’s  state  and write/read  it  to/from  an  output/input  stream. We will 

later  describe  a  solution  for  a more  flexible  and  performance  oriented 

plug‐in structure. 

10.5.2. Conceptual Modifications 

BASE’s plug‐in concept offers a rather coarse grained structure currently 

including  marshalling,  interoperability,  discovery,  and  transport  layer 

abstractions. As  the  JStamp  did  not  support  our  existing  transport  and 

discovery plug‐ins, we had to develop new plug‐ins. Although developing 

plug‐ins  is  a  fairly  simple  undertaking,  due  to  their  coarse  grained 

structure, we were not able to reuse much of the existing code. Along with 

the marshalling performance mentioned earlier and current activities  for 
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QoS management, we  have  to  conclude  that  the  plug‐in  concept  so  far 

provides suitable abstractions to interface to the micro‐broker but requires 

additional  structuring  into  an  interoperability  framework.  Optimized 

marshalling  code  for  distinct  interfaces,  service  discovery,  as  well  as 

transport  layer  related  issues, e.g., SSL encryption, can be  integrated via 

interceptors offering a simple configuration and re‐use of  these elements 

in other plug‐ins.  

Apart  from  the  technical modification  described  earlier,  the  inability  to 

load  classes  dynamically  also  led  to  conceptual  changes.  Just  like  JINI 

[Edw99] services, BASE services were designed to provide stubs for their 

clients. The  automated delivery  of  stubs  allows  service‐instance  specific 

stubs and skeletons, but it relies on the ability to load classes dynamically. 

Porting BASE  led  to  the  conclusion  that, due  to  its  overall  architecture, 

service‐instance  specific  stubs  and  skeletons  are  an unnecessary  feature. 

With respect to JINI services,  loadable stubs are the only way  to support 

flexible  communication mechanisms. While  BASE  decouples  stubs  from 

the  specifics of  the  transport and  interoperability  layers,  JINI’s  stubs  cut 

right through all communication layers. Therefore, JINI clients have to use 

the stub provided by the service. Otherwise they will not be able to create 

valid  requests.  The  only  functionality  provided  by  BASE’s  stubs  is  the 

creation of Invocations. Encoding and transmission of data is handled by 

plug‐ins. As a result, clients are able  to  include stubs  for all services  that 

they might use. The fact that BASE does not need service‐instance specific 

stubs and skeletons results in a leaner ServiceRegistry.  

10.5.3. Lessons Learned 

From conducting both projects we learned a lot about the design decisions 

made during the initial development of BASE. A very obvious lesson that 

can be learned is that porting a Java‐based system is not always as simple 
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as  some  people  claim.  Although  Java  is  usually  considered  to  be  a 

platform  independent  language,  switching  to  a  more  restricted  J2ME 

configuration can lead to costs that are comparable to the costs of porting 

platform dependent programs. Both,  the  lack  of  object  serialization  and 

dynamic class loading required the design of new mechanisms to achieve 

a similar level of convenience. 

Apart  from  the  platform  related  issues,  the  conceptual  modifications 

provided  two  interesting  insights. First, we  learned  that  it  is possible  to 

use our plug‐in concept to successfully build plug‐ins for small devices. At 

the same  time, we discovered  that  the granularity of  the plug‐in  layer  is 

not  yet  satisfactory.  Therefore  we  have  to  conclude  that  the  plug‐in 

concept offers the required extensibility, but it needs a more sophisticated 

structure  to  increase  reuse  of  existing  code  and  to  provide  improved 

support for developers.  

The  second  modification  showed  that  the  plug‐in  architecture  allows 

removing service specific stubs and skeletons without loss of functionality. 

The extensibility provided by BASE’s plug‐in layer is sufficient to achieve 

at least the same degree of flexibility as systems like JINI. 

The  previously  discussed  lessons  can  be  derived  directly  from 

modifications, but there are also  lessons  learned that result from keeping 

existing  concepts. For example, one  interesting  feature of BASE  that did 

not change during  the projects  is  its reflection mechanism.  In contrast  to 

the Standard Edition,  J2ME does not support reflection. However,  in  the 

presence of dynamic invocation creation and appropriate means to specify 

services  and  their  interfaces  via  the  service  registry,  a  simple  reflection 

mechanism is provided by BASE. It was an ongoing discussion in the team 

whether  to  aim  for  general  reflection,  i.e.,  storing  signatures  and  class‐

relations in the service registry, or only providing interface names and the 

class‐hierarchy  information.  So  far, we  have  chosen  the  latter  approach 
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without  experiencing  any  restrictions. Our  component  system  provides 

more  powerful  concepts  for  interface  description  and  exploration 

including non‐functional parameters and hence we decided to keep BASE 

minimal.  

Another and probably the most  important lesson that we have learned is 

also  a  result  of  not  changing  anything. During  the  development  of  the 

component  system,  there was  no  need  to modify  BASE.  All  necessary 

additions were implemented in the application layer. Only two extensions 

were  integrated  directly  into  BASE.  First,  components managed  by  the 

component system use stubs and skeletons  that  inherit  from  the original 

stubs and skeletons provided by BASE. This enables a  faster dispatch of 

messages  since  there  is  no  additional  indirection  in  the  dispatch  chain. 

Second,  some of  the  functionality provided by  the Registries  is accessed 

directly  in order  to remove  indirections  that might have negative  impact 

on  the performance of  the  system. Note,  that  these design decisions  are 

performance  optimizations.  We  could  have  done  everything  in  the 

application layer (although this would have led to a much slower system). 

This brings us to the conclusion that BASE provides suitable abstractions 

for implementing applications as well as high‐level infrastructures.  

The  successful  development  of  the  component  system  also  raised 

questions. Our preliminary evaluation indicates that the overhead caused 

by a carefully designed component system  is reasonably small compared 

with the initial cost of using BASE. The current version of BASE requires 

90KB. Through the usage of the component system, these requirements are 

increased by 30KB. Considering  target systems  like  the  JStamp  that have 

at  least 1MB of memory, we are  currently considering whether  it makes 

sense to completely abandon the service abstraction and use components 

instead. But at the moment it is too early to fully assess all consequences of 

such a move. 



227 

10.6. Conclusions 

In  this  chapter we have presented our  experiences with  conducting  two 

projects  that  build  upon  BASE.  While  the  internal  structures  have 

undergone technical and conceptual modifications, the external structures 

stayed remarkably stable. The conceptual modifications led to a follow up 

project,  in  which  we  began  to  design  an  improved  plug‐in  layer  to 

overcome  the  described  deficiencies.  Furthermore,  we  were  able  to 

successfully port BASE to a new set of target devices and to utilize it for a 

larger application. This success  is encouraging and  it shows that BASE  is 

not  only  suited  for  smaller  devices,  but  also  that  it  can  be  used  as 

infrastructure  for  applications  as  well  as  for  further  high‐level 

abstractions. We are highly  confident  that  the minimalism of our micro‐

broker approach together with the extensibility of its plug‐in architecture 

will prove to be adequate for UC environments. 

 

BASE  and  the  component  system  are  freely  available  to  research 

institutions and can be downloaded at http://www.3pc.info. 
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11. Summary and Outlook 
The  proliferation  of  sensor  technology  and  the  miniaturization  of 

computing  devices  already  provide  the  foundations  to  capture  the 

physical  world’s  state.  Integrating  this  state  into  applications  allows 

presenting  information  and  selecting  services  based  on  the  physical 

world’s state. Applications  thus become context‐aware. First examples of 

context‐aware  applications  are  already  available  on  the  market.  Car 

navigation  systems  are  based  on  road maps  providing  a model  of  the 

physical  world.  Integrating  dynamic  information,  such  as  the  current 

traffic  information,  allows  the  routing  function  to  avoid  traffic  jams. 

Application  scenarios  for  context‐aware  computing  span  all  domains 

where  human  users  interact  with  computer  systems.  Context‐aware 

tourist guides, reminder services, home automation are examples for such 

application  systems.  Certain  domains  can  clearly  benefit  from  context‐

aware computing technology. Support for senior citizens could consists of 

body monitoring in order to ensure that help is called if some critical state 

is monitored. A smart pill dispenser can keep track of the correct medicine 

to  be  taken.  Offering  the  latest  health  information  plus  a  history  to  a 

physician  in  case of an emergency  can help  to provide  the best‐possible 

medical  care. But not only human‐centered  computing  can benefit  from 

context‐aware  computing. A  smart  factory  could  track  the  position  and 

state  of  tools  and  resources  in  order  to  integrate  it  into  its  resource 

management. This allows balancing stocking of resources and tools versus 

possible production downtimes due to their unavailability.  

Context as a concept reflects all information that relates to the situation of 

entities  relevant  for applications and users. Applications can use context 

information by different means. If the context is stored in a context model 

and  the  application  provides  the  precautions  for  adaptation  to  context 

changes we refer to this class of system support as adaptation by application. 
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Such context models are typically realized as context services which allow 

storing  context  information  obtained  by  sensors,  the  application,  or  the 

user.  Applications  interface  to  such  context  services  by  using  query 

languages  in  order  to  retrieve  or modify  context  information.  Based  on 

such  context  models  applications  can  select  information  and  services 

depending on the context, change their presentation, issue some action, or 

allow to tag information to context. Context services can be designed for a 

single  application,  an  application  domain,  or  aim  at  generic  context 

management.  The  underlying  system  models  influence  the  context 

management.  Infrastructure‐based  approaches  can  rely  on  one  or  a 

number  of  services  offering  the  context  information  to  applications. 

Applications  thus  have  to  access  the  infrastructure  whenever  context 

information  is  required. Another  possible  approach  is  based  on  ad  hoc 

communication. Mobile devices are connected by wireless communication 

technology and form a spontaneous network. The unpredictable topology 

changes and the resulting network partitions prevent the management of 

context in a single service. Context information can be managed on a peer‐

to‐peer‐based  fashion where mobile devices manage  their context  locally 

and exchange information with other devices. Location services for mobile 

ad hoc networks are examples of  context  information  that  is maintained 

collaboratively among mobile devices. 

In  contrast  to  context  services  which  provide  applications  only  with 

information about context but do not provide any support for application 

adaptation, support for adaptation by system exists as well. Applications are 

automatically  configured  depending  on  the  available  information  and 

services. Spatial proximity as a major context information can be reflected 

either by a  spatially  restricted  resource management or by using ad hoc 

communication.  In  the  first  case,  which  is  common  for  smart 

environments,  the  management  of  a  spatial  area  is  provided  by  an 
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infrastructure.  The  smart  environments  controls  the  integration  and 

leaving of devices and mediates the interaction. Applications are mapped 

onto  the  available  services. The  relevance of  information  and  services  is 

reflected  by  being  available  through  the  smart  environment which  only 

manages a spatially restricted area, e.g., a meeting room or a smart home. 

Spatial  relevance  of  information  and  services  is  naturally  reflected  in 

spontaneous  networks  based  on  mobile  ad  hoc  networks.  The 

communication between devices is based on wireless communication and 

thus  devices  in  direct  communication  range  are  considered  to  be  in 

proximity.  In  contrast  to  smart  environments  there  is no  central  control 

provided  by  an  infrastructure.  This  requires  the  system  support  to 

discover available  services and  information  for each participating device 

and to adapt applications accordingly.  

11.1. Contributions 

This  thesis  provides  a  general  discussion  about  system  support  for 

context‐aware  computing.  A  classification  of  system  support  along  the 

dimensions of the underlying system model, i.e., ad hoc or infrastructure, 

and  the  system  support  for application adaptation,  i.e., by  system or by 

application, is given and structures this research area. 

Specific contributions are made to the domains of support for adaptation 

by application. Location models as a basic structure of context models are 

presented  and  classified  according  to  their  suitability  for  supporting 

position,  range,  and  nearest  neighbour  queries.  The  domain  of  context 

services  in  ad  hoc  systems  is  addressed  by  the  Usenet‐on‐the‐fly.  This 

application allows users or applications  to specify  filters on  information, 

which  is exchanged between mobile devices  in a mobile ad hoc network. 

The  local  relevance  of  information  is  reflected  by  the  dissemination 

algorithm that propagates information between devices whenever they are 

in  communication  range.  An  improved  version  of  this  algorithm  is 
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provided which allows  scheduling  the advertisement of messages based 

on  their popularity. Another  contribution  to  the  field of  context  services 

are the experiences gained from the integration of a local context server for 

Georgia Tech’s Aware Home into the Nexus platform.  

The  research  area  of  Peer‐to‐Peer  Pervasive  Computing  –  support  for 

adaptation by  system  in an ad hoc  setting –  is covered  in  the  remaining 

part  of  this  thesis.  First,  a  requirement  analysis  of  this  class  of  system 

support  is given. Second, a  flexible middleware platform  that allows  for 

spontaneous cooperation  in Peer‐to‐Peer ad hoc systems  is  introduced. A 

micro‐broker  design  allows  minimal  installation  but  also  flexible 

extensibility. Third,  the  support  for  application  adaptation  by  system  is 

addressed  by  a  component  system.  Based  on  the  middleware  a 

component‐based application model is designed. The container managing 

the  components  can  automatically  adapt  to  resource  changes because of 

the explicit dependencies modelled  in the component’s contracts. Fourth, 

the experiences of porting  the middleware  to  resource  restricted devices 

and  building  the  component  container  close  the  thesis  showing  the 

feasibility of the introduced concepts. 

11.2. Outlook 

Context‐aware computing already starts to become available in products, 

such  as  navigation  systems.  The  integration  of  sensor  and  computing 

platforms as embedded systems into everyday objects as a trend can also 

be  observed.  The  next  challenges  in  context management  are  common 

context models allowing applications  to  share and  reason about  context. 

Standardized query languages along with the context models are required 

to share the costs of gathering and managing context.  

Context‐aware  applications  react  to  the  changes  in  the  physical  world 

along with other context information, such as user preferences. As a result, 

these applications will change their behaviour over time with the context 
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information. The potentially high number of context  information and  the 

resulting  combinations  require  applications  to  either  neglect  relevant 

context  information  or  to  deal  with  this  information.  Clearly,  this 

complicates  the  task  of  developing  and  maintaining  context‐aware 

applications. In an ideal case, application programmers are provided with 

means  to  specify  the  variations  in  an  application’s  behaviour  and  the 

system support automatically configures the application depending on the 

current context. A similar situation can be found in Peer‐to‐Peer Pervasive 

Computing.  The  fluctuation  of  services  and  resources  in  general  will 

require constant adaptation of application to the ever‐changing execution 

environment.  If  the  application  programmer  is  assisted  by  higher  level 

support,  such  as  a  contract‐based  application  model,  e.g.,  the  one 

provided  by  PCOM,  the  system  performs  constant  self‐configuration. 

Classical computer systems are also challenged by the number of involved 

components. The complexity of such systems leads to high effort for fault‐

isolation and configuration. The vision of Autonomic Computing aims at 

self‐organizing, self‐healing, and self‐optimizing systems. The similarity of 

objectives  of  Autonomic  and  Pervasive  Computing  –  as  discussed  in 

[WPT03]  ‐  leads  to  the  questions  how  the  concepts  for  adaptation  and 

specification  of  applications  can  be  transferred  between  these  domains. 

Clearly,  the  system  models  differ.  Systems  considered  by  Autonomic 

Computing  are  of  higher  complexity  and  changes,  such  as  errors  or 

reconfigurations,  are  happening  on  a  lower  rate  than  in  Pervasive 

Computing. The core problem,  that a system has  to adapt  to a variety of 

potentially unknown changes, however, stays the same. 

With basic technology being available, the vision of Pervasive Computing 

can  become  reality.  Research  challenges  ahead  do  not  only  affect  core 

computer science disciplines but also business cases for the deployment of 



233 

such systems as well as the social implications of a world  populated with 

sensing, computing, and communication capabilities. 
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