
HABILITATION

The AnT project:
On the simulation and analysis of dynamical systems

Presented to the faculty of
Computer Science, Electrical Engineering,

and Information Technology

at the University of Stuttgart

by
Dr. rer. nat. Michael Schanz

Department Image
Understanding

Institute of Parallel
and Distributed

Systems

University of
Stuttgart

In Memoriam

Erika Sonja Schanz 24. März 1928 - 24. April 1993

Paul Karl Schanz 13. Januar 1926 - 24. Mai 2001

Preface

A software project like the one presented in this work could never have been
done without the help and support of many, many people. Among them
are people who are more or less directly involved in the project as well as
others which supported me in many different ways. The people I want to
thank here are in fact so many, that it is not possible to thank them all
personally. Therefore, I would like to thank in general the members of the
Institute of Parallel and Distributed Systems (IPVS) at the University of
Stuttgart, where the AnT project resides and where most of the work was
done. However, some persons I want to thank personally:

• The referees of this work, Prof. Bestehorn (Cottbus), Prof. Bungartz
(Stuttgart), Prof. Friedrich (Münster) and Prof. Levi (Stuttgart).
Moreover, I would like to thank Prof. Levi, head of the department
Image Understanding at the IPVS, for his friendly support, for
the many discussions and for giving me the opportunity and time
to develop and maintain the AnT project and to write this habilitation.

• All the people involved in the AnT project, but especially my friends:

- Viktor Avrutin, for his brilliant ideas, profound knowledge and
never ending interest in nonlinear dynamics, the uncountable valu-
able discussions with him and finally his affectation for ORIGAMI.

- Robert Lammert, for his creativity, his art of software engineering
and his effort not only during the development of the graphical
user interface but in many other parts and modules of the software.

- Georg Wackenhut, for his support, his holistic thinking, his en-
durance with the build mechanism especially in critical phases of
the project and finally his careful preparations of the distributions.

1

Additionally I would like to thank:

• Our secretary Ute Gräter for her friendship and her tremendous help
in nearly every case and under nearly any circumstances.
• The complete RoboCup team at our institute, but especially Georg

Kindermann, Reinhard Lafrenz and Frank Schreiber for the many in-
teresting discussions during our many famous breakfasts.
• My long standing friend Martin Ossig who supervised together with

me some diploma theses.
• My friends at basketball who helped me ease the built-up tension in

my shoulders and neck caused by the many hours sitting in front of the
computer. Here I would like to add a special thanks to Uwe Husmann,
who worked with the software and found some bugs and Elmar Groß
who is directly involved in the new web front end of the project.
• Last but not least, my friends and former colleagues from the physics

department and especially the organizer Robert Hönlinger for the long
lasting and always interesting events called ”Kaffeerunde”.

Furthermore, a special thanks to my sister Martina Frey and my brothers
Joachim and Jürgen Schanz and their families for their understanding, their
personal support and the many funny parties and other family events.

Finally I want to thank my wife Cordula Ernst for her irresistible love,
her amazing spirit, her great humor, her endless care and support and her
courage for marrying me.

Stuttgart, July 2004 Michael Schanz

2

Glossary

s: state vector .44

Γs: state space . 44

Ns: state space dimension .44

si: i-th state component or state variable . 44

p: parameter vector . 44

Γp: parameter space . 44

Np: parameter space dimension . 44

pi: i-th parameter . 44

s(tn): state vector at time tn . 48

tn: discrete time at timestamp n . 48

f : vector field . 48

sn: state vector at timestamp n . 49

n: timestamp n .49

x∗i : fixed points .50

αi: i-th flip bifurcation point . 51

α∞: accumulation point . 51

λ: Lyapunov exponent . 53

3

S: state vector of a CML or CODEL .60

F : vector field of a CML or CODEL . 60

si
n: state of cell i of a CML . 60

s(t): state vector at continuous time t . 68

t: continuous time . 68

S: state vector of a CML or CODEL .73

F : vector field of a CML or CODEL . 73

si(t): state of cell i of a CODEL . 73

τ : delay time . 82

τi: delay times . 84

F : functional . 88

st: vector function on the delay interval . 88

∆t: step size . 90

t0: initial time . 90

s(t0): initial value .90

Rn: n dimensional Euclidean space . 90

qk: k-th scan point . 98

qin: initial scan point . 98

qfi: final scan point . 98

∆q: scan point increment . 98

N s: number of scan points . 98

qk: k-th 2D-scan point . 100

qin: initial 2D-scan point .100

4

qfi: final 2D-scan point . 100

∆q: 2D-scan point increment . 100

qi
k: i-th component of the k-th 2D-scan point . 100

qi
off : offset of the i-th component of the 2D-scan point 100

ai: parameter of the scan ellipse .100

trig1: cos . 100

trig2: sin . 100

ϕk: angle of the k-th 2D-scan point . 100

∆ϕ: 2D-scan point angle increment . 100

ϕin: angle of the initial 2D-scan point . 100

ϕfi: angle of the final 2D-scan point . 100

qi
in: i-th component of the initial 2D-scan point . 100

qi
fi: i-th component of the final 2D-scan point .100

A: attractor . 111

A: wave number vector . 111

(s, m, e): floating point number representation .224

b: bias . 224

e: exponent . 224

ei: exponent bit .224

m: mantissa . 224

mi: mantissa bit . 224

s: sign bit .224

M : matrix . 227

5

p(λ): characteristic polynomial . 227

λa
i : analytically calculated i-th eigenvalue .227

λn
i : numerically calculated i-th eigenvalue .227

vi: eigenvector i .228

m: particle mass . 280

f : friction constant . 280

k : spring constant . 280

6

Summary

In this work, a the software project AnT 4.669 is presented. This project is
about a simulation and analysis tool for dynamical systems, whereby it was
aimed right from the start, that not only a broad spectrum of dynamical
systems is supported, but many investigation methods as well. This thesis
is structured as follows:

In the Introduction (Chap. 1) a motivation and an overview about the
main topics and the involved scientific disciplines is given and among others,
the notions of simulation and analysis and their prerequisites are defined and
described. The modeling and especially the mathematical modeling are con-
sidered in more detail as well as the tasks of interactive and non-interactive
simulation. The AnT project chapter provides an overview about the
software - its aims, requirements and features. Some historical and techni-
cal remarks are given together with some basic principles and facts about
the functionality and a short guidance how to use this software and its fea-
tures. In the third chapter, denoted as Supported classes of dynamical
systems, the notion of a dynamical system is defined and described in this
context and the most important classes of dynamical systems supported by
the AnT 4.669 software package including their main characteristic prop-
erties are listed. For each addresses class of dynamical systems at least one
typical and illustrative representative is presented. In the fourth chapter -
Scanning of dynamical systems - the notion of scanning is described and
its importance in the field of nonlinear dynamics is emphasized. The differ-
ent types of scan possibilities and procedures provided by the software are
explained as well as the meaning of a scan item and a scan item sequence.
Directly connected with the scanning of a dynamical system is the inves-
tigation or analysis of the dynamic behavior, because in most of the cases
one is not only interested in the investigation under some fixed conditions

7

but under varying conditions. For the analysis of dynamical systems, several
methods are developed in the meanwhile. The methods, which are already
implemented in the AnT 4.669 software and hence available, are presented
in chapter five - Supported investigation methods. The investigation of
dynamical systems is the most important task in the field of nonlinear dy-
namics, because it represents the basis for prediction and forecasting of the
dynamics as well as improvement and enhancement of the used or derived
mathematical models. Therefore, a lot of examples are given in this chap-
ter where the supported investigation methods are applied and illustrated.
Chapter six is about Simulating and investigating dynamical systems.
Here, a more detailed description of the software architecture and applied
concepts is given. Especially the most important concepts of transitions and
machines designed for the simulation and the investigation are explained
and illustrated. The necessity of Distributed computing is addressed to
in chapter seven, where the capability of the software to run in distributed
mode to solve time consuming investigation tasks in parallel on several work-
stations or nodes of a cluster is described. The used client/server architecture
is presented together with the developed network protocol. Many diagrams
and figures in this work are based on the result of time consuming compu-
tations and could not have been prepared without the important distributed
computing feature of the AnT 4.669 software package. In the following two
chapters 8 and 9, the graphical user interface, which guides a user through
the initialization phase and the visualization capabilities of the software were
presented, before in chapter ten Numerical aspects of simulation some
remarks about numerics and scientific computing are elucidated. The work
closes with some additional Examples (Chap. 11) and a short Conclusion
(Chap. 12) about the main advantages of the AnT 4.669 software pack-
age and the future extensions, including an overview about related software
projects.

8

Contents

1 Introduction 21
1.1 Motivation . 21
1.2 The simulation process . 27

1.2.1 Modeling . 27
1.2.2 Mathematical modeling 29
1.2.3 Simulation . 29

1.2.3.1 Interactive simulation 30
1.2.3.2 Non-interactive simulation 31

1.2.4 Analysis . 32

2 The AnT project 34
2.1 Aims . 34
2.2 Historical remarks . 35
2.3 AnT 4.669: A software package for simulating and analyzing

dynamical systems . 36
2.4 Running the AnT computation engine 37

2.4.1 General options . 38
2.4.2 Client/server specific options 39
2.4.3 Examples . 40

3 Supported classes of dynamical systems 42
3.1 Introduction . 42
3.2 Dynamical systems . 43
3.3 Dynamical systems discrete in time 47

3.3.1 Systems without memory 48
3.3.1.1 Ordinary maps (Maps) 48
3.3.1.2 Coupled map lattices (CMLs) 57

3.3.2 Systems with memory 64

9

CONTENTS

3.3.2.1 Recurrent maps (RMaps) 64
3.4 Dynamical systems continuous in time 67

3.4.1 Systems without memory 68
3.4.1.1 Ordinary Differential Equations (ODEs) . . . 68
3.4.1.2 Coupled ordinary differential equation lat-

tices (CODELs) 72
3.4.1.3 Partial differential equations (PDEs) 77

3.4.2 Systems with memory 81
3.4.2.1 Delay differential equations (DDEs) 81
3.4.2.2 Multi-delay differential equations (MDDEs) . 84
3.4.2.3 Functional differential equations (FDEs) . . . 88

3.4.3 Stochastic dynamical systems 90
3.5 Classification of dynamical systems 91

4 Scanning dynamical systems 95
4.1 Motivation . 95
4.2 Scan procedures . 96

4.2.1 One-dimensional scans 96
4.2.2 Multi-dimensional scans 97

4.3 The scan capabilities of AnT 4.669 97
4.3.1 The case of a single scan item 98
4.3.2 Real linear scan . 98
4.3.3 Real logarithmic scan 99
4.3.4 Integer linear scan . 99
4.3.5 Integer logarithmic scan 99
4.3.6 Real linear scan in two dimensions 100
4.3.7 Real elliptic scan in two dimensions 100
4.3.8 User defined scans . 101
4.3.9 The case of a scan item sequence 102

5 Supported investigation methods 103
5.1 Motivation . 103
5.2 General trajectory evaluations 104

5.2.1 Basic saving . 104
5.2.2 Determination of minimum and maximum values . . . 110
5.2.3 Determination of the wave number 111
5.2.4 Basic statistics . 113

5.3 Period analysis . 115

10

CONTENTS

5.4 Region analysis . 119
5.5 Lyapunov exponents analysis 128
5.6 Dimension analysis . 132
5.7 Frequency analysis . 134
5.8 Singular value analysis . 138
5.9 Check for conditions . 140
5.10 Symbolic sequence analysis . 142

5.10.1 Generation of symbolic sequences 142
5.10.2 Evaluation of symbolic sequences 143

5.11 Symbolic image analysis . 146
5.12 Generalized Poincaré sections 149

6 Simulating and investigating dynamical systems 156
6.1 Motivation . 156
6.2 The data model . 157

6.2.1 The dynamical system data 158
6.2.2 The iterator data . 159
6.2.3 The investigation methods data 159
6.2.4 The visualization data 159

6.3 The execution model . 160
6.3.1 The transition concept 160
6.3.2 Abstract transition . 160
6.3.3 Generic transitions . 161
6.3.4 The iterator concept 162
6.3.5 The machine concept 164

6.3.5.1 The IterMachine 165
6.3.5.2 The ScanMachine 166
6.3.5.3 Splitting of investigation methods 167

6.3.6 Conclusions . 168
6.4 Integration of dynamical systems continuous in time 169
6.5 Simulation of generalized Poincaré sections 170

7 Distributed computing 172
7.1 Why distributed computing? 172
7.2 The client/server architecture 174

7.2.1 Overview of the client/server extension 174
7.2.1.1 Modes of operation 174
7.2.1.2 How client/server operation works 175

11

CONTENTS

7.2.2 Flow of control and distribution of work 176
7.2.2.1 Modification of the scanNext transition 176
7.2.2.2 Network communication on the client 176
7.2.2.3 Network communication on the server 176

7.2.3 Handling output from investigation methods 177
7.2.3.1 Output in standalone mode 178
7.2.3.2 Output in client/server mode 178

7.2.4 Managing the network communication 179
7.2.4.1 Communication on the client 179
7.2.4.2 Communication on the server 180

7.2.5 Scan-point management on the server 182
7.2.5.1 Normal operation 182
7.2.5.2 Reassigning scan-points 183

7.2.6 Fetching more than one scan-point at a time 184
7.2.6.1 Strategies for fetching on the client 184

7.2.7 Limitations in client/server mode 185
7.3 Network Communication . 186

7.3.1 The communication layer 186
7.3.1.1 TCP/IP . 186
7.3.1.2 Internet sockets 187
7.3.1.3 Client/server programming with sockets . . . 189

7.3.2 The AnT Network Protocol 191
7.3.2.1 Introduction 191
7.3.2.2 Establishing a connection 192
7.3.2.3 Initialization of a client 193
7.3.2.4 Requesting scan-points 194
7.3.2.5 Reporting results 195
7.3.2.6 Terminating the server and the clients 197
7.3.2.7 Restarting an AnT server 197

7.3.3 Security . 197
7.3.3.1 Basic assumptions 198
7.3.3.2 Filenames for output-files 198
7.3.3.3 Attacks of the communication between client

and server . 199
7.3.3.4 Attacks on the lower layers 200
7.3.3.5 Minimizing the risk 201

7.4 Scaling behavior of distributed scans 201

12

CONTENTS

8 AnT-gui: the graphical user interface 203
8.1 Motivation . 203
8.2 Initializing the AnT computation engine 204

8.2.1 A simple initialization file 205
8.2.1.1 The dynamical system section 207
8.2.1.2 The scan section 208
8.2.1.3 The investigation method section 208
8.2.1.4 The visualization section 209

8.3 The graphical user interface 209

9 Visualization of dynamical systems 216
9.1 Motivation . 216
9.2 The visualization capabilities of AnT 4.669 217

9.2.1 Visualizing trajectories 217
9.2.1.1 State space representation 217
9.2.1.2 Extended state space representation 217

10 Numerical aspects of simulation 222
10.1 General remarks about numerics 222
10.2 Machine numbers . 223

10.2.1 The IEEE 754 standard for the representation of float-
ing point numbers . 224

10.2.2 Single, double and extended precision floating point
numbers . 225

10.2.3 Arbitrary precision . 225
10.3 Reliability aspects of numeric computations 226

11 Examples 230
11.1 Logistic map . 230
11.2 The Gingerbreadman map . 233
11.3 Quadratic map CML . 233

11.3.1 Universality classes of CMLs 234
11.4 The Aizawa system . 245
11.5 The Rössler system . 245
11.6 The Lorenz 84 system . 247
11.7 The Rikitake system . 248
11.8 The ”full” Brusselator system 249
11.9 An extended example investigation 253

13

CONTENTS

11.9.1 Introduction . 253
11.9.2 Border Collision Period Doubling Scenario 254
11.9.3 Investigated dynamical system 254
11.9.4 Description of the bifurcation scenario 256
11.9.5 Fixed points and periodic orbits of the investigated

system . 256
11.9.6 Kneading orbits and locating of band merging bifurca-

tions . 265
11.9.7 Behavior of the investigated system beyond α∞ 269
11.9.8 Influence of the border collision period doubling sce-

nario on the band merging scenario 271
11.9.9 Influence of kneading orbits on the behavior of the in-

vestigated system beyond α∞ 272
11.9.10 Influence of the border collision period doubling sce-

nario on the behavior within periodic windows 276
11.9.11Summary and outlook 277

12 Conclusion 278

A Reduction of the parameter space 280

B Addition of machine numbers 282
B.1 A simple example program . 282
B.2 Characteristic case studies . 283

C Differential equations with higher order time derivatives 286
C.1 Motivation . 286
C.2 Transformation of differential equations with higher order time

derivatives . 286
C.2.1 Transformation of ordinary differential equations (ODEs)287
C.2.2 Transformation of delay differential equations (DDEs) . 287

D Partial differential equations with higher order time deriva-
tives 289
D.1 Motivation . 289
D.2 Transformation of partial differential equations with higher

order time derivatives . 289
D.2.1 PDEs with pure time and space derivatives 289

14

CONTENTS

D.2.2 PDEs with mixed time and space derivatives 290

E Client/server example runs 292
E.1 Motivation . 292
E.2 Load based adaptation of the clients 292
E.3 Taking over for a broken down client 295

15

List of Figures

1.1 The simulation process . 26

1.2 The enhanced simulation process 26

3.1 Logistic map: bifurcation diagrams 51

3.2 Logistic map: cobweb diagrams 52

3.3 Logistic map: dynamic behavior at α = 4 53

3.4 Logistic map: comparison of analytic and numeric results . . 55

3.5 Hénon-Lozi map: attractors and blow-ups 56

3.6 Hénon map: attractors and blow-ups 58

3.7 CML: coupling mechanisms 63

3.8 CML: emergence of spatio-temporal structures 65

3.9 Bogdanov map: periodic solutions 68

3.10 Lorenz system: chaotic attractor attractor 70

3.11 Lorenz system: several attractors 71

3.12 Selection equations: time series for different lattice sizes M . 75

3.13 Coupled selection equations: numerical solution 77

3.14 Three-index assignment problem: a feasible solution 78

3.15 Heat conduction equation: numerical solution 81

3.16 PLL with time delay: experimental setup 83

3.17 PLL with time delay: example attractors 85

3.18 PLL with time delay: example attractors 86

3.19 Coupled neurons with time delay: example attractors 89

3.20 Ornstein-Uhlenbeck process: numerical solution 92

4.1 Illustration of an elliptic scan. 101

5.1 PLL system: trajectory s(t) for several temporal initial func-
tions . 109

16

LIST OF FIGURES

5.2 Coupled neurons with time delay: minimum - maximum anal-
ysis . 110

5.3 PLL with time delay: initial value and system parameter scan 112
5.4 Wave number analysis . 114
5.5 Logistic map: bifurcation and period diagram 116
5.6 Agnesi map: bifurcation and period diagram 116
5.7 Logistic map: period selections 117
5.8 Logistic map: period selections 118
5.9 Piecewise linear map: period increment big bang bifurcation . 122
5.10 Piecewise linear map: period adding big bang bifurcation . . 123
5.11 Power law map: period doubling big bang bifurcation 124
5.12 Bogdanov map: region diagram 125
5.13 Bogdanov map: bifurcation and period diagram 126
5.14 Bogdanov map: Lyapunov exponents 126
5.15 Bogdanov map: two selected orbits 127
5.16 Lorenz system: Lyapunov spectrum 128
5.17 Lorenz system: largest Lyapunov exponent 130
5.18 Mackey Glass system: Lyapunov spectrum and dimension . . 131
5.19 Duffing map: invariant measure of chaotic attractors 133
5.20 Mackey Glass system: orbits and corresponding power spectra 135
5.21 Mackey Glass system: orbits and corresponding power spectra 136
5.22 Mackey Glass system: orbits and corresponding power spectra 137
5.23 Lorenz system: illustration of the singular value decomposition139
5.24 Julia sets: some examples . 141
5.25 Agnesi map: system function at α = −4 and the partitions

of the state space marked with corresponding symbols 144
5.26 Agnesi map: symbolic sequence based analysis (blow-up) . . . 145
5.27 Lorenz system: symbolic image analysis 148
5.28 Rössler system: bifurcation diagram of the Poincaré map . . . 150
5.29 Rössler system: periodic attractors 151
5.30 Rössler system: periodic and chaotic attractors 152
5.31 PLL with time delay: scan of a generalized Poincaré section . 154

6.1 Inheritance hierarchy of the class AbstractTransition . . . 161
6.2 The iterator: schematic representation 164
6.3 The IterMachine: schematic representation 167
6.4 The ScanMachine: schematic representation 168
6.5 ScanMachine for the simulation of a Poincaré map 171

17

LIST OF FIGURES

7.1 Client/server operation of AnT 175
7.2 The scanNext transition on the client 176
7.3 The ANP communication objects on the server and the client 179
7.4 The anpClient object on the AnT client 179
7.5 The anpServer object on the AnT server 181
7.6 The communicationLoop method 181
7.7 Layers in the TCP/IP protocol suite 188
7.8 The client/server model . 189
7.9 Implementing the client/server model with stream sockets . . 190
7.10 Life-cycle of an AnT client 192
7.11 Typical scaling behavior of distributed scans 202

8.1 AnT-gui: main window . 210
8.2 AnT-gui: AnT root window 210
8.3 AnT-gui: main parts of the initialization 211
8.4 AnT-gui: running a system 212
8.5 AnT-gui: some investigation methods 214
8.6 AnT-gui: integration methods 215

9.1 Aizawa system: example attractors 218
9.2 Lorenz84 system: example attractors 218
9.3 Rössler system: example attractors 219
9.4 Lorenz system: chaotic attractor in 3D and 2D projections . . 220
9.5 Rössler system: time series 221

10.1 Logistic map: wavenumber ω 229

11.1 Logistic map: period doubling scenario 231
11.2 Comparison of analytic and numeric results at α = 4 232
11.3 Period analysis of the gingerbread man map. 234
11.4 CML: universality classes I 236
11.5 CML: universality classes II 237
11.6 Characteristics of the frozen random pattern (α = 1.43, γ = 0.3)238
11.7 Characteristics of pattern selection (α = 1.7, γ = 0.4) 239
11.8 Characteristics of the spatiotemporal intermittency of type-I

(α = 1.752, γ = 0.001) . 240
11.9 Characteristics of spatiotemporal intermittency of type-II

(α = 1.77, γ = 0.3) . 241
11.10 Characteristics of the zigzag pattern (α = 1.79, γ = 0.1) . . . 242

18

LIST OF FIGURES

11.11 Characteristics of the traveling wave (α = 1.69, γ = 0.9) . . . 243
11.12 Characteristics of fully developed chaos (α = 1.99, γ = 0.6) . 244
11.13 Aizawa system: Lyapunov spectrum. 246
11.14 Rössler system: Lyapunov exponents. 248
11.15 Rikitake system: chaotic attractor 249
11.16 Rikitake system: Lyapunov exponents. 250
11.17 Rikitake system: Convergence of the Lyapunov exponents. . . 250
11.18 Brusselator system: dynamic behavior 252
11.19 Typical shapes of the system function f(x, α) 256
11.20 Border collision period doubling scenario: periods and Lya-

punov exponents . 257
11.21 Border collision period doubling scenario: bifurcation diagram 258
11.22 Asymptotic dynamics and basins of attraction 259
11.23 Analytic results . 260
11.24 First border collision bifurcation 261
11.25 Third border collision bifurcation 262
11.26 Ordinary and border collision period doubling scenario 264
11.27 Band merging cascade . 266
11.28 Border collision period doubling scenario in a 3-periodic window267
11.29 Mean points of attractors . 268
11.30 Locating of border collision bifurcations 270
11.31 Invariant measures of chaotic attractors 272
11.32 Boundaries of chaotic attractors 274

19

List of Tables

1.1 Some illustrative application fields of computer-based simulation 25

3.1 Some classes of dynamical systems 93

6.1 Relationship between transitions and instructions 169

7.1 Statistics of the TOP 500 list of supercomputing sites 173

10.1 The IEEE 754 standard for the representation of floating point
numbers . 225

10.2 The floating point representations of 20 and 224 according to
the IEEE 754 standard . 226

20

Chapter 1

Introduction

1.1 Motivation

In the last decade computer-based simulation and computer-based
analysis became more and more important in computer science and many
other research fields. Not only in natural sciences, technical or engineering
disciplines but also in social sciences and other disciplines like advertisement,
entertainment and arts. In many industrial applications like for instance re-
search and development, visualization or prototyping, computer-based sim-
ulation and the simulation-based investigation of systems become more
and more a crucial point in the competition process between companies. Al-
though there exist many impact factors like for instance the definition of soft-
and hardware standards, the availability of specific soft- and hardware or hu-
man resources educated in the field of computer science, there are mainly two
reasons for that:

1. Due to the high performance of modern computer systems simulation
approaches reality in such a way that many expensive and often time
consuming experiments and tests can be omitted. Hence, simulation
helps in this case to save money and time. A well-known example
is the simulation-based investigation of laminar and turbulent flows
around any sort of conveyors to supersede expensive experiments in
wind channels.

2. In many technical disciplines where experiments are rare, difficult or
even impossible to realize, one has to use computer simulations in

21

Chapter 1
Introduction

oder to get deeper insights in mechanisms and operational principles.
Here, the simulation not only makes it possible to investigate such
processes in more detail but also supports the repeated execution of
corresponding experiments. One interesting example is the simulation
of an asteroid impact on earth. The following citation from [24]
illustrates the situation (see also [23], [22]):

”A lot of major breakthroughs in science are going to come from these
kinds of calculations. Impact simulations are something that can’t be
done any other way. It’s almost like doing an experiment - one you
could never do. One you would never want to do.”

Examples here are the prototyping of complex products like cars, air-
planes or computers, the test of models in astrophysics or the fur-
ther development of spaceflight. One can also think about the static
and dynamic load analysis of buildings in the prior to their construc-
tion. Furthermore, in many educational fields and especially in human
medicine, where human beings are involved and hence experiments are
not possible, computer-based simulation supports and improves learn-
ing processes and the acquirement of skills and techniques.

Remark:

1. If the computer and simulation technology were as much developed
as nowadays, the famous collapse of the Tacoma Narrows bridge in
1940-11-07 could have been avoided by doing simulations regarding the
excitation of resonant oscillations.

2. The collapse of the two towers of the World Trade Center in 2001-09-11,
probably could have been also avoided by doing corresponding simu-
lations regarding the thermal properties of the hooks used to attach
the individual floors to the supporting steel structure. Although, one
has to mention here, that probably nobody expected such unbelievable
things to happen.

Thus computer-based experiments or simulations are necessary and become
further important. With the increase of computer performance more and
more processes or systems get into the focus of simulation in order to save

22

Chapter 1
Introduction

time, money or even lives if one thinks about the numerous experiments with
animals which can be omitted in many cases. One famous example of this
trend is the decision of the French government in 1996 [16] concerning the
abdication of further nuclear weapon tests in favor of computer experiment
or simulations1. Also the government of the USA has launched a national
program to simulate nuclear weapon tests, in order to reduce real tests
(see the annual reports 2001 and 2002 of the Lawrence Livermore National
Laboratory [2, 3]).

Of course there are so many examples of computer-based simulations and
analysis in various fields of research that it is beyond the scope of this work
to list them all. However, in the following table 1.1 some illustrative examples
and interesting applications are presented:

Artificial life Design of artificial environments and species or life
forms to simulate and explore the basic principles
and rules of early life systems ant the emergence of
life

Astronomy Investigation of the life-cycle of stars from their
emergence out of the cosmic dust up to their end
as white dwarfs, neutron stars or black holes

Automobile research Here not only the development and design of new
prototypes of cars or trucks is supported by com-
puter simulation techniques, but also the testing.
Furthermore the dynamic behavior of automobiles
can be simulated under various conditions using
complex mathematical models. Using this meth-
ods of simulation in a virtual reality, one is able
to detect faults or errors in design and function of
the automobile in an eraly stage of the development
process

1France’s Préparation a la Limitation des Experimentations Nucléaires (PALEN) pro-
gram was originally designed to reduce the number of nuclear weapon tests conducted. It
is now intended to develop the means and techniques necessary to maintain the credibility
of France’s nuclear deterrent in a post-test environment, and as such the program has
renamed Programme de Simulation des Essais Nucléaires (PaSEN)

23

Chapter 1
Introduction

Bio informatics The development of new and more efficient medica-
ments, drugs and other active substances require
simulations for instance to investigate the compli-
cated folding process of bio-molecules or proteins

Climate research Weather forecasting and investigation of the long-
term behavior of the earth’s climate

Cosmology Investigation of the emergence of cosmic structures
like galaxies, cosmic strings or the great attractor

Dynamical Systems Most dynamic processes observable in natural or
technical systems are usually nonlinear. As a con-
sequence, their analytic treatment is often difficult
or not possible. To analyze the dynamic proper-
ties of these systems anyway, for instance to adjust
parameters or to determine characteristic dynamic
behaviors, one has to simulate and investigate them
numerically

Material research Investigation of behavior and characterisitic prop-
erties of new developed or designed materials prior
to their application

Nano technology In chip design in the near future physical limita-
tions are reached which make it impossible to work
with averaged physical quantities and hence simula-
tions of the underlying microscopic quantum phys-
ical processes become necessary

Nuclear research Promotion of the development of nuclear fusion
reactors and improvment of nuclear fission reac-
tors to ensure the increasing power consumption of
mankind

Space technology In space technology, astronautics and aerospace re-
search in eneral and particulary in the crewded
spaceflight, simulations are mandatory to avoid or
at least to reduce dangerous hazards and accidents
with a high risk of loosing human lives. For instance
the training of docking maneuvers or the recovering
or maintenance and repair of satellites can be sup-
ported by simulations. Of course also the enormous
costs of space flights can be reduced

24

Chapter 1
Introduction

Visualization This specific form of simulation becomes more and
more important not only to get rid of the time con-
suming and expensive fabrication of prototypes, but
also in many other cases, for instance in the field of
3D-planning of manufacturing or power plants

Table 1.1: Some illustrative application fields of
computer-based simulation

So far, it was pointed out that the importance of computer-based simulations
grows rapidly. However, in most cases the simulation of a real world sys-
tem can’t be considered as an isolated topic. Instead it has to be regarded
in a larger context, where the real simulation is only one phase - not neces-
sarily the main phase - of a process, which is denoted throughout this work
as simulation process.

Definition: Simulation process

A simulation process consists of three interconnected phases, namely
the modeling phase, the simulation phase and the analysis phase, which
are usually traversed sequentially and iteratively. The modeling phase
is concerned with developing and improvement of adequate models of
the system under consideration. Obviously, in the simulation phase of
the process this model is simulated, whereby specific output is produced.
In the analysis phase, the behavior of the system is investigated and
validated using specific observable quantities. �

Hereby the following definition of a system is used:

Definition: System

A system is an entity with some characteristic time dependent properties,
in which one is interested in. �

This relatively simple definition of a system is used in this work, to be able
to cope with very different classes of systems like for instance the solar sys-
tem representing a large scale natural system and an electronic oscillator,
representing a small scale technical system.
In Fig. 1.1 the simulation process is shown schematically. As one can see the
interconnections lead on the one hand to the sequential traverse of the three

25

Chapter 1
Introduction

phases. On the other hand, there is a direct feedback from each phase to
it predecessor. This shortcuts are necessary to eliminate obvious or simple
failures in the predecessor phase in an early stage, resulting in an overall
performance. However there is a more subtle and sophisticated feedback by
the iteration loop which interconnects the outcome from the analysis phase
with the modeling phase, leading thus step by step to an improvement of the
model and hence the scientific results and statements corresponding to the
real system.

Figure 1.1: The simulation process

When dealing with technical or more generally speaking man-made systems,
the simulation process can be enhanced, taking additionally into account
the invention and construction or build-up of the system. In this case, the
enhanced simulation process (see Fig. 1.2) has a fourth phase, namely
the design process. Because it is again beyond the scope of this work, the
design process is not considered. Instead, this man-made systems are con-
sidered and treated like natural systems and hence only the pure simulation
process is focused on.

Figure 1.2: The enhanced simulation process

26

Chapter 1
Introduction

1.2 The simulation process

1.2.1 Modeling

Modeling is a very important task not only when dealing with computer-
based simulations. Nearly in all domains of science and also in many domains
of our daily life we are used to work with models. Sometimes the application
of models is so usual, that we even don’t recognize anymore, that we are using
models. Consider for instance the advertisements in journals, the public
broadcast or the television. Here a typical consumer behavior is assumed
which corresponds directly to a model of the aimed target group. Many rules
or laws in human societies are also based on models. Here, the models depend
on the underlying idea of man of the corresponding legislator and therefore it
is by no means guaranteed, that this model is automatically the best choice.
Consider for instance the death penalty in some states of the USA. This
penalty is based on the assumption, that people won’t commit severe crimes
because of the severe penalty. But obviously, when looking at the statistics of
severe crimes in these states, compared with other countries in the world or
even states in the USA, where no death penalties are imposed, the underlying
model of the behavior of human beings seems to be questionable.

In the field of computer-based simulations, obviously, the modeling has to
be done in such a way, that computers can deal with the resulting models.
Although this modeling can be done in many different ways, it is important
to remark, that there are some common aspects caused by the basic working
principles of computers [190, 193, 183, 195] and the resulting capabilities
itself. These principles lead to a more or less generic structure of the models
used in computer-based simulations. This is due to the fact, that computers,
although in the meanwhile essential for our modern life, in the strict sense,
only can store and manipulate data. The storage of data on the one hand
leads immediately to the necessity of a data model whereas on the other
hand the manipulation of data involves a corresponding action model or
execution model.

When the simulation deals with static objects only, one may think, that an
execution model is not always necessary, but this is definitely wrong. The
simulation itself introduces a dynamic aspect and hence leads to the necessity
of an execution model. Consider for instance a virtual tour through a mu-
seum whereby no moving objects are considered. Although the museum and
all objects are static, the tour itself involves a movement of the virtual visitor

27

Chapter 1
Introduction

or a virtual camera and introduces thereby dynamic aspects in the simula-
tion. However, when dealing with the simulation of dynamic properties, the
execution model is usually much more complex.
In the following some definitions of notions concerning computer-based sim-
ulation are given not in an exact sense but in a way, that they can be used
and referred to in the remaining work.

Definition: Simulation entities

The simulation entities are objects, states, properties and so on, which
are involved in the simulation process. �

Definition: Data model

The data model describes, how simulation entities are represented in the
computer memory. �

Definition: Execution model

The execution model defines in which way the data representing the
simulation entities can be manipulated by actions. �

Due to the restrictions of the finite computer memory and the finite perfor-
mance of computer systems, one has to prioritize the entities and actions.
Often this can’t be done easily and not always in a unique manner. Hence,
depending on the experience and the knowledge of the modeler, the resulting
models may be different.
In virtual reality applications, the priority defines the granularity of the
virtual world itself whereas in real world applications it leads more or
less to an approximation which is usually associated with a reduction of the
number of considered entities and actions and hence the complexity. The
complexity is often further reduced, because the actions in the execution
model are usually only more or less accurate approximations of the actions
possible in the real world. The internal representation of real world entities
and actions in computer systems is often denoted as internalization.
There are so many different modeling approaches and techniques, that it is
beyond the scope of this work to discuss them all. However, because all
modeling approaches are in some sense application oriented or application
centered, the mathematical modeling is used in this work because it is
considered as the most adequate modeling approach for the targeted pur-
poses. The aim of mathematical modeling here is to derive computerized
mathematical models of processes in terms of dynamical systems (see
Sec. 3.2).

28

Chapter 1
Introduction

1.2.2 Mathematical modeling

Throughout this work, the following definition of mathematical modeling
according to [41] is used:

Definition: Mathematical modeling

Mathematical modeling is the process of creating a mathematical repre-
sentation of some phenomenon in order to gain a better understanding
of that phenomenon. It is a process that attempts to match observation
with symbolic statement. During the process of building a mathematical
model, the modeler will decide what factors are relevant to the problem
and what factors can be de-emphasized. Once a model has been devel-
oped and used to answer questions, it should be critically examined and
often modified to obtain a more accurate reflection of the observed reality
of that phenomenon. In this way, mathematical modeling is an evolving
process; as new insight is gained, the process begins again as additional
factors are considered. ”Generally the success of a model depends on
how easily it can be used and how accurate are its predictions.” �

1.2.3 Simulation

In principle there exist two different types of simulation techniques, or
simulation methodologies namely the interactive simulation and the
non-interactive simulation. In most of the cases the simulation task
itself determines the type of simulation technique to be used. Interactive
simulation systems require interactions with the user or users of the
system and therefore have to have a more or less precise model of the
human behavior or at least of the possible human interactions. This
model is often denoted as the human model. It is necessary for the
simulation system to react in a proper and for the user in a more or less
intuitive or at least understandable way.

Remark:

This human model is often unattended, which results in simulation sys-
tems which are difficult to handle and who therefore are often criticized
or even not accepted.

29

Chapter 1
Introduction

Due to their different methodology, both simulation techniques require
usually different simulation systems. Interactive simulations are often much
more time-critical and require usually a much more complex human-
machine interface. In contrast to that, non-interactive simulation
systems require often a more complex initialization phase, because after the
initialization human interactions are no longer possible, so the control of the
simulation has to be established in advance.

Remark:

There exist also simulation systems which cannot be uniquely assigned
to one of the mentioned types of simulation systems and therefore be-
long in some sense to both classes.

1. The initialization phase of a non-interactive simulation systems
is often done in an interactive way using a user interface which
of course requires human interactions. Therefore these simulation
systems could be considered as some sort of interactive simulation
systems. However, because this interaction is usually completed
after the initialization phase and could be done also in a non-
interactive way, such kind of simulation systems are often con-
sidered as pure non-interactive simulation systems, although this
assignment is definitely a matter of position or point of view

2. Most of the symbolic manipulation programs (SMP) or
computer algebra systems (CAS) are typical examples here.
On the one hand, they have an interactive mode, where the user
of the system can act by giving commands to the system and react
according to the corresponding output given by the system. On
the other hand, they have also a non-interactive mode, where
the kernel of the simulation system often denoted as compu-
tation engine performs the commands given by a list of pre-
defined or pre-configured inputs non-interactively in a so-called
batch mode.

1.2.3.1 Interactive simulation

Typical examples for interactive simulation systems are for instance flight
simulators, drive simulators and in principal any simulator which

30

Chapter 1
Introduction

involves movement. Here it is obvious, that the simulation system has
to react directly and more or less instantaneously to the user actions
according to the execution model (see Sec. 1.2.1). As already mentioned,
these type of simulation systems behaves often time-critical. For instance,
when dealing with real-time scenarios, of course one has to obey
real-time constraints. In this context it is not important whether the
simulation system is purely virtual or has also physical components. These
components, or to be more precise actuators, make the simulation more
realistic for the users of the system and introduce thereby usually a lot
of additional constraints but do not change the type of simulation system.

Although they are often not considered as simulation systems at all,
computer games are definitely interactive simulation systems, because
they posses all typical features of such systems. Besides the fact, that
computer games are interactive simulation systems, it is worth to mention
here, that modern computer games use not only mathematical modeling
(see also Sec. 1.2.1) but also many sophisticated and complex algorithms
from many fields of computer science. For instance, to control virtual beings
- so-called bots - or machines or groups of them within the game, they
often use excessively approaches, methods and algorithms from the field of
artificial intelligence.

There exist also a lot of visualization systems which belong to the class
of interactive simulation systems. Here one uses the performance of
modern computer systems to visualize complex processes, scenes, prod-
ucts and so on, which supports designers, developers and engineers. In
the field of prototyping for instance, one often uses animated visualization
to avoid the production of full-sized models which are usually very expensive.

Of course, there exist many other examples of interactive simulation systems.
The above mentioned examples are only an illustrative selection, which is not
meant to be in any way detailed or complete.

1.2.3.2 Non-interactive simulation

Typical examples of such simulation systems can be found in many scientific
disciplines. Here the simulation task requires often a more or less complex
initialization phase and after the initialization the system performs the

31

Chapter 1
Introduction

simulation according to the execution model and the list of tasks defined by
the user during the initialization.

Depending on the specific application, the simulations then may be very
time consuming and may require high performance computer systems
with a huge central memory. In this application field the simulation itself
is often not so important although it has to be done in an efficient, accurate,
reliable (see Chap. 10) and reproducible way. Here the investigation and
interpretation of the simulation data, that is the data produced by the
simulation process, is the most important task. When using non-interactive
simulation systems, the analysis of the simulation data can be done either
during or after the simulation or in both phases, but the interpretation
usually is done after the simulation phase by the users of the simulation
system.

The simulation and analysis package AnT 4.669 presented in this work,
belongs to the class of non-interactive simulation systems. After the math-
ematical modeling (see Sec. 1.2.2) and the usually short implementation
phase of the dynamical system (see Sec. 3.2) - corresponding to the dynam-
ical process under consideration - is completed, the simulation system has to
be initialized according to the simulation tasks and investigation tasks
which should be performed.

1.2.4 Analysis

In this last phase of the simulation process (see Fig. 1.1) the investigation
or analysis of the simulation data takes place. Because this is the most
challenging and sophisticated part of the simulation process, this part has
to be done by human users of the simulation system, usually scientists
or researchers. One can imagine, that in the future, specifically trained
artificial intelligent systems support the users, but that of course depends
strongly on the capabilities of the artificial intelligent systems and the
investigation tasks to be performed. Usually it takes a lot of experience and
knowledge to interpret simulation data correctly. Some of the examples in
chapter 10 may justify this opinion. However, the interpretation of simula-
tion data helps not only to understand the simulated process, but also to
improve the mathematical model which is the basis of the simulation process.

32

Chapter 1
Introduction

Applying the procedure of modeling - simulation and analysis in an iterative
manner, the knowledge about the observed process and its underlying prin-
ciples increases step by step. As it is indicated in figure 1.1, the individual
steps of the simulation process could of course also be repeated to accelerate
and enhance the process of improvement and understanding.

33

Chapter 2

The AnT project

2.1 Aims

Whenever dynamical processes have to be investigated, one is first concerned
with the problem of modeling this processes with appropriate mathematical
models in terms of dynamical systems. In natural sciences the modeling
process is mainly based on fundamental physical laws and hence often
straight forward. In contrast to that in many other scientific disciplines this
process is often not straight forward and as a consequence not always unique.
But also in natural sciences the problem of abstraction occurs which leads
to the modeling of dynamical processes on very different length scales
and time scales. Here one uses often either a bottom-up approach
mainly based on averaging techniques or a top-down approach
mainly based on some heuristics to get a mathematical description of
the dynamical process under consideration in terms of dynamical systems
on the mesoscopic level or macroscopic level. Depending on the
complexity of the system under consideration, this kind of modeling is
sometimes very complicated and guarantees not always a unique mathemat-
ical description. In this cases the numerical simulation of the dynamical
systems can support the modeling process itself. However after the modeling
process is finished the dynamical systems have to be simulated and their
behavior has to be analyzed in order to get the desired or required insight.

The current simulation and analysis package AnT 4.669 was mainly
developed to support scientists in research but also teachers and professors

34

Chapter 2
The AnT project

in education. In computer science it is a matter of fact, that the life
cycle of software projects is decaying rapidly. This yields also for the
simulation and analysis package AnT 4.669, as the first release which was
written in the computer language C [87] (see the historical notes in [142]) is
meanwhile obsolete. The current version is based on this predecessor but is
completely redesigned in the object-oriented language C++ [158], [160] (see
also the historical notes in [159]). In the initial state of this redesign several
requirements were formulated and considered in the specification process.

Requirements:

I modern software concepts
I reuse-ability
I support of rapid development, maintenance and advancement
I open source project (see for instance [49] or [150])
I scientific computing (precision)
I distributed computing (performance)

Applied concepts from the field of computer science:

I modularity
I structured code
I separation of data recording administration from data processing and

manipulation
I object-orientation
I design patterns

Usage of CASE-Tools:

I computer-based build process (GNU Autotools, [63, 64, 65, 165])
I computer-based documentation (Doxygen, [36])
I computer-based versioning (CVS, [25])

2.2 Historical remarks

In the early stages of the AnT project the main focus was the development of
a simulation and analysis tool for two specific classes of dynamical systems,
namely ordinary maps and ordinary differential equations. The challenge
was to keep the architecture as flexible as possible, so that many dynamical

35

Chapter 2
The AnT project

systems can be investigated with this software. In this way the aim of the
software was to support scientists and engineers. This predecessor of the
current AnT 4.669 software package was denoted as AnT 4.66 and com-
pletely coded in C. Although some of the basic ideas are also incorporated
in the new version, this predecessor was only a small tool compared with
the totally redesigned current AnT 4.669 software package. The current
software was designed, mainly developed and is maintained by a small group
of four people at the Institute of Parallel and Distributed Systems (IPVS) at
the University of Stuttgart.

2.3 AnT 4.669: A software package for simu-

lating and analyzing dynamical systems

The AnT 4.669 software is open source software and published under the
GNU [62] General Public License GPL [66, 68], which means that people
all over the world are not only allowed to download the source code of
the software but can also contribute to it. of the software To support the
developer (staff and students) by the implementation and maintenance of
the software, the concurrent versions system CVS [25] is used. Because from
the beginning of the project it was the aim to support not only one specific
operating system, a computer based build process has to be used. The AnT
project uses the GNU Autotools [63, 64, 65, 165] to build the system on
several platforms like Linux, Solaris, Free BSD but also on the Windows
operating systems, where additionally the UNIX-like cygwin [26] or mingw

[111] environments respectively libraries have to be used.

The code of the current AnT 4.669 software is completely written in C++
and currently the software counts about 120.000 lines of code. The sources
can be downloaded from the AnT project site [4]. On UNIX-like operating
systems like Linux, Solaris, Free BSD the sources have to be compiled and
installed using the usual configure mechanism. For the Windows platforms
binaries are provided, because here the abovementioned additional environ-
ments and libraries are required for the configuration and compilation of the
software package.

36

Chapter 2
The AnT project

2.4 Running the AnT computation engine

This section describes, how to start the AnT computation engine directly
via a UNIX shell command and how to use the command-line options.
Although in chapter 8 the graphical user interface is presented from which
the AnT computation engine could also be launched, it is important
to know how to start with an already created initialization file. This is
especially necessary when performing very time consuming computations
on large clusters. Of course it is not an adequate way to start such a
computations by using the graphical user interface on each node. It is very
convenient in such cases to use shell-scripts using the possibility to start
the AnT computation engine in command-line mode. However, once an
initialization file (see Sec. 8.2 and especially Sec. 8.2.1) is created, the AnT
computation engine could be launched using this initialization file and
additional command-line options.

The command-line options have been designed to match standard UNIX
behavior. When called without any arguments, the AnT computation
engine shows the overview of all possible command-line switches and stops
with an error message. When called with the usual help switches -h, -H or
--help the same overview is shown and the execution stops without an error
message.

usage: AnT <systemname>
[{-i | -I | --initialization} <configfile>]
[{-m | -M | --mode} <runmode>]
[{-s | -S | --server} <server name>]
[{-p | -P | --port} <portnumber>]
[{-n | -N | --points} <scanpoints>]
[{-t | -T | --time} <seconds>]
[{-v | -V | --version}]
[{-v | -V | --log}]
[{-h | -H | --help}]

<systemname>
complete path and filename (without extension)
of the shared library containing at least the system
function for the dynamical system to be simulated.

37

Chapter 2
The AnT project

Options:
{-i | -I | --initialization} <initialization file>

complete path and filename of the initialization file
{-m | -M | --mode} <runmode>

where runmode is one of ’standalone’,
’server’ or ’client’. Default is ’standalone’.

{-s | -S | --server} <server name>
for runmodes ’server’ and ’client’ only.
Default is the standard hostname of the current system.

{-p | -P | --port} <portnumber>
for runmodes ’server’ and ’client’ only.
The default port is 12345.

{-n | -N | --points} <scanpoints>
for runmode ’client’ only.
The number of scanpoints the client
should fetch from the server. Default is 50.

{-t | -T | --time} <seconds>
for runmode ’client’ only. The (approximate) number
of seconds the client should be busy before asking
for new scan points from the server.
This option overrides the ’-n’ option.

{-v | -V | --version}
{-l | -L | --log} write the log-file ’transitions.log’

which shows the internal structure of the current
simulator instantiation.

{-h | -H | --help}

2.4.1 General options

There are five options which are meaningful for the standalone run-mode as
well as for networked operation (see Chap. 7):

I The only mandatory option is the <systemname>. It determines the
dynamical system that will be simulated. The dynamical system is
contained in a shared library. This shared library is automatically
found when the LD LIBRARY PATH environment variable contains the
directory where the system is installed. Otherwise when the complete
path to the library is given with this switch. The name of the system
can be be given with or without the extension of the shared object .so

38

Chapter 2
The AnT project

or dynamic link library .dll. If this option is not given, the AnT
computation engine displays the usage text as seen above and exits
immediately.

I The -i option can be used to point to an initialization file. By default,
the AnT computation engine looks for an initialization file with the
same name as the given system. If for instance the name of the system
is logistic, then the AnT computation engine will look for the
initialization file logistic.ant in the current directory. In the client
run-mode this switch is ignored, because the initialization of a client is
always defined by the initialization file that the server is started with.

I The -v option shows the current version of the AnT computation
engine and exits. Currently an invocation with this option yields to
the output: Version: AnT-core-4.669-R3a

I The -l option activates the logging mechanism of the AnT compu-
tation engine. The log-file ’transitions.log’ which shows the internal
structure of the current simulator instantiation is created during the
initialization phase of the execution. This option is mainly for debug-
ging purposes.

I The -h option prints the above listed usage.

2.4.2 Client/server specific options

The rest of the options are only useful for the client/server mode of the AnT
computation engine. All of these switches are optional.

I The -m option sets the run-mode of the AnT computation engine.
This can be either standalone, server or client. The default run-
mode is standalone.

I The -s option sets the network address of the server. This can either
be an IP-address or a hostname. By default, the standard hostname as
reported by the standard C-library call gethostname() is used both in
run-mode client and server. In the server run-mode this option can be
used to define the address that the server should bind to. In the client
run-mode this option can be used to tell the client where the server is
located on the network.

39

Chapter 2
The AnT project

I The -p option sets the network port of the server. The default port is
12345. In the run-mode server this option can be used to define the
network port that the server should bind to. In the client run-mode
this option can be used to tell the client on which port the server is
listening for incoming connections.

I The -n and the -t options are both only evaluated in the client run-
mode. Both options ultimately specify how many scan-points a client
should fetch from the server during one network communication. The
-n option instructs the client to fetch the specified number of scan-
points. The -t option instructs the client to fetch as many scan-points
as are needed to keep it busy for a certain amount of time (given in
seconds). During the first communication the client fetches either the
default of 50 scan-points or the number of scan-points specified with the
-n option. The number of scan-points that are fetched are reconsidered
before every subsequent communication with the server (based on the
time needed for the previously calculated scan-points). If both options
are given, the -t option takes priority. As already mentioned, in this
case the value given by the -n option determines the number of scan-
points that are fetched during the first communication with the server.
If neither the -n nor the -t option is given, a fixed amount of 50 scan-
points is fetched by the client.

2.4.3 Examples

In this section the usage of the command-line switches of AnT will be illus-
trated by some examples.
To simply use the AnT computation engine in run-mode standalone and
simulate for instance the logistic map, the following command-line is suffi-
cient:

AnT logistic

For this call to be successful, the AnT binary needs to be installed and reside
in a directory that is part of the $PATH environment variable. Additionally,
the position of the shared library of the logistic map (logistic.so) has to
reside in the $LD LIBRARY PATH environment variable and the configuration
file logistic.ant has to be in the current directory.
If another initialization is to be used, it can be specified with the -i option:

40

Chapter 2
The AnT project

AnT logistic -i ./test.ant

To start an AnT-server, it is sufficient to add the option -m. No other addi-
tional option is strictly necessary:

AnT logistic -m server

To start an AnT-client, some more options can be useful. First, the network-
address of the server has to be given (if the server is not running on the same
host as this client). Then it is advisable to specify how many scan-points
the client should fetch from the server at once. The recommended option for
this is -t:

AnT logistic -m client -s serverhostname -t 10

-t 10 implies that the client should try to fetch scan-points from the server
every ten seconds. The client tries to figure out how many scan-points
are needed to keep it busy for that time, based on its current speed. This
option will influence the overall performance of the simulation run. If too
few scan-points are fetched, the communication overhead will slow down
the simulation. If, on the other hand, too many scan-points are fetched,
the server has to keep more scan-results in memory - if there is more
than one client - and at the end of the scan-run more scan-points will be
calculated twice by different clients and therefore computing power is wasted.

41

Chapter 3

Supported classes of dynamical
systems

3.1 Introduction

In this chapter the classes of dynamical systems which can be simulated
and investigated by the simulation package AnT 4.669 are described.
Therefore, in a first step the concept of a dynamical system within the
framework of mathematical modeling (see Sec. 1.2.1) is considered in more
detail and especially the one used in this work is presented.

Remark:
It is beyond the scope of this work to give exact definitions - if possible at all
- for all concepts or notions used here. Definitions are only given in the case
when they are necessary for the understanding and when they are not - in
some sense - common knowledge in the corresponding scientific community.
For instance the state of a dynamical system, although widely used in this
work is not defined here. Especially many of the notions from the field of
nonlinear dynamics are not defined here. For definitions on this topics it is
referred to the literature or the information provided by the world wide web.
A good first choice in this context, where one can get often further references,
would be [181].

42

Chapter 3
Supported classes of dynamical systems

3.2 Dynamical systems

Depending on the field of interest, there exist several possibilities how to
describe or define a dynamical system. In [194] for instance, the following
definition is given:
”A dynamical system is a deterministic process in which a variable’s value
changes over time according to a rule that is defined in terms of the variable’s
current value.”
Because this definition covers not the case of dynamical systems with mem-
ory, the following more general definition of a dynamical system according
to [172] is used:

Definition: Dynamical system

A description how one state of a system develops into another state over
the course of time is called a dynamical system. �

However, according to the notion dynamical system all definitions have to
define at least the following three ingredients: The part dynamical requires
not only the definition of the concept of time but also the concept of
evolution in time, whereas the part system requires the definition of the
concept of state.

Remark:
In relativity theory usually the concept of space time is used, where the
time is mathematically treated as a fourth component of the extended space
time state usually denoted as a 4-vector. But it is important to notice, that
also in this case the time plays a specific role. This can easily be seen, when
looking at the components of the metric tensor in Cartesian coordinates,
where the component corresponding to the time has a different sign.

The concept of evolution in time leads immediately to the concept of tran-
sition, which defines the time evolution of the system. Depending on the
fact, whether the transition defines a finite or an infinitesimal small time step
of the evolution, the corresponding dynamical system is denoted as discrete
or continuous in time.

Definition: Transition

The change from one state of a system to another is called a transition.
�

43

Chapter 3
Supported classes of dynamical systems

According to the abovementioned comments throughout this work the
following, transition- and state-oriented description of a dynamical system
is used:

A state of a dynamical system is described by a so-called state vector s
with as much state components or state variables si as the mathe-
matical model of the dynamic process under consideration requires usually
denoted as the number of degrees of freedom of the system. The state
vector is defined in a corresponding state space Γs, whose dimension
Ns is given by the number of components of the state vector denoted as
state space dimension. Furthermore, the concept of transition defines
an instruction set (one or more instructions) which specify, how the
state vector changes or evolves in the course of time. These instructions
are therefore usually denoted as evolution equations or equations of
motion, but generally any rule-based system, for instance a state chart,
can be used as instruction set. Of course, the instruction set depends on
the state vector but usually also on a set of further quantities denoted as
system parameters. The set of system parameters can be interpreted as
a parameter vector p with as much components pi as the mathematical
model of the dynamic process under consideration requires. The parameter
vector is defined in a corresponding parameter space Γp, whose dimension
Np is given by the number of components of the parameter vector denoted
as parameter space dimension.

Concerning the notion or concept of a state space, one has to remark, that
related ideas from physics are the notations configuration space and
phase space (see for instance [184]). Although the configuration space has
no single meaning, it is in this context, the set of values of all generalized
coordinates of a system defines a point in the configuration space. For
instance, for N particles moving in a M dimensional space, the dimension
of the configuration space is N ×M because the configuration is described
by the positions, which are in this case the generalized coordinates, of all
particles. Analogously, the set of values of all generalized coordinates and
generalized momenta defines a point in the phase space. Hence, the
dimension of the phase space of N particles moving in a M dimensional
space is N × M × 2 because each generalized coordinate has a conjugate
momentum. In short, a configuration space is typically ”half ” of the
corresponding phase space. The notion of state space in this work is strongly

44

Chapter 3
Supported classes of dynamical systems

connected to the notion of phase space, because the dimension of the phase
space is equivalent to the number of degrees of freedom of a system.

Because the mathematical modeling is often done in a straight forward
manner, it introduces parameters which are in the pure mathematical sense
not necessary, although they are naturally convenient for the understanding
of the underlying principles of the considered dynamical process. In order to
reduce complexity one usually gets rid of these redundant parameters by
an appropriate scaling of space or the state variables respectively and time.
The resulting model has a reduced complexity because of the minimal
set of parameters and hence a decreased parameter space dimension (see
App. A for an illustrating example).

As already mentioned, it is distinguishes between two large classes of dynam-
ical systems depending on the defining transition or mode of operation of the
instructions.

1. Systems with an instruction set which affects the state vector directly,
describing a single transition from the current timestamp to the next
one in the future, are denoted as dynamical systems discrete in time
because here the time evolves in discrete steps with a finite step size.
As a consequence, states between two successive timestamps are not
defined in dynamical systems of this kind.

2. In contrast to that, systems with an instruction set which affects the
state vector only indirectly through the derivative of the state vector
with respect to time, describing an infinitesimal transition from the
current time to the infinitesimal adjacent time in the future, are de-
noted as dynamical systems continuous in time. As a consequence, the
state of dynamical systems of that kind are defined at any time in its
domain1.

Remark:
Numerical computer simulations of dynamical systems are always discrete
in time, even when dealing with systems continuous in time. This is due to
the fact, that starting with a state vector at a given time t one is only able

1Usually, this domain is given by the infinite interval [t0,+∞], but can also be a finite
interval [t0, t1] or even a set of finite intervals

45

Chapter 3
Supported classes of dynamical systems

to compute an approximation of the state vector at a certain time t + ∆t
in the future using a numerical integration scheme. There are so many
different integration schemes that their description is beyond the scope of
this work. The AnT 4.669 software package supports many integration
methods with fixed step size denoted as steppers. Among them are classical
one-step steppers using Runge-Kutta type integration schemes or user
defined Butcher arrays as well as multi-step steppers, implicit steppers and
predictor-corrector steppers. Additionally three different mechanisms to
adjust the step size are implemented. They are referred to as wrappers.
These are: a gradient based wrapper, a wrapper based on the comparison
of two different steppers and a third wrapper based on the comparison of
the integration result obtained by a stepper using some step size and the
result obtained with the same stepper using two steps of half the step size.

Due to the fact, that the instruction set may not only depend on the current
state vector but also on several state vectors or even a complete time interval
in the past one can distinguish between systems with memory and such
without memory.

Furthermore the state vector may not only depend on the independent
variable describing the time, but also on some other independent variables
which often represent the coordinates of the underlying physical space. This
systems are denoted as inhomogeneous systems, because the instruction
set depends also on this additional independent variables and the deriva-
tives of the state vector with respect to this additional independent variables.

Finally, the state vector can have an internal structure with a continuous
and a discrete part. By definition, the state components or state variables
of the continuous part take continuous values whereas the components of
the discrete part take discrete values. Systems of this kind are denoted as
hybrid dynamical systems.

As one can see, there are a lot of characteristic properties of dynamical
systems which can be used to classify them more accurately. This will be
done in Sec. 3.5.

Due to the applied generic concept of a dynamical system, all the following
different classes are supported by AnT 4.669 and can hence be simulated

46

Chapter 3
Supported classes of dynamical systems

and investigated. This is an important point, because here a strong con-
nection between the mathematical description and the software architecture
exists. Each difference in the mathematical description of the classes has
to have an suitable correspondence in the software architecture. How this
problem is treated in the AnT 4.669 software package is described in more
detail in chapter 6.

Remarks:

1. Throughout this work only autonomous dynamical systems, that is,
systems which do not explicitly depend on time, are considered. This
is due to the fact, that non-autonomous dynamical systems can be
easily converted into autonomous ones by extending the state space
introducing a new state variable representing the time. Hence the new
state vector has an additional component and the dimension of the
state space is increased by one.

2. Depending on the modeled dynamical process, the components of the
continuous part of the state vector may be real or complex numbers.
Because any complex-valued number consists of its real and imaginary
part which can be considered separately throughout this work the com-
ponents of the continuous part of the state vector are assumed to be
real-valued.

The example systems presented in the following sections are selected and
often well-known representatives of the corresponding class. Most of them
are mathematical models of real dynamic processes. For the derivation of
the equations and their meaning it is referred to the literature, because this
is not relevant in the context of this work.

3.3 Dynamical systems discrete in time

As already mentioned, the instruction set describing how the state vector
evolves in time affects for this class of dynamical systems the state vector
directly. Hence the time evolves in discrete time steps with a finite step size.

47

Chapter 3
Supported classes of dynamical systems

Definition: Dynamical system discrete in time

A dynamical system whose time evolution is given in such a way, that
the defining transition leads directly from one state of the system to the
next one with a finite time step is called a dynamical system discrete in
time or a time discrete dynamical system. �

One step in the time evolution requires the execution of the defining transi-
tion, whereby it is not required, that the time steps are all equal during the
time evolution.

3.3.1 Systems without memory

For systems belonging to this class the vector field depends not on state
vectors with timestamps in the past, it only depends on the current state
vector and the set of system parameters, i.e. the parameter vector. Hence
an adequate mathematical description of such a system reads:

3.3.1.1 Ordinary maps (Maps)

The evolution equation or equation of motion of the class of dynamical sys-
tems denoted as ordinary maps is defined by:

Definition: Ordinary map (1)

s(tn+1) = f
(
s(tn), p

)
(3.1)

with

f : Γs × Γp 7→ Γs

�

An alternative definition considers explicitly the discrete time steps omitting
thereby the more or less redundant t in the formulas and is given by:

48

Chapter 3
Supported classes of dynamical systems

Definition: Ordinary map (2)

sn+1 = f
(
sn, p

)
(3.2)

with

f : Γs × Γp 7→ Γs

�

Here s(tn) = (s1(tn), s2(tn), . . . , sNs(tn)) ∈ Γs or sn = (s1n, s2n, . . . , sNsn) ∈ Γs

is the state vector of the system, tn is the discrete time at timestamp n ∈ N+
0 ,

p =
(
p1, p2, . . . , pNp

)
∈ Γp is the parameter vector and f : Γs × Γp 7→ Γs

a usually nonlinear vector field representing the interactions between the
single components or variables of the state vector. In this work, mainly the
definition (3.2) is used.

In the following paragraphs some illustrative examples of this class will be
presented.

The logistic map
The most famous example of this class of dynamical systems is the well-

known logistic map defined by the following nonlinear recurrence equa-
tion:

Definition: Logistic map

xn+1 = f(xn, α) = αxn(1− xn) (3.3)

with

with x ∈ [0, 1] ⊂ R and α ∈ [0, 4] ⊂ R

�

Some historical remarks
The history of the logistic map at least goes back to the year 1838, when
Verhulst [166] published what he called a ”logistique” equation. In this

49

Chapter 3
Supported classes of dynamical systems

publication he wants to describe mathematically the sigmoidal growth of
population density to carrying capacity by a dynamical system continuous
in time (see Sec. 3.4). The equation was rediscovered by Pearl and Reed
[132] in 1920. In 1925 Lotka [99] derived the same equation, calling it ”the
law of population growth”. Nine years later Gause [57] demonstrated the
validity of the logistic growth model in laboratory experiments. See [88]
for an review of these historical events. However, the discrete form of the
logistic equation presented here was first proposed in 1965 by Cook [20] but
it turned out, that it is identical to the equation Ricker published in 1954
[140] (see for instance [11]).

Although the logistic map (3.3) is only one-dimensional and ”looks” very
simple, it is capable of a very complex dynamics, which is the reason why
this relatively simple dynamical system has been investigated up to now and
will be so in the future. However, the more it is known about the details
of the complex dynamic behavior of this system, the more it becomes clear
why many scientists speak about the ”theory of deterministic chaos in a
nutshell” when referring to the logistic map.

An overview about the complex dynamics of this system is given by its bi-
furcation diagram (see Fig. 3.1). From this one can read off:

I For α ∈ [0, 1] the system has x∗0 = 0 as the only stable fixed point,
whereby the interval [0, 1] is the basin of attraction of this fixed
point, which holds for all types of attractors of the logistic map.
That means, for all typical initial values x0, the solution curves
or trajectories converge to the stable attractors. Hereby the notion
of a typical initial values means, that the initial value x0 belongs not
to an unstable invariant set.

I At the parameter value α = 1 a transcritical bifurcation occurs and
the fixed points x∗0 = 0 and x∗1 = α−1

α
change their stability. The fixed

point x∗1 is stable for α ∈ [1, 3]. In figure 3.2(a) a typical graphical
iteration towards a fixed point existing in this parameter interval at
α = 2.8 is shown. This type of representation is denoted as graphical
iteration, cobweb diagram or simply web diagram (see [192]).

I At the parameter value α1 = 3 the first flip bifurcation or pe-
riod doubling bifurcation occurs and a limit cycle with period

50

Chapter 3
Supported classes of dynamical systems

x
n

α
(a) α ∈ [0, 4]

x
n

α
(b) α ∈ [3, 4]

Figure 3.1: Logistic map: bifurcation diagrams

In (a) the complete bifurcation diagram is shown, whereas in (b) only the
period doubling scenario and the chaotic regime is shown. The vertical line
in (b) marks the accumulation point α∞ ≈ 3.569945672, i.e, the end of the
period doubling cascade.

two emerges, which is stable for α ∈ [α1, α2], with α2 = 1 +
√

6 ≈
3.449489 This is the beginning of the period doubling cascade
which ends at the accumulation point α∞ ≈ 3.569945672 with the
emergence of the famous Feigenbaum attractor which is a strange
attractor but not a chaotic attractor. In figures 3.2(b) and 3.2(d)
graphical iterations toward limit cycles of periods two and eight at the
beginning of the period doubling cascade are shown.

I For α ∈ [α∞, 4] the logistic map shows a chaotic behavior in the
sense of deterministic chaos in contrast to stochastic chaos or
microscopic chaos. In the chaotic regime there exist parameter
intervals so-called parameter windows or only windows, where peri-
odic behavior can be found. For instance exist around the parameter
value α ≈ 3.83 a limit cycle with period three (see Fig. 3.2(c)). For a
more detailed description and a collection of references see for instance
[179].

Some remarks about the parameter value α = 4
At this parameter value, the logistic map has some remarkable proper-
ties which are also useful for tests of investigation methods (see Secs. 5.5
and 11.1).

51

Chapter 3
Supported classes of dynamical systems

x
n
+

1

xn
(a) α = 2.8, x0 = 0.05

x
n
+

1

xn
(b) α = 3.2, x0 = 0.1

x
n
+

1

xn
(c) α = 3.83, x0 ≈ 0.504666

x
n
+

1

xn
(d) α = 3.564, x0 ≈ 0.553977

Figure 3.2: Logistic map: cobweb diagrams

Graphical iterations or so-called cobweb diagrams or simply web diagrams of
the logistic map. The trajectory converges to a fixed point (a), a limit cycle
of period two (b), a limit cycle of period three (c) and one of period eight
(d).

52

Chapter 3
Supported classes of dynamical systems

x
n

n
(a) α = 4.0, x0 = 0.1

x
n

n
(b) α = 4.0, x0 = 0.91357

Figure 3.3: Logistic map: dynamic behavior at α = 4

The first 104 iterations of the logistic map at the parameter value α = 4.0
for two different initial conditions x0 = 0.1 (a) and x0 = 0.91357 (b) demon-
strating the chaotic but not uniform distribution of the iterated points on
the interval [0, 1].

I It was John von Neumann [183, 195], who suggested in the late 1940s
to use the logistic map at the parameter value α = 4 as a random
number generator, which becomes quite understandable, when, looking
for instance at the first 104 iterations (see Fig. 3.3).

I At this value the diffeomorphism (see for instance [170]) y =
2
π

arcsin(
√

x) between the logistic map xn+1 = 4xn(1 − xn) and the
tent map yn+1 = 1− 2|yn− 1

2
| exists, which allows the analytic calcula-

tion of the natural measure or invariant measure ρ(x) = 1

π
√

x(1−x)

of the chaotic attractor of the logistic map. Due to this fact, all quan-
tities which are determined by the invariant measure can be calculated
analytically. For the Lyapunov exponent for instance one gets the
analytic result:

λ =

∫ 1

0

ρ(x) log |df(x, 4)

dx
|dx = log 2 (3.4)

I In [164] it was proved, that the logistic map at the parameter value
α = 4 can be solved using the following explicit function:

xn =
1

2
(1− cos (2n arccos(1− 2x0))) (3.5)

53

Chapter 3
Supported classes of dynamical systems

This result can be used to illustrate the behavior which lead to the
notion of deterministic chaos, by comparing an iterated trajectory us-
ing a certain precision during the calculation with the exact trajectory
given by Eq. (3.5).

In figure 3.4 this is done with two different precisions, namely 10 dig-
its and 20 digits accuracy. Shown is the difference of the numerically
calculated trajectories to the analytical one determined by Eq. (3.5)
in the course of the iteration. As one can see, the trajectories diverge
in both precisions although as expected, the more precisely calculated
one stays longer at the analytical trajectory determined by Eq. (3.5).
This illustrates the well-known phenomenon in the theory of nonlin-
ear dynamics denoted as initial condition sensitivity. This notion
is somehow misleading and misunderstanding, because not only very
small differences in the initial conditions can lead to a divergence of the
trajectories, but any deviation or disturbance, which may occur in the
course of time. The deviation could be caused by stochastic processes
or truncation effects due to the floating point number representation
within the computer memory. In fact, for the trajectories shown in fig-
ure 3.4 the same initial condition was used, but the different precision in
connection with the dynamics of the system, which shows deterministic
chaos, leads to the divergence of the trajectories.

For more information including references about the logistic map see for
instance [179, 196].

The Hénon-Lozi map
Another typical example of an ordinary map is the Hénon-Lozi map. It is

a map with state space dimension Ns = 2 and parameter space dimension
Np = 3 defined by:

54

Chapter 3
Supported classes of dynamical systems

x
n
u
m

n
−

x
a
n
a

n

n
(a) α = 4.0, x0 = 0.1, precision=10

x
n
u
m

n
−

x
a
n
a

n

n
(b) α = 4.0, x0 = 0.1, precision=20

Figure 3.4: Logistic map: comparison of analytic and numeric results

Difference of the numerical iterations xnum
n with two different precisions, car-

ried out with Maple [105], to the analytical solution xana
n determined by (3.5).

In (a) the used precision during iteration was 10 digits, whereas in (b) it was
20 digits. As expected, the more precisely calculated trajectory in (b) stays
longer on the analytically determined trajectory.

Definition: Hénon-Lozi map

xn+1 = f(xn, p) xn = (xn, yn)T ∈ R2

p = (a, b, γ) ∈ R3 (3.6)

f(xn, p) =

(
1− a|xn|γ + yn

bxn

)
�

There are two special cases of this map, namely the famous Hénon map [77]
for γ = 2.0 and the Lozi map [100] for γ = 1.0.

The Hénon map

Definition: Hénon map

xn+1 = 1− αx2
n + yn

yn+1 = bxn
(3.7)

�

55

Chapter 3
Supported classes of dynamical systems

yn

xn

(a) a = 1.4, γ = 2.0

yn

xn

(b) a = 1.8, γ = 1.0

Figure 3.5: Hénon-Lozi map: attractors and blow-ups

(a) A chaotic attractor of the Hénon map
(b) A chaotic attractor of the Lozi map

In both figures, blow-ups of the rectangularly marked regions are shown.

The Lozi map

Definition: Lozi map

xn+1 = 1− α|xn|+ yn

yn+1 = bxn
(3.8)

�

In figure 3.5 two typical chaotic attractors of system (3.6) corresponding to
the two special case of the Hénon map and the Lozi map are shown. For
more information about these two systems it is referred to [177, 180].

Remark:
The Hénon-Lozi map is interesting, because in this system a transition
from a smooth to a non-smooth vector field takes place, when the system
parameter γ is changed from the value of 2, representing the case of the
Hénon map to the value of 1, representing the Lozi map. Thereby a
two-parametric bifurcation takes place which is denoted here as a
period doubling big bang bifurcation. This and related phenomena
were studied in detail in [7], whereby the scan capabilities (see Chap. 4)

56

Chapter 3
Supported classes of dynamical systems

and the investigation methods (see Chap. 5) of the AnT 4.669 software
package were used intensively.

As a standard example of two-dimensional maps, the Hénon map has been
studied intensively for instance by [145, 69, 79, 60, 93, 116]. In figure
3.6 the most presented and best known attractor of the Hénon map is
shown again together with three successive blow-ups demonstrating the
geometric self-similarity [133, 94] of chaotic attractors [61]. This geometric
self-similarity can be described, in a sloppy way, by the lack of a natural
length scale. That is, when zooming into images of perfect self-similar
objects, one is never able to indicate or determine a length scale from the
considered section of the image, because the characteristic structures of the
self-similar object are repeated on smaller and smaller length scales - again
and again. This property is clearly illustrated by the successive blow-ups of
parts of the attractor in figure 3.6.

Self-similar structures are typical for chaotic attractors. There are mainly
three reasons for that: Firstly, because chaotic attractors are typically con-
fined to some region in the state space. Secondly, because the chaotic be-
havior is defined by the exponential divergence of adjacent trajectories and
thirdly, because the equations of motion are deterministic and represent from
the viewpoint of geometry often very simple rules. The contradiction of the
first two reasons can only be explained by more or less complex folding,
squeezing and stretching mechanisms which bend and keep the trajectories
in the confined region. In addition to that, one may say, that the sim-
ple geometric rules lead to repetitions of the processes and hence cause the
emergence of self-similar structures.

3.3.1.2 Coupled map lattices (CMLs)

Coupled map lattices are a specific subclass of dynamical systems discrete in
time. The notion is based on the fact, that they are build up from an ordi-
nary map, which defines a single cell of the coupled map lattice. The single
cells are specifically structured or arranged and this arrangement defines
the lattice. Usually this is a one-dimensional lattice, but multi-dimensional
lattices with different lattice-topologies are possible too. The single cells
arranged on the lattice, are coupled with other cells by so-called coupling
parameters. Usually local coupling mechanisms occur, that means a

57

Chapter 3
Supported classes of dynamical systems

yn

xn

(a)

yn

xn

(b)

yn

xn

(c)

yn

xn

(d)

Figure 3.6: Hénon map: attractors and blow-ups

Attractor of the Hénon map (a) and successive blow-ups (b),(c),(d) demon-
strating the self-similarity of chaotic attractors. Parameter setting: a = 1.4,
b = 0.3, γ = 2.0.

58

Chapter 3
Supported classes of dynamical systems

coupling, such that an individual cell is influenced only by some cells in its
neighborhood. How large this neighborhood is, is part of the definition of
a coupled map lattice but can also be determined by a system parameter.
Of course also global coupling mechanisms are possible. Sometimes, the
lattice can be considered as space points and hence coupled map lattices are
some kind of spatial inhomogeneous systems similar to partial differential
equations.

Remarks:

1. CMLs represent not really a new class of dynamical system, because
they are still maps. However, the structured arrangement of many
identical subsystems is mathematically treated usually by introducing
indexed quantities, which describe the subsystems and lead to a
compact notation. This idea of structuring and compactification holds
also for the implementation of such systems. Instead of implementing
the equation of motion of all cells, one has to implement the equation
of motion only for one cell, whereby the rest can be done automatically.
The idea of supporting a user in this way lead to the implementation
of these class in the AnT 4.669 software package.

2. The lattice may represent not only a spatial structure or arrangement,
but any indexable quantity. In the AnT 4.669 software package only
CMLs with a single indexable quantity are supported, because CMLs
with multiple indexable quantities can be mapped to that case, al-
though the couplings become much more complicated then.

Coupled map lattices are defined by:

59

Chapter 3
Supported classes of dynamical systems

Definition: Coupled map lattice (CML)

Sn+1 = F
(
Sn, p

)
(3.9)

with

Sn =
(
s1

n, s
2
n, . . . , s

M
n

)T ∈ ΓM
s

si
n ∈ Γs , i = 1, . . . ,M

F : ΓM
s × Γp 7→ ΓM

s =

f, f , . . . , f︸ ︷︷ ︸
M times


T

f : ΓK
s × Γp 7→ Γs

�

Here M are the number of cells of the lattice, N is the dimension of the
state vectors si

n of the individual cells and Sn is the Ns = NM dimensional
state vector of the coupled map lattice. The parameter K is the number of
coupled cells. Hence, the state vector Sn of a coupled map lattice consists
of a number of M > 1 sub-states si

n of the single ordinary maps defining
a cell of the lattice. Accordingly, the system function F of a coupled map
lattice is build up from the system functions f of the individual cells,
whereby, the parameter vector p is taken into account only once. It is
important to remark, that for a coupled map lattice, the system functions f
of all individual cells and the parameter vector p are identical. Of course a
definition analogous to (3.1) is also possible.

Remark:

One could also think of a coupled map lattice consisting of two types
of cells with different system functions arranged on the lattice in an
alternating manner. The definition (3.9) given above, covers also this
case if one takes into account, that the two cells could be combined
to a larger cell with a system function build up from the two different
system functions. This new cells are now arranged on a lattice of
half the size of the original one and have identical system functions
as required by definition (3.9). The definition (3.9) covers even more

60

Chapter 3
Supported classes of dynamical systems

complex situations as long as the cells with different system functions
form a periodic structure.

The equation of motion of the i-th cell of the coupled map lattice is defined
by:

Definition: CML: single cell

si
n+1 = f

(
{sik

n }, p
)

(3.10)

with

ik ∈ {1, 2, . . . ,M} , k = 1, . . . , K and f : ΓK
s × Γp 7→ Γs

�

Hereby the set {sik
n } consists of K states which influence the considered cell i.

Note, that according to the definition (3.9) all cells have the same parameter
vector p representing the set of parameters of the dynamical system defining
a single cell.

Types of coupling
As already mentioned, there exist in all coupled systems in principle at least
two different types of coupling mechanisms, namely local coupling and global
coupling mechanisms.

I The notion of global coupling indicates, that in a dynamical system
with such a coupling, each cell is coupled with all other cells in the
lattice. In the case of a global coupling (see Fig. 3.7(a)), one gets from
(3.9) and (3.10):

si
n+1 = f

(
s1

n, . . . , s
M
n , p

)
(3.11)

with

f : ΓM
s × Γp 7→ Γs

Physically or technically global coupling mechanisms are caused by
long range interactions.

61

Chapter 3
Supported classes of dynamical systems

I The notion of local coupling indicates, that in a dynamical system with
such a coupling, each cell is coupled only with cells in the lattice which
are in the neighborhood. This leads immediately to the necessity of the
definition of this neighborhood. Concerning one-dimensional CMLs,
one often defines this neighborhood symmetrically and not too large.
Typical ranges for instance are one or two cells in each direction. The
physical or technical interpretation in this case is, that the range of
the interaction is r = 1 or r = 2. If the range of the interaction is
r and the coupling symmetrically, then each cell is coupled with K =
2r+1 adjacent cells of the lattice. Like in other spatial inhomogeneous
systems, also in CMLs there exist the problem of the boundary values,
that is the cells with indices i ≤ r and i > M − r. Depending on the
considered problem, one often chooses here either a ring-like topology
(see Fig. 3.7(b)), where the boundary cells are connected with each
other, or a chain-like topology (see Fig. 3.7(c)), where the boundary
cells need a special treatment.

Properties
In principle, coupled map lattices are still ordinary maps, with a specific
structure of the vector field or system function and usually a huge number
of state components. The advantage of the formulation as a CML is, that in
this case the vector field or system function is much more easy to implement
as in the case of an ordinary map, because the formulation as a CML is
adapted to the specific structure of such maps. This formulation occurs often
in physical or technical systems, consisting of many identical subsystems.
In this sense, coupled map lattices are suitable or adequate mathematical
models (see Sec. 1.2.2) of systems with such a specific structure.

The most important property of this class of dynamical systems is, that in
their dynamic behavior the emergence of spatio-temporal structures or
spatio-temporal patterns can be observed. These structures or patterns
emerge as a consequence of the coupling mechanisms and because they are
not imposed, this is some kind of self-organization. This is especially
an interesting phenomenon when long range structures or patterns emerge
in systems with only short range interactions and hence local coupling
mechanisms. Due to their relative simplicity, compared with many real cou-
pled systems, coupled map lattices are ideal test systems to discover and to

62

Chapter 3
Supported classes of dynamical systems

-

n n + 1

--

... ...

s1
n

s2
n

si−1
n

s1
n+1

s2
n+1

si−1
n+1

si
n si

n+1

si+1
n si+1

n+1

sM
n sM

n+1

... ...

sM−1
n sM−1

n+1

(a)

-

n n + 1

-

--

-

-

-

... ...

s1
n

s2
n

si−1
n

s1
n+1

s2
n+1

si−1
n+1

si
n si

n+1

si+1
n si+1

n+1

sM
n sM

n+1

... ...

sM−1
n sM−1

n+1

(b)

-

n n + 1

-

--

-

... ...

s1
n

s2
n

si−1
n

s1
n+1

s2
n+1

si−1
n+1

si
n si

n+1

si+1
n si+1

n+1

sM
n sM

n+1

... ...

sM−1
n sM−1

n+1

(c)

Figure 3.7: CML: coupling mechanisms

(a) global coupling
(b) local coupling with ring like topology
(c) local coupling with chain like topology

In the figures (a)-(c), two time steps n and n + 1 are shown. The arrows
illustrate how the state of a cell at time step n + 1 depends on the states of
the cells at time n. For reasons of a better presentation, only the relevant
couplings are shown.

63

Chapter 3
Supported classes of dynamical systems

investigate the general structure formation principles in coupled sys-
tems, based on self-organization mechanisms. As an example of this class,
the following system is considered:

The plone map CML

Definition: Plone map CML

xi
n+1 = f(κi

n, a) with f(x, a) =

{
x + a falls x < 1

0 falls x ≥ 1
(3.12)

and

κi
n =

γ1x
1+((i−2) mod M)
n + γ2x

i
n + γ3x

1+(i mod M)
n

γ1 + γ2 + γ3

xi
n ∈ [0, 1 + a) , i = 1, . . . ,M , p = (a, γ1, γ2, γ3) ∈ R4

�

As shown in figure 3.8, this system shows at the given parameter setting
a stable asymptotic dynamic behavior, which is spatially inhomogeneous
but periodic in time. As one can see in the middle part of the figure,
a ring like or cyclic topology is used. In the transient regime at the
beginning, the phenomenon of a glider can be observed. The emergence of
this phenomenon, typical for cellular automata, is not so astonishing, when
looking at the system function. The piecewise definition, together with
the constant increment a and the used coupling cause the system to have
also only a finite number of quasi-discrete states comparable to the discrete
states used in cellular automata.

3.3.2 Systems with memory

3.3.2.1 Recurrent maps (RMaps)

This class of dynamical systems has some kind of ”memory”, because the
defining transition depends not only on the state of the system at the current

64

Chapter 3
Supported classes of dynamical systems

i = 1

sp
at

ia
l
in

d
ex

i = M

n

Figure 3.8: CML: emergence of spatio-temporal structures

Starting with a random initialization, system (3.12) shows after a transient
behavior an asymptotic dynamics, which is spatially inhomogeneous but pe-
riodic in time. In the transient region, the phenomenon of a glider, known
from the field of cellular automata, can be observed. The gray-scale values
represent the values of the individual state variables xi

n ∈ [0, 1 + a). Param-
eter setting: M = 238, a = 0.36 and γ1 = γ2 = γ3 = 1.

time tn, but also on states of the system in the past. Hence this class is defined
by the following recurrence equation:

Definition: Recurrent map

s(tn+1) = f
(
s(tn), s(tn−1), . . . , s(tn−m), p

)
(3.13)

with

f : Γm+1
s × Γp 7→ Γs

�

The number m + 1 is denoted here as recurrence level. That means, that
the new state s(tn+1) depends on the current state s(tn) and additionally
on the m states s(tn−k) with k ∈ {1, 2, . . . ,m} in the past. Accordingly,
ordinary maps as defined by (3.1 or 3.2) in section 3.3.1.1 have a recurrence
level of one.

Remark:

65

Chapter 3
Supported classes of dynamical systems

As already mentioned, CMLs can be converted to corresponding ordi-
nary maps by an extension of the state space. Introducing the m + 1
new states si(tn) with i ∈ [0, 1, . . . ,m] by:

s0(tn+1) = f
(
s0(tn), s1(tn), . . . , sm(tn), p

)
s1(tn+1) = s0(tn)

...
...

... (3.14)

sm−1(tn+1) = sm−2(tn)

sm(tn+1) = sm−1(tn)

and identifying s0(tn) with s(tn), then the ordinary map (3.14) is equivalent
to the recurrent map (3.13). The Bogdanov map (see for instance [168])
may be considered as an example of such an equivalence.

The Bogdanov map

Definition: Bogdanov map (1)

xn+1 = xn + yn+1

yn+1 = g(xn, yn) = kxn(1− xn) + (1 + ε + µxn)yn
(3.15)

�

This definition of the system has state space dimension of two and a recur-
rence level of one. It represents an ordinary map and is totally equivalent
with the following recurrence equation defining a one-dimensional recurrent
map with recurrence level two:

Definition: Bogdanov map (2)

xn+1 = xn + g(xn, xn − xn−1)
= xn + kxn(1− xn) + (1 + ε + µxn)(xn − xn−1)

(3.16)

�

66

Chapter 3
Supported classes of dynamical systems

Although such a conversion or transformation is always possible, the class
of recurrent maps is supported by the AnT 4.669 software package for
convenience purposes. The Bogdanov map has been studied in detail for two
important reasons:

1. The original continuous system, which is denoted as Bogdanov vector
field, is a good example of the behaviour to be expected in averaged
equations. It has some generality as a typical example of an ordinary
differential equation with a sink that undergoes a Hopf bifurcation.
As the attracting limit cycle grows, it undergoes at a certain param-
eter value a saddle connection bifurcation with a remote saddle,
whereby the former stable limit cycle is destroyed. The Bogdanov map
correspondes to a Poincaré section of the Bogdanov vector field and it
was expected, that it is much easier to investigate.

2. The Bogdanov map provides a good model for Poincaré maps of pe-
riodically forced oscillators. Like the Bogdanov vector field, it has a
Hopf bifurcation, which is in the case of dynamical systems discrete
in time denoted as Neimark-Sacker bifurcation. However, in the
map the dynamics on the invariant limit cycle is far away from being
trivial. The invariant circle experiences mode locking with the infinity
of Arnold tongues formed in the Neimark-Sacker bifurcation.

In figure 3.9, two typical periodic solutions after the Neimark-Sacker bifur-
cation are shown.

3.4 Dynamical systems continuous in time

In the following sections the very important classes of dynamical systems
continuous in time are presented. These classes are mostly used as suitable
and adequate mathematical models for many dynamic processes in natural
and technical systems which are in most of the cases continuous processes.

Definition: Dynamical system continuous in time

A dynamical system whose time evolution is given in such a way, that
the transition defines an infinitesimal small time step. �

A direct consequence of this definition is, that any finite time evolution of
such a system requires an integration of the defining transition. Therefore,

67

Chapter 3
Supported classes of dynamical systems

y n

xn
(a) 21-periodic limit cycle

y n

xn
(b) 233-periodic limit cycle

Figure 3.9: Bogdanov map: periodic solutions

Shown are typical periodic solutions of this map after the Neimark-Sacker
bifurcation.Parameter settings:

(a) k = 0.8, µ = −0.1, ε = 0.01407

(b) k = 0.8, µ = −0.1, ε = 0.0141264

numerical simulation packages dealing with such systems have to provide
some numerical integration methods often simply denoted as integrators or
solvers.

3.4.1 Systems without memory

3.4.1.1 Ordinary Differential Equations (ODEs)

Definition: Ordinary differential equation

d

dt
s(t) = f

(
s(t), p

)
(3.17)

with

f : Γs × Γp 7→ Γs

�

Like in the case of dynamical systems discrete in time s(t) ∈ Γs is the dynamic
state vector of the system, t ∈ R+

0 the continuous time, f : Γs × Γp 7→ Γs a

68

Chapter 3
Supported classes of dynamical systems

usually nonlinear vector field representing the interactions between the single
components of the state vector and p ∈ Γp a vector or set of parameters.

The most famous example of this class is the Lorenz system [97]. During the
simulation and investigation of this system, which was derived in 1963 by
Lorenz as a mathematical model describing certain weather processes, the
phenomenon of deterministic chaos was re-discovered. Re-discovered, be-
cause already Poincaré (see [185]) knew at the beginning of the 20th century
about solutions of ordinary differential equations which are neither station-
ary, nor periodic or quasi-periodic, He discovered this dynamic behavior,
when he treated the three body problem [189].

The Lorenz system

Definition: Lorenz system

d

dt
s(t) = f(s(t), p) s(t) = (x(t), y(t), z(t))T ∈ R3

p = (σ, r, b) ∈ R3 (3.18)

f(x, y, z, p) =

 σ(y − x)
rx− y − xz
−bz + xy


�

In figure 3.10 a chaotic attractor is shown, which is often denoted as the
Lorenz attractor. It is worth mentioning, that this notion is misleading
for two reasons:

1. At least for each parameter setting there exist a separate attractor,
therefore one can not speak about the Lorenz attractor, although the
shape and geometric structure of these attractors are very similar over
large ranges of the parameters, especially the most important parame-
ter r.

2. The Lorenz equations (3.18) posses a specific symmetry with respect
to the state variables x and y, namely:

69

Chapter 3
Supported classes of dynamical systems

σ = 16.0, r = 45.92, b = 4.0

t

x

y

(a) chaotic attractor

σ = 16.0, r = 45.92, b = 4.0

x y

z

(b) chaotic attractor

Figure 3.10: Lorenz system: chaotic attractor attractor

In (a), a chaotic attractor of the Lorenz system in a three dimensional pro-
jection of the four dimensional extended state space is shown, whereas in (b)
the same chaotic attractor is shown in the three dimensional state space.

x ↔ −x

y ↔ −y (3.19)

z ↔ z

Symmetry properties like (3.19), usually lead to the emergence of ei-
ther unique symmetric attractors or coexisting attractors symmetric
to each other. Typically there exist then symmetry-breaking and
symmetry-recovering bifurcations which lead from one regime to
the other and vice versa.

The Lorenz system is probably the most investigated dynamical system of
this class (see for instance [151]). It is furthermore interesting, because
it represents an approximative mathematical model not only in hydrody-
namics, as already mentioned, but also in laser physics (see [72, 73, 74]).
Similar to the logistic map (see Sec. 3.3.1.1) it has become a paradigm in
nonlinear dynamics. It is often used to illustrate the notions of deterministic
chaos, butterfly effect, chaotic attractor, strange attractor, the concept
of Lyapunov exponents and much more.

In chapter 11 further examples of the class of ordinary differential equations
are presented. They are all used to test and to validate the simulation, inves-
tigation and scan capabilities of the AnT computation engine, because

70

Chapter 3
Supported classes of dynamical systems

σ = 16.0, r = 31.424783943, b = 4.0

x y

z

(a) transient ”limit cycle”

σ = 16.0, r = 31.424783943, b = 4.0

x y

z

(b) asymptotic dynamics

σ = 16.0, r = 31.424783944, b = 4.0

x y

z

(c) chaotic attractor

σ = 16.0, r = 370.0, b = 4.0

x y

z

(d) coexisting limit cycles

Figure 3.11: Lorenz system: several attractors

In (a) and (b) the same parameter setting and initial values were used. The
situation differs only in the number of iterations performed. In (a) the tran-
sient behavior is shown, which seems to be the dynamic on a limit cycle, but
is not. In (b) more iterations were performed, so that the system leaves the
transient ”limit cycle” and finally converges to the asymptotic stable fixed
point. In (c) the parameter r is slightly changed in the 9th position after
decimal point compared with the setting in (a) and (b). As one can see, the
dynamic behavior is chaotic. This happens due to the fact, that at approxi-
mately this value of the parameter r, the transition from a fixed point to a
chaotic attractor takes place. In (d) two coexisting limit cycles are shown,
which are symmetric to each other with respect to the symmetry (3.19).

71

Chapter 3
Supported classes of dynamical systems

they are all well-known in the field of nonlinear dynamics and hence more or
less well investigated. The knowledge about these systems is used to cross-
check whether the AnT computation engine works properly and produces
the correct and consistent results under various conditions. Example attrac-
tors of some of these systems are visualized in chapter 9 as well.

3.4.1.2 Coupled ordinary differential equation lattices (CODELs)

These class of coupled ordinary differential equation lattices is the time con-
tinuous analog to the coupled map lattices (see Sec. 3.3.1.2). Like in the case
of the coupled map lattices, the notion is based on the fact, that these sys-
tems are build up from ordinary differential equations which define a single
cell and that these cells then are arranged on a lattice and represent together
a new entity. The single cells are coupled with each other according to lo-
cal or global coupling mechanisms involving so-called coupling parameters.
Again as in the case of the coupled map lattices, the lattice often represents a
spatial structure or arrangement and coupled ordinary differential equation
lattices can be considered as some kind of spatial inhomogeneous systems
like partial differential equations.
Remark:
In fact, the way, how coupled ordinary differential equation lattices are
treated numerically is nearly the same as in the case of partial differen-
tial equations. This is due to the fact, that the numerical solution of partial
differential equations requires a spatial grid or lattice. Hence these systems
are then no longer continuous in space, but they are defined on a discrete
spatial grid. This spatial discretization here is totally comparable with the
discretization of time which lead to the fact, that the solution of a differential
equation is numerically done by a map. The discretization in time requires
the numerical integration, which can be done in several ways leading imme-
diately to different integration schemes. The discretization in space requires
the numerical differentiation in space, which can also be done in several ways
leading to several differentiation schemes. These schemes represent then dif-
ferent coupling mechanisms of the cells o the grid or lattice. Summarizing,
the only difference between coupled ordinary differential equation lattices
and partial differential equations are the type and the origin of the coupling
mechanism.
The remarks about CMLs on page 59 hold also for coupled ordinary differ-
ential equation lattices, which are defined by:

72

Chapter 3
Supported classes of dynamical systems

Definition: Coupled ordinary differential equation lattice
(CODEL)

d

dt
S(t) = F

(
S(t), p

)
(3.20)

with

S(t) =
(
s1(t), s2(t), . . . , sM(t)

)T ∈ ΓM
s

si(t) ∈ Γs , i = 1, . . . ,M

F : ΓM
s × Γp 7→ ΓM

s =

f, f , . . . , f︸ ︷︷ ︸
M times


T

f : ΓK
s × Γp 7→ Γs

�
The equation of motion of the i-th cell of the coupled ordinary differential
equation lattice is defined by:

Definition: CODEL: single cell

si(t) = f
(
{sik(t)}, p

)
(3.21)

with

ik ∈ {1, 2, . . . ,M} , k = 1, . . . , K and f : ΓK
s × Γp 7→ Γs

�

K is here the total number of cells in the set {sik(t)} with k = 1, . . . , K,
which have an influence via the coupling mechanism on the considered cell i.
In the following two interesting examples of this class are presented, namely
the selection equations and the coupled selection equations, which
have both a global coupling mechanism.

The equation of motion for a single cell of the selection equations is defined
by:

73

Chapter 3
Supported classes of dynamical systems

Selection equations

Definition: Selection equations

d

dt
si(t) = f({sk(t)}, β) (3.22)

with

si(t), β ∈ R , i = 1, . . . ,M

f({sk(t)}, β) = si(t)

(
1 + (β − 1)

(
si(t)

)2 − β
M∑

k=1

(
sk(t)

)2)

�

The dynamic behavior of the selection equations (3.22) has the interesting
property, that the state component or cell which was initialized with the
largest initial value wins a competition process or selection process and
converges asymptotically to the value 1, whereas all other state components
converge asymptotically to 0. The competition process is illustrated in fig-
ure 3.12.

Another example of this class based on the selection equations (3.22) are the
so-called coupled selection equations. This CODEL is very interesting,
because it can be used to solve multi-index assignment problems known
from the field of combinatorial optimization [152, 75, 156]. The assign-
ment searched for, is determined by the asymptotic values of this specifically
constructed dynamical system, whereby the competition process accounts
for the optimization. Assignment problems can be used to model some
problems in flexible manufacturing systems (FMS), distributed autonomous
robotic systems [155, 91, 147], and cellular robotic systems (CEBOT)
[50, 51, 52, 153]. For details and further references about assignment
problems, it is referred to [154, 75, 156].

The following dynamical system can be used to find solutions to the NP -
hard three -index assignment problem, where an assignment of the elements
of three different sets has to be found in such a way, that to each element
of the first set one and only one element of the second set is assigned to

74

Chapter 3
Supported classes of dynamical systems

si

t
(a) M = 5, β = 2.0

si

t
(b) M = 21, β = 2.0

Figure 3.12: Selection equations: time series for different lattice sizes M

The competition or selection process between the single state components or
cell states can be clearly observed. Finally, the state component with the
largest initial value wins the competition process and converges asymptoti-
cally to the value 1. All other state components converge asymptotically to
the value 0.

and that to this sub-assignment one and only one element of the third set is
assigned to.

Definition: Three-index assignment problem

In the three-index assignment problem, the Boolean variables xijk ∈
{0, 1} with i, j, k ∈ {1, ..., n} have to be determined such that the total
costs

c :=
∑
i,j,k

cijk · xijk (3.23)

are minimal with respect to the constraints∑
i,j

xijk = 1 ∀k ∈ {1, ..., n}, (3.24)∑
i,k

xijk = 1 ∀j ∈ {1, ..., n}, (3.25)∑
j,k

xijk = 1 ∀i ∈ {1, ..., n}, . (3.26)

�

75

Chapter 3
Supported classes of dynamical systems

The three-index assignment problem is shown to be NP -hard [54]. The
CODEL, which can be used to solve the three-index assignment problem is
defined by:

Coupled selection equations

Definition: Coupled selection equations

d

dt
sijk(t) = f({si′j′k′(t)}, β) (3.27)

with

sijk(t), β ∈ R , i, j, k ∈ {1, . . . ,M}

f({si′j′k′(t)}, β) = sijk(t)

(
1 + (3β − 1)

(
sijk(t)

)2 − β
M∑

j′=1

M∑
k′=1

(
sij′k′(t)

)2

−β
M∑

i′=1

M∑
k′=1

(
si′jk′(t)

)2

− β
M∑

i′=1

M∑
j′=1

(
si′j′k(t)

)2
)

�

In this case, there are three indexable quantities, which correspond to
the three-index assignment problem. Because one can always reduce such
a multi-index to only one index, this system is also supported by the
AnT 4.669 software package. The notation with the three indices is used
here only for convenience purposes.

The times series in figure 3.13 show results of two simulation runs of the dy-
namical system corresponding to the three-index assignment problem with
problem size M = 3 and a specific cost matrix which is used for the initializa-
tion of the system. The systems has a state space dimension of Ns3

M = 27.
The competition process selects the assignment which minimizes the costs
given by the initialization of the dynamical system. The assignment is deter-
mined by the state components which asymptotically converge to the value
1. As on can see in figure 3.13(a) the dynamics got stuck on a saddle-point.

76

Chapter 3
Supported classes of dynamical systems

sij
k

t
(a) without noise

sij
k

t
(b) with noise

Figure 3.13: Coupled selection equations: numerical solution

Numerical solution to a three-index assignment problem. Parameter setting:
β = 2.0. In (a) the dynamics got stuck on a saddle-point. Although a saddle
point is unstable, there is no escape in a finite time because the dynamics
slows down. Hence, no feasible solution can emerge. In (b) small additive
noise was added to the equation of motion, so that the dynamics can escape
from the saddle-point and can finally converge to a feasible solution of the
three-index assignment problem.

Although a saddle point is unstable, there is no escape in a finite time be-
cause the dynamics slows down. Hence, no feasible solution can emerge. In
figure 3.13(b), a small additive noise was added to the equation of mo-
tion, so that the dynamics can escape from the saddle-point and can finally
converge to a feasible solution shown in figure 3.14.

3.4.1.3 Partial differential equations (PDEs)

For dynamical systems of this class the state vector s is not only a pure func-
tion of time t, but also a function of additional independent variables. These
additional independent variables correspond often to coordinates describing
the underlying physical space. In general, the evolution function of this large
class of dynamical systems may be defined by the following compact notation:

77

Chapter 3
Supported classes of dynamical systems

k

i

j

Figure 3.14: Three-index assignment problem: a feasible solution

The three red points are the final assignment corresponding to the three
solution curves in figure 3.13(b), which asymptotically converge to the value
one. The small blue points correspond to the curves which asymptotically
converge to zero. To each element of the first set (index i) one and only one
element of the second set (index j) and one and only one element of the third
set (index k) is assigned to. Note, the blue mesh has no meaning, it is drawn
for representation reasons only.

Definition: Partial differential equation (PDE)

0=F

(
s(x),

{
∂s(x)

∂xi

}
,

{
∂2s(x)

∂xi∂xj

}
, . . . ,

{
∂ks(x)

∂xk0
0 ∂xk1

1 , . . . ∂xkm
m

}
, p

)
(3.28)

with i, j = 0, . . . ,m and
m∑

l=0

kl = k

�

Here s(x) ∈ Γs is a state vector of dimension Ns, depending on m + 1 inde-
pendent variables, whereby the convention is used, that the 0-th component
of the vector x represents the time t whereas the remaining m components
represent the additional independent variables. The terms in curly brackets
denote any possible subset of partial derivatives of the corresponding order.
The function F ∈ Γs represents here the time evolution of the state vector
only implicitly.

78

Chapter 3
Supported classes of dynamical systems

However, in the cases where the separation of a pure time derivative is pos-
sible (see App. D), equation (3.28) may be rewritten as:

∂

∂t
s(x, t) = f

(
s(x, t),

∂s(x, t)

∂xi

,
∂2s(x, t)

∂xi∂xj

, . . . , p

)
(3.29)

Here the vector field f is not only a function of the state s(x, t), but also
of its derivatives with respect to the additional independent variables xi

which represent often a spatial dependence of the state vector. Hence, this
class of dynamical systems is the adequate mathematical model - in terms of
dynamical systems - describing processes which are inhomogeneous in space.
Well-known examples of this class of dynamical systems are for instance:

I heat conduction equation [176]
I diffusion equations
I reaction diffusion equations
I wave equation [191]
I Maxwell equations [182]
I Sine-Gordon equation [188]
I Korteweg-de Vries equation [178]
I Klein-Gordon equation [188]
I Schrödinger equation [187]
I Dirac equation [171]
I . . .

As a typical example, the heat conduction equation is considered here:

Heat conduction equation

Definition: Heat conduction equation

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
(3.30)

�

Hereby T (x, t) is a one-dimensional temperature profile, which evolves
in the course of time. The parameter κ is connected with the diffusion

79

Chapter 3
Supported classes of dynamical systems

constant and is denoted as thermal diffusivity. In figure 3.15, the transient
behavior of this system is shown, as it relaxes from the temperature
profile given at time t = 0 to the thermal equilibrium at t = ∞. This
system is used to test and evaluate the relatively simple PDE solver
which is implemented in the AnT computation engine, because one
can compare the results here with analytical solutions (see for instance [176]).

Currently, only one-dimensional PDEs, which can be described by (3.29)
are supported. Furthermore, no adaptive grid method is provided and, as
already mentioned only relatively simple spatial differential operators
can be used. As a consequence, the current support of the PDE class is
not sufficient for many scientific problems. However, the concept used for
instance for the implementation of the spatial differential operators is quite
elegant in its usage, as one can see from the example system function for
the abovementioned heat conduction equation.

#include "AnT.hpp"

#define kappa parameters[0]
#define T (Temperature,cellIndex,0,deltaX)

bool heat conduction (const CellularState& Temperature,
const Array<real t>& parameters,
int cellIndex,
real t deltaX,
StateCell& rhs)

{
rhs[0] = kappa ∗ D<0,0> T;
return true;

}

extern "C" { void connectSystem ()
{ PDE 1d Proxy::systemFunction = heat conduction; }}

Here, the text marked blue is the interface, which is designed to meet the
requirements of the PDE class, the green text illustrates, how the system
function is connected to the AnT computation engine and the red one is
the implementation of this specific partial differential equation. Note, that

80

Chapter 3
Supported classes of dynamical systems

T
(x

,t
)

t

x

Figure 3.15: Heat conduction equation: numerical solution

Parameter setting: κ = 0.1. Shown is the relaxation of the temperature
profile T (x, 0) at time t = 0 to the thermal equilibrium at time t =∞.

the implemented spatial differential operators are already prepared for the
case of multi-dimensional PDEs. In the used notation, for instance a mixed
partial derivative would look like this:

∂3

∂x∂y∂y
⇒ D<0,1,1>

3.4.2 Systems with memory

In many natural and technical systems memory effects are acting and there-
fore adequate mathematical models continuous in time for dynamic processes
with memory effects are required. Depending on the mechanisms leading to
the memory effects, one can distinguish between three large subclasses.

3.4.2.1 Delay differential equations (DDEs)

One such subclass are delay differential equations, which are defined by:

81

Chapter 3
Supported classes of dynamical systems

Definition: Delay differential equation

d

dt
s(t) = f

(
s(t), s(t− τ), p

)
(3.31)

with

f : Γ2
s × Γp 7→ Γs

�

Here τ is the so-called time delay of the system. For dynamical systems
belonging to this subclass, the vector field f depends not only on the state
vector s(t) at time t but also on exactly one state vector s(t−τ) at time t−τ
in the past. This characteristic dependence on exactly one state vector in the
past represents so-called singular memory effects of the dynamic processes
which can be adequately modeled by delay differential equations.

A phase locked loop (PLL) with time delay

A typical example of such a delay differential equation is the phase locked
loop (PLL) with time delay. The Experimental set-up for the electronic
system of a first-order phase-locked loop is shown in Fig. 3.16. In many ap-
plications, the PLL serves for synchronizing the phases of a reference oscilla-
tor and a voltage-controlled oscillator (VCO). Thereby, the frequency
of the output signal of the VCO depends linearly on the input signal. The
output signals of both oscillators are multiplied by the aid of a mixer. The
induced high-frequency components are then eliminated by a low-pass filter.
The resulting signal is fed back to the input of the VCO. A delay line between
the VCO and the mixer, implemented analogously or numerically, induces
the time delay τ ≥ 0. The dynamical variable of interest (see for instance, is
the phase difference Φ(t) = Φ1(t)−Φ2(t− τ) between both incoming signals
of the mixer. Under quite simple assumptions it becomes possible to derive
a nonlinear scalar delay differential equation for this phase difference (see for
instance [197], [146]):

d

dt
Φ(t) = −K sin[Φ(t− τ)] (3.32)

82

Chapter 3
Supported classes of dynamical systems

Figure 3.16: PLL with time delay: experimental setup

The parameter K ≥ 0 denotes the so-called open loop gain of the PLL.
Performing an appropriate scaling of the time converts the PLL equation
(3.32) to its standard form:

Definition: PLL with time delay

d

dt
s(t) = −R sin[s(t− 1)] (3.33)

�

Hereby, the two parameters τ,K in (3.32) are reduced to one effective pa-
rameter R = Kτ . Thus varying the delay time τ corresponds to changing
the parameter R, because in this standard representation of DDEs, the time
delay τ is fixed. From the viewpoint of numerics, this fixation of the delay τ
to the value 1 has the advantage, that one always works with the same gran-
ularity in time, that means with a certain fixed grid on the delay interval.
The delay induced changes of the dynamic behavior can still be investigated,
by changing the system parameters according to the scaling in time which

83

Chapter 3
Supported classes of dynamical systems

lead to the standardized representation. In figures 3.17 and 3.18 example at-
tractors of this system, illustrating the rich dynamic behavior of this system,
are presented:

3.4.2.2 Multi-delay differential equations (MDDEs)

This subclass has to be used, when the considered dynamic process has mem-
ory effects, which are not singular, but which occur at several fixed delay
times t − τi , i = 1, . . . , d in the past. The adequate mathematical model is
defined by:

Definition: Multi-delay differential equation

d

dt
s(t) = f

(
s(t), s(t− τ1), . . . , s(t− τd), p

)
(3.34)

with

f : Γ1+d
s × Γp 7→ Γs

�

Here, the vector field f depends not only on the state vector s(t) at time t
but in addition also on the state vectors s(t− τi) i = 1, . . . , d at times t− τi

in the past.

An example of that class is the following model of two coupled neurons with
time delayed connections as suggested in for instance [149]. This system is
defined by:

Coupled neurons with multiple time delays

Definition: Coupled neurons with multiple time delays

d

dt
s1(t) = −κs1(t) + β tanh[s1(t− τs)] + a12 tanh[s2(t− τ2)]

d

dt
s2(t) = −κs2(t) + β tanh[s2(t− τs)] + a21 tanh[s1(t− τ1)]

(3.35)

�

84

Chapter 3
Supported classes of dynamical systems

d d
t
s(

t)

s(t)

R = 2.0, R = 3.5, R = 4.1, R = 4.1

(a) limit cycles

d d
t
s(

t)

s(t)

R = 4.102

(b) coexisting limit cycles

d d
t
s(

t)

s(t)

R = 4.11

(c) coexisting limit cycles

d d
t
s(

t)

s(t)

R = 4.2

(d) chaotic attractor

Figure 3.17: PLL with time delay: example attractors

All initializations were done with a constant initial function with value c on
the delay interval [−1, 0].

(a) symmetric limit cycle at R = 2.0 and R = 3.5, which splits at a sym-
metry breaking bifurcation into two coexisting limit cycles symmetric
to each other plotted at R = 4.1 (c = 1, c = −1)

(b) coexisting limit cycles c = 1, c = −1, c = ±2
(c) coexisting limit cycles c = 1, c = −1, c = 2, c = −2
(d) chaotic attractor after one of the period doubling scenarios

85

Chapter 3
Supported classes of dynamical systems

d d
t
s(

t)

s(t)

R = 4.20832

(a) limit cycle in a periodic window
d d
t
s(

t)
s(t)

R = 4.95

(b) coexisting limit cycles

d d
t
s(

t)

s(t)

R = 6.0

(c) chaotic cycle slipping dynamics

s(
t
−

1)

s(t)

R = 6.0

(d) chaotic cycle slipping dynamics

Figure 3.18: PLL with time delay: example attractors

All initializations were done with a constant initial function with value c on
the delay interval [−1, 0].

(a) three-periodic limit cycle within a window in the chaotic regime
(b) coexisting limit cycles in different regions in the state space

c = −2.5, c = −2, c = −1.5, c = −1, c = 1, c = 1.5, c = 2, c = 2.5
(c) phase portrait of the chaotic cycle slipping dynamics
(d) (s(t− 1) versus s(t))-plot of the chaotic cycle slipping dynamics

86

Chapter 3
Supported classes of dynamical systems

This system has four ordinary parameters κ, β, a12 and a21 as well as three
time delays τ1, τ2 and τs. By a scaling of time, one can derive the following
standard representation of this system:

d

dt′
s′1(t

′) = −κ′s′1(t
′) + β′ tanh[s′1(t

′ − τs

τm

)] + a′12 tanh[s′2(t
′ − τ2

τm

)]

d

dt′
s′2(t

′) = −κ′s′2(t
′) + β′ tanh[s′2(t

′ − τs

τm

)] + a′21 tanh[s′1(t
′ − τ1

τm

)]
(3.36)

with

τm = max{τ1, τ2, τs}

t′ =
t

τm

s′i(t
′) = si(τmt′)

κ′ = τmκ

β′ = τmβ

a′12 = τma12

a′21 = τma21

Because τm is defined as the maximal delay time, at least one of the delay
times τ1

τm
, τ2

τm
, τs

τm
in the standard representation (3.36) is equal to one. As

in the case of a single time delay (compare (3.32) and (3.33)), the num-
ber of system parameters could be reduced by one due to the time scaling.
Additionally, the numerical integration scheme is standardized to the delay
interval [−1, 0]. The dynamics of system (3.35) is analytically well investi-
gated in [149], therefore it is used in this work to validate the AnT 4.669
simulation package for the class of multi-delay differential equations. As one
can see, the system posses a symmetry with respect to the origin, namely:

s1 ↔ −s1

s2 ↔ −s2
(3.37)

Due to this symmetry, it is expected, that symmetry-breaking and symmetry-
recovering bifurcations occur in this system. This is illustrated in figure 3.19,
where some example attractors and the transient behavior corresponding
to the initial functions for different values of the system parameter a21 are

87

Chapter 3
Supported classes of dynamical systems

presented. The phase portraits and their symmetry properties shown in
figure 3.19 are consistent with the two parameter scans (see Fig. 5.2) using
the minimum maximum analysis method presented in section 5.2.2.

3.4.2.3 Functional differential equations (FDEs)

This subclass has to be used, when the memory effects are no longer acting
at several fixed delay times, but on a complete interval [t− τ, t] in the past.
This is a further extension and the adequate mathematical model describing
such dynamic processes can be defined by:

Definition: Functional differential equation

d

dt
s(t) = F

(
[st] , p

)
(0) (3.38)

with

st :∈ ΓNs
C , and C = [−τ, 0]

F : ΓC × Γp 7→ Γs

�

For dynamical systems of this class the vector field F is a functional of
the extended state vector st whose components are real valued functions
on the interval [−τ, 0]. In contrast to delay differential equations this class
of dynamical systems is the adequate mathematical model - in terms of
dynamical systems - describing processes with distributed memory effects.

Remarks:

I The AnT computation engine supports all three subclasses of dy-
namical systems with memory, although only the DDEs and FDEs are
implemented. For the DDE class a separate implementation with an
interface, which is adapted to the two arguments s(t) and s(t − τ) of
the vector field in equation (3.31), is provided. Because the MDDEs
can in principle have an arbitrary large number of arguments in the
vector field corresponding to the in principle arbitrary large number
of time delays, this subclass has to be implemented by the user as a

88

Chapter 3
Supported classes of dynamical systems

d d
t
s 1

(t
)

s1(t)

a21 = 1.0

(a) fixed point

d d
t
s 1

(t
)

s1(t)

a21 = 2.0

(b) symmetric limit cycle

d d
t
s 1

(t
)

s1(t)

a21 = 2.31

(c) symmetric limit cycle

d d
t
s 1

(t
)

s1(t)

a21 = 2.32

(d) coexisting fixed points

Figure 3.19: Coupled neurons with time delay: example attractors

All initializations were done with constant initial functions with value c on
the delay interval [−τm, 0], namely c1 = c2 = 1, c1 = c2 = −1. The parameter
setting was: κ = 0.5, β = −1.0, a12 = 1.0, τs = 1.5, τ1 = 0.3, τ2 = 0.2.

(a) fixed point before the supercritical Hopf bifurcation
(b) symmetric limit cycle after the supercritical Hopf bifurcation
(c) symmetric limit cycle
(d) two coexisting fixed points symmetric to each other

89

Chapter 3
Supported classes of dynamical systems

special case of a FDE, which is always possible. The numerical solution
of this differential equations causes a discretization of the time interval
[−τ, 0], whereby the granularity is defined by the step size ∆t of the
corresponding integration method. This holds also for adaptive step
size methods, because also in this case the memory interval [−τ, 0] is
represented in the computer memory as an array with sampled values
at multiple values of the fixed initial step size.

I At this point one has to remark, that the initial value problem of (3.31),
(3.34) and (3.38) is ill-posed in the usual state space Γs. This is due to
the fact, that an initial value s(t0) ∈ Γs at an arbitrary initial time t0 is
not sufficient to calculate the right hand sides of (3.31), (3.34) and 3.38.
Therefore the problem has to be reformulated in the extended state
space C of real valued vector functions st(Θ), with st(Θ) = s(t+Θ) and
−τ ≤ Θ ≤ 0. For details about this topic see [146] and the references
therein. This reformulation has no influence on the numerical solution
of DDEs, MDDEs and FDEs, because the representation of the memory
interval [−τ, 0] in the computer memory is already the appropriate way
to treat functionals numerically.

3.4.3 Stochastic dynamical systems

In principle, all the different presented classes of dynamical systems are only
the deterministic variants and hence have also a stochastic extension. For
instance, to describe dynamic processes which are continuous in time and
where no memory effects are acting, but which are in some sense noisy, one
would use stochastic ODEs as adequate mathematical model. In natural
sciences, noise is often denoted as microscopic chaos and introduced
to model effects caused by systems with a very large number of degrees of
freedom, where only a subpart, in which one is interested in, is considered
and modeled in detail. The influence of the many subparts not modeled in
detail, which are often denoted as heat bath, on the part modeled in detail,
is often taken into account only in a summarized or averaged manner as some
stochastic interaction or stochastic force.
The AnT 4.669 software package currently supports only specific noisy
systems or stochastic systems, namely such with additive noise. That
are systems, where in the mathematical model one or several components of
the state have an additional additive noise. Hereby the noise can either be a

90

Chapter 3
Supported classes of dynamical systems

Gaussian white noise or a uniform noise which is uniformly distributed
on some interval. An example of the class of stochastic ODEs is for instance
the Ornstein-Uhlenbeck process, which is mathematically defined by the
following stochastic differential equation:

Ornstein-Uhlenbeck process

Definition: Ornstein-Uhlenbeck process

d s t = −M s dt + σ d W t (3.39)

�

Here, M and σ are constant and W t denotes the stochastic Wiener process.
In figure 3.20, two example trajectories of the three-dimensional Ornstein-
Uhlenbeck process with the specific realization given by (3.40) are presented.

σ = 1 and M =

 −10−4 0.1 −0.2
−0.1 −10−4 0.2
0.5 −0.5 −10−4

 (3.40)

3.5 Classification of dynamical systems

From the viewpoint of implementation, the support of the different classes
of dynamical systems results in different interfaces and proxies. Thereby,
soon the question arises, which classes of dynamical systems share the
same interface and hence, how many interfaces can in principle occur. The
answer to this question requires a broad classification scheme of all the
different classes and, as it turned out, is not so easy to obtain. This is
caused by the many degrees of freedom which distinguish the classes. The
following list gives an overview about some of the possible degrees of freedom.

A dynamical system can be

I discrete or continuous in time

91

Chapter 3
Supported classes of dynamical systems

x
y

z

Figure 3.20: Ornstein-Uhlenbeck process: numerical solution

Shown are two numerical solutions of the three-dimensional Ornstein-
Uhlenbeck process with the parameter setting given by (3.40).

I autonomous or non autonomous
I state discrete or continuous
I non indexable or indexable (spatial homogeneous or inhomogeneous)
I with or without memory effects
I non-hybrid or hybrid
I stochastic or deterministic
I explicit or implicit
I dissipative or conservative

Additionally a dynamical system can include

I fractional derivatives or ordinary derivatives
I integrals or not
I algebraic equations or not

As one can see, a consistent and overall classification scheme is difficult to
derive. However, one can focus on that degrees of freedom which are most
important or relevant with respect to the aimed goal. Concerning the AnT
project, table 3.1 is a first step towards such a classification scheme, which
is useful not only in the case, when a new class of dynamical systems has to
be supported and the question of the interface to be used arises.

92

Chapter 3
Supported classes of dynamical systems

m
em

or
y

st
at

e

in
d
ex

ab
le

ti
m

e
representative

1 - c - c ODEs
2 - c - d Maps
3 - c c c PDEs
4 - c c d (not known)
5 - c d c CODELs
6 - c d d CMLs
7 - d - c discrete component of hybrid ODEs
8 - d - d finite automata, Petri nets,

discrete component of hybrid Maps
9 - d c c (not known)
10 - d c d (not known)
11 - d d c (not known)
12 - d d d cellular automata
13 + c - c DDEs (MDDEs, FDEs)
14 + c - d RMaps
15 + c c c PDDEs (PMDDEs,PFDEs)
16 + c c d (not known)
17 + c d c CDDELs (CMDDELs,CFDELS))
18 + c d d CRMLs
19 + d - c discrete component of hybrid DDEs (MDDEs,FDEs)
20 + d - d stack automata

discrete component of hybrid RMaps
21 + d c c (not known)
22 + d c d (not known)
23 + d d c (not known)
24 + d d d cellular automata with memory effects

Table 3.1: Some classes of dynamical systems
legend: ’c’ - continuous, ’d’ - discrete, ’+’ - present, ’-’ not present

Remarks:

I The large class of hybrid systems, where the state vector s has not only
continuous, but also some discrete components is, although supported

93

Chapter 3
Supported classes of dynamical systems

by the AnT 4.669 software package, not presented here. In princi-
ple, each of the classes presented in the previous sections has a hybrid
variant. There are two reasons for that:

1. Hybrid systems can be implemented also using the basic classes
using
If condition Then statements [Else else statements]

constructs.

2. Hybrid systems are a research field on their own, and beyond the
scope of this work.

I There exist further classes of dynamical systems continuous in time,
which are not presented here, because they are not supported by the
AnT 4.669 software package. However, they are worth mentioning
not only because some of them may be supported in the future. These
classes of time continuous dynamical systems are:

• Integro Differential Equations (IDEs)

• Implicit Differential Equations (ImDEs)

• Differential Algebraic Equations (DAEs)

• Fractional Differential Equations (FrDEs)

In this chapter all the classes of dynamical systems whose simulation and in-
vestigation is supported by the AnT 4.669 software package are presented
together with some examples of typical attractors or transient dynamic be-
havior.

94

Chapter 4

Scanning dynamical systems

4.1 Motivation

As already mentioned in Sec. 3.2 the behavior of a dynamical system depends
not only on the state vector s, but is usually also influenced by some addi-
tional influencing quantities. When dealing with dynamical systems, it is
obviously, that for instance, system parameters or initial values are such influ-
encing quantities. Often, one is then interested in the qualitative changes
and quantitative changes of the dynamic behavior of the system with
respect to changes of this influencing quantities. In the case of a qualita-
tive change, characteristic properties of the dynamic behavior of the system
change, whereas in the case of quantitative changes this is not the case.
For instance, local and global bifurcations or crisis of a dynamical system
represent qualitative changes, whereas a change in the offset, frequency or
amplitude of a periodic solution are typical examples of quantitative changes.

However, sometimes it is also required to investigate the result of an investi-
gation method with respect to the change of a parameter of the investigation
method itself, for instance to adjust the investigation method to the specific
dynamical system under consideration if necessary. This adjustment of the
investigation method is obviously necessarily during the testing phase of a
new implemented investigation method or if one has to extend the investi-
gation method for a new supported class of dynamical systems. In all this
cases, the parameters of the investigation method may be the influencing
quantities.

95

Chapter 4
Scanning dynamical systems

4.2 Scan procedures

Of course there exist many ways to change the influencing quantities of a
dynamical system, but often one is interested in the investigation of the
system’s behavior at several specific points or even in a complete range or
interval of an influencing quantity. The procedure how exactly to do this,
that means in which systematic way the change of the influencing quantities
is performed, is denoted as scan procedure.

Although it is more or less obvious and common knowledge - at least in the
scientific community - what scans are and in which way they have to be
performed, in the following two sections definitions of scan procedures are
given. Whenever it is referred to a scan in this work, it has to be interpreted
according to these definitions.

4.2.1 One-dimensional scans

Of course, the most simple type of scan procedure involves only one influenc-
ing quantity. However, because this can be regarded as a special case, the
following more general definition covers a larger class of scan procedures.

Definition: One-dimensional scan

The procedure of investigation of a system’s behavior - according to some
pre-defined rules - in dependence of some influencing quantities at several
specific points, such that the sequence of scan points lie on a curve
which can be parameterized by only one parameter, is denoted as one-
dimensional scan or simply 1D-scan. �

This definition is somehow sophisticated, because - as already mentioned - it
should not only cover the investigation in dependence of only one influencing
quantity at several points or a complete interval but also in dependence
of several influencing quantities at once, but in such a way, that it can
be parameterized by only one parameter. For instance, the investigation
of a system’s behavior in a three dimensional parameter space along a
straight line in that parameter space can of course be parameterized by one
parameter and is hence a one-dimensional scan.

96

Chapter 4
Scanning dynamical systems

4.2.2 Multi-dimensional scans

The notion of a one-dimensional scan or 1D-scan implies immediately, that
the scan procedure can be expanded to more than one dimension. These
2D-scans, 3D-scans or even higher dimensional scans can be defined
analogously to the definition of a one-dimensional scan given above.

Definition: Multi-dimensional scan

The procedure of investigation of a system’s behavior - according to some
pre-defined rules - in dependence of some influencing quantities at several
specific points, such that this scan points lie in a region which can be
parameterized by a set or specifically n parameters, is denoted as multi-
dimensional scan or specifically n-dimensional scan or nD-scan.
�

For instance, the investigation of a system’s behavior in a two-dimensional
region of the parameter space, that is in dependence of two system parameters
independently from each other, is denoted as a 2D-scan. Or the investigation
of a system’s behavior in a two-dimensional region of the parameter space
in combination with a two-dimensional region in the initial value space, is
denoted as a 4D-scan.

4.3 The scan capabilities of AnT 4.669

A simulation system for dynamical systems should provide methods and tech-
niques to change the influencing quantities in an automatic way or manner
in order to support a user of the system by its investigations. As a conse-
quence of its architecture (see Chap. 6), the software package AnT 4.669
supports the scanning of dynamical systems in a quite general way, whereby
it provides several specific scan types. However, within the framework of the
software, the influencing quantities supported by the AnT computation
engine are denoted as scannable objects. During the initialization phase,
the configuration file or initialization file is read and processed and
according to the parsed entries not only a list of possible scannable objects is
created, but also the current scan item sequence. The scan item sequence
is a list of scan items chosen by the user from the list of possible scannable
objects for the current scan run. The number of entries in the scan item
sequence defines hereby the dimension of the multi-dimensional scan.

97

Chapter 4
Scanning dynamical systems

4.3.1 The case of a single scan item

The following sections give an overview about the supported scan types
for a single scan item implemented in the AnT computation engine. In
contrast to a pure simulation run - denoted as scan mode 0 where no
influencing quantity is changed or varied, this most simple scan run is de-
noted as scan mode 1. This is due to the fact, that in this case only one
influencing quantity is varied or two quantities in such a way, that it can
be parameterized by only one scan parameter. In the following the notion
real means, that the change of the influencing quantity can be done in prin-
ciple in a continuous way. Of course, because a computer system is used,
this is not possible (see Chap. 10). Instead, the variation or change can
only be done in terms of machine numbers according to the chosen floating
point number representation (see Sec. 10.2.1). One should always keep this
in mind, because the results of a scan run may depend on how the scan is
performed exactly, that is for instance depending on whether or not the indi-
vidual scan points are exact machine numbers or not. The initial value scan
of the gingerbread-man map (see Sec. 11.2) demonstrates this dependency
drastically.

4.3.2 Real linear scan

In this case, the scan item sequence consists of one scan item, with a
scannable object that is varied in real steps according to the chosen floating
point precision. The variation is done in a linear manner, that means in
equidistant steps on a linear scale.

qk = qin + (k − 1)∆q , k = 1 . . . N s (4.1)

∆q =
qfi − qin

N s − 1
(4.2)

Hereby qk represents the k-th scan point, qin the initial scan point, qfi the
final scan point, ∆q the real valued scan point increment and N s the number
of scan points.

A simple example may be: qk ∈ [0.1, 0.2, 0.3, 0.4]

98

Chapter 4
Scanning dynamical systems

4.3.3 Real logarithmic scan

In this case, the scan item sequence consists of one scan item, with a
scannable object that is varied in real steps according to the chosen floating
point precision. The variation is done in a logarithmic manner, that means
in equidistant steps on a logarithmic scale.

qk = eln(qin)+(k−1)∆qi , k = 1 . . . N s (4.3)

∆qi =
ln(qin)− ln(qfi)

N s − 1
(4.4)

A simple example may be: qk ∈ [0.1, 0.1587401052, 0.2519842100, 0.4]

4.3.4 Integer linear scan

In this case, the scan item sequence consists of one scan item, with a
scannable object that is varied in integer steps. The variation is done in
a linear manner, that means in equidistant steps on a linear scale.

qk = qin + (k − 1)∆q , k = 1 . . . N s (4.5)

∆q =
qfi − qin

N s − 1
(4.6)

Here, the only difference to the real linear scan is, that the scan point incre-
ment is integer valued.
A simple example may be: qk ∈ [2, 4, 6, 8]

4.3.5 Integer logarithmic scan

In this case, the scan item sequence consists of one scan item, with a
scannable object that is varied in integer steps. The variation is done in a
logarithmic manner, that means in equidistant steps on a logarithmic scale.

qk = eln(qin)+(k−1)∆qi , k = 1 . . . N s (4.7)

∆qi =
ln(qin)− ln(qfi)

N s − 1
(4.8)

Again, the only difference to the real logarithmic scan is, that the scan point
increment is integer valued.
Simple examples may be: qk ∈ [10−4, 10−3, 10−2, 10−1], or qk ∈ [1, 2, 4, 8, 16]

99

Chapter 4
Scanning dynamical systems

4.3.6 Real linear scan in two dimensions

In this case again, the scan item sequence consists of one scan item, with a
scannable object that is varied in real steps according to the chosen floating
point precision. The variation is done in a linear manner, that means in
equidistant steps on a linear scale. In contrast to the real linear scan, the
scan points are now two-dimensional objects.

qk = qin + (k − 1)∆q , k = 1 . . . N s (4.9)

∆q =
qfi − qin

N s − 1
(4.10)

Hereby qk = (q1, q2) represents the k-th 2D-scan point, qin the initial 2D-

scan point, qfi the final 2D-scan point, ∆q the real valued 2D-scan point
increment and N s again the number of scan points.
A simple example may be: qk ∈ [(0.1, 10.0), (0.2, 5.0), (0.3, 0.0), (0.4,−5.0)]

4.3.7 Real elliptic scan in two dimensions

In this case, the scan item sequence consists of one scan item, with a
scannable object that is varied in real steps according to the chosen floating
point precision. The variation is, such that the 2D-scan points lie on an
ellipse, whereby the spacing of the 2D-scan points on the ellipse is equidis-
tant, that means that the angle of the corresponding representation in polar
coordinates is varied linearly.

qi
k = qi

off + aitrigi

(
ϕk
)

, i = 1, 2 , k = 1 . . . N s (4.11)

ϕk = ϕin + (k − 1)∆ϕ (4.12)

∆ϕ =
ϕfi − ϕin

N s − 1
(4.13)

ϕin = arctan

(
a1(q2

in − q2
off)

a2(q1
in − q1

off)

)
(4.14)

ϕfi = arctan

(
a1(q2

fi − q2
off)

a2(q1
fi − q1

off)

)
(4.15)

(4.16)

100

Chapter 4
Scanning dynamical systems

β

α

Figure 4.1: Illustration of an elliptic scan.

The figure shows an illustration of the real elliptic scan in two dimensions
using a total number of N s = 10 scan points in a two-dimensional parameter
space with parameters α and β.

Hereby qi
k represents the i-th component of the k-th 2D-scan point, qi

off the
offset of the i-th component of the 2D-scan point, ai the parameter of the
scan ellipse, trig1 the cos function, trig2 the sin function, ϕk the angle of the
k-th 2D-scan point, ∆ϕ the 2D-scan point angle increment, ϕin the angle of
the initial 2D-scan point, ϕfi the angle of the final 2D-scan point, qi

in the
i-th component of the initial 2D-scan point, qi

fi the i-th component of the
final 2D-scan point and N s again the number of scan points.

Figure 4.1 illustrates this type of scan in a two-dimensional parameter space.
The filled circles in the ellipse represent the scan points of a real elliptic scan
with a total number of N s = 10 scan points.

4.3.8 User defined scans

The AnT 4.669 software package supports one further type of scans which
can be freely defined by the user. In this case the software reads the scan
points from an external file which allows in principle arbitrary scans. Al-
though this option provides the most flexible scan type, it has the disadvan-

101

Chapter 4
Scanning dynamical systems

tage, that the user has to prepare the file of scan points prior to the scan
run.

4.3.9 The case of a scan item sequence

As a consequence of its architecture, the AnT 4.669 software package
allows also scan item sequences and supports hence multi-dimensional scans
in a generic way, whereby single scan items are combined to a scan item
sequence. As already mentioned, the number of scan items in the scan item
sequence defines the scan mode. For instance, if the scan item sequence
consists of two scan items, whereby both scan items correspond to system
parameters, then the scan mode is two and after the initialization, the
AnT computation engine performs a 2D-scan in the parameter space.
In this way a specific two-dimensional area in the parameter space can be
covered by the scan run. A scan item sequence consisting of two scan items
corresponding to system parameters and two scan items corresponding to
initial values of the dynamical system to be investigated defines a scan mode
4 scan run.

In principle the scan mode is not confined and one can define scan runs
with very large scan modes. However, because the performance of computer
systems is limited, there exists - depending on the investigated system
- a performance limitation in the scan mode. Consider for instance the
abovementioned case of a 4D-scan. If the number of scan points for each
scan item is only 10, then the total number of scan points is N s = 104. If
thee are 100 scan points for each scan item, then the total number of scan
points is N s = 108, which is already a huge number. Especially when the
system to be investigated has a large state space dimension, such scan runs
are very time-consuming.

Especially for these time-consuming multi-dimensional scan runs, the
client/server variant of the AnT computation engine was developed. It
allows the distribution of such time-consuming calculations among several
computing nodes. This allows a parallel execution whereby as much scan
points can be treated simultaneously as computing nodes are available.

102

Chapter 5

Supported investigation
methods

5.1 Motivation

In all scientific and engineering disciplines, one is usually not only interested
in the pure simulation of dynamical processes, but mainly in the investi-
gation of their dynamic behavior. This leads in principle to a much better
understanding of the considered processes and an improved insight in the un-
derlying mechanisms causing the observed dynamics. It is beyond the scope
of this work to point out the many advantages of this fact, but some of them
are so important, that they should be mentioned here.

I Obviously, the obtained results can often be used to forecast the dy-
namic behavior of the investigated dynamical process usually for a
longer time and more precisely, although it has to be remarked and
accentuated here explicitly, that there are basic and principle restric-
tions concerning this forecasting, especially when dealing with stochas-
tic dynamical systems or such systems which exhibit the phenomenon
of deterministic chaos.

I When dealing with technical systems, the obtained knowledge about
the dynamic behavior can be used to improve and enhance this systems
in a desired way.

I In some cases, the better insight and understanding of the processes
leads to the development of improved or even new observation tech-

103

Chapter 5
Supported investigation methods

niques and last but not least to the invention and development of new
technical systems.

As already mentioned in Sec. 3.2, only such dynamical processes, which can
be adequately modeled as a dynamical system supported by the AnT 4.669
software package, can be simulated and investigated.

The following list gives an overview about the supported investigation meth-
ods currently implemented in the AnT 4.669 software package.

I General trajectory evaluations
I Period analysis
I Lyapunov exponents analysis
I Region analysis
I Dimension analysis
I Frequency analysis
I Singular value analysis
I Check for conditions
I Symbolic sequence analysis
I Symbolic image analysis
I Calculation of generalized Poincaré sections

Details about the characteristic properties of these methods and example
applications are presented in the following sections 5.2 - 5.12.

5.2 General trajectory evaluations

5.2.1 Basic saving

Probably any software tool for simulation of dynamical systems has to sup-
port the saving of trajectories. The AnT 4.669 package provides a large
collection of options with respect to this topic:

I The simulated trajectory or orbit can be saved as a time series. For
the most classes of dynamical systems (maps, ODEs, DDEs, etc.) this
kind of saving means, that the output file has the following format:

104

Chapter 5
Supported investigation methods

column
1 2 3 . . . Ns + 1
t1 s1(t1) s2(t1) . . . sNs(t1)
t2 s1(t2) s2(t2) . . . sNs(t2)
...

...
...

...
...

tn s1(tn) s2(tn) . . . sNs(tn)

Many figures presented in this work, are based on this saving option.
For instance the figures 5.15(a) and 5.15(b), 5.19(a) and 5.19(b), 5.23(a)
- 5.23(d) 5.29(a) - 5.29(d) and 5.30(a) - 5.30(d) in this chapter.

I For spatial inhomogeneous dynamical systems (CMLs, CODELs,
PDEs) it is sometimes more suitable to save the trajectories with ex-
plicitely given spatial information. In this case the output file has the
format:

column
1 2 3 4 . . . Ns + 2
t1 rmin s1(t1, r1) s2(t1, r1) . . . sNs(t1, r1)
.
t1 rmax s1(t1, rmax) s2(t1, rmax) . . . sNs(t1, rmax)

t2 rmin s1(t2, r1) s2(t2, r1) . . . sNs(t2, r1)
.
t2 rmax s1(t2, rmax) s2(t2, rmax) . . . sNs(t2, rmax)

...
...

...
...

...
...

tn rmin s1(tn, r1) s2(tn, r1) . . . sNs(tn, r1)
.
tn rmax s1(tn, rmax) s2(tn, rmax) . . . sNs(tn, rmax)

Here r ∈ rmin, . . . , rmax denotes the position within the spatial domain
for PDEs or the cell index for cellular dynamical systems like CMLs or
CODELs.

I Additionally to the current trajectory one can save the current velocity
as well. The format of the output file can be either similar to the format
of time series:

105

Chapter 5
Supported investigation methods

column
1 2 3 . . . Ns + 1
t1 v1(t1) v2(t1) . . . vNs(t1)
t2 v1(t2) v2(t2) . . . vNs(t2)
...

...
...

...
...

tn v1(tn) v2(tn) . . . vNs(tn)

or more oriented to phase portraits:

column
1 2 3 . . . Ns + 1 Ns + 2 Ns + 3 . . . 2Ns + 1
t1 s1(t1) s2(t1) . . . sNs(t1) v1(t1) v2(t1) . . . vNs(t1)
t2 s1(t2) s2(t2) . . . sNs(t2) v1(t2) v2(t2) . . . vNs(t2)
...

...
...

...
...

...
...

...
...

tn s1(tn) s2(tn) . . . sNs(tn) v1(tn) v2(tn) . . . vNs(tn)

In both cases v(t) denotes the current velocity. For dynamical systems
continuous in time, the velocity is given by the right hand side of the
equation of motion, v(t) = d

dt
s(t). For dynamical systems discrete in

time it is defined as the difference of the current state vector to the
previous one, vn = sn − sn−1.

I In many cases one is more interested in the asymptotic dynamics of
the investigated dynamical system. A useful option in this situation
is to specify the transient time ttrans, so that the trajectories will be
saved only after this time. In this case the transient dynamics can be
omitted in the saved data. For instance, the trajectory will be saved in
the format:

column
1 2 3 . . . Ns + 1

ttrans+1 s1(ttrans+1) s2(ttrans+1) . . . sNs(ttrans+1)
ttrans+2 s1(ttrans+2) s2(ttrans+2) . . . sNs(ttrans+2)

...
...

...
...

...
tn s1(tn) s2(tn) . . . sNs(tn)

The formats of all other files is adjusted correspondingly.

106

Chapter 5
Supported investigation methods

I In order to compress the output data it can be preferable to save the
current state not for each time step, but each ts-th state only. Note,
that for dynamical systems discrete in time this kind of saving corre-
sponds to the saving of the trajectory for the ts-th iterated function.
This option has an effect in state space and in velocity space as well.
Combining this option with the transient time option described above,
the output file for the trajectory becomes the following format:

column
1 2 . . . Ns + 1

ttrans+1 s1(ttrans+1) . . . sNs(ttrans+1)
ttrans+ts+1 s1(ttrans+ts+1) . . . sNs(ttrans+ts+1)
ttrans+2ts+1 s1(ttrans+2ts+1) . . . sNs(ttrans+2ts+1)

...
...

...
...

tn−(n mod ts) s1(tn−(n mod ts)) . . . sNs(tn−(n mod ts))

The formats of all other files is adjusted correspondingly.

I During the investigation of the geometric structure of chaotic attractors
or whenever it is necessary to zoom into a region in the state or velocity
space, it is very useful to save only states from a specific area. For
blow-ups for instance, this option plays an important role to reduce the
amount of data to be saved. All blow-ups of trajectories in this work
are calculated using this option (see for instance figures 3.5 and 3.6).
Note, that some of these figures could not be calculated without this
option because the data amount becomes too large.

I The cobweb diagram option allows the saving of graphical iterations
also known as web or cobweb diagrams. The figures 3.2(a) - 3.2(d)
were produced using this method. Note, that combining this option
with the saving of each ts-th state as described above, the cobweb
diagrams for the ts-th iterated function are saved.

I For spatial inhomogeneous dynamical systems an overview about the
complete state can be represented using some graphical formats. The
simplest possibility to do this is given by PGM (Portable Gray Map)
images. For each component of the state vector s(r, t) an image can
be created for the temporal interval tmin, . . . , tmax and spatial interval

107

Chapter 5
Supported investigation methods

rmin, . . . , rmax via the following transformation:

gk
i,j = gmin +

⌊
sk(r, t)− sk,min

sk,max − sk,min

(gmax − gmin)

⌋
(5.1)

Here the index k denotes the k-th component of the state vector s(r, t),
the indices correspond to the space r and the time t. The minimal and
maximal values of the specific component are used:

sk,min = min
r∈[rmin,rmax]

t∈[tmin,tmax]

sk(r, t) (5.2)

sk,max = max
r∈[rmin,rmax]

t∈[tmin,tmax]

sk(r, t) (5.3)

as well as the minimal and maximal gray map values, which are typi-
cally set to the values gmin = 0 and gmax = 255.

I Additionally to the trajectories and velocities the initial states can be
saved as well. For some classes of dynamical systems like maps and
ODEs this option seems to be redundant, because the initial states for
these systems must be given by the user within the initialization phase.
However, in many other cases the saving of the initial states may be a
useful option, like for instance in the following situations:

• When dealing with dynamical systems with memory, the initial
states are given as a set of Ns temporal initial function on the
interval [−τmax, 0] or [−1, 0] in the standardized representation.

• When dealing with spatial inhomogeneous dynamical systems, the
initial states are given as a set of Ns spatial initial function on the
spatial domain [rmin, rmax].

• When dealing with Poincaré sections, the initial states for the
Poincaré map are calculated by iteration of the dynamical system
inside until the Poincaré condition is fulfilled the first time.

• When dealing with scans, the initial states for the next simulation
run can be reseted from the last states of the previous simulation
run.

In figures 5.1(a) - 5.1(f) the trajectories of the PLL system with time
delay (see Sec. 3.4.2.1) for six different initial functions are shown.

108

Chapter 5
Supported investigation methods

t

s(
t)

(a) constant initial function
t

s(
t)

(b) sin initial function

t

s(
t)

(c) sinc initial function
t

s(
t)

(d) periodic step initial function

t

s(
t)

(e) sawtooth initial function
t

s(
t)

(f) polynomial initial function

Figure 5.1: PLL system: trajectory s(t) for several temporal initial func-
tions

109

Chapter 5
Supported investigation methods

m
in

,
m

ax

a21
(a)

m
in

,
m

ax

a21
(b)

Figure 5.2: Coupled neurons with time delay: minimum - maximum anal-
ysis

Presented are in (a), the minimum - maximum analysis performed on the
interval a21 ∈ [−0.5, 2.5] and in (b) a blow-up of the most interesting region,
showing the symmetry breaking - symmetry recovering phenomenon.

5.2.2 Determination of minimum and maximum values

This sub-method of the general trajectory analysis method is, although
really simple, sometimes quite efficient to detect basic bifurcation types
like for instance transcritical bifurcations, pitchfork bifurcations or Hopf
bifurcations. This method is also very suitable for the detection of symmetry
breaking - symmetry recovering phenomena as demonstrated in figure 5.2.
Shown are the minimum and maximum values of the asymptotic dynamics
in dependence of a21 which is one of the two coupling parameters of
system (3.36) (see Sec. 3.4.2.2). In (a) one can clearly detect the two
supercritical Hopf bifurcations occurring in this system at the parame-
ter values a21 ≈ −0.155 and a21 ≈ 1.1. Additionally one can see the
symmetry breaking - symmetry recovering bifurcation at a21 ≈ 2.31525
which destroys the limit cycle created at the second Hopf bifurcation
and causes two stable fixed points to emerge. The green maximum -
minimum curves indicate the symmetric attractors, i.e., a limit cycle for
a21 < −0.155, a fixed point for −0.155 < a21 < 1.1 and another limit
cycle for 1.1 < a21 < 2.31525, whereas the red and blue curves correspond
to the two different fixed points symmetric to each other (compare Fig. 3.19).

As already mentioned in chapter 4, the AnT 4.669 software package allows
not only scans with respect to system parameters or parameters of investi-

110

Chapter 5
Supported investigation methods

gation methods but also with respect to initial values. In the case, where
the initial values are not given explicitly but automatically generated by the
AnT computation engine itself, according to the specifications given by
the user, scans with respect to parameters of the function generating the ini-
tial values are possible as well. In figure 5.3 an example of such a scan applied
to the PLL system with time delay (see Sec. 3.4.2.1) using the minimum -
maximum analysis is presented.

5.2.3 Determination of the wave number

For an attractor A of a dynamical system discrete in time the i-th component
of the wave number vector ω is defined by:

ωi(A) =
1

N

N∑
j=1

Mij with Mij =

{
1 if sij−1 > sij < sij+1

0 otherwise
(5.4)

Hereby, sij is the i-th component of the state vector sj at the discrete
time j. Roughly speaking one can say, that the wave number represent
the number of local minima in the corresponding component of the orbit,
averaged in time ([34], [35]). In figure 5.4(a) the wave number of the logistic
map is shown in the parameter interval α ∈ [3, 4]. As one can see, between
the first period doubling bifurcation (α1 = 3.0) and the last band merging
bifurcation (ᾱ1 ≈ 3.678535) the wave numbers of all attractors have the
value ω = 1

2
. With the occurrence of the one-band chaotic attractors,

the wave number decreases slowly. It is worth mentioning, that the wave
number remains constant not only within the period doubling scenario but
within the subsequent band merging scenario as well, indicating, that these
two phenomena are closely related to each other.

Figure 5.4(b) shows a further application example of the wave number anal-
ysis for another dynamical system discrete in time, namely the Agnesi map
defined by:

111

Chapter 5
Supported investigation methods

x

R

Figure 5.3: PLL with time delay: initial value and system parameter scan

This bifurcation diagram was obtained performing a scan with respect to
the system parameter R and the parameter c of the initial value generating
function using the minimum - maximum option. The parabola starting at
R = π

2
indicates a supercritical Hopf bifurcation. The unstable fixed point 0

after the Hopf bifurcation is visible here because the initial function s = 0
occurs in the scan. The splitting at R ≈ 3.8 indicates a symmetry breaking -
symmetry recovering bifurcation where the symmetric limit cycle emerged at
the Hopf bifurcation splits into two coexisting limit cycles symmetric to each
other. At R ≈ 4.1 a new symmetric limit cycle emerges which undergoes
at R ≈ 4.103 also a symmetry breaking - symmetry recovering bifurcation.
These two limit cycles undergo a period doubling scenario shown in figure
5.31 for one of them. At R ≈ 4.188 again a symmetry breaking - symmetry
recovering bifurcation causes a symmetric chaotic attractor to emerge.

112

Chapter 5
Supported investigation methods

Definition: Agnesi map

xn+1 = f(xn, α) =
α

α + x2
n

(5.5)

�

In contrast to the logistic map, the wave numbers of the Agnesi map show a
complex self-similar structure corresponding to the infinite number of period
doubling scenarios occurring in this system, which can be observed also in
the bifurcation diagram. Looking closer at the wave number in figure 5.4(b)
one can observe the following:

1. There exists a period increment scenario with an increment of one and
a starting period of two for the parameter value α = 0, that is on the
right part of the bifurcation diagram.

2. Between each two adjacent regions of this scenario, a period doubling
scenario takes place each starting with the period of the region to the
right.

3. Consequently, the wave numbers start with the value ω = 1
2

from the
right corresponding to the period two region and its subsequent period
doubling scenario. In the next region of the increment scenario with
period three and the subsequent period doubling scenario, the wave
numbers have the value ω = 1

3
. As one can see, this behavior holds on

until finally the fixed point is reached at the parameter value α = 6.75.

4. For α < −6.75, the wave numbers have the value ω = 0.

5.2.4 Basic statistics

This method performs the calculation of basic statistic properties of the
simulated trajectory, namely the mean values, standard deviations, averaged
velocities and the correlation coefficients.

113

Chapter 5
Supported investigation methods

x
n
,ω

(A
(α

))

α1 ᾱ1

α

(a) Logistic map: wave number and bi-
furcation diagram

x
n
,ω

(A
(α

))

α

(b) Agnesi map: wave number and bifur-
cation diagram

Figure 5.4: Wave number analysis

Shown are the wave numbers of the logistic map (a) and the Agnesi map (b)
together with the periodic parts and the aperiodic parts of the bifurcation di-
agrams corresponding to periodic or aperiodic attractors A. In (a), the point
α1 = 3.0 of the first period doubling bifurcation and the point ᾱ1 ≈ 3.678535
of the last band merging bifurcation are marked, to illustrate the fact, that
the wave numbers remain constant not only within a period doubling sce-
nario, but within the subsequent band merging scenario as well. In (b) one
can observe, that the wave numbers have different values for different period
doubling scenarios, but remain constant within one scenario. In the case of
the Agnesi map, the wave numbers were multiplied by a factor of 10.

114

Chapter 5
Supported investigation methods

5.3 Period analysis

This method implements the calculation of the period (length of a periodic
attractor or limit cycle) for dynamical systems discrete in time. The
search for the period is realized using a direct comparison of the last state
of the orbit with previous states proceeding backward in time. Therefore
the maximal period to be searched for must be specified by the user with a
corresponding entry in the initialization file (see Sec. 8.2.1) or of course via
the graphical user interface (see Chap. 8). The accuracy, used for the com-
parison of the states can be specified by the user as well. The appropriate
setting hereby is strongly depending on the investigated dynamical system,
or, more precisely, on the convergence rate to the attractor. For discrete
maps the value 10−12 may be in many cases a suitable choice. Due to the
phenomenon of critical slowing down, in the vicinity of instabilities or bi-
furcation points, this value should be enlarged. When dealing with Poincaré
maps, larger values (up to 10−6) should be used, because in this case the
convergence is also slow due to the iteration of a dynamical system inside
the Poincaré map.

Based on the period calculation not only the period (if any detected) but
several other values can be saved as well. For instance, the saving of bi-
furcation diagrams is realized as a part of the period analysis, because it is
preferable to save the periodic and the aperiodic bifurcation diagrams sepa-
rately. This can be seen for instance in the figures 5.4(a), 5.4(b), 5.5 and 5.6.
Additionally, periodic cobweb diagrams, can be saved as well. Furthermore,
parameter settings leading to a given period, so-called period selections can
be saved. In figures 5.7 and 5.8 regions with different periodic solutions of
the logistic map are shown. The figures can be produced using the period
selection option.

115

Chapter 5
Supported investigation methods

x
n

α
(a) bifurcation diagram

T

α
(b) period diagram

Figure 5.5: Logistic map: bifurcation and period diagram

Shown is the interesting part of the bifurcation diagram with periodic and
aperiodic solutions (a) and the corresponding period (b). When in the given
part of the orbit a period cannot be detected, the period calculation method
returns the value 0. This can be clearly observed in the chaotic region.

x
n

α
(a) bifurcation diagram

T

α
(b) period diagram

Figure 5.6: Agnesi map: bifurcation and period diagram

Shown is the interesting part of the bifurcation diagram with periodic and
aperiodic solutions (a) and the corresponding period (b). When looking
closer, in (b) the infinite sequence of period doubling scenarios can be ob-
served.

116

Chapter 5
Supported investigation methods

x
n

α
(a) T = 2

x
n

α
(b) T = 3

x
n

α
(c) T = 4

x
n

α
(d) T = 5

x
n

α
(e) T = 6

x
n

α
(f) T = 7

Figure 5.7: Logistic map: period selections

In the red colored regions solutions with the labeled period were found: T = 2
(a), T = 3 (b), T = 4 (c), T = 5 (d), T = 6 (e), T = 7 (f)

117

Chapter 5
Supported investigation methods

x
n

α
(a) T = 8

x
n

α
(b) T = 10

x
n

α
(c) T = 12

x
n

α
(d) T = 14

x
n

α
(e) T = 15

x
n

α
(f) T = 18

Figure 5.8: Logistic map: period selections

In the red colored regions solutions with the labeled period were found: T = 8
(a), T = 10 (b), T = 12 (c), T = 14 (d), T = 15 (e), T = 18 (f)

118

Chapter 5
Supported investigation methods

5.4 Region analysis

This method is developed in order to analyze two-dimensional parameter
spaces, or more general, arbitrary two-dimensional scan spaces. The goal
of this method is to detect areas in these spaces, where the investigated
dynamical system shows a qualitatively similar dynamic behavior. In order
to detect these areas some other investigation method has to be applied
before the region analysis. Then the similarity of the dynamic behavior
can be determined according to the results of this investigation method.
In the current realization the region analysis is performed based on the
period analysis. In this case the scan setting leading to the same period of
the asymptotic dynamics of the investigated system are defined as similar
and therefore belong to the same area. The borders of these areas are the
points where the period of the asymptotic dynamics changes. Therefore, the
borders represent the bifurcation lines and play an important role for the
description of the dynamic behavior of the investigated system. Especially,
it turned out, that the bifurcation lines can form some characteristic struc-
tures in the parameter space, which lead to the concept of two-parametric
bifurcations and two-parametric bifurcation scenarios. For instance, by
applying the region analysis some new phenomena in this field, like big bang
bifurcations introduced in [8] and big bang bifurcation scenarios described
and investigated in [7], were discovered. In many other cases, the region
analysis can be used to determine the structure of the two-dimensional
parameter space. Knowledge about this structure is useful for choosing the
most suitable parameter settings for one-dimensional scans, because these
scans represent obviously some one-dimensional cuts of the more general
two-dimensional parameter scans.

Note, that from the image processing point of view, the region analysis
corresponds to a simple edge detection in an image, which corresponds to
the two-dimensional scan space.

Some application examples for the region analysis are shown in the fig-
ures 5.9, 5.10, and 5.11. Three characteristic types of big bang bifurcations,
namely period increment big bang, period adding big bang and period
doubling big bang are presented. Big bang bifurcations are relatively
new and interesting bifurcation phenomena, which can be observed only
in two or higher dimensional parameter spaces. In this case, an infinite

119

Chapter 5
Supported investigation methods

number of different asymptotic dynamics can be observed within any open
convex neighborhood of the bifurcation point. For the classification of
two-parametric big bang bifurcations, specific one-parametric bifurcation
scenarios along the border of this neighborhood can be used.

The period increment big bang and period adding big bang bifurcations can
be observed for instance in the piecewise-linear map, defined by:

Definition: Piecewise-linear map

xn+1 = f(xn)
f : [0, 1] 7→ [0, 1]

f(x) =

{
fl(x) = bx + c if x < 1

2

fr(x) = x− a if x ≥ 1
2

(5.6)

�

This system has three parameters a, b and c, which have to fulfill the following
conditions:

a ∈
[
0, 1

2

]
|b| < 1 max

{
0, 1

2
− b

2

}
< c ≤ min

{
1, 1− b

2

}
(5.7)

It can be shown, that if this conditions are fulfilled, then the function f
maps the interval [0, 1] on itself.

In figure 5.9.(a), the structure of the two-dimensional parameter space a× c
caused by the period increment bing bang bifurcation at the point (0, 0.5) is
shown. Figures 5.9.(b) and 5.9.(c) represent the bifurcation scenario along
the curve around the bifurcation point marked in 5.9.(a). Note, this is an
example of a real elliptic scan in two dimensions as presented and discussed
in section 4.3.7. In figure 5.10, the behavior of this system is shown for
another parameter setting, where a period adding big bang bifurcation
occurs.

An example for a period doubling big bang bifurcation can be observed in
the power law map, defined by:

120

Chapter 5
Supported investigation methods

Definition: Power law map

xn+1 = f(xn) f : [0, 1] 7→ [0, 1], a, b > 0 (5.8)

f(x) = a2b

((
1

2

)b

−
∣∣∣∣x− 1

2

∣∣∣∣b
)

�

Note, that for b = 1 this system corresponds to the well-known tent map
defined by:

Definition: Tent map

xn+1 = f(xn) f : [0, 1] 7→ [0, 1], r ∈ [0, 2] (5.9)

f(x) =

{
rx if x ≤ 1

2

r(1− x) if x > 1
2

�

and for b = 2 to the logistic map (see Sec. 3.3.1.1).
The figure 5.12 shows the result of the region analysis for the two-dimensional
Bogdanov map (see Sec. 3.3.2.1). As one can see, the structure of this re-
gion analysis diagram is much more complex than that of the previous ones.
However, a lot of interesting results can be obtained from this representation
indicating, that the creation of region diagrams in two dimensional parame-
ter spaces is a very powerful investigation method especially when compared
with one-dimensional scans, such as shown in figures 5.13 and 5.14

121

Chapter 5
Supported investigation methods

c

a

2

3

4

5

6

7

(a) parameter space [a× c]

x
n

ϕ
(b) bifurcation diagram

T

ϕ
(c) period diagram

Figure 5.9: Piecewise linear map: period increment big bang bifurcation

(a) For the parameter value b = 0 there occurs a period increment big bang
bifurcation in this system at the point (a = 0, c = 0.5). The regions
with the periods T = 2 up to T = 7 are marked.

(b) bifurcation diagram of the period increment scenario along the elliptic
curve marked in (a)

(c) period diagram of the period increment scenario along the elliptic curve
marked in (a)

122

Chapter 5
Supported investigation methods

c

a

2

3

4

5

5

7

9

(a) parameter space [a× c]

x
n

ϕ
(b) bifurcation diagram

T

ϕ
(c) period diagram

Figure 5.10: Piecewise linear map: period adding big bang bifurcation

(a) For the parameter value b = 0.5 there occurs a period adding big bang
bifurcation in this system at the point (a = 0, c = 0.25). Some regions
with the periods T = 2 up to T = 7 are marked.

(b) bifurcation diagram of the period adding scenario along the elliptic
curve marked in (a)

(c) period diagram of the period adding scenario along the elliptic curve
marked in (a)

123

Chapter 5
Supported investigation methods

b

a

1 2 4

(a) parameter space [a× b]

x
n

ϕ

�
�	

(b) bifurcation diagram

λ

ϕ

��	

(c) Lyapunov exponent

Figure 5.11: Power law map: period doubling big bang bifurcation

At the point (a = 0.5, b = 1.0), there occurs a period doubling big bang
bifurcation in this system. The period doubling scenario along the blue
elliptic curve marked in (a) is shown in (b) and (c), together with blow-ups
of characteristic regions. Note, the red straight line marked in (a) corresponds
to the usual logistic map.

124

Chapter 5
Supported investigation methods

k

ε

µ = −0.1

Figure 5.12: Bogdanov map: region diagram

This region diagram shows a really complex structure which is not clearly
understood until now. The colored regions belong to a period adding sce-
nario which is not created by a two-dimensional period adding big bang
bifurcation. Marked are the following periodic solutions: 7-periodic, 8-
periodic, 9-periodic, 10-periodic, 11-periodic, 12-periodic, 13-periodic, 15-
periodic, 17-periodic, 19-periodic. The horizontal line at k = 0.9 marks the
one-dimensional parameter scans presented in figures 5.13 - 5.14.

125

Chapter 5
Supported investigation methods

x
n

ε
(a) bifurcation diagram

k = 0.9, µ = −0.1

T

ε
(b) period diagram

Figure 5.13: Bogdanov map: bifurcation and period diagram

In (a) clearly the Neimark-Sacker bifurcation at ε = 0 can be observed.
Shown are the periodic and aperiodic solutions indicating, that immediately
after the bifurcation quasiperiodic solutions emerge. This can be also clearly
seen in figure 5.14 when looking at regions where the largest Lyapunov expo-
nent is zero. The periodic solutions in (b) at the bifurcation point ε = 0 are
numerical artifacts caused by the critical slowing down phenomenon (com-
pare Fig. 5.15).

λ
1
,λ

2

ε
(a) Lyapunov exponents

k = 0.9, µ = −0.1

λ
1
,λ

2

ε
(b) Lyapunov exponents (blow-up)

Figure 5.14: Bogdanov map: Lyapunov exponents

In (a) one can clearly observe, the quasi periodicity of the solutions in the
regions where the largest Lyapunov exponent is zero. In (b) a blow-up of the
region to the right is shown, where also chaotic solutions exist as indicated
by the positive largest Lyapunov exponent.

126

Chapter 5
Supported investigation methods

y n

xn
(a) ε = −0.001

k = 0.9, µ = −0.1

y n

xn
(b) ε = 0.0001

Figure 5.15: Bogdanov map: two selected orbits

In (a) a typical solution before but close to the Neimark-Sacker bifurcation
is shown. Due to the phenomenon of critical slowing down, the orbit is not
converged to the fixed point 0 although 2 · 106 iterations were performed.
Although not at this value of the parameter ε but for values much closer to
the instability, this behavior leads to the detection of for instance the period
19 shown in figure 5.13(b). A quasiperiodic orbit after the Neimark-Sacker
bifurcation is shown in (b).

127

Chapter 5
Supported investigation methods

λ
1
,λ

2
,λ

3

r
(a) r ∈ [0, 800]

λ
1
,λ

2
,λ

3

r
(b) r ∈ [0, 225]

Figure 5.16: Lorenz system: Lyapunov spectrum

The three Lyapunov exponents of the Lorenz system are shown in the interval
r ∈ [0, 800] (a) and r ∈ [0, 225] (b). The other two parameters were kept
fixed at the values σ = 16 and b = 4. In the case of unique attractors,
one can read off the qualitative dynamics of the system from the Lyapunov
spectrum. Regions, where all Lyapunov exponents are negative correspond
to fixed points, regions where the largest exponent is zero correspond to
periodic solutions, i.e., limit cycles. Regions, where the largest exponent
is positive correspond to chaotic attractors. The characteristic self-similar
tongue-like structures (often seen clearly only in blow-ups) indicate period
doubling scenarios.

5.5 Lyapunov exponents analysis

The calculation of Lyapunov exponents is implemented based on the
approach of Wolf et al. [198]. In fact, there are two variants of this method.
The first one, is based on the original approach, which uses the linearized
system which has to be provided by the user of the AnT 4.669 software
package in addition to the system function itself. The second one, is a
slightly modified approach, which tracks adjacent trajectories and hence uses
the system function only. The method calculates the temporal averaged local
divergence rates to approximate the Lyapunov exponents. In figure 5.16 the
complete Lyapunov spectrum for the Lorenz system (see Sec. 3.4.1.1),
that is all three Lyapunov exponents are shown.

In figure 5.17 a two-dimensional system parameter scan of the Lorenz system
using the Lyapunov exponent analysis is shown from two different viewpoints.

128

Chapter 5
Supported investigation methods

Both views indicate the possibility, that in this system at least two big bang
bifurcations take place causing the complex dynamic behavior. Note, that
the Lyapunov spectrum shown in figure 5.16(a) corresponds to a section of
this diagram at the parameter value σ = 16.
In figure 5.18 an incomplete Lyapunov spectrum of the Mackey Glass
system is shown together with the corresponding Lyapunov dimension. This
dynamical system of the DDE class was proposed in [58] as a model for the
production of white blood cells in the human body. Like in the case of the
PLL with time delay (see Sec. 3.4.2.1) a scaling of time leads to the following
standardized form:

Definition: Mackey Glass system

d

dt
s(t) = f

(
s(t), s(t− 1), p

)
s(t) ∈ R

p = (a, b) ∈ R2

f
(
s(t), s(t− 1), p

)
= a

s(t− 1)

1 + s(t− 1)10
− b s(t) (5.10)

�

Here, s(t) is the density of the circulating white blood cells and a and b are
the system parameters. The parameter a corresponds to the creation rate of
the white blood cells, whereas the parameter b is the destruction rate of the
white blood cells. The function

F (s(t− 1), a) = a
s(t− 1)

1 + s(t− 1)10

is the current flux of new produced white blood cells into the blood in
response to the demand created at time t− 1 in the past. Due to the scaling
of time, which leads to the fixed time delay of 1, a change of the delay time
τ corresponds to a simultaneous and appropriate change of both system
parameters a and b. Although not so well-known as the Lorenz system, the
Mackey Glass system has become a paradigm of scalar delay differential
equations showing a rich dynamic behavior including deterministic chaos.
Important for the complex dynamics is the fact, that the flux function F
corresponding to the retarded or memory part of the system has a hump.

129

Chapter 5
Supported investigation methods

σ r

(a) largest Lyapunov exponent (view from above)

λ1

σ r

(b) largest Lyapunov exponents

Figure 5.17: Lorenz system: largest Lyapunov exponent

This figure shows evidence, that in the Lorenz system big bang bifurcations
cause the complex dynamic behavior. The calculation of such diagrams
with a high resolution is important, but can only be performed using the
client/server mode of the AnT computation engine and a large number
of workstations or a cluster of computing nodes.

130

Chapter 5
Supported investigation methods

λ
1
,.

..
,λ

1
0

a
(a) incomplete Lyapunov spectrum

d
λ

a
(b) Lyapunov dimension

Figure 5.18: Mackey Glass system: Lyapunov spectrum and dimension

In (a) the ten largest Lyapunov exponents of the Mackey Glass system are
shown in the interval a ∈ [27.5, 28], whereas in (b) the corresponding Lya-
punov dimension is presented.

Details about this dynamical systems can be found for instance in [59].

The fact, as already mentioned in section 3.4.2.3, that the initial value prob-
lem of dynamical systems with memory continuous in time can be defined
properly only in an extended state space has a remarkable consequence: The
state space extension causes an infinite but countable number of Lyapunov
exponents to exist. However, the inevitable discretization in time, required
by the numerical integration of dynamical systems continuous in time, leads
to an approximation of the time continuous system by a high-dimensional
map, which has only a finite number of Lyapunov exponents. Hence, when
integrating a standardized delay differential equation (in this case the time
delay τ is exactly one unit in time) numerically with a step size of ∆t leads
to an approximation by a 1

∆t
-dimensional map. Of course, this map has 1

∆t

Lyapunov exponents. Accordingly, changing the discretization, i.e., the step
size ∆t changes the number of possible Lyapunov exponents to be calculated.

131

Chapter 5
Supported investigation methods

5.6 Dimension analysis

This method is based on the box counting approach and allows the approx-
imation of the invariant or natural measure of an attractor. Based on this
approximation, the following characteristics quantities of an attractor can be
calculated:

I metric entropy (Kolmogorov-Sinai)

I capacity dimension

I information dimension

I correlation dimension

Additionally the variation of the invariant measure of the attractor can be
calculated as well. This method is illustrated using the Duffing map defined
by:

Definition: Duffing map

xn+1 = yn

yn+1 = −bxn + ayn − y3
n

(5.11)

�

In figure 5.19, the invariant or natural measure of the Duffing map is shown
together with the corresponding chaotic attractors. It represents a measure
for the probability density of the attractor. In the left part of figure 5.19,
two coexisting chaotic attractors symmetric to each other are shown, whereas
in the right part one symmetric chaotic attractor is shown. Note, that in
the connecting parts in the middle of the symmetric chaotic attractor the
probability density is small whereas in both parts belonging to the former
coexisting attractors the probability density is large. This indicates, that the
symmetric attractor was created by symmetry breaking - symmetry recover-
ing crisis or global bifurcation.

132

Chapter 5
Supported investigation methods

x

y

(a) a = 2.7
x

y

(b) a = 2.75

x
y

ρ(x, y)

(c) a = 2.7

x
y

ρ(x, y)

(d) a = 2.75

Figure 5.19: Duffing map: invariant measure of chaotic attractors
In (a) two coexisting chaotic attractors symmetric to each other are shown
and in (c) the corresponding invariant or natural measures. In (b) a sym-
metric chaotic attractor is shown and in (d) its corresponding invariant or
natural measure. Parameter setting: b = 0.2.

133

Chapter 5
Supported investigation methods

5.7 Frequency analysis

The frequency analysis or spectral analysis is based on the calculation
of the Fast Fourier Transform (see for instance [21, 15, 173]) of the
simulated orbit. For the input data s(t) the complex-valued discrete Fourier
Transform (see [174]) s̃(ω) is calculated using the external library for the
Fast Fourier Transform FFTW [46], which is free software. This investigation
method allows for instance the calculation of the real- and imaginary part of
the Fourier Transform of each state component as well as the corresponding
power spectrum and the autocorrelation function. Some additional
evaluation methods are available as well, like for instance the saving of the
calculated Fourier coefficients. Using this extension, one can track the change
of a limit cycle for instance after a Hopf bifurcation and can thus compare the
numerical results with analytically calculated ones as it was done in [146] in
order to validate the numerical and analytical results by a consistency check.

In figures 5.20 - 5.22 eight power spectra together with the corresponding
orbits of the Mackey Glass system (see page 129 are presented. As one can
easily read off from the spectra, a period doubling scenario takes place in
this system. This period doubling scenario can also be easily detected by
investigating the Lyapunov spectrum presented in figure 5.18(a).

134

Chapter 5
Supported investigation methods

d d
t
s(

t)

s(t)
(a) period-1 orbit

|s̃
(f

)|2
f

a = 26.5, b = 20.0

(b) power spectrum

d d
t
s(

t)

s(t)
(c) period-2 orbit

|s̃
(f

)|2

f

a = 27.2, b = 20.0

(d) power spectrum

d d
t
s(

t)

s(t)
(e) period-4 orbit

|s̃
(f

)|2

f

a = 27.46, b = 20.0

(f) power spectrum

Figure 5.20: Mackey Glass system: orbits and corresponding power spectra

135

Chapter 5
Supported investigation methods

d d
t
s(

t)

s(t)
(a) period-8 orbit

|s̃
(f

)|2

f

a = 27.5115, b = 20.0

(b) power spectrum

d d
t
s(

t)

s(t)
(c) period-16 orbit

|s̃
(f

)|2

f

a = 27.528, b = 20.0

(d) power spectrum

d d
t
s(

t)

s(t)
(e) period-32 orbit

|s̃
(f

)|2

f

a = 27.5323, b = 20.0

(f) power spectrum

Figure 5.21: Mackey Glass system: orbits and corresponding power spectra

136

Chapter 5
Supported investigation methods

d d
t
s(

t)

s(t)
(a) chaotic attractor

|s̃
(f

)|2

f

a = 27.535, b = 20.0

(b) power spectrum

d d
t
s(

t)

s(t)
(c) chaotic attractor

|s̃
(f

)|2

f

a = 28.0, b = 20.0

(d) power spectrum

Figure 5.22: Mackey Glass system: orbits and corresponding power spectra

137

Chapter 5
Supported investigation methods

5.8 Singular value analysis

This investigation method performs a singular value decomposition
(SVD) [67] or principal component analysis (PCA) sometimes also
denoted as Karhunen-Loève expansion after Karhunen [86] and Loève
[96], who proposed this method independently from each other.

The method itself is known under different names in various research
fields. Mathematically, the singular value analysis is a transformation which
diagonalizes a given matrix M and brings it to a canonical form M = UΛV ,
where Λ is a diagonal matrix. The roots of this method go back to the
middle of the 19th century. A review of the early history of the method can
be found in [157].

This method is a useful statistical technique that has found application in
many fields such as face recognition or more general pattern recognition and
image compression, and is a common technique for finding patterns in high
dimensional data sets, where usual visualization techniques often fail or are
not applicable at all.

The AnT computation engine uses the CLAPACK [18] subroutine
dgesvd to calculate the eigenvalues and eigenvectors of the covariance
matrix. As a consequence, a user have to install this f2c’ed version of the
original Fortran LAPACK library to be able to use this investigation method.

To demonstrate this method, it is applied to a simulated trajectory of the
Lorenz system (see Sec. 3.4.1.1). The system was integrated numerically for
50 seconds using a fixed step size of 10−3, whereby the first 40 seconds where
omitted. Hence, the method is applied here to the remaining 10000 data
points of the trajectory, which results in the following three eigenvalues

λ1 = 45.35781, λ2 = 1.60651, λ3 = 0.87756 (5.12)

and the corresponding three eigenvectors

v1 = (−0.57715,−0.57763,−0.57727) (5.13)

v2 = (0.62907, 0.13628,−0.76531) (5.14)

v3 = (0.52074,−0.80484, 0.28471) (5.15)

138

Chapter 5
Supported investigation methods

The magnitude of the eigenvalues indicate the importance of the correspond-
ing eigenvectors or directions in the state space. To illustrate this, in fig-
ures 5.23(a) - 5.23(d) the trajectory is shown together with the three di-
rections corresponding to the calculated eigenvectors. Hereby, the point of
intersection represents the mean value of the attractor. The directions were
weighted with the eigenvalues, but due to the large differences in their mag-
nitude, the first eigenvalue was scaled by a factor of 1

10
. As one can see, the

directions represent indeed the spreading of the data points and consequently
of the underlying chaotic attractor.

z

y
x

(a) v1, v2, v3

z

x y

(b) v1, v2

z

y

x

(c) v1, v3

z

y x

(d) v2, v3

Figure 5.23: Lorenz system: illustration of the singular value decomposi-
tion

Shown are the trajectory and the directions corresponding to the eigenvectors
of the covariance matrix of the singular value decomposition. In (a) all three
directions are shown, whereas in (b),(c) and (d) the viewpoint is along one
of the directions causing this direction not to be seen. Parameter setting:
σ = 16.0, r = 45.92, b = 4.0

139

Chapter 5
Supported investigation methods

5.9 Check for conditions

This method perform checks for some conditions and saves the time and the
orbit length since the start of the simulation run, as soon as these conditions
are fulfilled the first time. There are several pre-defined conditions, which
correspond to some typical problems in the field of nonlinear dynamics. At
the moment, the following conditions are implemented:

I The orbit reaches a fixed point
This kind of condition check is suitable for instance within a scan for
initial values in order to detect the basins of attraction for fixed point
attractors. Another application example could be a scan for param-
eter values in order to detect the settings, for which the investigated
dynamical system converges to a fixed point. The accuracy of the com-
parison, that is used in order to detect, whether the orbit reaches a
fixed point or not (that means, that two subsequent states of the orbit
are identical), can be set by the user (see remarks in section 5.3).

I The orbit reaches a given point
This kind of condition is similar to the previous one. The user can define
the state searched for. In contrast to the previous kind of condition,
this point needs not to be a fixed point, but can be an arbitrary point,
for instance a point on a limit cycle.

I The orbit diverges from a given area
A typical situation in nonlinear dynamics is, that orbits started at
some initial values converge to attractors, while orbits started at some
other initial values diverge. In order to detect the initial values with
convergent behavior one has to perform a corresponding state space
scan. As an approximation of the convergent behavior, one can define
a sufficiently large area assuming thereby, that orbits which do not
leave this area, do also not diverge. In the current implementation the
area in the state space can be define as a n-dimensional rectangle or as
a n-dimensional circle.

I The orbit do not diverge from a given area
This kind of condition is complementary to the previous one. Accord-
ingly, it has the same parameters and similar application areas. It
can be used for instance for the calculation of generalized Julia sets,

140

Chapter 5
Supported investigation methods

=
(z

)

<(z)
(a) c = −0.8− 0.17i

=
(z

)

<(z)
(b) c = −1.25

=
(z

)

<(z)
(c) c = 0.08− 0.67037i

=
(z

)

<(z)
(d) c = −0.156 + 1.032i

Figure 5.24: Julia sets: some examples

because these sets are non-wandering sets of some complex quadratic
function. The function used for the figures 5.24(a) - 5.24(d) is the
complex quadratic function:

zn+1 = z2
n + c (5.16)

with the corresponding real representation:

xn+1 = x2
n − y2

n + c< (5.17)

yn+1 = 2xnyn + c= (5.18)

whereby <(zn) = xn, =(zn) = yn, and <(c) = c< and =(c) = c=

141

Chapter 5
Supported investigation methods

5.10 Symbolic sequence analysis

This method is based on the ideas from the field of the classical symbolic
dynamics. According to this ideas, the state space of the investigated dy-
namical system is split up in disjunct partitions or segments thereby defining
a so-called covering of the state space. Then, a unique symbol from some
alphabet Σ is assigned to each partition or segment. Consequently, each orbit
of the investigated dynamical system discrete in time can be characterized
by the symbolic sequence generated by this orbit. For dynamical systems
continuous in time this can be done as well, whereby firstly a mapping of the
continuous orbit to a discrete one has to be defined. This can be done us-
ing any kind of Poincaré mapping, for instance a stroboscopic mapping.
One possibility to define this stroboscopic mapping is to use the inherent
discretization of the continuous trajectory caused by the integration step
size. However, in most of the cases this possibility is not very efficient. The
generated symbolic sequence have to be evaluated with respect to its peri-
odicity, complexity, etc. Hence, the general approach on this field consists of
to subsequent steps:

1. generation of symbolic sequences

2. evaluation of symbolic sequences

For these two steps the AnT computation engine supports several possi-
bilities.

5.10.1 Generation of symbolic sequences

In most works known so far, the definition of the partitions in the state
space depends on specific properties of the investigated dynamical system.
It is often preferable to define these partitions depending on fixed points,
manifolds or other specific features of the investigated system. Of course,
the AnT 4.669 package supports this approach and allows do define user-
defined symbolic dynamics. In this case a user have to implement the
corresponding symbolic function in a similar way as the system function of
the investigated dynamical system itself. The symbolic function has the same
arguments as the system function itself and returns a string representing a
symbol. Note, that this approach is most flexible and most general, compared
with other techniques described below. However, it requires the user to define

142

Chapter 5
Supported investigation methods

and implement the symbolic function.

Additionally, the AnT 4.669 package provides two types of generic symbolic
dynamics, namely the generalized LR symbolic dynamics and the gen-
eralized PM symbolic dynamics. These approaches are known for one-
dimensional maps and define the partitions of the one-dimensional state space
according to the geometric shape of the system function. In the AnT 4.669
software package this approaches are generalized for an arbitrary dimension
of the state space. The generalization is made by applying the standard
procedure for each component of the n-dimensional state space separately,
so that a n-tuple of symbols is generated. Taking into account, that each
n-tuple of symbols on an alphabet Σ can be interpreted as a single symbol on
the alphabet Σn, a generalized symbolic sequence on this alphabet is created.
This procedure is related to the band-reduction theorem, well known from
the field of Turing machines.

When dealing with hybrid dynamical systems, the AnT 4.669 package sup-
ports a generic symbolic dynamics for hybrid systems. Hereby the
fact is used, that the state space of hybrid systems consists per definition of
several partitions. These partitions can be used for the creation of symbolic
sequences as well.

5.10.2 Evaluation of symbolic sequences

Based on the symbolic sequences generated by a trajectory, several interest-
ing quantities can be calculated. The most basic quantities hereby are the
probabilities of the specific symbols, approximated by the frequency of oc-
currence of these symbols in the sequences. For growing length of the used
sequence, the frequency of occurrence converges to the probability of the spe-
cific symbol. The probabilities approximated in this way can be used for the
calculation of the entropy of the symbolic sequence. Note, that this approach
can be generalized using symbolic subsequences with length larger than one
instead of single symbols only. The length of the used subsequences is usually
denoted as symbolic description level. In practice, the complexity of the
calculation grows exponentially with the symbolic description level, so that
it is preferable to use this level not too large. An application example for the
symbolic sequence analysis is presented in figure 5.26. For the Agnesi map
(Eq. 5.5) symbolic sequences on the alphabet Σ = {L, C,R} are generated

143

Chapter 5
Supported investigation methods

f
(x

)
α

L
C

R

Figure 5.25: Agnesi map: system function at α = −4 and the partitions
of the state space marked with corresponding symbols

according to the following (user-defined) partition of the state space:

σn =


L if sn < −

√
|a|

C if −
√
|a| ≤ sn ≤

√
|a|

R if sn < −
√
|a|

(5.19)

As one can see from figure 5.25, the partition is adjusted to the shape of the
system function of the Agnesi map for α < 0. Therefore the used symbolic
dynamics is more suitable for the investigated system than the standard (LR
or PM) symbolic dynamics. In figure 5.26(a), the symbolic entropy of the
Agnesi map is shown and in figure 5.26(b) the probabilities ρL, ρC, ρR of the
specific symbols. The results correspond to the symbolic description level
one.

144

Chapter 5
Supported investigation methods

E

α

(a) symbolic entropy

ρ
L
,
ρ
C,

ρ
R

α

(b) symbolic probabilities

Figure 5.26: Agnesi map: symbolic sequence based analysis (blow-up)

145

Chapter 5
Supported investigation methods

5.11 Symbolic image analysis

This relatively new method is based on the symbolic image construction
as described in [127, 129, 128]. The symbolic image analysis represents
a unified framework for the investigation of the global structure of the
vector field of dynamical systems both discrete and continuous in time.
This method can be considered close to Cell-Mapping [80] and related to
symbolic dynamics [1, 14, 95, 167]. Its main idea is the construction a
directed graph which represents the structure of the state space for the
investigated dynamical system. This graph is called the symbolic image
of the system and can be considered as an approximation of the system
flow. Distinct parts of this graph represent invariant sets of the flow.
These invariant sets can be detected without any restrictions concerning the
stability. Hence, the periodicity of stable and unstable limit cycles can be
determined. A more sophisticated computational analysis of the symbolic
image allows the location of the basins of attraction [130] and of the
Morse Spectrum [125, 131, 126] as well.

The construction of the symbolic image for an area of the state space of
the investigated dynamical system is an iterative procedure. In each step
the investigated domain is divided in sub domains, so-called boxes. Each
box corresponds then to a node of the directed graph to be constructed.
The nodes of the graph are connected according to the vector field of the
dynamical system.

Assume, that there exist two boxes I and J and the corresponding nodes
i and j. For the box I its image under the vector flow f(I) is calculated.
If the intersection of the box J with the image f(I) is not empty, then
there exists an edge in the graph from node i to node j. Performing this
procedure for all boxes of the investigated domain, one calculates in this
way an approximation of the symbolic image. After that, the parts of the
graph are detected, which have to be investigated more precisely. Especially
the cycles of the graph represent a good choice to be investigated in more
details, because they can correspond to stable or unstable periodic orbits.
In the next step, the boxes corresponding to these nodes of the graph are
subdivided again. The procedure is repeated with higher accuracy again,
until the termination criterion is fulfilled. The termination creation is typi-
cally given either by the accuracy to be achieved or by the computer memory.

146

Chapter 5
Supported investigation methods

Note, that in the practice the investigated graph can contain a large number
of nodes (for instance, 106 is a typical value in this context). Therefore, the
analysis of the cycles in such graph may be a computation expensive task.
For this reason, efficient algorithms, like Dijkstra algorithm for calculation
of shortest paths in directed graphs [143] and Tarjan algorithms location of
sets of strongly connected components [161].

147

Chapter 5
Supported investigation methods

x y

z

(a)
x y

z

(b)

x y

z

(c)
x y

z

(d)

x y

z

(e)
x y

z

(f)

Figure 5.27: Lorenz system: symbolic image analysis

Shown are three subdivision steps of the numerically calculated symbolic
image for the Lorenz system at r1 = 14.6 (left) and r2 = 20 (right).

148

Chapter 5
Supported investigation methods

5.12 Generalized Poincaré sections

The basic idea of Poincaré sections is based on the reduction of complexity
of the dynamic behavior and can be considered as a procedure selecting some
representative states from an orbit or trajectory. In the classical variants the
orbit is assumed to be generated by a dynamical system continuous in time.
The condition, selecting the states of the orbit, is typically given by the cross-
section of the orbit with a given plane or in general a hyperplane. As one can
see, the resulting states can be interpreted as an orbit of a dynamical system
discrete in time denoted as Poincaré map. Therefore the classical variant
of Poincaré sections leads to the reduction of complexity by a reduction of
the state space: instead of a continuous orbit in a n-dimensional state space
one considers a discrete orbit in a (n − 1)-dimensional state space. Hereby
there exists no general approach, how to define the plane in such a way, that
the properties of the Poincaré map are most similar to the properties of the
dynamical system continuous in time and hence most representative for this
system.

Considering the basic structure of Poincaré sections, the idea described above
can be generalized. As one can see, the cross-sections of the orbit with a
hyperplane represents only one possibility for the condition, which has to be
fulfilled for the selection of states. In general, this condition can be arbitrary.
The AnT 4.669 simulator package supports the following types of Poincaré
conditions:

I Cross-sections with a plane
There are two variants for this classical type of Poincaré section:

• The plane is fixed

• The plane is parameter-dependent

These two variants differ with respect to a scan run. In the first case,
the plane is the same for all simulation runs. Therefore, it can be
specified by its coefficients, which are fixed and have to be defined by
the user. A well-known application example hereby is the Poincaré
section of the Rössler system (see Sec. 11.5) with the plane y = 0 (see
Fig. 5.28 and Figs. 5.29, 5.30).

In contrast to this, it is in many cases more suitable to define the plane
dependent on some features of the investigated dynamical system, for

149

Chapter 5
Supported investigation methods

x

c

a b c
d

e f g h

(a)

z

c

(b)

Figure 5.28: Rössler system: bifurcation diagram of the Poincaré map
Parameter setting: a = 0.15, b = 0.2. In (a), the points in the parameter
space corresponding to Fig. 5.29 and Fig. 5.30 are marked.

150

Chapter 5
Supported investigation methods

z

x y
(a) c = 3.5

z

x y
(b) c = 5.0

z

x y
(c) c = 5.7

z

x y
(d) c = 5.8

Figure 5.29: Rössler system: periodic attractors
Parameter setting: a = 0.15, b = 0.2.

(a) One-periodic limit cycle.
(b) Two-periodic limit cycle.
(c) Four-periodic limit cycle.
(d) Eight-periodic limit cycle.

151

Chapter 5
Supported investigation methods

z

x y
(a) c = 6.2

z

x y
(b) c = 6.6

z

x y
(c) c = 7.7

z

x y
(d) c = 10.32

Figure 5.30: Rössler system: periodic and chaotic attractors
Parameter setting: a = 0.15, b = 0.2

(a) Two-band chaotic attractor.
(b) One-band chaotic attractor.
(c) Three-periodic limit cycle.
(d) Four-periodic limit cycle.

152

Chapter 5
Supported investigation methods

instance on its fixed points. These points may depend on the system
parameters. Hence, within a scan run, the coefficients of the plain
have to be adjusted for each simulation run separately. For instance,
for the Lorenz system (see Sec. 3.4.1.1), that specific Poincaré section
is representative, which is defined by the cross-section of orbits with
a plane parallel to the plane z = 0 containing both non trivial fixed
points of this system. The z-coordinate of these fixed points is given by
r− 1. Hence, by variation of the parameter r, this plane is parameter-
dependent.

I States with local extreme values of a given state component
This type of Poincaré section is sometimes denoted as zmax-mapping,
because it can be successful applied for the z variable of the Lorenz
system. In the AnT 4.669 simulation package there are three variants
for this type of Poincaré section:

• Using maximal values

• Using minimal values

• Using minimal and maximal values

I Change of the discrete state
For hybrid dynamical systems it is possible to define this generic type of
Poincaré section. The state space of a hybrid system is divided into par-
titions, described by the discrete state of the system. It is well-known,
that the dynamics of hybrid systems is dominated by transitions, which
the system performs from one partition into another one. Therefore,
the states on partition borders, where the transitions take place, are
important and can be used for generating the discrete orbit.

I User-defined Poincaré conditions
This most general case allows the definition of arbitrary conditions. For
instance, it can be preferable to define the condition not only dependent
on the current state of the orbit, but also dependent on the current
velocity. An application example for a dynamical systems with time
delay, namely the PLL with time delay (see Sec. 3.4.2.1) is shown in
Fig. 5.31.

Note, that concerning the architecture of the AnT computation engine,
the generalized Poincaré section do not represent an investigation method in

153

Chapter 5
Supported investigation methods

s

R

Figure 5.31: PLL with time delay: scan of a generalized Poincaré section

This bifurcation diagram was obtained using the generalized Poincaré section
method, whereby the two conditions d

dt
s(t) = 0 and s(t) ∈ [1, 2] define a point

of the corresponding Poincaré map. A one-dimensional system parameter
scan was performed and the cyclic and last 100 acyclic points of the Poincaré
map are plotted. The two parabola at the bifurcation which occurs at the
parameter value R ≈ 4.103 indicate, that there was a symmetry-breaking
bifurcation in this system at smaller values of the parameter and that in the
considered parameter region two coexisting period-doubling scenarios take
place. Only one of them is shown.

154

Chapter 5
Supported investigation methods

the usual sense. Based on the concepts of an abstract iterator and a proxy, the
simulation of the dynamical system inside the generalized Poincaré section
can be sourced out from the iteration machine. A simulation step of the
Poincaré map, containing the simulation of the dynamical system inside until
the Poincaré condition is fulfilled, is performed within the proxy. Outside the
proxy only an orbit discrete in time is observable. Therefore all investigation
methods, which are applicable for standard maps, can be applied for Poincaré
maps as well.

155

Chapter 6

Simulating and investigating
dynamical systems

6.1 Motivation

In this chapter, the basic architectural principles and concepts of the
AnT 4.669 software package and especially the AnT computation
engine will be presented. These principles and concepts allow not only the
support of the broad spectrum of system classes presented in chapter 3, but
are the reason for the great flexibility of the software as well. The aim here
is not to explain the architecture in full detail, but to provide an overview
and to point out the generic characteristics of some of the concepts, which
turned out to be so general, that they are not specific for the AnT 4.669
software package and the simulation of dynamical systems, but can adapted
to other simulation problems or tasks as well.

As already mentioned in chapter 1 in section 1.2.1, it is inherent to computer-
based simulations that there exist a data model and an execution model
corresponding to the specific simulation problem or task. Of course, this
holds also for the simulation of dynamical systems, which can be performed
by the AnT computation engine. As it was the goal of the software, the
data and execution model are specifically designed not only for the simulation
of dynamical systems, but for their investigation as well.

156

Chapter 6
Simulating and investigating dynamical systems

6.2 The data model

As the notion data model implies, it is the part containing all the relevant
data and information which is necessary to perform the possible and sup-
ported simulation and investigation tasks. There are two important aspects
which should be mentioned here.

1. Distributed and centralized data
Because the information contained in the data model is required in dif-
ferent parts of the software and at different phases of the simulation it
is not located at a single position in some sort of a data container, but
is distributed over large parts of the software. One can think here for
instance about the specific information which is needed for the inte-
gration of dynamical systems continuous in time according to Runge-
Kutta type integration methods or schemes. These integration schemes
require coefficients, which are either stored in specific arrays, denoted
as Butcher arrays, or are even hard-coded. However, this information
is so specific, that it makes no sense to store it together with other data
in some sort of general data container. Nevertheless, whenever there is
no need to distribute the information, it should be stored in a general
data container or module at one location. Both, the distribution and
centralization of data and hence the data model is not typical for the
AnT 4.669 software package, but is quite common in many software
applications and is part of a suitable software structure or architecture
which helps to keep large software projects maintainable.

2. Dynamic and static data
The data model has dynamic and static components as well. This is in
some sense obvious because on the one hand there is static information
required for the specification and the control of the complete simulation
task, which must not change during the simulation run. On the other
hand, there is information or data which will be produced or created
during the simulation itself and is of course dynamic.

Most of the information in the data model is provided by the initialization file
(see Sec. 8.2.1). Note, that the graphical user interface (see Chap. 8) guides
and supports a user of the system to create or manipulate initialization files
in a convenient way. Hence, the initialization of the AnT computation
engine still depends on an initialization file, because each simulation task

157

Chapter 6
Simulating and investigating dynamical systems

has to be specified by a corresponding initialization file. Additionally, as
already mentioned, there exists also information which is not user provided
but hard coded. The abovementioned coefficients of the implemented
Runge-Kutta type integration methods for dynamical systems continuous
in time for instance, are a typical example of that kind of hard coded
information or data. According to the intention of the AnT 4.669 software,
to support the simulation and the investigation of dynamical systems, the
data model is split into four main parts, which correspond in some sense to
the four main sections of the initialization file (see Chap. 8, Secs. 8.2.1.1 -
8.2.1.4). These four parts of the data model are: the dynamical system data,
the iterator data, the investigation methods data, and the visualization data.

Currently, the data model realized in the AnT computation engine is
slightly different and consists of the three main parts DynSysData, IterData
and ScanData. However, this distribution has historical reasons and will be
changed in one of the next releases of the software package. Therefore, the
new and more suitable structure will be presented in the next sections 6.2.1
- 6.2.4.

6.2.1 The dynamical system data

The dynamical system data itself consists of two parts: the general part
and the specific part containing information corresponding to the different
supported classes of dynamical systems. The general part holds information
about the state of a dynamical system and the orbit which is implemented
as a cyclic array of states, so that a part of the trajectory can be stored in
the orbit. During the simulation or iteration, the orbit is updated in a cyclic
manner, so that it contains always some of the already calculated states of
the dynamical system up to a certain time in the past. In the general part
of the dynamical system data, the initial states and system parameters are
stored as well. Note, that in the case of initial state or system parameter
scans some of the initial states or system parameters are part of the iterator
data according to their change during iteration.
The specific part of the dynamical system data contains for instance infor-
mation about the step size and the method for the numerical integration of
dynamical systems continuous in time, the size and granularity of the grid
for indexable systems, or the delay time respectively the recurrence level for
systems with memory.

158

Chapter 6
Simulating and investigating dynamical systems

6.2.2 The iterator data

This part of the data model contains data or information, which is not only
necessary to perform an iteration step, that means the transition from the
current state to the next one, but the complete simulation as well. Here,
the number of iterations, and the scan specific information is stored. It is a
direct consequence of the architecture, that a single iteration step, a complete
iteration, i.e., an iteration-run and even a complete scan, i.e., a scan-run
is treated in an almost identical manner (see Secs. 6.3.4, 6.3.5.1, 6.3.5.2
and Figs. 6.2, 6.3, 6.4). Therefore, the information necessary to perform
an iteration step, an iteration-run or a scan-run is contained in the iterator
data part of the data model.

6.2.3 The investigation methods data

In this part of the data model information about the investigation methods
is included. Firstly, of course this is information about the investigation
methods activated in the current simulation. Additionally, each investigation
method needs further specifications which is contained in the investigation
method data as well. Two examples may illustrate this:

1. Lyapunov exponents

2. Box counting based methods

6.2.4 The visualization data

This part of the data model is in principle part of the investigation methods
data presented in the previous section 6.2.3, because the visualization of
trajectories and hence solution curves of a simulated dynamical system is
considered to be some sort of investigation. However, due to the possibilities
of the OpenGL based visualization, a lot of control information has to be
specified in the data model. Consequently, this large part of the data model
has been encapsulated in a separate part, the visualization data.

The visualization data contains information about the number of graphic
windows and the type of visualization which could be a two-dimensional
or a three dimensional representation. Furthermore, the visualization data
contains information about the specific type of representation (time-series,

159

Chapter 6
Simulating and investigating dynamical systems

phase-portrait, . . .) together with all the basic graphics controlling informa-
tion about additional objects, axes, mesh, color and so on.

6.3 The execution model

6.3.1 The transition concept

The concept of a transition already mentioned in Sec. 3.2 plays an essential
role in the definition of a dynamical system in this work but it is important
also in many design parts of the AnT computation engine. Therefore it
will be discussed in more detail. The concept is realized in the software pack-
age by the most important abstract class denoted as Abstract Transition.
Many subclasses are derived from this abstract class, among them the sub-
classes which are used for a single iteration step (IterTransition), a com-
plete iteration run (IterMachine) and a complete scan run (ScanMachine).

6.3.2 Abstract transition

The concept of an abstract transition is introduced in order to describe an
entity, which transforms one state into another. Therefore, the only function-
ality, which has to be supported by each instance of this abstract transition,
is a method (called execute), which performs this transformation. As one
can see, the basic aim of an abstract transition is formulated without any
relation to a specific task. Hence, abstract transitions can be considered as
a basic component for the execution model of any simulation tool.

For the creation of an execution model for a specific application, there are
two types of abstract transitions:

I generic or structure-defining transitions
I non-generic or task-specific transitions

The corresponding inheritance hierarchy is shown in figure 6.1. Typical ex-
amples for transitions of both types are discussed in the following sections.

160

Chapter 6
Simulating and investigating dynamical systems

Figure 6.1: Inheritance hierarchy of the class AbstractTransition

6.3.3 Generic transitions

Within the design phase of the AnT 4.669 software package it turned out,
that the following generic transitions represent some common execution
patterns on the field of numerical simulation:

I Transition sequence
This kind of transition represents a sequence of abstract transitions.
The execution of the sequence is a generic operation, consisting of the
subsequent execution of the transitions within the sequence.

I Conditional transition
The execution of conditional transitions is performed depending on
some condition.

I Cyclic repeated transition
The execution of these transition is performed repeatedly as long as
some termination criterion is fulfilled.

I Charted transition
The execution of these transition is performed depending on a state
chart.

161

Chapter 6
Simulating and investigating dynamical systems

Note, that the tasks performed by the described transitions are not specific
for a simulation tool for dynamical systems. Using these generic transitions, a
general framework for the execution model can be created. This framework
can be considered as a skeleton of the execution model which has to be
completed with task-specific transitions.

6.3.4 The iterator concept

The main task of an iterator, is to calculate the next state of a dynamical
system based on the current state. For dynamical systems with memory,
also previous states are involved. Hence, an iteration step represents a
transition from the current state to the next one and an iterator represents
an abstract transition in the sense of section 6.3.2.

During the design phase of the AnT 4.669 simulation package it was aimed
to support many different classes of dynamical systems. Especially, dynam-
ical systems continuous and discrete in time, with and without memory,
spatial homogeneous and spatial inhomogeneous, etc, are supported by
AnT computation engine. Therefore, several iterators and integrators
are required, because several system classes require several approaches for
the calculation of the next state. For instance, the same integration scheme
should be implemented differently for ODEs, DDEs and FDEs, due to the
different number of states involved into the calculation. Note, that a general
implementation for all these system classes is possible but would be very
inefficient.

It turned out, that a large number of system classes can be iterated / inte-
grated using the following classes of iterators:

I map iterator
Because the iteration scheme is very simple in this case, there is ex-
actly one implementation of this iterator. The next state is determined
directly by the evaluation of the system function. The following classes
of dynamical systems can be iterated using the map iterator:

• ordinary maps
• recurrent maps
• hybrid maps

162

Chapter 6
Simulating and investigating dynamical systems

• stochastic maps
• Poincaré maps
• CMLs
• external data

I ODE integrators
There are a large number of different ODE integrators, which imple-
ment several integration schemes. There are one-step and multi-step
method, explicit and implicit methods, predictor-corrector methods,
etc. All these methods can be used with fixed or adjustable integration
step size. The following classes of dynamical systems can be iterated
using ODE integrators:

• ODEs
• hybrid ODEs
• CODELs
• PDEs

I DDE integrators
The AnT computation engine contains also several DDE integra-
tors. At the moment, they are used for the following two system classes:

• DDEs
• hybrid DDEs

In future expansions it is planned to realize such system classes as
CDDELs and PDDEs. As soon as implemented, these system classes
will be integrated with the available DDE integrators as well.

I FDE integrators
This class of integrators is currently used only for one class of dynamical
systems, namely:

• FDEs

Future expansions of the AnT computation engine with respect to
related system classes, using the same integrators, are planned.

I Stochastic ODE integrators
Due to the inherent stochastic process, the integration schemes for

163

Chapter 6
Simulating and investigating dynamical systems

previous state

next state

iterator proxy

system
function

Figure 6.2: The iterator: schematic representation

ODEs have to be adjusted. This might lead to the reimplementation
of the corresponding integrator.

As one can see, the same iterator or integrator will be used for several classes
of dynamical systems, which can be considered as a family of dynamical
system classes. For instance, maps, Poincaré maps and CMLs belong to
the family of dynamical systems, which can be iterated with a map iterator.
Obviously, DDEs and FDEs do not belong to this family. Note, that this was
requirement during the design of the AnT computation engine because
the implementation of the specific integrators for each class of dynamical
systems would lead to an enormous code duplication and had to be avoided.
However, from the mathematical point of view, all classes within one family
are defined in different ways, and especially the number and types of argu-
ments of the system function differs as well. For instance, a state of a map
is a simple real-valued vector, and a state of a CML is a complex cellular
structure.
From the software engineering point of view, this correspond to different
interfaces of system functions, which have to be mapped onto the same in-
terface within an integrator. In order to cope with this problem, special
adaptors (called proxies) are required, as shown in figure 6.2.

6.3.5 The machine concept

Machines can be seen as basic execution patterns specific for simulation of dy-
namical processes and especially dynamical systems. They consist of generic
transitions and represent therefore an abstract transition as well. The basic

164

Chapter 6
Simulating and investigating dynamical systems

idea used here is, that several activities on the field of simulation consist of
three phases, namely:

1. initialization of a task
2. processing of this task as long as necessary
3. finishing this task

A direct realization of this scheme by generic transitions leads to a transition
sequence, consisting of three transitions, whereby the second one is typically
a cyclic repeated transition. This general execution pattern is realized within
the AnT 4.669 project as an abstract class PrePostStateMachine. In the
following the three parts of the transition sequence mentioned above are de-
noted as pre-, during- and post-part of the corresponding machine. Note,
that each of these parts may perform several activities and therefore may
represent a transition sequence. Two realizations of the PrePostStateMa-
chine, namely the Iter- and the ScanMachines, are described in the following
sections 6.3.5.1 and 6.3.5.2.

Note, that several parts of the investigation methods have to be executed at
several phases mentioned above. Therefore, each investigation method has to
be implemented as a collection of transitions. If required, these typical non-
generic transitions can be added to the current instantiation of the execution
model in such a way, that they will be automatically executed at correct
times. An example for the splitting of the investigation methods into single
transitions is discussed in section 6.3.5.3.

6.3.5.1 The IterMachine

The goal of the IterMachine is to perform a simulation run, i.e., the
simulation of a dynamical system with fixed settings.

In the pre-part of the IterMachine several initialization activities have to
be performed. Especially the trajectory has to be initialized with the initial
values. For classes of dynamical systems, where these values are not given
explicitly, they have to be calculated. Typical examples here are the classes
of dynamical systems continuous in time with memory like delay differential
equations. The timer (a data entity, containing the information about the
current simulation time) has to be initialized as well. Depending on the
currently activated investigation methods the data of these methods have to

165

Chapter 6
Simulating and investigating dynamical systems

be initialized as well.

The main task performed in the during-part of the IterMachine is the
calculation of the trajectory. Therefore, one transition always located here,
is the iterator. After the iterator performs an iteration step, the time must
be incremented. This is done by an update of the timer. Additionally
some parts of the investigation methods, which have to be executed in
each iteration step, are executed in the during-part of the IterMachine as
well. A typical termination criterion of the IterMachine is given by the
timer itself. In most cases the simulation has to be performed for a given
time, i.e. a certain number of iteration steps. However, in some cases the
simulation can be terminated ahead of time, for instance if the orbit diverges.

In the post-part of the IterMachine typically transitions of the investigation
methods are executed, which evaluate the calculated orbit and write the
results of the evaluation. As typical examples here one can consider the
corresponding parts of the period analysis or of the spectral analysis.

A schematic representation of the IterMachine is shown in Fig. 6.3. Note, that
this complex structured object remains an instance of the abstract transition
and therefore can be used as an abstract transition within an arbitrary other
execution pattern.

6.3.5.2 The ScanMachine

The goal of the ScanMachine is to perform a series of simulation runs of
a given dynamical system with various settings.

In the pre-part of the ScanMachine some initialization activities are
performed, which have to be done before all following simulation runs. Most
of them are related to the initialization parts of the investigation methods.

The main task performed in the during-part of the ScanMachine is a single
simulation run. Therefore, one transition, which is always located here, is
the IterMachine. Additionally, some parts of the investigation methods,
which have to be executed after each simulation run, are executed in the
during-part of the ScanMachine as well. Note, that the execution of this
parts here is semantically equivalent to their execution in the post-part of

166

Chapter 6
Simulating and investigating dynamical systems

iteration
initialization

methods
plug-ins proxy

iterator

methods
plug-ins

system
function

iteration stop
criterion (timer)

methods
plug-ins

IterMachine

Figure 6.3: The IterMachine: schematic representation

the IterMachine. The termination criterion of the ScanMachine is given by
the required number of simulation runs.

The activities performed in the post-part of the ScanMachine are mostly
related to investigation methods, which are based not only on a single simu-
lation run, but on results of several simulation runs. An example for such an
investigation method is the region analysis. Figure. 6.3 shows a schematic
representation of the ScanMachine. Like the IterMachine, the ScanMachine
is still an instance of the abstract transition and can in principle be used as
an abstract transition within an arbitrary other execution pattern.

6.3.5.3 Splitting of investigation methods

As an illustrative example for the splitting of investigation methods one can
consider the calculation of the mean value for a given sequence of numbers.
Mathematically, one have to sum up all values and to divide the result by
the total number of values. In any software realization, one has to use a
summation variable, which has to be set to the value zero. This represents

167

Chapter 6
Simulating and investigating dynamical systems

scan
initialization

methods
plug-ins

iteration
machine

methods
plug-ins

scan stop
criterion
methods
plug-ins

ScanMachine

iteration
initialization
methods
plug-ins proxy
iterator

methods
plug-ins

system
function

iteration stop
criterion (timer)
methods
plug-ins

IterMachine

Figure 6.4: The ScanMachine: schematic representation

the initialization part of the calculation. After that, the summation is done in
the cyclic repeated part of the calculation. In the final part of the calculation,
the division has to be performed. In order to integrate this algorithm into
the execution model of the AnT computation enginethree corresponding
transitions have to be implemented. Accordingly, the first transition should
be added to the pre-part of the IterMachine, the second one to the during-
part, and the last one to the post-part. In this way the calculation of temporal
averaged mean values for trajectories is implemented.

6.3.6 Conclusions

The presented execution model, used for the implementation of the AnT
computation engine turned out to be generic for many applications on
the field of numerical simulation. The concept of transitions represent a
generic framework and can be used in many application areas of numerical
simulation. This framework can be considered as an analog to a programming
language for the creation of execution models for several applications in this
field. The table 6.1 shows the relationship between several generic transitions

168

Chapter 6
Simulating and investigating dynamical systems

and corresponding structures of common programming languages.

transition statement
transition sequence sequence of statements
conditional transition if statement
cyclic repeated transition loop statement
charted transition switch statements

Table 6.1: Relationship between transitions and instructions

The concepts of the Iter- and ScanMachine represent a general execution
pattern for several applications related to the simulation of arbitrary dy-
namical processes. With respect to the analogy to programming language,
the machines represent a standard template.

6.4 Integration of dynamical systems contin-

uous in time

The numerical solution of an initial value problem of dynamical systems
continuous in time is done by calculating an approximation to the exact
solution from the initial value s(t0), representing the start state to an end
state s(t1) at a time t1 > t0. The exact solution is defined by the trajectory
or orbit

p(t), t ∈ [t0, t1] with p(t0) = s(t0) (6.1)

which can be considered as a path in the state space of the dynamical system.
There are two reasons, why the numerical solution is only an approximation
to this exact path. The first reason is due to the discretization, which is
necessary for the calculations to be done in a digital computer system. Due to
this discretization, the numerical solution of a dynamical system continuous
in time is in fact represented by a system discrete in time. Hence, while the
exact solution is usually a smooth path in the state space (exceptions are
grazing, sliding, stick-slip, impact, corner collision, . . .), the approximation
is not.

169

Chapter 6
Simulating and investigating dynamical systems

6.5 Simulation of generalized Poincaré sec-

tions

As an interesting example for the usage of the software architecture described
above one can consider the implementation of the generalized Poincaré sec-
tions. Like standard maps, Poincaré maps represent dynamical systems dis-
crete in time. However, in order to calculate the next state of the trajectory
for these systems, one has to integrate another dynamical system, typically
continuous in time, until the Poincaré condition is fulfilled (see section 5.12).
Therefore, this dynamical system continuous in time is denoted as dynamical
system inside the Poincaré sections. As one can see, the software realization
of the Poincaré maps has to combine the integration of the dynamical system
inside with the iteration of the map discrete in time. Also the data models
of these two dynamical systems are different and have to be combined in an
appropriate way. The AnT computation engine supports this as follows:

I The data model of the Poincaré map is identical with the data model
of standard maps. If required by some investigation method, the data
model can be extended by a cyclic buffer containing the time intervals,
which the system inside is integrated between two subsequent points
of the Poincaré map. However, for the iteration itself this extension is
not necessary.

I The standard map iterator used for the iteration of the Poincaré map
is connected with a proxy, which is responsible for the integration of
the dynamical system inside. In order to perform this task, this proxy
(called Poincaré map proxy) contains a complete data model of the
dynamical system inside. Additionally, the proxy contains a partial
instantiated execution model of the dynamical system inside as well,
namely the IterMachine for this system as shown schematically in fig-
ure 6.5.

I The termination criterion of the IterMachine inside the Poincaré map
proxy is given by the Poincaré condition. As already mentioned in
section 5.12, this condition can be not only the cross-section with a
hyper-plane, as in the case of classical Poincaré sections. An arbitrary
condition, which selects some specific states from a continuous orbit,
can be used as well.

170

Chapter 6
Simulating and investigating dynamical systems

scan
initialization

methods
plug-ins

iteration
machine

methods
plug-ins

scan stop
criterion

methods
plug-ins

ScanMachine

iteration
initialization

methods
plug-ins

Poincaré
map
proxy

map iterator

methods
plug-ins

iteration stop
criterion (timer)

methods
plug-ins

IterMachine

iteration
initialization

(e.g. ODE)
proxy

(e.g. ODE)
integrator

system
function

iteration stop criterion
(Poincaré condition)

IterMachine (inside)

Figure 6.5: ScanMachine for the simulation of a Poincaré map

The system function of a Poincaré map is given by a complete IterMachine
containing a dynamical system inside. The Poincaré condition defines the
termination criterion of the IterMachine inside.

I The system function of the dynamical system inside is connected to
the corresponding proxy. The fact, that this proxy is connected to
the iterator used in the IterMachine within the Poincaré map proxy is
transparent for the user.

The described architecture is shown in Fig. 6.5. Note, that this architecture
contains no restrictions about the type of the dynamical system inside. This
system can be not only continuous but also discrete in time. In principle it
can be even a Poincaré map, although there is no known application field for
Poincaré maps within Poincaré maps until now.

171

Chapter 7

Distributed computing

7.1 Why distributed computing?

In the last few years, distributed computing or grid computing
has become a new paradigm in the field of supercomputing or high-
performance computing, which is illustrated in the statistics of the
TOP 500 list [163] presented in table 7.1.

The main reasons for this trend are:

I development of fast network technology

I cheap hardware

I enhanced single processor performance

I development of 64 Bit architectures

I widespread availability of computing sites

I enhanced robustness and reliability of the hardware

Distributed computing is a powerful and cheap alternative to other super-
computing architectures and allows high-performance computing at many
places in contrast to the sparse supercomputing sites. Either because rela-
tively cheap clusters are available or because existing workstations or per-
sonal computers are connected using fast networks and can be used for grid
computing. As a consequence of this hardware based trend, the development

172

Chapter 7
Distributed computing

Architecture 1998 1999 2000 2001 2002 2003

Cluster 0.4 1.4 5.6 8.6 18.8 41.6
Constellations 3.4 13.2 23.0 28.6 40.6 25.4
MPP 45.2 51.6 69.2 51.4 40.6 33
SMP 51.0 33.9 2.2 11.4 - -

Table 7.1: Statistics of the TOP 500 list of supercomputing sites

The shares are given in %. Clearly one can see, how the importance of
the cluster sites increases compared with the MMP and especially the SMP
architectures.
MMP: massively parallel multiprocessor machines
SMP: shared memory multiprocessor machines

of software which can be distributed on many computing nodes is increasing
rapidly.

As mentioned in chapter 4, it often occurs during the analysis of the proper-
ties and characteristics of dynamical systems, that one is interested in scans,
that is the investigation of the influence of some quantities, for instance the
system parameters, on the considered characteristic properties. These scans
may be one-, two- or even multi-dimensional and therefore may be very time
consuming. Especially when investigating complex systems, the execution
of such scans required high-performance computing power. It is a great ad-
vantage of scans, that they are mostly inherently parallel. This is due to the
fact, that the simulation runs at a certain parameter value are independent
from simulation runs at other parameter values. As a consequence, such
problems can be solved ideally on a cluster or even a heterogeneous en-
vironment with for instance many different workstations as computing nodes.

This is the reason, for the development of a network variant of the AnT
computation engine. The details about the client/server based archi-
tecture are presented in the next sections.

173

Chapter 7
Distributed computing

7.2 The client/server architecture

7.2.1 Overview of the client/server extension

7.2.1.1 Modes of operation

In this section it will be described how the AnT computation engine
is extended in order to make distributed simulation of dynamical systems
possible. Distributed simulation means that several nodes on a network
(but also several processors that are part of one multiprocessor system)
collaboratively work on one simulation task. Without this extension, the
AnT computation engine is a program that always runs on a single
node, independent of all other nodes on the network. Subsequently this
non-network-aware mode of operation will be called standalone mode.

In order to achieve distributed computing, there has to be a different
run-mode, that is in some way aware of what other nodes are doing.
If there was only one type of network-capable run-mode for the AnT
computation engine, this would imply a peer-to-peer solution, whereby
all instances that are running would be of the same kind. Sometimes such
architectures have great advantages, but almost always a pure peer-to-peer
topology leads to the problem that coordination between instances is very
difficult. Therefore the possibility of a peer-to-peer variant of the AnT
computation engine was not pursued. Instead a client/server solution
was chosen - this means that there are two different variants of the AnT
computation engine that are network-aware: the network client de-
noted as AnT client and the network server denoted as AnT server.

This means that altogether there are now three different modes of operation
or run-modes for the AnT computation engine:

I standalone

I client (AnT client)

I server (AnT server)

In the following, the network-aware run-modes client and server will be dis-
cussed in greater detail.

174

Chapter 7
Distributed computing

7.2.1.2 How client/server operation works

The client/server mode of the AnT computation engine can be used only
for scans (see Chap 4). Because the need to distribute work arises mostly
due to the huge amount of computation necessary for scan-runs, this is no
big constraint.

In networked operation, the run-mode server has to be used on exactly one
node - this AnT network server coordinates only the work that has to
be done, it does not perform calculations for scan-points, but assigns scan-
points to the clients. After a client has completed its share of work, the server
collects the results that the client reports (see Fig. 7.1). However, besides
the distribution and collection of scan-points, the AnT server performs the
calculations that are located in the ScanMachine.post transition. These
calculations usually occur, when investigation methods require a post-scan
processing. A typical example here is the region analysis investigation
method. Hereby, the region analysis itself is a post-scan processing task
which is done in a final step after all the periods are detected.

Figure 7.1: Client/server operation of AnT

175

Chapter 7
Distributed computing

7.2.2 Flow of control and distribution of work

7.2.2.1 Modification of the scanNext transition

The ScanMachine (see Sec. 6.3.5.2) of the AnT computation engine has a
central transition denoted as scanNext. In standalone mode, this transition
selects the next scan-point to investigate. It seems logical to modify the
scanNext transition for networked operation: the server has to choose the
next scan-points for the clients and send them the corresponding information,
but does not actually work on them itself. On the other hand, a client cannot
determine by itself which scan-point is next - it has to query the server for
the next scan-point. To this end, there are now three different variants of
the scanNext transition - one for each run-mode. The standalone variant
remains unchanged, the client and server variants will be described in the
following sections.

7.2.2.2 Network communication on the client

On client-side, the scanNext transition only queries the server for new scan-
points to work on as illustrated in figure 7.2.

Figure 7.2: The scanNext transition on the client

7.2.2.3 Network communication on the server

On the server-side, the necessary changes are more profound: not only is
there the need to change the scanNext transition, but also the entire flow

176

Chapter 7
Distributed computing

of control needs to be changed. The main reason for this is that the server
needs to handle scan-points in a very different way from how they are assigned
by the AnT computation engine. For example on the server it can be
necessary to assign a scan-point more than once (reassigning a scan-point)
when no result gets reported (for example when the client that worked on
this scan-point has crashed). So on the server the scanNext transition gets
executed just once and handles the entire scan internally. This scanNext

transition only does management of scan-points and handles communication
with the clients. This means that there is no IterMachine on the AnT server
(only the scanNext transition gets executed once in the during part of the
server’s ScanMachine). However, ScanMachine.pre and ScanMachine.post

exist only on the server and get executed there (for example the regions
analysis method described in section 5.4 is located in ScanMachine.post of
the AnT server).

7.2.3 Handling output from investigation methods

Apart from the communication that is necessary between client and server,
there is another form of communication that has to be changed within the
AnT computation engine in order to be able to run in client/server
mode: So far, investigation methods opened files themselves and just wrote
their output into these files. While this works in standalone mode, it clearly
will not work in client/server operation. There is the need to handle the
output of investigation methods differently depending on the run-mode. On
the other hand, the implementation of investigation methods needs to be as
simple and clean as possible.

Therefore an abstraction layer for the output of investigation methods was
created: the class IOStreamFactory provides a common interface to be used
by investigation methods, with which those can output their data indepen-
dently of the run-mode. In order to implement the two different kinds of
output, two subclasses LocalIOStreamFactory and NetIOStreamFactory

exist - depending on the run-mode, the right one of these classes is used by
the investigation methods (which are not aware of the current run-mode
themselves).

The main operations of the interface of IOStreamFactory are:

177

Chapter 7
Distributed computing

I getOStream(fileName):
This method opens a stream for output of data and returns an ostream

object. This ostream can be used to output data in the standard C++
way.

I commit():
All data that has been written to an ostream that was created using
getOStream gets flushed (this is only meaningful in networked oper-
ation, but can be called safely in standalone mode). This has to be
called after the data for one scan-point has been written to the respec-
tive ostreams.

7.2.3.1 Output in standalone mode

In standalone mode, the class LocalIOStreamFactory gets used in the inves-
tigation methods. This class behaves just as a wrapper for the ordinary C++
file operations (using the class ofstream). Calling getOStream(fileName)

produces a pointer to an ofstream object that is associated with the file
filename on the local filesystem. This ofstream object can be used in the
usual way, for example by applying the << operator. Calling the commit()

method of LocalIOStreamFactory has no effect - here this method is just
provided so that no distinction between the run-modes has to be made when
using the IOStreamFactory.

7.2.3.2 Output in client/server mode

When running in client mode, the class NetIOStreamFactory gets used in
the investigation methods. This class behaves as an abstraction layer for
communicating with the AnT server: calling getOStream(fileName) pro-
duces a pointer to an ostrstream object, this ostrstream can also be used
in the standard way. This object is also kept in the NetIOStreamFactory in-
ternally - when commit() is called, the contents of all open ostrstreams get
moved into the anpClient communication object (see below). From there
they will be sent to the server after the results for all scan-points assigned to
this client have been calculated.

178

Chapter 7
Distributed computing

7.2.4 Managing the network communication

Both the AnT server and the AnT client contain a component that handles
communication as illustrated in figure 7.3. These components are implement-
ing the server- and the client-side of the AnT Network Protocol (ANP)
respectively. ANP defines in which way the communication between server
and client has to be performed. A detailed description of the AnT Network
Protocol will be given in section 7.3.2.

Figure 7.3: The ANP communication objects on the server and the client

7.2.4.1 Communication on the client

The anpClient object on the AnT client (see Fig. 7.4) implements the client-
side part of the AnT Network Protocol.

Figure 7.4: The anpClient object on the AnT client

There is one instance of the ANPClient class on the AnT client that manages
the communication with the server. This object provides calls to the AnT

179

Chapter 7
Distributed computing

computation engine for each operation that the client needs to do relating
to the network:

I getConfig():
get the configuration data for the scan from the server (this is done
once, when the client is started)

I getScanPoint():
get the next scan-point (from the communication object, which itself
caches scan-points according to the current block-size in order to in-
crease the performance)

I transmitScanData():
gives the results for one scan-point to the communication object (this
call also caches scan-points, until all results for the current block of
scan-points are finished, in order to save communication)

Internally, the ANPClient class fetches and transmits data in blocks that
consist of multiple scan-points (the main reason for this is that opening
network connections is a relatively expensive operation, so the number of
network communications has to be kept low).
The interface of ANPClient hides this caching, so from the point of view
of the AnT computation engine on the client, calling getScanPoint()

always just fetches a single scan-point.

7.2.4.2 Communication on the server

The anpServer object on the AnT server (see Fig. 7.5) implements the server
side part of the AnT Network Protocol.
On the server the scanNext transition gets executed just once and handles
the entire scan internally.
The scanNext transition of the AnT server calls the communicationLoop()

method of the communication object (the anpServer object), which handles
all communication on the server (see Fig. 7.5). The communication object
contains three handlers for the different types of requests from clients that
are called by the communication loop (see Fig. 7.6):

I handleGetConfig():
sends the configuration data for the current scan to a client

180

Chapter 7
Distributed computing

Figure 7.5: The anpServer object on the AnT server

Figure 7.6: The communicationLoop method

181

Chapter 7
Distributed computing

I handleGetScanPoints():
sends a block of scan-points to a client

I handlePutScanPoints():
accepts the results for a block of scan-points from a client

7.2.5 Scan-point management on the server

As has already been mentioned previously, the server does more than just
get the next scan-point from the AnT-engine. It needs to keep track of
scan-points that have been assigned and has to remember these, in case a
scan-point needs to be reassigned. The capability to reassign scan-points
is necessary in order to be able to handle malfunction of client nodes
gracefully. The relevant functionality for this is implemented in the class
ScanPointManagement.
In the following, the mechanisms for scan-point management in the server
are described.

7.2.5.1 Normal operation

From the point of view of the server, there are two types of scan-points that
are not of concern:

I Those that are still to come, which will be announced by the AnT
computation engine in the future. There is no information about
these scan-points in the anpServer or ScanPointManagement yet.

I Those which are entirely done - they have been assigned to a client, the
client has reported results and the results have been written to disk.
There is no longer the need to keep any information regarding these in
the anpServer or ScanPointManagement.

However, the server needs to keep track of two different sets of information:

I scan points that are currently in progress:
These are scan-points that have been assigned to a client, but the
results have not yet been reported back. The server needs to keep the
information about these scan-points in case the need arises to assign
them to another client (for example when the original client never sends
a result because of a malfunction). The order in which the scan-points

182

Chapter 7
Distributed computing

have been assigned to clients is also stored so that the “oldest” scan-
points can be reassigned first.

I unsaved results:
This is data that clients have reported but which has not yet been
written to disk. Results need to be saved in the correct order - the same
order in which the AnT computation engine traverses the scan-
space (this is also the order in which the scan-points get assigned to the
anpServer by the AnT computation engine). So if the clients report
results in another order, some results need to be cached in memory until
all results that have to be written out prior to them are reported.

7.2.5.2 Reassigning scan-points

There are two possible reasons for reassigning scan-points:

I All scan-points have already been assigned to clients, but a new client
is asking for a task. In this case it might be a good strategy to reassign
some “old” scan-points to this client. The reason why no results for
this scan-point have been reported might be that the client that was
originally working on it has crashed. Or the client might be very slow
and unable to report a result within reasonable time.

The duration of the entire scan can not become longer because of re-
assigning scan-points in this manner (however, the amount of total
CPU-cycles spent can!).

I There are a lot of unsaved results and the server is running out of
memory because of this. In this case, it is not entirely clear what to
do:

The missing results (after which the server could write out some of its
unsaved results) might be reported very soon - in this case reassigning
the scan-points would be a bad strategy.

On the other hand, the responsible client might have crashed. In this
case it would be fine to reassign the scan-point again now instead of at
the end of the entire run.

The current implementation only does the first type of reassignment. When
implementing the second type of reassignment, there is the need to make

183

Chapter 7
Distributed computing

some “guess” about when it is a good time to reassign a scan-point. This
will always be a trade-off between overall speed of the scan and the memory
usage of the AnT server.

7.2.6 Fetching more than one scan-point at a time

Opening a TCP network connection (see Sec. 7.3.1.1) is a very time-
consuming operation. Because of this, it is often more efficient to open fewer
connections of which each transmits more data instead of more connections
of which each transmits smaller amounts of data.
In order to minimize the number of connections to the server that AnT clients
open and close during a scan, more than one scan-point can be handled during
one communication cycle.

7.2.6.1 Strategies for fetching on the client

In the current design the decision of how many scan-points should be fetched
in one block (the results are always reported in the same blocks as the work is
assigned) is done by the client. The reasoning behind this is that the server
does not know about the clients at all - the server makes no assumptions
concerning clients. Thus only the client itself can decide what amount of
scan-points is reasonable to work on considering its own speed.
The goal of choosing an amount of scan-points that are transmitted as a
block is to find a good balance between

I minimizing the number of communications (establishing a network
socket connection is an expensive operation),

I not transmitting an undue amount of data as a result (output of in-
vestigation methods) in one block (the transfer time for the assigned
scan-points and for the result that is sent back should not be overly
long, as the server is blocked and can’t process requests from other
clients during that time) and

I not having too much reassignment of scan-points happening close to
the end of a scan. The extreme case of this problem is when each client
fetches all available scan-points and each client just works on the same
set of scan-points. To some extent this effect always happens close to
the end of a scan (so a possible optimization would be to minimize it).

184

Chapter 7
Distributed computing

These aims contradict each other, so it is not obvious which block-size is
good for a given simulation run. As outlined above, there are a number of
influences on the optimal block-size.
The current implementation provides two ways to choose the size of the
blocks that get transferred:

I Select a certain fixed number of scan-points that will always be trans-
ferred at a time.

I Select a certain amount of time that the clients should be busy between
two interactions with the server. The number of scan-points per block
changes over the course of a scan according to the time a block takes
on the client to be completed - the block-size adapts to the work-
load on the node that a client is running on, different complexity of
the dynamical system in different parts of scan-space and to all other
influences on the client’s speed of processing the assigned scan-points.

7.2.7 Limitations in client/server mode

In contrast to many problems in computer science, simulation of dynamical
systems as done by the AnT computation engine is rather well suited
for being distributed on many nodes. The entire functionality can be used
in client/server mode.

The only limitation that is known at the time of this work is, that the state
of the simulator at the end of the previous scan-point cannot be easily used
as the initial state at the beginning of a following scan-point. This is not
easily possible because the order in which the scan-points are processed does
not guarantee that the ’previous’ scan-point has already been completed
at the time - in fact it is very unlikely that it has been in the current
realization. Most subsequent scan-points will be processed in parallel, or
even out of order.

Reusing the previous state in this manner can be an advantage in order to
keep the transient part of orbits small and thus to save iterations. However,
this is not really a limitation to functionality, but rather an optimization that
is not easily applicable in the parallelized version of the AnT computation
engine.

185

Chapter 7
Distributed computing

7.3 Network Communication

This section describes how AnT clients communicate with the AnT server.
Therefore first the TCP/IP protocol suite and Internet sockets will
be introduced. After that, the AnT Network Protocol will be discussed.
This communication protocol defines the actual communication between AnT
clients and the AnT server. The section then concludes with some thoughts
on security in the context of the AnT Network Protocol.

7.3.1 The communication layer

7.3.1.1 TCP/IP

The Internet as it exists today is built on the TCP/IP protocol suite that
was introduced in the year 1983. The constant growth of the Internet - it
doubles in size about every year - brought massive popularity to TCP/IP,
which is now in widespread use in both scientific and corporate context.

At the time of this work, competing network protocols, such as IPX, SNA or
UUCP only have any significance in small niche markets. For this reason, the
communication protocol of the distributed version of the AnT computation
engine is based on TCP/IP.

The TCP/IP protocol suite gets its name from the two most important pro-
tocols that belong to it: the Transmission Control Protocol and the
Internet Protocol, although it includes many other protocols too. A more
detailed discussion of TCP and IP can be found in the respective RFCs, [138]
and [139].

The architecture of TCP/IP can be divided into four layers [81] (see Fig. 7.7):

I The lowest layer is the Network Access Layer. It abstracts the
technical details of the underlying network. For each physical net-
work standard (such as Token-Ring or Ethernet) a Network Access
Protocol has to be developed, that, among other things, handles the
encapsulation of IP datagrams into the frames transmitted by the net-
work and takes care of the mapping of IP addresses to physical network
addresses.

I Above the Network Access Layer lies the Internet Layer. This layer
implements IP, the Internet Protocol. All higher layers use IP to

186

Chapter 7
Distributed computing

transport data. The responsibilities of the Internet Layer include seg-
menting data into datagrams and routing datagrams to remote hosts.

I The next layer is the Host-to-Host Transport Layer. The User
Datagram Protocol (UDP) and the Transmission Control Pro-
tocol (TCP) reside in this layer. Most applications use these protocols
to transport data.

UDP provides a low-overhead, connection-less datagram delivery ser-
vice. UDP is an unreliable protocol. It does not guarantee that data-
grams are delivered in the right order, or at all. If, however, a datagram
is delivered, the data is guaranteed to be error-free.

TCP, in contrast, is a reliable, connection-oriented protocol. All data-
grams are guaranteed to be delivered and the sequence of the datagrams
is preserved. As a drawback, TCP has a higher overhead compared to
UDP. Because reliability is crucial for AnT, TCP is used as communi-
cation protocol.

I The highest layer is the so-called Application Layer. This layer in-
cludes well-known application protocols such as telnet, FTP, SMTP
or HTTP. The distributed version of the AnT computation engine
resides in this layer as well.

7.3.1.2 Internet sockets

The application protocols that are implemented at the Application Layer of
TCP/IP described earlier, use so-called Internet sockets to exchange data
over a TCP/IP network1.
There are basically two kinds of Internet sockets, Datagram sockets and
stream sockets2 [76].
Datagram sockets use the User Datagram Protocol (UDP) to send mes-
sages. Because of the properties of UDP discussed in section 7.3.1.1, Data-
gram sockets are connection-less and unreliable. Datagram sockets are used
in application protocols like tftp and bootp.

1There also exist so-called UNIX Domain sockets, that are used for interprocess
communication. In this context only Internet sockets are of interest.

2Sometimes also called TCP sockets.

187

Chapter 7
Distributed computing

Figure 7.7: Layers in the TCP/IP protocol suite

stream sockets in contrast use the Transmission Control Protocol
(TCP). TCP guarantees the reliable delivery of data. TCP is a reliable,
connection-oriented, byte-stream protocol. Therefore stream sockets
are reliable, two-way connected communication streams. stream sockets are
in widespread use, for example in application protocols like telnet or HTTP.

TCP achieves reliability by a mechanism called Positive Acknowledgment
with Re-transmission (PAR). The sender retransmits a message, if it
doesn’t receive an acknowledge message from the remote system in time.
Each message contains a checksum, so the recipient can check if the data is
undamaged. Messages also contain a sequence number that can be used to
identify duplicated messages and to preserve the sequence of the messages.

Connection-oriented means that a connection between two hosts has to be
established first, before any data can be transmitted. TCP uses a so-called
three-way handshake to establish a connection3. Once the connection is
established, data can be sent in both directions.

TCP handles the data it sends as a continuous stream of bytes. To an
application, stream sockets look just like sequential files. The system calls to

3This handshake is not to be confused with the ANP handshake described in sec-
tion 7.3.2.2.

188

Chapter 7
Distributed computing

read from and write to stream sockets are the same as the system calls that
are used to read and write files.

As has been seen, stream sockets are a reliable and comfortable means of
communication between remote hosts. The application protocol that is used
in the distributed version of the AnT computation engine uses stream
sockets to exchange commands and data between the clients and the server.
The term socket from now on always addresses stream sockets in this
document.

7.3.1.3 Client/server programming with sockets

The client/server model is very popular in network programming. Almost
all well-known network services use this model. Telnet for instance consists of
a telnet server running as a daemon (telnetd) and a telnet client that is called
by the user (the telnet program itself). There are many other client/server
pairs, such as ftp/ftpd, ssh/sshd or web browser/httpd.

Figure 7.8: The client/server model

Figure 7.8 summarizes the interactions between the client and the server. The
communication is always initiated by the client by sending a request to the
server. The server then sends a response to the client and the communication
is ended. Often more than one client can talk with a server.

The client/server model can be implemented in many different ways - using
Datagram sockets, stream sockets or any other communication protocol. In
the AnT computation engine, the client/server model is implemented
using Stream sockets. Figure 7.9 shows the system calls that take place in a
simple client/server example using stream sockets [76].

I At first the server is started. The server creates a new socket with the
socket() system call.

I It then calls bind() to assign a port number to the socket.

189

Chapter 7
Distributed computing

Figure 7.9: Implementing the client/server model with stream sockets

I The listen() system call prepares the server to accept incoming con-
nections.

I The server then waits for a client to connect calling accept().

I Now a client can be started. The client also has to create a socket first
using the socket() call.

I Then the client has to bind() the socket to a local port number.

I The client then can establish a socket connection to the server using
the connect() system call.

I Once the connection is established both server and client can send and
receive data with the send() and recv() system calls.

I When all communication is done, both client and server call close()
to close the socket connection.

The server then loops back to the accept() call to handle further client
requests. If more than one client starts a request at the same time, the

190

Chapter 7
Distributed computing

connect() requests are stored in a queue and handled by the server one by
one.
It is also possible that the server creates a new thread (or forks) after the
accept() call and the client is handled by a different thread (or process).
The server then immediately returns to the accept() call. In this case, the
server can handle several clients at the same time. This approach can be
used to improve the performance of the server, but makes it generally more
difficult to program the server, in particular when the server threads need to
be synchronized. The AnT server as it is implemented now does handle the
clients in one single-threaded task.
Although a C++ wrapper class is used in the AnT computation engine
to program sockets instead of the basic system calls, the same principles for
the communication between the AnT server and the AnT clients as the ones
explained here apply.

7.3.2 The AnT Network Protocol

7.3.2.1 Introduction

As discussed earlier, the client/server model is used in the network version
of the AnT computation engine. Therefore it is divided into one AnT
server and one or many AnT clients. The AnT Network Protocol (ANP)
defines the communication events that can take place between an AnT client
and an AnT server. These events are so-called ANP commands.
ANP uses stream sockets as described in section 7.3.1.2. Therefore the par-
ticipating nodes have to be connected by a TCP/IP network in such a way
that each client can establish a TCP connection with the server at any time.
It is always the AnT client that initiates communication with the AnT server.
The server thus has to be started prior to any client and is always waiting
for a client to send an ANP command. Figure 7.10 shows the life-cycle of an
AnT client. The figure also shows all available ANP commands.
The GET CONFIG command is called once during the startup of a client to
fetch the configuration data from the server. During calculation the GET

SCANPOINTS and the PUT SCANPOINTS commands are called several times to
get new scan-points from the server and to report the results back to the
server. The subsequent sections describe the individual ANP commands in
detail.
ANP as described in this document has the version ANP/1.0. As changes

191

Chapter 7
Distributed computing

Figure 7.10: Life-cycle of an AnT client

to the protocol become necessary, a new ANP version number has to be
assigned to the new protocol. This is intended to avoid problems when in-
compatible versions of an ANP server and an ANP client try to communicate
(the handshake discussed in the following section is designed to detect such
problems).

7.3.2.2 Establishing a connection

Every communication between a client and the server is preceded by a hand-
shake: the client sends its ANP version and the name of the active dynamical
system to the server. The client then waits for the server to reply.

Client sends:

ANP/1.0

lorenz63

The server checks if the client has loaded the same dynamical system as the
server (by comparing the transmitted name of the system) and if the ANP
version of the client is compatible with the ANP version of the server. If the
client meets both requirements, the server sends a reply containing the ANP
version of the server.
Receiving this message, the client knows that the connection has been suc-
cessfully established. The server now expects the client to send an ANP
command (like GET CONFIG or PUT SCANPOINTS, which will be described in
the following sections).

192

Chapter 7
Distributed computing

Server sends:

ANP/1.0

If, on the other hand, the client has not loaded the same dynamical system as
the server, or the ANP version of the client is not compatible with the ANP
version of the server, the server tells the client that the connection failed.
This CONNECT FAILED message is followed by an error message explaining
what went wrong. The client exits with a respective error message when
receiving such a reply from the server.

Server sends:

CONNECT FAILED

<error message>

This handshake takes place prior to every single ANP command a client
sends to the server. The intention of this handshake is to prevent mistakes
of the user - it is not sufficient to prevent a malicious client or server from
exploiting the communication protocol. See section 7.3.3 for a more detailed
discussion of security in regard to ANP.

7.3.2.3 Initialization of a client

After a client has been started, the first thing the client does is to fetch an
initialization file (see Sec. 8.2.1) from the server. The client initializes itself
according to the information provided in the initialization file. Therefore
the client first establishes a connection using the handshake described in
section 7.3.2.2. It then sends the ANP command GET CONFIG to the server
and waits for the server to send the initialization file:

Client sends:

GET CONFIG

The server answers to this command by sending the content of the initializa-
tion file followed by an EOF character and closes the connection afterwards.

Server sends:

<contents of the initialization file>

EOF

193

Chapter 7
Distributed computing

7.3.2.4 Requesting scan-points

Using the ANP command GET SCANPOINTS the client can request new scan-
points from the server. A client usually does this right after it has initialized
itself (see Sec. 7.3.2.3) or after it has reported the result for all previously
fetched scan-points (see section 7.3.2.5). Once again the client first has to per-
form a handshake (as described in section 7.3.2.2) before the GET SCANPOINTS

command can be sent.
The client tells the server how many scan-points it would like to fetch. The
user of each client specifies, how this amount is to be determined. Either the
amount is fixed, or the client tries to fetch as many scan-points as needed to
keep it busy for a certain amount of time.

Client sends:

GET SCANPOINTS

<number of scan-points>

I <number of scan-points> is the number of scan-points the client
would like to get from the server.

If there are any scan-points available, the server answers as follows:

Server sends:

<number of scan-points>

<scan-point>*

I <number of scan-points> is the number of scan-points that the
server is about to send to the client. This may be up to as many
scan-points as the client requested from the server (However, the server
might send fewer scan-points as requested, in particular near the end
of the calculation).

I <scan-point>* are the individual scan-points. Each <scan-point> is
transmitted as follows:

Server sends:

194

Chapter 7
Distributed computing

<sequence number>

<length of scanpoint description>

<scanpoint description>

• <sequence number> is a consecutive number that is assigned to
the scan-point by the server. The server uses this number to be
able to associate results reported by the clients with a scan-point.
Therefore the server expects this number to be reported by the
client along with the results for the scan-point.

• <length of scan-point description> is the length of the sub-
sequent description of a scan-point in bytes.

• <scan-point description> is the ASCII representation of a
scan-point.

If, on the other hand, the calculation is complete and the server has no more
scan-points to assign to the client, the server replies a 0 to the client (0 scan-
points available) and closes the connection. The client here-upon exits (see
Sec. 7.3.2.6).

Server sends:

0

7.3.2.5 Reporting results

If a client has calculated the results for all scan-points assigned to it, it reports
the results back to the server. To initiate this, the client sends the ANP
command PUT SCANPOINTS to the server (after establishing a connection with
the server as described in section 7.3.2.2).
The PUT SCANPOINTS command is followed by the number of scan-points for
which results are to be reported. Then the individual scan-point results are
transmitted.

Client sends:

PUT SCANPOINTS

<number of scan-points>

<scan-result>*

195

Chapter 7
Distributed computing

I <number of scan-points> is the number of scan-points that the client
is going to report results for.

I <scan-result>* are the individual results for the scan-points. Each
<scan-result> consists of the following three parts:

Client sends:

<sequence number>

<number of files>

<file>*

• <sequence number> is the sequence number that the server trans-
mitted along with the scan-point initially (see Sec. 7.3.2.4).

• <number of files> is the number of files that the result for this
scan-point consists of. The individual files are transmitted after-
wards4.

• <file>* are the files that contain the results. Each <file> con-
sists of three parts which are constructed as follows:

Client sends:

<filename>

<length of file>

<file contents>

◦ <filename> is the name of the file.

◦ <length of file> is the length of the following file contents
in bytes.

◦ <file contents> are the contents of the file as plain ASCII
text.

When the last scan-point is transmitted the client ends the communication.
The server doesn’t send any acknowledgment.

4number of files can also be zero

196

Chapter 7
Distributed computing

7.3.2.6 Terminating the server and the clients

The server’s during transition exits (and thus the ANPServer object gets
destructed) as soon as results have been reported for every scan-point by
the clients (after that, the server executes its post transition, which can
for example contain transitions that belong to an investigation method).
Because the server doesn’t manage a list of participating clients, it can’t tell
every client to quit. Instead, the clients exit if they can’t establish a network
connection to the server anymore (which they can’t after the ANPServer
object has been destructed).
As an exception, the first client that can’t fetch any new scan-points exists
after receiving 0 for the number of available scan-points as response for the
ANP command GET SCANPOINTS (see Sec. 7.3.2.4).
If one wants to stop a simulation run, only the server needs to be stopped.
The clients will thereafter exit automatically (after their next attempt to
connect to the server).

7.3.2.7 Restarting an AnT server

When stopping the AnT server on a given machine and starting it again
(after a short period of time), it can happen that the TCP port that the
AnT server tries to bind to has not yet been released by the kernel.
This problem is not related to the AnT server in particular (see also [108])
- under certain circumstances the socket that the server used while it was
running goes into a state called TIME WAIT and stays there for a certain time.
During this time, it is not possible to bind() to this port. This is not a bug,
but rather a feature of TCP/IP.
One noticeable effect of this is that after an AnT server has stopped, it is
impossible to start it again during a certain period of time. The length of this
period of time depends on the operating system. On Solaris it is 4 minutes
while on many other systems (including GNU/Linux) it is 1 minute.
In case of this failure, the AnT server exits with an error message of the form

Could not bind to address ’<hostname>:<port>’

7.3.3 Security

This section will discuss security issues connected with the networked oper-
ation of the AnT computation engine and the AnT Network Protocol.

197

Chapter 7
Distributed computing

7.3.3.1 Basic assumptions

In computer networks two generally different sorts of attacks have to be con-
sidered: attacks that only listen to communication on the network (eaves-
dropping) and attacks that change existing communication or produce com-
munication by themselves.

In this work, the basic assumption is that eavesdropping on the communica-
tion between an AnT server and an AnT client is no risk by itself - because
the calculations that are made are not of a confident nature. If this assump-
tion is not true in some application of the AnT 4.669 software package,
then either the entire concept of ANP has to be changed accordingly, or the
network needs to be secured in an appropriate way (fire-walling, control, en-
cryption, . . .). In universities and similar environments, such secrecy should
usually not be any concern.

In contrast to this, active changes of the communication between AnT client
and server have to be rated differently. Attacks to computers that are con-
nected to the Internet are part of life on the net - every service that is running
on a system that is connected to the Internet is a potential security risk. This
also applies to the AnT server.

But as the AnT computation engine and in extension ANP will in all
likelihood never be spread very widely, it seems safe to assume that attacks
to ANP will not happen on a large scale - if anything, attackers will most
likely be not overly motivated.

The most likely type of attack will probably have the form of a “prank”, or a
“practical joke” in a context where the AnT 4.669software will be used (for
example within a university). ANP is designed to withstand such attacks to
a certain degree (the main obstacle is to challenge the client to announce the
name of the dynamical system which is currently being simulated).

7.3.3.2 Filenames for output-files

Having the server store results in an arbitrarily named file that can be cho-
sen by any AnT client poses an enormous risk. A malicious client could
try to change important initialization files or corrupt data this way (editing
$HOME/.rhosts on the machine the AnT server runs on is not something
that the AnT client should be allowed to do).

To minimize the possibilities of such an attack, the server only accepts file-
names of a certain form. It is not allowed to change to a directory above the

198

Chapter 7
Distributed computing

current one (that the AnT server was started from) - in particular “..”, “∼”
and a “/” at the beginning of the filename are not allowed.

Legal filenames are defined by the following regular expression:

<alphanum> = [a-zA-Z0-9_]

<slash> = /

<dot> = .

<filename> = <alphanum>+ (<slash> <alphanum>+)*

<dot> <alphanum> <alphanum> <alphanum>

Filenames which can’t be produced by the regular expression <filename>

get ignored by the server, the corresponding data is lost and a warning of
the form

ANPServer: Invalid filename ’<filename>’

is printed on the server’s console.

7.3.3.3 Attacks of the communication between client and server

Eavesdropping on the communication As already stated above, in the
design of ANP it was assumed that there is no danger in eavesdropping
itself. Therefore if an attacker has the means to eavesdrop on the net (for
this being root on a machine on the same network is usually needed), ANP
can do nothing to stop him.

In general, if no encryption of the entire communication is done, there is no
protection against eavesdropping (just as with most other Internet protocols
like http, ftp, electronic mail, nfs, . . .).

Attacks by a malicious client The AnT Network Protocol provides basic
protection against an attack by a malicious client (which could be a program
written from scratch, designed to disrupt the operation of a simulation per-
formed by the AnT computation engine or a modified version of the AnT
client itself) by demanding the complete ANP handshake before the actual
communication takes place - a client that is not able to fully perform the

199

Chapter 7
Distributed computing

handshake will not be able to interfere with the calculation itself (to com-
plete the handshake, knowledge of the name of the system that is being
simulated is necessary5).

At best, a malicious client that does not know the right system name can
block the AnT server by connecting to it without communicating at all (this
would amount to a denial-of-service attack).

A malicious client that knows the right system name on the other hand can
interfere with the calculation in very disruptive ways, worst of all sending
the server wrong results.

To successfully attack the AnT server in this way the attacker needs either
insider knowledge or the ability to eavesdrop on the network (or a list of
names of dynamical systems to conduct a brute-force word-list attack).

Manipulation of communication In this case, manipulation of commu-
nication amounts to the same as the combination of eavesdropping and a
malicious client - it is possible to pollute the results of the simulation by
manipulating results as they are being sent to the server.

Another possible attack would be to make the clients use up all their CPU
time without actually generating any results (by changing the initialization
file that is sent from server to client, for example) - this would also be a
denial-of-service attack.

7.3.3.4 Attacks on the lower layers

So far, the security of the ANP layer was considered. But there is also the
risk that any of the layers below the application layer might be vulnerable to
some sort of attack - the underlying socket-libraries of the operating system
may have bugs, the standard C++ library, the implementation of TCP/IP
in the operating system. Many security holes that get exploited are not flaws
of the attacked program itself, but problems of a specific library that this
program uses (in particular buffer overflows are regularly provoked this
way). Such attacks could ultimately lead to a break-in into the account of
the user in which the AnT server is running.

5An attacker with the ability to eavesdrop on the communication can of course trivially
obtain the system-name. However, eavesdropping on a network is typically harder than
only communicating with a server.

200

Chapter 7
Distributed computing

7.3.3.5 Minimizing the risk

Running the AnT server from a privileged user account has to be considered
a risk, even if no attack is known at this time. If there is the need to take as
little risk as possible while using the AnT server, it might be best to create
a user account that does nothing but run the AnT server. This way, the
possible damage by a successful attack on the AnT server can be kept within
certain limits.

7.4 Scaling behavior of distributed scans

When dealing with grid computing and distributed applications on computer
networks or clusters, one of the important questions is about the scaling be-
havior of the application, that is roughly speaking the speedup factor with
respect to the total number of nodes involved in the computation. Of course,
the ideal speedup factor would be the number of nodes itself and is in princi-
ple the theoretical limit to the speedup factor. In some extraordinary cases,
so-called speedup anomalies could be observed, which may result in a su-
perlinear speedup slightly larger than the number of involved processors.
These speedup anomalies are mainly caused by memory or caching effects
and have no real meaning.

In almost all cases, the scaling behavior depends on the number of involved
computing nodes and of course on the specific problem under consideration.
If a problem can be generically parallelized, which is the case when the
problem can be divided into subproblems which are totally independent
from each other, then the speedup factor grows first linearly, before it leaves
the bisecting line. For a certain number of involved nodes, the speedup
factor has a maximum value and slows down if the number of nodes is
increased further, due to communication overhead which increases more
and more with the number of involved nodes.

Because the scan problems described in chapter 4 can be generically
parallelized, the scaling behavior of the client/server mode of the AnT
computation engine is exactly of that type described above. This scaling
behavior of some typical scan problems is illustrated in figure 7.11. Hereby
a specific scan problem was solved on a Linux cluster with 128 identical

201

Chapter 7
Distributed computing

ld (number of nodes)

ld
(s

pe
ed

up
fa

ct
or

)

(a) large communication overhead
ld (number of nodes)

ld
(s

pe
ed

up
fa

ct
or

)

(b) small communication overhead

Figure 7.11: Typical scaling behavior of distributed scans

Shown are the speedup factors (blue and green circles) of three different scan-
runs in dependence on the number of involved computation nodes varied from
1 to 128 in powers of two in a doubly logarithmic representation. The red
bisectoring line marks the theoretical limit of the speedup factor. Clearly one
can see the divergence of the real speedup factor from the theoretical limit
at a certain number of involved nodes, caused by communication overhead.
In (a), the scan problem is ill-posed which results in a large communication
overhead and a reduced speedup factor (note the logarithmic scale), whereas
the two cases in (b) are well-posed scan problems with small communication
overheads resulting in relatively good speedup factors.

Intel Xeon 3.06GHz CPUs. The number of involved nodes was varied from
1 to 128 in powers of 2. The speedup factors were calculated as the ratio of
the total computation time using only one node to the total computation
time needed by the corresponding number of computing nodes. As one can
see, the client/server architecture of the AnT computation engine scales
very well for the considered problem.

Remark:
An appropriate choice of the command line arguments presented in sec-
tion 2.4.2, would lead in many cases to a suitable scaling behavior like the
one presented in figure 7.11(b). However, this appropriate setting has to be
done by hand and requires some experience.

202

Chapter 8

AnT-gui: the graphical user
interface

8.1 Motivation

In this chapter, the graphical user interface AnT-gui of the AnT 4.669
software package is presented. Because it was designed as a non-interactive
simulation system (see Sec. 1.2.3.2), the initialization phase of the AnT
computation engine may be a challenging task. The degree of complexity
of the initialization and how time-consuming it is, depends not only on
the knowledge about dynamical systems and on the experience with the
AnT 4.669 software package, but also on the specific dynamical system to
be investigated.

1. Because the specification of initial values or system parameters depend
linearly on the state space dimension Ns or the parameter space dimen-
sion Np, it is obvious, that the initialization is more time-consuming
for dynamical systems with many degrees of freedom or many system
parameters.

2. The initialization of DDEs (see Sec. 3.4.2.1) and FDEs (see Sec. 3.4.2.3)
requires an initial function on the memory interval for each state space
variable, which usually have some additional parameters to be specified.
Similarly, the PDEs (see Sec. 3.4.1.3) require the specification of a
spatial initial function for each state variable.

203

Chapter 8
AnT-gui: the graphical user interface

3. The usage of the scan capabilities of the AnT 4.669 software package
(see Chap. 4), requires an additional initialization of the scan to be
executed, that is the specification of the individual scan items contained
in the scan item sequence.

4. Usually each investigation method needs specification parameters and
settings, which have to be supplied by the user.

5. Due to the many possible graphical representations of trajectories, the
usage of the OpenGL based visualization requires a large number of
settings.

The abovementioned examples of some initialization steps demonstrate, that
the development of a graphical user interface was necessary, to support and
guide a user of the software through the complex initialization phase. Unfor-
tunately, it is not possible to demonstrate all the capabilities of the AnT-
gui in detail, instead a rough overview concerning the main functionalities
is given.

8.2 Initializing the AnT computation engine

The initialization of the AnT computation engine is done by an ini-
tialization file, which contains all necessary information mainly by the
specification of corresponding key-value pairs or key-value assign-
ments. Hereby the notion of value has to be interpreted in that sense, that
to a given key also an array or another data structure could be assigned
to. The initialization file initializes and controls the AnT computation
engine, so that the engine can perform the simulation and investigation
of the specified dynamical system according to the user instructions
given by the key-value pairs. The initialization file can be created by
hand or even simpler and much more convenient with the graphical user
interface AnT-gui. As already mentioned, the user interface guides the
user through the initialization phase in a way, which should be as intuitive
as possible. After the initialization is completed, the user interface allows
the saving of the defined initialization in an initialization file, so that
it can be used later by the AnT computation engine. Alternatively
the AnT computation engine could be launched directly from the user

204

Chapter 8
AnT-gui: the graphical user interface

interface and the simulation and investigation is carried out immediately.

The advantages of the usage of key-value pairs or key-value assignments are:

I shared data
All possible key-value assignments are defined in the configuration file
GlobalKeys.cfg, which will be installed together with the software
itself. On the one hand, the AnT computation engine uses this
configuration file to verify, whether a user supplied initialization file,
that is the set of key-value assignments, is syntactically correct. On
the other hand, the graphical user interface AnT-gui uses the same
configuration file, which controls in this case the possible entries or
selections in the several windows of the graphical user interface.

I flexibility
The names of the keys could be changed and this has to be done at only
one place, namely within the configuration file GlobalKeys.cfg. Once
a change is made and of course after the compilation, the graphical
user interface is automatically ”aware” of this change, because it gets
its information from the configuration file.

I extendibility
When extensions to the AnT computation engine are made, for in-
stance a new integration method for the ODE class (see Sec. 3.4.1.1)
was added, then after the compilation, the list of integration methods in
the graphical user interface (see Fig. 8.6) contains the new method au-
tomatically, without any further intervention of the developer or main-
tainer.

I multi language support
Although at the moment, the AnT 4.669 software package has no
multi language support, it could be implemented without much effort,
because only the file with the definition of the key-value assignments
have to be adapted to the new language.

8.2.1 A simple initialization file

In the following a simple - in fact really simple - initialization file is presented,
which was used to produce the cobweb diagram (see Fig. 3.2(c)) in Chap. 3
on page 52.

205

Chapter 8
AnT-gui: the graphical user interface

Generated by AnT 4.669, Release 3a, (c) 1999-2004

dynamical_system = {

type = map,

name = "Logistic map",

parameter_space_dimension = 1,

parameters = {

parameter[0] = {

value = 3.83,

name = "alpha"

}

},

state_space_dimension = 1,

initial_state = (0.504666487408413),

reset_initial_states_from_orbit = false,

number_of_iterations = 4

},

scan = {

mode = 0

},

investigation_methods = {

general_trajectory_evaluations = {

is_active = true,

transient = 0,

saving = {

is_active = true,

type = time_oriented,

points_step = 1,

trajectory = false,

trajectory_file = "orbit.tna",

cobweb = true,

cobweb_file = "cobweb.tna",

velocity = false,

current_velocity_file = "orbital_velocity.tna",

phase_portrait = false,

phase_portrait_file = "phase_portrait.tna",

initial_states = false,

initial_states_file = "initial_states.tna",

206

Chapter 8
AnT-gui: the graphical user interface

save_only_specific_area = false

}

}

},

visualization = {

is_active = false,

transient = 0,

points_step = 1,

update_step = 1,

buffer_size = 1,

number_of_windows = 0

}

As one can see, the initialization file consists of four main sections, namely
the dynamical system section, the scan section, the investigation section and
the visualization section. Each of this main sections specifies a part of the
initialization.

8.2.1.1 The dynamical system section

In this section of the initialization file, general information about the
dynamical system to be investigated should be provided. If one takes into
account, that in the case of a user supplied system, the user has provided
a C++-file of the implementation of the system, one could think, that
some part of this information is redundant. In fact it is, but it is used for
consistency checks. For instance, if a user provides an implementation of
a dynamical system of the ODE class and specifies in the initialization file
a map, the AnT computation engine bails out with the following error
message:

loading the system... system loaded successfully

starting scanMachine...

ProxyException: Map system function is not defined!

Error::Exit: abnormal program termination!

Bye!

207

Chapter 8
AnT-gui: the graphical user interface

Or in the case where one specifies, that the system has a state space
dimension of 2, but the implemented system has in fact three state vari-
ables, then the AnT computation engine bails out with the error message:

Array assignment failure.

Trying to put an entity list of length 3

into an array of length 2.

Error::Exit: abnormal program termination!

Bye!

The main part of the information given here provides the AnT compu-
tation engine with general information about the dynamical system such
as

I the parameter space dimension Np

I the values of the parameters

I the state space dimension Ns

I the initial states or initial functions

I the number of iterations

I the numerical integration method if necessary

8.2.1.2 The scan section

In this section of the initialization file, the scan mode, the scan item sequence
and the individual scan items are provided. In the example above, the scan
mode is 0, and hence no scan is performed. This is obvious, because the
cobweb diagrams are defined for fixed parameters only.

8.2.1.3 The investigation method section

In this section of the initialization file, the investigation methods which
should be applied during or after the simulation of the considered dynami-
cal system are provided. Depending on the complexity of the investigation
method, the user may provide here several specifications. See for instance the

208

Chapter 8
AnT-gui: the graphical user interface

relatively large number of specification entries in figure 8.5, for the frequency
analysis (see Sec. 5.7), the Lyapunov exponents analysis (see Sec. 5.5) and
the period analysis (see Sec. 5.3). In the presented example initialization file,
only the general trajectory evaluation method is selected with an ac-
tivated saving option and the cobweb representation as only selected saving
method. Together with the number of four iterations and the initial value
x0 = 0.504666487408413, which was chosen in such a way, that it already
lies on the three-periodic limit cycle, a run of the AnT computation en-
gine would lead to the saving of the data needed for the cobweb diagram in
figure 3.2(c)).

8.2.1.4 The visualization section

In this section of the initialization file, the OpenGL based visualization is
specified. According to the many features and possibilities of the visualiza-
tion, this part is the most substantial part of the initialization. As one can
see, in the presented example, the visualization is switched off.

8.3 The graphical user interface

As already mentioned, the graphical user interface of the AnT computa-
tion engine guides a user through the initialization phase of the simulation
system. Hereby, the user interface supports the user of the system by a
help system, giving hints via pop-ups and detects unresolved dependencies
or conflicts. In figure 8.1, the main window of the user interface is shown.
From this one can start from scratch creating a new initialization file or
load an existing one. Because the initialization procedure of the AnT-gui
is based on the structure of the initialization file, its root window has also
the four main sections or parts described above (see Fig. 8.2).
In figure 8.3 the windows corresponding to these four main parts are shown.
After the editing of the file is completed, a user can save it and start the
AnT computation engine later or launch the AnT computation engine
directly using the run button of the main window. After that, a small window
asks for the run-mode and the system to be simulated. The system can be
chosen via a selector, which allows the selection of the corresponding shared
library file (see Fig. 8.4).
In figure 8.5 screen shots of some investigation methods are presented,

209

Chapter 8
AnT-gui: the graphical user interface

Figure 8.1: AnT-gui: main window

The main window of the graphical user interface. One can start totally from
scratch with a new initialization file or load an already existing one. After
editing the file one can save it and start the computation.

Figure 8.2: AnT-gui: AnT root window

Like the initialization file itself, the AnT root window consist of the four
main parts. The dynamical system part, the scan part, the investigation
methods part and the visualization part. These parts have to be specified,
prior to a simulation and analysis run.

210

Chapter 8
AnT-gui: the graphical user interface

(a) dynamical system part (b) scan part

(c) investigation methods part (d) visualization part

Figure 8.3: AnT-gui: main parts of the initialization

(a) Screen shot of the dynamical system window
(b) Screen shot of the scan window
(c) Screen shot of the investigation methods window
(d) Screen shot of the visualization window

211

Chapter 8
AnT-gui: the graphical user interface

(a) choosing the run-mode (b) selecting the system function

Figure 8.4: AnT-gui: running a system

In (a) a screen shot of the Starting AnT window, where one can choose the
run-mode, is presented. In (b) the system selector is shown, which allows
the selection of a shared library file corresponding to the system function of
the dynamical system to be simulated.

212

Chapter 8
AnT-gui: the graphical user interface

whereas this chapter will be closed with figure 8.6, which shows a screen
shot with a part of all implemented integration methods for dynamical sys-
tems continuous in time (see Sec. 3.4).

213

Chapter 8
AnT-gui: the graphical user interface

(a) frequency analysis window (b) Lyapunov exponents and period
analysis windows

Figure 8.5: AnT-gui: some investigation methods

(a) Screen shot of the Lyapunov analysis window
(b) Screen shot of the period analysis window
(c) Screen shot of the frequency analysis window

214

Chapter 8
AnT-gui: the graphical user interface

Figure 8.6: AnT-gui: integration methods

This figure shows a screen shot of the selector, from which the integration
method for the following time continuous classes: ODEs, CODELs, DDEs,
CDDELs, FDEs and PDEs can be selected. The scrollbar on the right il-
lustrates, that the AnT computation engine provides a large number of
integration methods.

215

Chapter 9

Visualization of dynamical
systems

9.1 Motivation

The importance of scientific visualization grows steadily and rapidly in the
last years. The fast development of high performance graphics cards acceler-
ates the development and the usage of visualization tools. One well-known
example of such a visualization tool is the OpenGL cross-platform standard
for 3D rendering and 3D hardware acceleration [124, 107]. This standard
was used also for the visualization part of the AnT 4.669 software package.

The main advantages of this visualization are on the one hand, that it will
be done in the course of the simulation and on the other hand, that one
can translate, rotate or scale an image, for instance of an attractor, in an
interactive manner. To see, how the sometimes quite complex structure
of a chaotic attractor emerges in the course of time and the possibility to
change the view on it in different ways, is very useful for the understanding
of this complex geometric structures. Although this two advantages cannot
be illustrated here, in the next section some examples of the visualization
are given.

216

Chapter 9
Visualization of dynamical systems

9.2 The visualization capabilities of

AnT 4.669

9.2.1 Visualizing trajectories

The aim of the current status was the possibility to visualize trajectories,
that means the state of a dynamical system or some of its components in the
course of time. The following two representations are supported:

1. Representation in the extended state space

2. Representation in the state space

Hereby the extended state space is defined as the Cartesian product of the
state space with the time component. For instance, a time series of one state
component, that is the plot of this component versus time, is the extended
state space representation of this single component. Of course this can be
done also with two components. The state space representation allows also
two- or three-dimensional versions. Here the state components are plotted
versus each other.

9.2.1.1 State space representation

In figure 9.1 the state space representation of two trajectories of the Aizawa
system (see Sec. 11.4) for two different parameter settings are shown.

9.2.1.2 Extended state space representation

In figure 9.5 three time series of the Rössler system (see Sec. 11.5) are pre-
sented, which show the evolution in time of the three state variables or com-
ponents of this system. The parameter setting is the same as in figure 9.3(a).
As already mentioned, the behavior is in this case periodic.
As demonstrated, the AnT 4.669 software package allows not only the sav-
ing of data produced by the simulation and the application of some investi-
gation methods, but also the animated visualization of the trajectories of the
considered dynamical system. This type of visualization is useful, because
the animated representation of trajectories in the course of time helps to
discover basic principles of the underlying dynamics.

217

Chapter 9
Visualization of dynamical systems

(a) Aizawa system: chaotic attractor (b) Aizawa system: chaotic attractor

Figure 9.1: Aizawa system: example attractors

In (a), a very picturesque chaotic attractor of system (11.4) is shown, whereas
in (b) a chaotic attractor near the end of a period-doubling scenario is pre-
sented.

(a) Lorenz84 system: chaotic attractor (b) Lorenz84 system: chaotic attractor

Figure 9.2: Lorenz84 system: example attractors

Two different chaotic attractors of the Lorenz84 system (see Sec. 11.6) are
shown.

218

Chapter 9
Visualization of dynamical systems

(a) Rössler system: limit cycle (b) Rössler system: chaotic attractor

Figure 9.3: Rössler system: example attractors

In (a), a limit cycle with period two occurring in a window of the chaotic
regime is shown (compare the Lyapunov spectrum in Fig. 11.14). In (b) a
chaotic attractor of this system is presented. Parameter settings:

(a) a = 0.15, b = 0.2, c = 18.35
(b) a = 0.15, b = 0.2, c = 12.0

219

Chapter 9
Visualization of dynamical systems

(a) Lorenz system: chaotic attractor (b) Lorenz system: x versus y

(c) Lorenz system: x versus z (d) Lorenz system: y versus z

Figure 9.4: Lorenz system: chaotic attractor in 3D and 2D projections
(a) chaotic attractor at the parameter setting σ = 16.0, r = 45.92, b = 4.0
(b) xy projection
(c) xz projection
(d) yz projection

220

Chapter 9
Visualization of dynamical systems

(a) Rössler system: x component

(b) Rössler system: y component

(c) Rössler system: z component

Figure 9.5: Rössler system: time series

Three periodic times series or extended state space representations of the
state components of the Rössler system (11.5) are shown. The parameter
setting is the same as in figure 9.3(a).

221

Chapter 10

Numerical aspects of simulation

10.1 General remarks about numerics

Whenever one is dealing with numeric computations at least three important
aspects should be clear in one’s mind:

I The first aspect is concerned with the available computational re-
sources. Often the computer memory and performance are limiting
factors of numerical computations. These limitations are in many cases
generic or problem inherent and can’t be avoided by simply using faster
and more powerful computation sites. It is the numerical complexity
of these problems which make them hard or even impossible to tract
exactly. A well-known example of such kind of problems is finding an
exact solution to the three index assignment problem (see Sec. 3.4.1.2
on page 75) at least for large problem sizes. This subclass of combina-
torial optimization problems is NP-hard, which means that there
is no known deterministic algorithm, capable to solve these problems in
polynomial computation time. However, such problems are then often
treated by computing only approximative solutions which are in some
sense precise or good enough.

I The second aspect is concerned with the reliability of the obtained re-
sults. It is by no means guaranteed that results obtained by numerical
computations are exact or precise. There are well-known numerical
phenomena like accumulation of small errors, which cause numerical

222

Chapter 10
Numerical aspects of simulation

computations to fail. If one is aware of these difficulties, one is often
able to get rid of them by using more accurate or precise calculation
techniques. But this mostly requires more computational resources.
One demonstrative example here is for instance the interval arithmetics
[114, 90, 55, 56, 115]. The idea of this approach is not to perform calcu-
lations on the basis of single machine numbers, but instead with whole
intervals. The advantage of this approach is, that at every step of the
performed calculations it is guaranteed, that the exact result lies in
the determined interval. However, the approach has also significant
disadvantages: Obviously, the computations carried out in this way
are much more time and memory consuming compared with compu-
tations based on single machine numbers. Furthermore, there is often
an increase of the length of the intervals, making the results of large
computations at least difficult to interpret. Hence, in most applications
where numerical computations are involved, one has to make a suitable
compromise between the precision and as a consequence the reliabil-
ity and the usage of precise or very accurate computation techniques.
On the one hand one wants to obtain the results as soon as possible
and with a minimum amount of resources and on the other hand one
wants the numerical results as precise as possible to meet the required
reliability. Moreover in some cases even this strategy may fail, due to
specific problem inherent characteristic properties. For instance, if one
wants to calculate the trajectory of a chaotic attractor, this calculation
can never be exact due to the sensitivity of the chaotic dynamics on
small perturbations. Although it can be shown using the shadowing
theorem, that there exists a real trajectory with a slightly different ini-
tial condition that stays near the numerically computed one, one has
to be careful when interpreting the numerical computations.

I The third aspect is concerned with the fact, that in all numerical com-
putations one is dealing with machine numbers. This may cause prob-
lems which will be discussed in more detail in the next sections.

10.2 Machine numbers

When using computers to solve a mathematical problem numerically, it is a
matter of fact that all numbers one is dealing with have to be mapped to

223

Chapter 10
Numerical aspects of simulation

the computer memory. Hence, an internal representation of the numbers is
required. It is also a matter of fact, that the set of real numbers and even
an open or closed subset of real numbers is uncountable. Therefore, it is
clear that not all real numbers in a certain range or a certain interval can
be represented by a set of machine numbers, which of course is always a
countable set. Of course there exist several internal representations of real
numbers. Here only the representation of floating point numbers according
to the IEEE 754 standard is considered.

10.2.1 The IEEE 754 standard for the representation
of floating point numbers

A normalized floating point number according to the IEEE 754 standard is
defined by the triple (s, m, e):

(s, m, e) = (−1)s m 2e with

m = 1.m−1m−2 . . . m−k = 1 +
−k∑

i=−1

mi2
i and (10.1)

e =
n−1∑
i=0

ei2
i − b

Hereby normalized means, that the mantissa has an invisible or hidden lead-
ing bit and all bits of the mantissa field are interpreted as decimal bits of the
dual number representation of the mantissa. The bit s determines the sign of
the number f , n is the number of bits reserved for the representation of the
exponent and k is the number of bits reserved for the normalized represen-
tation of the mantissa. All bits of the exponent field represent an unsigned
integer value. Hence to allow also negative exponents in the representation
of floating point numbers the bias value b is used.
Properties of the IEEE 754 standard:

I The normalized representation is unique

I Existence of range limiting values, that is a smallest and a largest
representable floating point number

224

Chapter 10
Numerical aspects of simulation

bit number k + n k + n− 1 . . . k k − 1 . . . 0
denotation sign exponent e mantissa m

s en−1 . . . e0 m−1 . . . m−k

Table 10.1: The IEEE 754 standard for the representation of floating point
numbers

I Not all numbers in the range between the limiting values are repre-
sentable

I The representable floating point numbers are not uniformly distributed
within the range of the limiting values

I The range where the representable floating point numbers are most
dense is around the value zero

I Arithmetic operations are not closed, that is the result of an arith-
metic operation of two representable floating point numbers may by an
unrepresentable floating point number

I The mathematical laws of associativity and distributivity are not valid

10.2.2 Single, double and extended precision floating
point numbers

For the single (double) precision floating point representation, the number
of bits in the exponent field is n = 8 (n = 11) and the number of bits
representing the mantissa is k = 23 (k = 52) so that in total 32 (64) bits,
that is 4 (8) bytes are required. The value of the bias is given by b = 2n−1−1,
that is 127 for the single and 1023 for the double precision floating point
representation.

10.2.3 Arbitrary precision

Using computer algebra systems like Maple [105] or Mathematica [106], which
allow symbolic manipulations, one can perform computations with in prin-
ciple arbitrary precision. However, the precision is confined due to limited
resources like computer memory and performance.

225

Chapter 10
Numerical aspects of simulation

10.3 Reliability aspects of numeric computa-

tions

To demonstrate that encountering numerical problems when dealing with
machine numbers is not at all an exceptional case the following examples are
considered:

1. Addition of floating point numbers (see also chapter B): Using single
floating point precision according to the IEEE 754 standard the sim-
ple addition of the two numbers 16777216 and 1 leads to the result
16777216 which is obviously wrong.

Although both numbers are representable floating point numbers the
result of the addition is not a representable floating point number. In
this case, the two results are mapped on the same machine number.
The floating point numbers to be added are 224 and 20. Their ma-
chine representations according to the IEEE 754 standard are shown
in Table 10.2.

bit 31 30 . . . 23 22 . . . 0
denotation sign exponent e mantissa m

20 0 01111111 00000000000000000000000
224 0 10010111 00000000000000000000000

Table 10.2: The floating point representations of 20 and 224 according to
the IEEE 754 standard

As one can see, they differ only in their exponents. The addition pro-
cedure now works in three steps. In the first step the smaller exponent
is equalized to the larger exponent whereby the mantissa has to be
adjusted. In the second step the mantissas are added and in the third
step the result is rounded if necessary and normalized. Here the expo-
nents of the two numbers differ by the value 24. Hence to adjust the
mantissa of the smaller number the hidden bit has to be shifted to the
right 24 times. The first shift leads to the appearance of the hidden bit
in the mantissa but 23 shift operations remain. Because there are only
22 places in the mantissa left, the last shift operation shifts the former
hidden bit out of the mantissa and hence the number zero is added to
the larger number leading to the wrong result.

226

Chapter 10
Numerical aspects of simulation

2. Pure numerical determination of eigenvalues:

Consider the eigenvalue problem of the following matrix:

M =


1 2 3

1 2 3

2 5 6

 (10.2)

The characteristic polynomial of this matrix is

p(λ) = −λ3 + 9λ2 + 3λ , (10.3)

from which one can calculate analytically the eigenvalues

λa
1 =

1

2
(9−

√
93) ≈ −0.3218253805,

λa
2 = 0, (10.4)

λa
3 =

1

2
(9 +

√
93) ≈ 9.321825380 .

Using the program Maple 8 with an arbitrarily chosen accuracy of
10 digits for floating point arithmetics, one encounters the following
strange results for the real-valued matrix

M =


1.0 2.0 3.0

1.0 2.0 3.0

2.0 5.0 6.0

 (10.5)

Calculating only the eigenvalues using the Maple built-in function
eigenvals one obtains:

λn
1 = −0.3218253805

λn
2 = 7.700622123 10−16 (10.6)

λn
3 = 9.321825380

which is in acceptable coincidence with the exact result (10.4). Whereas
one gets the following results when calculating the eigenvalues and

227

Chapter 10
Numerical aspects of simulation

eigenvectors using the Maple built-in function eigenvects:

λ̃n
1 = −0.3218253804,

v1 = [0.5567547066, 0.5567547150,−0.6164806444]

λ̃n
2 = 4.28431003 10−9,

v2 =
[
0.9486832980,−4.625747414 10−10,−0.3162277652

]
λ̃n

3 = 9.321825393,

v3 = [−0.3940365890,−0.3940365890,−0.8303435024]

Especially the calculation of zero eigenvalues is numerically sometimes
very difficult. In the considered case also the product of the matrix
M with the eigenvector v2 differs significantly from the product of the

eigenvalue λ̃n
2 with the eigenvector v2 although the results should be

the same.

3. The calculation of wave numbers

To demonstrate the fact, that using higher arithmetic precision leads
not necessarily and in any case to more accurate results, the following
example is considered. In this specific case the results of double
precision calculations are incorrect, whereas the results of the single
precision is not. Of course, this is not caused by the used precision
itself but by the used algorithm. However, it is a demonstration,
that one has always to interpret the results in context with the used
precision and the used algorithm.

If one compares the single and double precision results of the
wave number calculation (see Sec. 5.2.3) of the logistic map (see
Sec. 3.3.1.1), one observes (see Fig. 10.1), that the result of the more
accurate double precision calculation is at some parameter values to-
tally incorrect, whereas the result of the single precision calculation is
not.

This strange result is caused by numerically induced oscillations when
using the double precision floating point representation, although it can
be shown analytically, that for α ≤ 3 the only stable attractor of this
system is a fixed point (see Fig. 3.1). The oscillations take place in the
last digit of the double precision floating point representation causing

228

Chapter 10
Numerical aspects of simulation

ω

α
(a) single precision

ω

α
(b) double precision

Figure 10.1: Logistic map: wavenumber ω

In (a) the calculation of the wavenumber ω of the logistic map was done
with single precision which leads to the correct result, whereas in (b) the
calculation of the wavenumber was done in double precision which leads to
the incorrect result.

the wrong calculation of the wave number. Of course this definitely
wrong result could be avoided when using a more sophisticated method
to calculate the wave number, but it demonstrates nevertheless that
one has to be very careful when interpreting numerical results, because
one gets the correct result when using only the single precision floating
point representation and the same algorithm.

As one can see, one has to be very carful when relying naively on numerical
results. Especially results obtained by excessive numerical computations have
to be interpreted thoroughly and not to be taken as a fact. Whenever one
have the possibility to proof some results analytically one should do this in
order to justify and validate the applied numerical algorithm.

229

Chapter 11

Examples

To demonstrate and illustrate the various and numerous capabilities of the
AnT 4.669 software package, examples with different applied investigation
methods (see Chap. 5) are presented in this chapter as well as an example of
an extensively investigated system. The examples may be the result of single
simulation runs, one-dimensional scan-runs as well as multi-dimensional scan-
runs. The results were obtained either by using the standalone mode on a
single computation node or by using the client/server mode on several nodes
of a heterogeneous environment - for instance different workstations with
different operating systems - or of a homogeneous environment for instance
a cluster.

11.1 Logistic map

The first example in this section belongs to the class of ordinary maps (see
Sec. 3.3.1.1)). Figure 11.1 shows the period doubling scenario of the logistic
map already introduced in section 3.3.1.1, when varying the single system
parameter α from α1 = 3 to α∞ ≈ 3.569945672. In this doubly logarithmic
representation, the first eight bifurcations of this period doubling scenario
together with the corresponding periods can be shown. This figure shows
clearly the self-similarities connected with the famous scaling properties of
this dynamical system.

In figure 11.2 a comparison of the numerically calculated value of the Lya-
punov exponent at the parameter value α = 4 with the analytically cal-

230

Chapter 11
Examples

ln (|α− α∞|)

ln
(∣ ∣ x−

1 2

∣ ∣)

α8 α7 α6 α5 α4 α3 α2 α1

T = 256
T = 128

T = 64
T = 32

T = 16
T = 8

T = 4
T = 2

Figure 11.1: Logistic map: period doubling scenario

The doubly logarithmic representation of the period doubling scenario allows
the presentation of the first eight period doubling bifurcation points at α1,
α2, . . .α8, together with the corresponding periods of the stable periodic
behavior between two bifurcation points.

231

Chapter 11
Examples

lo
g
|λ
−

λ
∗ |

ε

Figure 11.2: Comparison of analytic and numeric results at α = 4

The figure shows a comparison of analytic and numeric results of the Lya-
punov exponent calculation for the logistic map at α = 4. The presented
values are obtained within 25000 (red line), 250000 (green line) and 2500000
(blue line) iteration steps.

culated value is shown. Presented are three one-dimensional investigation
method parameter scans for three different number of iterations whereby in
each scan the difference to the exact value of λ∗ = log 2 in dependence of the
investigation method parameter ε is plotted. For the numerical calculation
of the Lyapunov exponent, the method without using the linearized system
function is applied, whereby instead an adjacent trajectory with initial dis-
tance ε is tracked and the divergence rates are averaged in the course of time.
After each iteration, the distance is re-scaled to the initial distance ε. The
mathematical definition of the Lyapunov exponents requires in principle the
limit ε → 0 to be taken. Figure 11.2 demonstrates drastically, that there
exist in fact upper and lower bounds for the investigation method parameter
ε. If ε is chosen too small, the algorithm runs into numerical problems and
an ε value chosen too large leads to a bad approximation of the Lyapunov
exponent by definition. Hence, there exists a suitable range for this investiga-
tion method parameter which one is able to determine with the AnT 4.669
package by such a specific scan.

232

Chapter 11
Examples

11.2 The Gingerbreadman map

In this example the Gingerbreadman map [175] is investigated with the
period analysis (see Sec. 5.3)

This two-dimensional dynamical system discrete in time is defined by:

xn+1 = 1− yn + |xn| (11.1)

yn+1 = xn (11.2)

Accordingly, it has the state space dimension Ns = 2 and the parameter
space dimension Np = 0. In figure 11.3, the result of the period analysis
applied to a two-dimensional initial value scan is shown, whereby periods up
to 246 were detected. In figure 11.3(a), the initial values were varied from
-20 to 40 using 481 scan points, whereas in figure 11.3(b), the same range
was used with only 480 scan points. The drastic difference in the figures is
caused by the properties of the system where the period detection is very
sensitive with respect to the initial values. In figure 11.3(a) the scan point
increments are exact powers of 2. Because the initial scan points are also
sums of powers of 2, all the scan points are sums of powers of 2 and hence
pure machine numbers. In figure 11.3(b) the scan point increments are not
powers of 2 and hence, the scan points aren’t sums of powers of 2 and may
be even not representable as machine numbers. This leads to the different
detection of periodic orbits in this system.

11.3 Quadratic map CML

The following coupled map lattice is based on the well-known quadratic map,
which is connected via a diffeomorphism with the logistic map presented in
section 3.3.1.1. This system is used in [85] to illustrate the universality classes
of the dynamic behavior of coupled map lattices. This universality classes are
shown here together with the corresponding Lyapunov spectrum and with
some spatial return maps. The system is defined by:

233

Chapter 11
Examples

y 0

x0

(a)
y 0

x0

(b)

Figure 11.3: Period analysis of the gingerbread man map.
In (a) the initial values were varied from -20 to 40 using 481 scan points,
whereas in (b) the same range was used with 480 scan points. For a detailed
description of this strange phenomenon see text.

Definition: quadratic map CML

xi
n+1 = (1− γ)f(xi

n, α)+

γ

2

(
f(x

1+((i−2) mod M)
n , α) + f(x

1+(i mod M)
n , α)

) (11.3)

with

f(x, α) = 1− αx2 , i = 1, . . . ,M , p = (γ, α) ∈ R2

�

This system has three parameters, namely the coupling parameter γ, the
parameter α of the single cells and finally the number M of cells.

11.3.1 Universality classes of CMLs

In this section single simulation runs with fixed parameters, illustrating the
different universality classes of the spatio-temporal asymptotic dynamics of

234

Chapter 11
Examples

coupled map lattices are presented (see Figs. 11.4 and 11.5). The figures
are grey scale representations whereby the discrete time n runs, as indicated,
from the top to the bottom. From the left (i = 1) to the right (i = M) runs
the cell index i of the CML. The values of the states of the single cells xi

n

define the corresponding grey scale value.

I Frozen Random Pattern
See figure 11.6

I Pattern Selection
See figure 11.7

I Spatiotemporal Intermittency Type I
See figure 11.8

I Spatiotemporal Intermittency Type II
See figure 11.9

I Zigzag Pattern
See figure 11.10

I Traveling Wave
See figure 11.11

I Fully Developed Chaos
See figure 11.12

235

Chapter 11
Examples

←
n

i
(a) Frozen random

←
n

i
(b) Pattern selection

←
n

i
(c) Spatiotemporal intermittency (type I)

←
n

i
(d) Spatiotemporal intermittency (type II)

Figure 11.4: CML: universality classes I

236

Chapter 11
Examples

←
n

i
(a) Traveling wave

←
n

i
(b) Zigzag

←
n

i
(c) Fully developed spatio-temporal chaos

Figure 11.5: CML: universality classes II

237

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 3000, every 32nd time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.6(a)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Unmarked region: approximately
the interval where the frozen ran-
dom pattern can be found, de-
pends also on the coupling pa-
rameter γ

Figure 11.6: Characteristics of the frozen random pattern (α = 1.43, γ =
0.3)

238

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 3000, every 32nd time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.7(a)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Unmarked region: approximately
the interval where the pattern
selection can be found, depends
also on the coupling parameter γ

Figure 11.7: Characteristics of pattern selection (α = 1.7, γ = 0.4)

239

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 3000, every 45th time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.8(a)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Marked region: approximately
the interval where spatiotempo-
ral intermittency of type-I can be
found, depends also on the cou-
pling parameter γ

Figure 11.8: Characteristics of the spatiotemporal intermittency of type-I
(α = 1.752, γ = 0.001)

240

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 3000, every 32nd time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.9(a)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Unmarked region: approximately
the interval where spatiotemporal
intermittency of type-II can be
found, depends also on the cou-
pling parameter γ

Figure 11.9: Characteristics of spatiotemporal intermittency of type-II
(α = 1.77, γ = 0.3)

241

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 3000, every 32nd time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.10(b)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Unmarked region: approximately
the interval where the zigzag pat-
tern can be found, depends also
on the coupling parameter γ and
the number of iterations

Figure 11.10: Characteristics of the zigzag pattern (α = 1.79, γ = 0.1)

242

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 5000, every 256th time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.11(a)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Unmarked region: approximately
the interval where the traveling
wave can be found, depends also
on the coupling parameter γ and
the lattice size

Figure 11.11: Characteristics of the traveling wave (α = 1.69, γ = 0.9)

243

Chapter 11
Examples

n

i

(a) Space-time grey scale plot: M =
500, starting at the top with iter-
ation 3000, every 32nd time step
is shown

n

i

(b) Space-time plot with lines: 128
sites of the run of figure 11.12(a)
are shown

x
i

xi+1

(c) Spatial return map at iteration
5000: M = 500

x
i

xi+1

(d) Spatial return map at iteration
5000: M = 50000

λ
j

j

(e) Lyapunov spectrum: M = 64
and transient is 2000

λ
m

a
x

α

(f) Unmarked region: approximately
the interval where fully developed
chaos can be found, depends also
on the coupling parameter γ

Figure 11.12: Characteristics of fully developed chaos (α = 1.99, γ = 0.6)

244

Chapter 11
Examples

11.4 The Aizawa system

This dynamical system belongs to the class of ordinary differential equations
(see Sec. 3.4.1.1). It has a state space dimension of Ns = 3 and a parameter
space dimension of Np = 6. It exhibits picturesque chaotic attractors shown
in chapter 9. The system is defined by:

Definition: Aizawa system

d

dt
s(t) = f(s(t), p) , s(t) = (x(t), y(t), z(t))T ∈ R3

p = (α, β, λ, ω, ρ, ε) ∈ R6 (11.4)

f(x, y, z, p) =

 (z − β)x− ωy
ωx + (z − β)y
λ + αz − 1

3
z3 − (x2 + y2)(1 + ρz) + εzx3


�

In figure 11.13, the three Lyapunov exponents of this dynamical system con-
tinuous in time are shown, whereby the system parameter ε was varied in the
interval ε ∈ [0.02, 0.1] using N s = 4000 scan points.

11.5 The Rössler system

This example belongs again to the class of ordinary differential equations
(see Sec. 3.4.1.1). Like the Lorenz system (see Sec. 3.4.1.1) it is a well-known
system in the field of nonlinear dynamics. It was discovered by Rössler in
1976 [144], as he investigated numerically certain types of chemical reactions
(see also [186]). The system has a state space dimension of Ns = 3 and a
parameter space dimension of Np = 3.

245

Chapter 11
Examples

λ
1
,λ

2
,λ

3

ε

Figure 11.13: Aizawa system: Lyapunov spectrum.

Depending on whether the largest Lyapunov exponent (red) is zero or pos-
itive, it shows characteristic regions in the parameter interval ε ∈ [0.02, 0.1]
where the dynamic behavior of the system is periodic or chaotic. Note the
characteristic tongues prior to chaotic regimes which indicate regions in the
parameter interval where period doubling scenarios are present.

246

Chapter 11
Examples

Definition: Rössler system

d

dt
s(t) = f(s(t), p) , s(t) = (x(t), y(t), z(t))T ∈ R3

p = (a, b, c) ∈ R3 (11.5)

f(x, y, z, p) =

 −(y + z)
x + ay
b + z(x− c)


�

In figure 11.14, the Lyapunov exponents of this dynamical system continuous
in time are shown, whereby in figure 11.14(a) all three Lyapunov exponents
were presented with the smallest Lyapunov exponent multiplied by the factor
1
10

for reasons of a better representation. In figure 11.14(b), only at the two
largest Lyapunov exponents are presented which leads to an even better
observation of the characteristic structure. The system parameter c (see
Eq. (11.5)) was varied in the interval c ∈ [0.5, 40] using N s = 1024 scan
points.

11.6 The Lorenz 84 system

Like the first model presented by Lorenz in 1963 (see Sec. 3.4.1.1), this sys-
tems stems from the field of meteorology as well and was derived again by
Lorenz in 1984 [98]. Like its famous predecessor it has a state space dimen-
sion of Ns = 3 and a parameter space dimension of Np = 4.

Definition: Lorenz84 system

d

dt
s(t) = f(s(t), p) , s(t) = (x(t), y(t), z(t))T ∈ R3

p = (a, b, F,G) ∈ R4 (11.6)

f(x, y, z, p) =

 a(F − x)− (y2 + z2)
−y + G + (xy − bxz)
−z + (bxy + xz)


�

247

Chapter 11
Examples

λ
1
,λ

2
,λ

3

α
(a) Complete Lyapunov spectrum

λ
1
,λ

2

α
(b) Largest two Lyapunov exponents

Figure 11.14: Rössler system: Lyapunov exponents.

In (a) the complete Lyapunov spectrum, that is all three Lyapunov expo-
nents, of the Rössler system are shown. For reasons of a better representa-
tion the smallest exponent was multiplied by a factor of 1

10
. In (b) only the

two largest Lyapunov exponents are shown. Here one can identify in the left
part, where the largest exponent is zero, a period doubling scenario and as
usual periodic windows in the chaotic regime in the center and right part.

11.7 The Rikitake system

This dynamical system of the ODE class is a model proposed by Riki-
take [141], as a model for the self-generation of the geomagnetic field by
large current carrying eddies in the core. The Rikitake system exhibits a dy-
namic behavior (see Fig. 11.15), which is very similar to that of the Lorenz
system (see Fig. 3.10 in Sec. 3.4.1.1) and attempts to explain the irregular
polarity switching of the Earth’s magnetic field. The system describes the
currents of two coupled dynamo disks and is defined by:

248

Chapter 11
Examples

µ = 1.2, a = 1.0

t
x

z

(a) chaotic attractor

µ = 1.2, a = 1.0

x y

z

(b) chaotic attractor

Figure 11.15: Rikitake system: chaotic attractor

In (a), a chaotic attractor of the Rikitake system in a three dimensional
projection of the four dimensional extended state space is shown, whereas in
(b) the same chaotic attractor is shown in the three dimensional state space.
Note the geometric structure of the attractor, which is quite similar to the
structure of the attractors of the Lorenz system.

Definition: Rikitake system

d

dt
s(t) = f(s(t), p) , s(t) = (x(t), y(t), z(t))T ∈ R3

p = (µ, a) ∈ R2 (11.7)

f(x, y, z, p) =

 −µx + zy
−µy + (z − a)x
1− xy


�

11.8 The ”full” Brusselator system

This dynamical system of the ODE class is a kinetic model of a multi-
molecular chemical reaction proposed in [71], as the three dimensional ex-
tension of the two-dimensional original Brusselator system (see also [169]).
The original Brusselator (see for instance [82, 118], was derived as a simpli-
fied model of some reaction diffusion equations of the Belousov-Zhabotinsky
type (see for instance [47]). The system is defined by:

249

Chapter 11
Examples

λ
1
,λ

2
,λ

3

µ

a = 1.0

(a) Lyapunov spectrum

λ
1
,λ

2
,λ

3

µ

a = 1.0

(b) Lyapunov spectrum

Figure 11.16: Rikitake system: Lyapunov exponents.

In (a), the Lyapunov spectrum of the Rikitake system is shown in the pa-
rameter interval µ ∈ [0, 8]. This one-dimensional system parameter scan
was done using 8001 scan points. In (b), the interval µ ∈ [0, 2.5] is shown
enlarged. Parameter setting: a = 1.0

λ
1
,λ

2
,λ

3

iterations
(a) Lyapunov exponents

λ
1

iterations
(b) largest Lyapunov exponent

Figure 11.17: Rikitake system: Convergence of the Lyapunov exponents.

In (a), the convergence of the three Lyapunov exponents of the Rikitake
system is shown, whereas in (b) the convergence of the largest Lyapunov
exponent only is shown in a doubly logarithmic representation. As one can
see, the convergence behavior is quite good. Even for a small number of
iterations, the calculated exponents are relatively good approximated. The
number of iterations was varied from 105 up to 2 · 109. The used integration
method was the classical Runge-Kutta scheme with a fixed step size of 10−3.

250

Chapter 11
Examples

Definition: ”Full” brusselator system

d

dt
s(t) = f(s(t), p) , s(t) = (u(t), v(t), w(t))T ∈ R3

p = (α) ∈ R (11.8)

f(u, v, w, p) =

 1 + u2v − (w + 1)u
uw − u2v
α− uw


�

System (11.8) possesses a critical point sc = (1, α, α) whereby the character-
istic polynomial of the corresponding Jacobian

∂f

∂s

∣∣∣∣
sc

=

 α− 1 1 −1
−α −1 1
−α 0 −1

 (11.9)

is p(λ) = λ3 +(3−α)λ2 +(3− 2α)λ+1. From this one can read off, that the

stability criterion of the fixed point is satisfied for α < 9−
√

17
4

. Hence, at the

parameter value α = 9−
√

17
4
≈ 1.21922, a supercritical Hopf bifurcation occurs

and a stable limit cycle emerges. In figure 11.18(a), a three-dimensional
initial states scan was performed for the parameter value α = 0.1 and as
expected, the trajectories of all initial states converge to the fixed point
sc = (1, α, α). In figure 11.18(b) a one-dimensional initial states scan was
performed at the parameter value α = 1.35. Hence the trajectories converge
to the stable blue colored limit cycle.

251

Chapter 11
Examples

u

v

w

(a) fixed point

u

v

w

(b) limit cycle

Figure 11.18: Brusselator system: dynamic behavior

In (a), a three-dimensional initial states scan was performed with
u(0), v(0), w(0) ∈ {1, 2, 3}3 at the parameter value α = 0.1. For all initial
states, the trajectories converge to the stationary fixed point (1, α, α) marked
as a blue point. In (b) a one-dimensional initial states scan was performed
with u(0) ∈ {0.8, 1.0, 1.2, 1.4} and v(0) = 0.8, w(0) = 2.5 and the parameter
value α = 1.35. To illustrate the drastic different orbital velocities, in (b)
the states - equidistant in time - are plotted in point style.

252

Chapter 11
Examples

11.9 An extended example investigation

This section is an example of an extended investigation using the AnT 4.669
software package. It demonstrates the capabilities of the software and how
they can be used for the simulation and investigation. The considered system
is a one-dimensional piecewise-smooth dynamical system, representing a
Poincaré return map for dynamical systems of the Lorenz type. This system
shows a bifurcation scenario similar to the classical period doubling one, but
which is influenced by so-called border collision phenomena and denoted as
border collision period doubling bifurcation scenario. This scenario is formed
by a sequence of pairs of bifurcations, whereby each pair consists of a border
collision bifurcation and a pitchfork bifurcation. The mechanism leading
to this scenario and its characteristic properties, like symmetry-breaking
and symmetry-recovering as well as emergence of coexisting attractors, are
investigated.

11.9.1 Introduction

Investigation of dynamical systems with a piecewise-smooth system func-
tion, motivated from a theoretical point of view as well as by practi-
cal applications, is a central topic of many scientific works published in
the recent years. Especially several power electronic circuits (for instance
DC/DC converters, such as boost, buck and buck-boost ones) lead to
models, which belong to this class and show a rich bifurcation behavior
[134, 148, 101, 104, 200, 31, 9, 33, 83]. Another application field of piecewise-
smooth models are mechanical systems with impact or stick-slip phenomena
[17, 92, 48, 12, 135, 78, 162, 10, 13, 45, 113]. In the field of nonlinear dy-
namics one-dimensional maps with a piecewise-smooth system function are
well-known as return maps, obtained by the investigation of Poincaré sec-
tions of several dynamical systems continuous in time [70, 53]. Hereby the
discontinuity of the return map is caused by the stretching, squeezing and
folding mechanism which is inherent for chaotic attractors like for instance
in systems of the Lorenz type [97, 151].
The behavior of piecewise-smooth dynamical systems is mainly influenced
by phenomena occurring at the border between partitions in the state space.
Early works in this field are presented by Feigin in the Russian publi-
cations [42, 43, 44]. In the Western literature the first works on bor-

253

Chapter 11
Examples

der collision bifurcations are performed by Nusse, Yorke, Ott and Gre-
bogi [122, 121, 17, 123, 39]. A lot of important results are discovered by
Maistrenko [101, 104, 102, 103], di Bernardo and Budd [92, 27, 28, 30, 29, 89]
as well as by other authors [119, 112, 48, 120]. Recently, several types of bor-
der collision related bifurcations are found, like corner collision, sliding and
grazing bifurcations [32, 28]. An overview about bifurcations in piecewise-
smooth dynamical systems and related phenomena is given in [203].

Here a one-dimensional map with a piecewise-smooth system function is con-
sidered. This map is closely related to a special kind of Poincaré return map
of the Lorenz system [53, 137]. Some aspects of the dynamic behavior of this
system concerning coexisting attractors [117] and the application of sym-
bolic dynamics [201, 202] were reported until now. However the bifurcation
scenarios occurring in systems like the presented one were not well investi-
gated. It turns out, that dynamical systems like the one presented here show
a sequence of bifurcations, where attractors with twice the period emerge,
but these bifurcations are not the well-known flip bifurcations. Such bifur-
cations have been already observed experimentally [9], whereby a class of
two-dimensional maps with a piecewise-smooth, but continuous system func-
tion are investigated. The system which is investigated does not belong to
this class, because it is one-dimensional and possesses a system function with
a discontinuity point. However, compared with systems investigated in [9], it
has two remarkable advantages: Firstly it is one-dimensional and hence more
easy to analyze. Secondly it shows a complete bifurcation scenario similar to
the well-known period-doubling scenario, but dominated by the border colli-
sion phenomenon. This scenario, in the following denoted as border collision
period doubling scenario, is the main topic here.

11.9.2 Border Collision Period Doubling Scenario

11.9.3 Investigated dynamical system

For the investigation of the border collision period doubling scenario the
following dynamical system discrete in time is considered:

xn+1 = f(xn, α) =


fl(xn, α) = αxn(1− xn) if xn < 1

2

fc(xn) = 1
2

if xn = 1
2

fr(xn, α) = αxn(xn − 1) + 1 if xn > 1
2

(11.10)

254

Chapter 11
Examples

with x ∈ [0, 1] and the parameter α ∈ [0, 4]. The following properties of
system (11.10) are important:

1. For all parameter values except α = 2, the system function f is dis-
continuous at the point x = 1

2
(see Fig. 11.19). Therefore it can be ex-

pected, that the dynamical behavior of system (11.10) is influenced by
the border collision phenomena, which are typical for piecewise-smooth
dynamical systems.

2. On the interval x ∈
[
0, 1

2

)
the system function f is identical with the

system function of the logistic map

xn+1 = αxn(1− xn) with x ∈ [0, 1], α ∈ [0, 4] (11.11)

Hence, one can expect, that some aspects of the dynamic behavior of
the logistic map (11.11) are preserved in the case of system (11.10). Es-
pecially the question arises, whether system (11.10) shows a behavior,
analogous to the well investigated period doubling bifurcation scenario
of the logistic map.

3. In contrast to the logistic map, the system function f is symmetrical
with respect to its discontinuity point x = 1

2
, namely

f(x, α) = 1− f(1− x, α) (11.12)

Therefore, the dynamic behavior of system (11.10) must be influenced
by symmetry breaking - symmetry recovering phenomena, leading to
asymptotic dynamics taking place either on symmetric attractors or
pairs of coexisting attractors symmetric to each other.

In the literature ([53, 137, 201, 202]), discontinuous maps on an interval
with a single point of discontinuity (i.e. dynamical systems like (11.10)) are
considered only in non-symmetric variants. Usually the discontinuity point is
assumed to belong either to the left or to the right half-interval. However the
symmetric variant with a special treatment of the discontinuity point seems
to be more plausible, if the investigated map is considered as a Poincaré
return map of a dynamical systems continuous in time. In [53] it is shown,
that system (11.10) represents a Poincaré return map of the Lorenz system,
whereby the point of discontinuity of system (11.10) corresponds to the stable
manifold of the fixed point in the origin. Therefore this point must be treated
specifically.

255

Chapter 11
Examples

x

f

(a) α = 1
x

f

(b) α = 2
x

f

(c) α = 4

Figure 11.19: Typical shapes of the system function f(x, α)

11.9.4 Description of the bifurcation scenario

By variation of the parameter α, system (11.10) shows a bifurcation scenario,
which one can denote as border collision period doubling scenario. As
one can see from Fig. 11.20(a), the period diagram of this scenario can not
be distinguished from the one of the period doubling scenario taking place
in the logistic map. One observes here also a sequence of periodic attractors,
whereby the subsequent periods represent a geometrical series pn = p02

n,
with n = 0, 1, 2, . . . ,∞ and p0 = 1. The diagram of the Lyapunov exponent
(Fig. 11.20(b)) shows also the well-known behavior with λ = 0 at the local
bifurcation points and λ → −∞ at super-stable points, which lie between
each two subsequent local bifurcations. However the bifurcation diagram
(Fig. 11.21) is totally different from the classical period doubling scenario.
The bifurcations observed here are clearly not the usual flip bifurcations.
Hence, the important question we have to deal with, is, how the bifurcation
scenario emerges here.

11.9.5 Fixed points and periodic orbits of the investi-
gated system

Let us consider the behavior of system (11.10) in the complete interval α ∈
[0, 4]. Firstly one can see, that for all parameter values the system possesses
three fixed points x∗1 = 0, x∗2 = 1

2
and x∗3 = 1. Using the linear stability

analysis, one finds, that in the parameter interval 0 ≤ α < 1 the fixed
points x∗1 and x∗3 are stable. The basins of attraction of these fixed points
for α ∈ [0, 1) are shown in Fig. 11.22(a). As one can see, all initial values
from

[
0, 1

2

)
tend to the fixed point x∗1, whereas all initial values from

(
1
2
, 1
]

256

Chapter 11
Examples

ld T

α
(a) period diagram

λ

α
(b) Lyapunov exponent

Figure 11.20: Border collision period doubling scenario: periods and Lya-
punov exponents

Shown are the periods T (logarithmic plot) and the Lyapunov exponents λ.
Note, that these diagrams are identical with the corresponding diagrams of
the period doubling scenario in the case of the logistic map, although the
underlying mechanisms are totally different.

are mapped to the fixed point x∗3.

The stability of the fixed point x∗2 can not be determined using linear stabil-
ity analysis, because the derivative of the system function f is not defined
at this point. However, the fixed point x∗2 is unstable for all parameter val-
ues α ∈ [0, 2). This can be shown taking into account, that orbits with initial
values x0 = x∗2 ± ε for any arbitrary small deviation ε converge for n → ∞
either to the fixed point x∗1 or to the fixed point x∗3.

Both fixed points x∗1 and x∗3 become unstable by a transcritical bifurcation,
which occurs at the parameter value α = αt = 1 (see Fig. 11.23). At this
point two new stable fixed points x∗4 = 1 − 1

α
and x∗5 = 1

α
emerge in the

domain [0, 1]. The basins of attraction of the fixed points x∗4 and x∗5 for α ∈
(1, 2) are also shown in Fig. 11.22(a). As one can see, the initial values
from

(
0, 1

2

)
tend to x∗5 and all initial values from

(
1
2
, 1
)

are finally mapped
to x∗4. Note that in Fig. 11.21 for reasons of simplicity and clarity only one
fixed point, namely x∗4 is shown.

For parameter values α between 1 and 2 the fixed points x∗1, x∗2 and x∗3
are unstable and the fixed points x∗4, x∗5 are stable. At the parameter
value α = αbc

1 = 2 the first border collision bifurcation (see Fig. 11.24

257

Chapter 11
Examples

x

α
(a)

x

α
(b)

Figure 11.21: Border collision period doubling scenario: bifurcation dia-
gram

The bifurcation diagram of the border collision period doubling scenario
shows remarkable differences compared with that of the classical period dou-
bling scenario of the logistic map. The diagrams are calculated for a single
initial value (a) and for two symmetrical initial values (b).

258

Chapter 11
Examples

α
x0

lim
n→∞

xn

(a)
α

x0

(b)

Figure 11.22: Asymptotic dynamics and basins of attraction

(a) Asymptotic dynamics of system (11.10) in dependence on the initial
values for α ∈ [0, 2].

(b) Basins of attraction for the limit cycles {x∗∗1 , x∗∗2 } (red) and {x∗∗3 , x∗∗4 }
(green).

and Fig. 11.23) occurs. Hereby two facts are important. Firstly, the fixed
points x∗4 and x∗5 vanish at the bifurcation point. Note, that due to the
border collision these fixed points do not lose their stability, as it is typical
for local bifurcations, but disappear at all. Secondly, a stable limit cycle
with period two emerges. This limit cycle consists of the points 1 − 1

α
and

1
α
, which were fixed points before the border collision bifurcation (for this

reason we denote this limit cycle {x∗4, x∗5}). This behavior can be explained
taking Fig. 11.24 into consideration. As one can see from this figure, before
the bifurcation the functions fl and fr intersect the angles bisector in their
domains

[
0, 1

2

)
and

(
1
2
, 1
]
. Hence, these intersection points are fixed points of

system (11.10). After the border collision bifurcation the intersection points
leave the domains where the functions fl and fr have effect, but the second
iterated function intersects now the angles bisector at the same points.

In addition one can remark, that the fixed points x∗4 and x∗5 collide at the
bifurcation point not only with each other, but also with the fixed point x∗2.
Hence, the fixed point x∗2, which is unstable before the bifurcation, is stable
at the bifurcation point itself and after the bifurcation the fixed point x∗2
becomes unstable again. The described behavior is not essential for the
border collision bifurcation taking place at α = 2. The border collision
bifurcation occurs as a result of the collision of the fixed points x∗4 and x∗5
with the border between the partitions and not due to their collision with

259

Chapter 11
Examples

α

x

x∗1

x∗2

x∗3

x∗4

x∗5

x∗∗1

x∗∗3

x∗∗2

x∗∗4

αt αbc
1 αp

1 αbc
2 αp

2

α

λ

Figure 11.23: Analytic results

Analytical results about the attractors of system (11.10) and their Lyapunov
exponents. The following bifurcation points are marked: αt - transcritical
bifurcation, αbc

1 - first border collision bifurcation, αp
1 - first pitchfork bi-

furcation, αbc
2 - second border collision bifurcation, αp

2 - second pitchfork
bifurcation. The points x∗1, x∗2 and x∗3 are the fixed points. The points x∗4,
x∗5 are fixed points between αt and αbc

1 and build a limit cycle with period
two after αbc

1 . The points x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 build two coexisting limit cycles
with period two between αp

1 and αbc
2 and a limit cycle with period four after

αbc
2 . In the upper part the stable solutions are shown as red lines, whereas

the blue lines correspond to the unstable solutions.

260

Chapter 11
Examples

x

f, f [2]

(a) α = 1.8
x

f, f [2]

(b) α = 2.2
x

f, f [2]

(c) α = 2.2

Figure 11.24: First border collision bifurcation

First border collision at α = αbc
1 = 2. Shown are the system function (red)

and its second iterated function (green) before the bifurcation (a) and af-
ter the bifurcation (b). Fig. (c) is a blow-up of the rectangle marked in
Fig. (b). The blue lines in Figs. (b,c) mark the functions fl and fr outside
their domains.

the fixed point x∗2, which in the considered case lies on this border.
For parameter values 2 < α < 3 the limit cycle {x∗4, x∗5} is the global symmet-
ric attractor of system (11.10). The fixed points x∗1, x∗2 and x∗3 are unstable
and the fixed points x∗4, x∗5 do not exist after the first border collision bifur-
cation. At the parameter value α = αp

1 = 3 this limit cycle undergoes the
first pitchfork bifurcation (see Fig. 11.23). Therefore, it loses its stability
and two coexisting stable limit cycles with period two emerge. These limit
cycles are given by

{x∗∗1 , x∗∗2 } =
1

2
+

1

2α

(
±1 +

√
a2 − 2a− 3

)
(11.13)

and

{x∗∗3 , x∗∗4 } =
1

2
+

1

2α

(
±1−

√
a2 − 2a− 3

)
(11.14)

Note, that the period of the asymptotical dynamics does not change at the
pitchfork bifurcation. The basins of attraction for these two limit cycles
are shown in Fig. 11.22(b). Note further, that in Fig. 11.21 the limit cy-
cle {x∗∗3 , x∗∗4 } is not presented. As expected, the two limit cycles are sym-
metric to each other with respect to the point x = 1

2
, namely x∗∗1 = 1

2
− x∗∗4 ,

x∗∗2 = 1
2
− x∗∗3 .

261

Chapter 11
Examples

x(n)

x
(n

+
1)

(a) α = 3.49, x(0) = 0.4
x(n)

x
(n

+
1)

(b) α = 3.49, x(0) = 0.6
x(n)

x
(n

+
1)

(c) α = 3.51

Figure 11.25: Third border collision bifurcation

Third border collision bifurcation at α = αbc
3 ≈ 3.4985. Two coexisting

asymmetric limit cycles with period T = 4 before the bifurcation (a), (b). A
symmetric limit cycle with period T = 8 after the bifurcation (c).

The second border collision bifurcation occurs at the parameter value
α = αbc

2 = 1 +
√

5 ≈ 3.2361 (see Fig. 11.23). Here the two coexisting limit
cycles {x∗∗1 , x∗∗2 } and {x∗∗3 , x∗∗4 } undergo the same scenario as the two coex-
isting fixed points at the first border collision bifurcation. That means, they
do not exist any more after the bifurcation, and a stable limit cycle with
period four emerges. Again, the new limit cycle after the border collision
has twice the period as the coexisting limit cycles before. It consists of four
points, which form the two coexisting limit cycles before the border collision.
Accordingly, this new limit cycle is denoted as {x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 }.
The limit cycle {x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 } represents the symmetric global attractor
until the second pitchfork bifurcation takes place at α = αp

2 = 1 +√
6 ≈ 3.4495 (see Fig. 11.23). There it loses it’s stability and two new limit

cycles with the same period emerge. These limit cycles coexist until the
next border collision bifurcation, and the scenario continues with the same
pattern (see Fig. 11.25). Note, that the described behavior is not specific for
the parameter value αbc

2 of the second border collision bifurcation, but takes
place at all following border collision bifurcations αbc

n (n > 2) as well.

Using the results presented above, one is able to calculate the Lyapunov
exponent for all attractors existing in the parameter range α ∈ [0, αp

2]. Be-
cause the natural measure ρ(x) of fixed points as well as of limit cycles is
concentrated on their points, and due to the well-known relation for maps
on an interval λ =

∫
A ρ(x) ln |f ′(x)|dx, where A denotes the corresponding

262

Chapter 11
Examples

attractor, one obtains:

λ =


λ1 = ln(α) if α ≤ αt

λ2 = ln |2− α| if αt < α ≤ αp
1

λ3 = ln
√
|α2 − 2α− 4| if αp

1 < α ≤ αp
2

(11.15)

This means, that the value λ1 holds for both fixed points x∗1 and x∗3; the
value λ2 holds for fixed points x∗4 and x∗5 and for the limit cycle {x∗4, x∗5}. The
value λ3 holds for both limit cycles {x∗∗1 , x∗∗2 }, {x∗∗3 , x∗∗4 } and for the limit
cycle {x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 }.
As one can see from Fig. 11.20, the border collision bifurcations takes place
at the super-stable points, where λ→ −∞ holds. However, that this is not a
general property of border collision bifurcations, but a specific feature of the
system (11.10). This property is here due to the fact, that the derivatives of
both functions fl(x) and fr(x) are equal to zero at the point of discontinuity
of the function f(x), i.e. at the point x = 1

2
.

Summarizing the results obtained so far and compare the border collision pe-
riod doubling scenario described here with the usual period doubling scenario.
In both cases there exists a sequence of periodic attractors with periods p02

n,
n ≥ 0. In the case of the usual period doubling scenario the sequence can
be illustrated with the diagram shown in Fig. 11.26.(a). In contrast to this,
the border collision period doubling scenario is formed by a sequence of pairs
of bifurcations. Each of them consists of two bifurcations, a border colli-
sion bifurcation and a pitchfork bifurcation, as it is schematically shown in
Fig. 11.26.(b).
Both scenarios converge to the same parameter value α∞, where an attrac-
tor of the Feigenbaum type (a strange, but not chaotic one) exists. Note,
that the scaling properties of the border collision period doubling scenario of
system (11.10) are the same as the scaling properties of the classical period
doubling scenario of the logistic map (11.11). Indeed, the border collision bi-
furcations occur in system (11.10) at the same parameter values, where the
logistic map has the super-stable orbits. The pitchfork bifurcations in sys-
tem (11.10) take place at the same parameter values, where the logistic map
has the flip bifurcations. Hence, the Feigenbaum constant corresponding to
the scaling behavior in the parameter space of the border collision period
doubling scenario in system (11.10) have to be the same as in the case of the
logistic map. Furthermore, also the Feigenbaum constant corresponding to
the scaling behavior in the state space have to be the same for both systems.
This is due to the fact that both parabola, that of each pitchfork bifurcation

263

Chapter 11
Examples

?

?

?

?

?

?

?

?

with period p02n

one limit cycle

flip bifurcation

one limit cycle

with period p02n+1

flip bifurcation

with period p02n

two coexisting limit cycles

border collision bifurcation

one limit cycle

with period p02n+1

pitchfork bifurcation

two coexisting limit cycles

with period p02n+1

border collision bifurcation

one limit cycle

with period p02n+2

pitchfork bifurcation

(a) (b)

Figure 11.26: Ordinary and border collision period doubling scenario

Schematic representation of the ordinary or classical period doubling scenario
(a) and the border collision period doubling scenario (b). The dashed boxes
mark the regions, which can be denoted as one step of the corresponding
scenario.

264

Chapter 11
Examples

in the border collision period doubling scenario of system (11.10) and that
of the corresponding flip bifurcation of the classical period doubling scenario
of the logistic map (11.11) are identical.
Concerning the symmetry breaking - symmetry recovering property of the
border collision period doubling scenario, mentioned in section 11.9.3, one
yields now the following: in each step of the scenario the symmetry breaking
takes place at the pitchfork bifurcation, where a symmetric limit cycle be-
comes unstable and splits into two coexisting asymmetric limit cycles with
the same period, which are symmetric to each other. Note, that Fig. 11.21,
Fig. 11.27 and Fig. 11.28 show only one of the coexisting limit cycles. The
symmetry is recovered by the next border collision bifurcation, whereby the
asymmetric limit cycles disappear, and a new symmetric one with twice the
period emerges (see Fig. 11.25). This behavior is illustrated in Fig. 11.29,
which shows the mean point x̄ of the attractors, defined by

x̄(A) =
1

N

N∑
i=1

xi A = {x1 . . . xN} (11.16)

depending on the parameter α. For a symmetric attractor A of system
(11.10) it holds x̄(A) = 1

2
, whereas for two asymmetric attractors A1 and A2,

symmetric to each other, it holds x̄(A1) = 1− x̄(A2).

11.9.6 Kneading orbits and locating of band merging
bifurcations

A lot of interesting results for the investigated system can be obtained using
the technique of kneading orbits [84, 110, 19]. The usual approach here is
to investigate itineraries of some critical points. For system (11.10) this is
obviously the point x = 1

2
. Due to the fact, that the point x = 1

2
is a fixed

point of system (11.10), one has to track itineraries of points in its vicinity.
Therefore we introduce the following functions:

gl(α) = lim
ε→0

f

(
1

2
− ε, α

)
= fl

(
1

2
, α

)
(11.17)

gr(α) = lim
ε→0

f

(
1

2
+ ε, α

)
= fr

(
1

2
, α

)
(11.18)

Higher itineraries of critical points 1
2
− ε and 1

2
+ ε (ε→ 0) can be calculated

iteratively. For a sequence s consisting of alternating symbols l and r the

265

Chapter 11
Examples

x

α

(a) (b) (c) (d)

αp
1 αbc

2 αp
2 αm

2 αm
1

x∗5

x∗4

x∗∗4

x∗∗3

x∗∗2

x∗∗1

Figure 11.27: Band merging cascade

Band merging cascade in system (11.10). Parameter values corresponding
to Fig. 11.31 are marked with (a), (b), (c) and (d). See text for a detailed
description.

266

Chapter 11
Examples

x

α

(a)

x

α

(b)

x

α

(c)

x

α

(d)

Figure 11.28: Border collision period doubling scenario in a 3-periodic win-
dow

Border collision period doubling scenario within the 3-periodic window for a
single initial value (a). Enlarged are the upper part (b), the middle part (c),
and the lower part (d) of the scenario.

267

Chapter 11
Examples

x̄

α(a)

x̄

α(b)

x̄

α(c)

Figure 11.29: Mean points of attractors

Mean points x̄ of the attractors within the border collision period doubling
scenario, obtained for two symmetric initial values (x(0) = 0.25 and x(0) =
0.75). The green rectangles in (a) and (b) are shown enlarged in Figs. (b)
and (c).

functions

gslr(α) = fr(gsl(α), α)
gsrl(α) = fl(gsr(α), α)

(11.19)

are defined, which lead to the higher itineraries of critical points mentioned
above. The functions g...(α) represent polynomials and can be calculated
analytically. One can calculate for instance:

gl(α) =
α

4
= 1− gr(α) (11.20)

glr(α) =
1

16
α3 − 1

4
α2 + 1 = 1− grl(α) (11.21)

glrl(α) =
1

256
α7 − 1

32
α6 +

1

16
α5 +

1

16
α4 − 1

4
α3 + 1 (11.22)

= 1− grlr(α)

It turns out, that the functions g...(α) are useful for several purposes, for
instance for locating of the border collision bifurcations. These bifurcations
occur at the parameter values, where the itineraries of critical points reach

268

Chapter 11
Examples

these points again. Therefore, one can in principle calculate these parameter
values solving the corresponding equations g...(α) = 1

2
. Especially when

dealing with the border collision period doubling between the parameter
values αt and α∞ one has to consider the equations

g
(lr)2k (α) = glr . . . lr︸ ︷︷ ︸

2ktimes

(α) =
1

2
, k = 1, 2, 3, . . . (11.23)

For instance, the value αbc
2 can be found from the equation glr(α) = 1

2
, the

next value αbc
3 - from the equation glrlr(α) = 1

2
, and so on (see Fig. 11.30).

Note, that because of the symmetry of the investigated system the equations

g
(lr)2k (α) =

1

2
and g

(rl)2k (α) =
1

2
(11.24)

have the same solutions. Due to the increasing degrees of the polynomials
the equations for αbc

k , k ≥ 3 can be solved only numerically. In particular
one obtains:

αbc
1 = 2 (11.25)

αbc
2 = 1 +

√
5 (11.26)

αbc
3 ≈ 3.498561699327 (11.27)

αbc
4 ≈ 3.554640862769 (11.28)

We remark additionally, that using the described procedure one can calculate
not only the parameter values of the border collision bifurcations between αt

and α∞, but also the points of these bifurcations beyond α∞.

11.9.7 Behavior of the investigated system beyond α∞

Until now the behavior of system (11.10) within the (main) border collision
period doubling scenario was described, i.e. for parameter values 0 < α <
α∞. For α > α∞ system (11.10) show also a lot of interesting phenomena,
like the band merging scenario, an infinite number of periodic windows within
the chaotic regime, and the border collision period doubling scenario within
these windows. Again we observe some similarities as well as some differences
with the behavior of the logistic map. These topics are briefly described in
this section.

269

Chapter 11
Examples

x

α

αbc
1 αbc

2 αbc
3

αbc
4

glr(α)

glrlr(α)

glrlrlrlr(α)

Figure 11.30: Locating of border collision bifurcations

Locating border collision bifurcations in system (11.10) using the itineraries
of the critical point x = 1

2
.

270

Chapter 11
Examples

11.9.8 Influence of the border collision period doubling
scenario on the band merging scenario

Like the period doubling scenario, also the band merging bifurcation cascade
is well-known for the logistic map. After the parameter value α∞ the logistic
map shows an infinite sequence of bifurcations, whereby the number of bands
of the multi-band attractors is divided by two at each bifurcation point αm

n .
Therefore, the n-th bifurcation in this sequence can be described as follows.
Before the bifurcation point a chaotic attractor with 2n bands exists. At
the bifurcation point the bands of this attractor merge pairwise with each
other. Additionally the merging points collide with the points of an unstable
limit cycle with period 2n−1, which emerges at the n-th flip bifurcation and
becomes unstable at the (n+1)-th one. After the bifurcation point a chaotic
attractor with 2n−1 bands exists. Obviously, all multi-band attractors of the
logistic map have an even number of bands.

System (11.10) shows also a band merging bifurcation cascade, which is simi-
lar to the one described above. However the symmetry of system (11.10) leads
to remarkable difference between the dynamics of this system and the one of
the logistic map. In the case of system (11.10) there exists also an infinite
sequence of bifurcations (see Fig. 11.27), where the bands of the multi-band
attractors merge pairwise, but these attractors always have an odd number
of bands. More precisely, before the n-th bifurcation in the band merging
cascade a chaotic attractor with 2n+1 − 1 bands exists. At the bifurcation
point its bands merge pairwise with each other and additionally collide with
the points of an unstable limit cycle with the period 2n. As described in the
previous section, this limit cycle emerges within the border collision bifur-
cation scenario at the point of the n-th border collision bifurcation αbc

n and
becomes unstable at the point of the n-th pitchfork bifurcation αp

n. After the
bifurcation point a chaotic attractor with 2n − 1 bands exists.

In Fig. 11.27 the described dynamics is illustrated in more detail for the
first two (or the last two, depending on the preferred direction in parame-
ter space) band merging bifurcations. Before the band merging bifurcations
at the parameter value αm

2 there exists a chaotic seven-band-attractor (see
Fig. 11.31.(a)). At the bifurcations point its bands merge and collide with the
points of the limit cycle {x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 }, which emerges at the second bor-
der collision bifurcation at αbc

2 and becomes unstable at the second pitchfork
bifurcation αp

2. After the band merging bifurcations a chaotic three-band-
attractor exists. Its bands collide at the parameter value αm

1 with each other

271

Chapter 11
Examples

x

ρ(x)

(a) a = 3.581
x

ρ(x)

(b) a = 3.6785735

x

ρ(x)

(c) a = 3.825
x

ρ(x)

(d) a = 4.0

Figure 11.31: Invariant measures of chaotic attractors

Invariant measure of chaotic attractors of system (11.10) for the parameter
values marked in Fig. 11.27. See text for a detailed description.

and with the limit cycle {x∗4, x∗5}, which emerges at the first border collision
bifurcation αbc

1 and becomes unstable at the first pitchfork bifurcation αp
1.

Comparing this behavior with the one of the logistic map, one can remark,
that in this system at the first band merging bifurcation αm

1 the bands of
a chaotic two-band-attractor merge with each other and collide with an un-
stable fixed point, which emerges at the first flip bifurcation and becomes
unstable at the second one.

11.9.9 Influence of kneading orbits on the behavior of
the investigated system beyond α∞

Boundaries of chaotic attractors
The boundaries of the chaotic attractors of system (11.10) are given by
itineraries of critical points 1

2
− ε and 1

2
+ ε (ε → 0). Note, that the point

1
2

is a fixed point of this system and therefore its itineraries do not belong

272

Chapter 11
Examples

to attractors. For all parameter values the boundaries of chaotic attractors
of system (11.10) do not belong to this attractors. This property shows a
remarkable difference between system (11.10) and the logistic map. In most
of the cases, the boundaries of chaotic attractors of the logistic map belong
to attractors.

Dealing with multi-band attractors, the following notation is used. For a
n-band attractor, the limes supremum of the upper boundary of its m-th
band with m = 1, . . . , n is denoted as xup

[n,m]. Analogously, the limes infimum

of the lower boundary of this band is denoted as xlo
[n,m].

The smallest and the largest boundaries for all chaotic attractors of sys-
tem (11.10) are directly given by the functions gl and gr (see Eq. (11.20)):

xup
[n,n] = gl(α) xlo

[n,1] = gr(α) ∀n = 2k − 1, k ∈ N (11.29)

As expected, the values xup
[n,n] and xlo

[n,1] are symmetric to each other with

respect to the point x = 1
2
.

The functions given by Eq. (11.19) determine the boundaries of the n-band
attractors with n = 3, 7, 15, . . . (that means ∀n = 2k − 1, k > 1) existing in
the parameter interval α∞ < α < αm

1 . Especially for the 3-band attractors
one obtains

xup
[3,1] = grlr(α)

xlo
[3,2] = grl(α)

xup
[3,2] = glr(α)

xlo
[3,3] = glrl(α)

(11.30)

whereby the used functions are determined by Eq. (11.21) and (11.22). Note,
that the boundaries xlo

[3,1], xup
[3,3] are already determined by Eq. (11.29). This

is the analytic result for all six boundaries of the 3-band attractors of sys-
tem (11.10), which exists in the parameter interval αm

2 ≤ α < αm
1 (see

Fig. 11.32.(a)).
The same procedure can be applied for the further chaotic attractors. For
instance, from the 14 boundaries of the 7-band attractors six boundaries are
given by the same functions as the boundaries of the 3-band attractors:

xlo
[7,1] = gr(α)

xup
[7,2] = grlr(α)

xlo
[7,3] = grl(α)

xup
[7,5] = glr(α)

xlo
[7,6] = glrl(α)

xup
[7,7] = gl(α)

(11.31)

273

Chapter 11
Examples

α

x

gl(α)

glrl(α)

glr(α)

grl(α)

grlr(α)

gr(α)

(a)
α

x

glrlrl(α)

glrlrlrl(α)

glrlrlr(α)

glrlr(α)

grlrl(α)

grlrlrl(α)

grlrlrlr(α)

grlrlr(α)

(b)

α

x

(c)

Figure 11.32: Boundaries of chaotic attractors

Boundaries of chaotic attractors. In (a) are shown the six functions, defin-
ing the boundaries of 3-band attractors. In (b) are shown additionally the
eight functions, which define together with the six function of (a) the 14
boundaries of 7-band attractors. In (c) are shown the 30 functions defining
the boundaries of 15-band attractors. Note, that these function also reveal
the basic structure of the bifurcation diagram, including periodic windows,
presented in Figs. 11.21 and 11.27.

274

Chapter 11
Examples

The remaining eight boundaries (see Fig. 11.32.(b)) can be determined as
follows:

xup
[7,1] = grlrlr(α)

xlo
[7,2] = grlrlrlr(α)

xup
[7,3] = grlrlrl(α)

xlo
[7,4] = grlrl(α)

xup
[7,4] = glrlr(α)

xlo
[7,5] = glrlrlr(α)

xup
[7,6] = glrlrlrl(α)

xlo
[7,7] = glrlrl(α)

(11.32)

Locating of band merging bifurcations
Using the knowledge about the boundaries of the multi-band attractors ex-
isting within the band merging bifurcation cascade, one is able to calculate
the parameter values where the band merging bifurcations occur. For this
aim one have to calculate the cross-sections of the corresponding boundaries.
For instance, the parameter value αm

1 can be found using any of the equations
xup

[3,1] = xlo
[3,2] or xup

[3,2] = xlo
[3,3]. Additionally we remark, that the points αm

k for
the special cases k = 1, 2 can be found more simple taking into consideration,
that the bands collide here not only with each other, but also with the al-
ready known unstable limit cycle {x∗4, x∗5} (for k = 1) and {x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 }
(for k = 2). Therefore the value αm

1 can be found by solving the equations
xup

[3,1] = x∗5 or xlo
[3,3] = x∗4, and the value αm

2 results for instance as a solution

of the equation xup
[7,4] = x∗∗2 . One gets:

αm
1 =

2

3

(
3

√
19 + 3

√
33 +

4
3
√

19 + 3
√

33
+ 1

)
≈ 3.678573511(11.33)

αm
2 ≈ 3.59257218410697865 (11.34)

Peaks of the invariant measure
The functions g...(α), defined so far, play an important role also after the
merging of the corresponding bands. Here these functions (see Fig. 11.32.(c))
determine the peaks of the invariant measure of the chaotic attractors, as it
is shown in [84]. Due to this fact all chaotic attractors of system (11.10)
are symmetric with respect to the point x = 1

2
. Fig. 11.31 demonstrates

the invariant measure ρ(x) for some of these attractors. The first one
(Fig. 11.31.(a)) corresponds to a seven-band-attractor, which exists in the
band merging bifurcation cascade before the merging with the unstable 4-
periodic limit cycle. The second one (Fig. 11.31.(b)) emerge at the point
of the band merging bifurcation α = αm

1 , given by Eq. (11.33). Note, that

275

Chapter 11
Examples

the invariant measure of the chaotic attractor at this parameter value is a
smooth curve. It is because all relevant functions g... (it means all except
gl and gr) take for α = αm

1 either the value x∗4 or the value x∗5. The next
two figures (Fig. 11.31.(c) and (d)) show symmetrical one-band attractors.
For the attractor at the parameter value α = 4 the invariant measure can

be calculated analytically and is given by ρ(x) = (π2x(1− x))
− 1

2 . Note, that
this invariant measure is identical with the invariant measure of the logistic
map at the same parameter value. It is well-known, that at this parameter
value a diffeomorphism exists between the logistic map on the one hand and
the tent map x(n+1) = µ

(
1− 2

∣∣x(n)− 1
2

∣∣) at the parameter value µ = 1 on
the other hand. This diffeomorphism is given by h(x) = 2

π
arcsin

√
x. It can

be shown, that the same diffeomorphism exists between system (11.10) and
the tent map also. The invariant measure can be determined by applying
the diffeomorphism to the invariant measure of the attractor of the tent map,
which is given by ρ(x) = 1.

11.9.10 Influence of the border collision period dou-
bling scenario on the behavior within periodic
windows

The last interesting property of system (11.10), which we would like to con-
sider, concerns the periodic windows within the chaotic regime. Again there
are similarities and also differences between system (11.10) and the logistic
map. For both systems the periodic windows exist at the same parame-
ter values and occur in the same order, which can be described using the
Metropolis-Stein-Stein sequences [109]. The difference between the logistic
map and system (11.10) is, that within each specific window in the case of
the logistic map the period doubling cascade takes place, and in the case of
system (11.10) the border collision period doubling cascade. The bifurca-
tion leading to the formation of the periodic windows is the same in both
cases, namely, the tangent bifurcation. For the logistic map there exists a
pair of limit cycles after this bifurcation, a stable and an unstable one. For
system (11.10) two such pairs emerge after the bifurcation. For increasing
parameter values the stable limit cycles of both pairs undergo the border
collision bifurcation described above. This bifurcation leads to the formation
of a single limit cycle with twice the period. After that the border collision
period doubling scenario continues as described above for α < α∞. Note

276

Chapter 11
Examples

also, that the two unstable limit cycles emerging at the tangent bifurcation
do not collide with the partition border. As in the case of the logistic map,
these limit cycles lead to the global bifurcation (crisis) at which the periodic
window is closed.

11.9.11 Summary and outlook

The border collision period doubling scenario is considered here. Using a
discontinuous map on the interval [0, 1], the properties of this scenario, its
similarities and differences with the classical period doubling scenario are
investigated. It is shown that the border collision period doubling scenario is
formed by a sequence of pairs of bifurcations. Each pair consists of a border
collision bifurcation and a pitchfork bifurcation. The symmetry breaking and
symmetry recovering phenomenon within each pair of bifurcations plays an
important role for the understanding of this scenario. It is further shown,
how the border collision phenomenon influences the band merging scenario
and the behavior within periodic windows in the chaotic regime. Some results
concerning boundaries of chaotic attractors as well as determining of border
collision and band merging bifurcations are obtained based on the technique
of kneading orbits.
The following question remains still open: as it is shown in [53], the in-
vestigated system (11.10) represents a special kind of Poincaré return map
for the well-known Lorenz system [97]. Therefore, a relationship between
bifurcations occurring in the Lorenz system and the border collision period
doubling scenario must exist. Based on the hypothesis, that the border colli-
sion bifurcations in system (11.10) correspond to homoclinic bifurcations in
the Lorenz system, this relationship should be investigated in more detail.

277

Chapter 12

Conclusion

In this work, the AnT 4.669 software package is presented. Its capabilities
and features are illustrated by many examples from the field of nonlinear dy-
namics. A lot of results of typical investigation and analysis tasks are shown,
demonstrating the flexibility and the broad applicability of the software. The
main advantages are:

I multi-platform support (UNIX-like systems and Windows systems)
I system function plug in mechanism
I powerful scan mechanism
I distributed computing
I open source development
I usage of generic concepts
I support of many classes of dynamical systems
I graphical user interface
I visualization

Of course there are a lot of other simulation and analysis tools in the field of
nonlinear dynamics. Among them are:

I AUTO [6]
I DsTool [37]
I Dynamics Solver [40]
I PHASER [136]
I XPP [199]

278

Chapter 12
Conclusion

See also [38] and [5] for a more complete list and an overview about the
features and capabilities of the software tools. Each of these tools has its ca-
pabilities, features and advantages and often its own specific application area
making a comparison of the tools really difficult if not impossible. However,
none of the tools known so far allows the simulation of such a broad spec-
trum of dynamical systems, provides such a powerful scanning mechanism
and allows the distributed computing in such an easy way as the AnT 4.669
software package. Currently, there are still a lot of possible improvements
and enhancements like:

I Extension of integration methods:

• usage of third party ODE, DDE and FDE integrators
• implementation of symplectic integrators

I Extension of PDE solvers

• Implementation of 2D-PDEs
• Implementation of adaptive grid methods for PDEs

I Extension of investigation methods:

• continuation method
• local divergence rates
• . . .

I Improvement of the visualization

• ’attractor flight’
• more sophisticated coloring schemes

I Implementation of new system classes

• Differential Algebraic Equations (DAEs)
• Integro Differential Equations (IDEs)
• Partial Functional Differential Equations (PFDEs)
• . . .

279

Appendix A

Reduction of the parameter
space

The following example shall elucidate the reduction of the parameter space
mentioned in Sec. 3.2. Consider for instance a particle or in the strict math-
ematical sense a mass point attached to an ideal spring1: When excited,
the relaxation of the mass point from its displacement of the equilibrium
represents a movement of the mass point in the course of time, and is hence
a dynamical process. This system is denoted as damped oscillator. Due to
the fact, that the relaxation is a continuous movement, the adequate math-
ematical model is a dynamical system continuous in time, although it is
possible to derive also dynamical systems discrete in time if one is interested
only in some specific parts of the dynamics. When the movement of the mass
point is restricted to only one dimension, the mass of the ideal spring and
the air friction are neglected, the corresponding equation of motion of this
dynamical system is given by:

m
d2

dt2
s (t) + f

d

dt
s (t) + ks (t) = 0 (A.1)

This natural description involves besides the time t and the state variable
s(t) as a function of time, representing the displacement of the mass point
from its equilibrium, also the three parameters m, f and k, resulting in a

1An ideal spring is a spring for which Hooks law is exactly valid for arbitrary small or
large displacements.

280

Chapter A
Reduction of the parameter space

parameter space dimension of Np = 3. Hereby m is the particle mass or
mass of the mass point, f is the friction constant and k is the spring
constant. As already mentioned, a scaling of time and the state variable
reduces redundant parameters. Using the following scaling of time and state

t = αt′ (A.2)

s(t) = βs̃(t) = βs̃(αt′) = βs′(t′) (A.3)

involves the two scaling parameters α and β and leads to the following
equation of motion for the scaled state variable s′(t′):

d2

dt′2
s′ (t′) + f ′

d

dt′
s′ (t′) + s′ (t′) = 0 (A.4)

when the scaling parameters α and β are chosen as

α =
√

mβ (A.5)

β =
1

k
(A.6)

Hereby, the new single parameter f ′ defined by:

f ′ =
β

α
f (A.7)

The resulting dynamical system (A.4) has only the single parameter f ′ de-
fined by:

f ′ =
β

α
f (A.8)

and hence the minimal set of parameters with a parameter space dimension
of Np = 1.
As pointed out, an appropriate scaling of time and space or state leads in
some cases to a remarkable reduction of the parameter space which causes a
simplification of investigations and especially parameter studies due to the
decreased parameter space dimension.

281

Appendix B

Addition of machine numbers

B.1 A simple example program

The fact, that arithmetic operations of machine numbers are not closed
can be easily demonstrated. The following simple C program performs the
addition of two floating point numbers, which are exactly representable by
machine numbers according to the IEEE 754 standard.

001 #include<stdio.h>
002 #include<math.h>
003
004 int main (void) {
005 int e1,e2; double x;
006
007 printf("\nPlease enter e1 = ");scanf("%d",&e1);
008 printf("Please enter e2 = ");scanf("%d",&e2);
009
010 printf("\nmn1 = 2^e1 = %20.41g\n",pow(2,e1));
011 printf("mn2 = 2^e2 = %20.41g\n",pow(2,e2));
012
013 x = pow(2,e1) + pow(2,e2);
014
015 printf("\n(float) (mn1 + mn2) = %20.41g\n", (float) (x));
016 printf("(double) (mn1 + mn2) = %20.41g\n", (double) (x));
017

018 return(0); }

282

Chapter B
Addition of machine numbers

The program requires two integer input values. For these two values it out-
puts the corresponding powers to the basis 2 which are both representable
machine numbers according to the IEEE 754 standard. After that it per-
forms a simple addition of these two machine numbers and stores the result
in the double precision variable x. Then it outputs this result in float and
double precision.

B.2 Characteristic case studies

The program presented in section B.1 produces the following five outputs,
when provided with the corresponding input values.

1.) Addition of 20 and 223

Please enter e1 = 0
Please enter e2 = 23

mn1 = 2^e1 = 1
mn2 = 2^e2 = 8388608

(float) (mn1 + mn2) = 8388609
(double) (mn1 + mn2) = 8388609

As one can easily see, the result is correct for both precisions.

2.) Addition of 20 and 224

Please enter e1 = 0
Please enter e2 = 24

mn1 = 2^e1 = 1
mn2 = 2^e2 = 16777216

(float) (mn1 + mn2) = 16777216
(double) (mn1 + mn2) = 16777217

283

Chapter B
Addition of machine numbers

Now only the double precision result is correct. This is due to the
fact, that the sum of 20 and 224 is no longer a representable machine num-
ber in float precision (see sections 10.2.1 and 10.3 for a detailed explanation).

3.) Addition of 220 and 244

Please enter e1 = 20
Please enter e2 = 44

mn1 = 2^e1 = 1048576
mn2 = 2^e2 = 17592186044416

(float) (mn1 + mn2) = 17592186044416
(double) (mn1 + mn2) = 17592187092992

In this case the error is not just a small quantity although of course the
relative error is of the same order of magnitude.

4.) Addition of 2−10 and 242

Please enter e1 = -10
Please enter e2 = 42

mn1 = 2^e1 = 0.0009765625
mn2 = 2^e2 = 4398046511104

(float) (mn1 + mn2) = 4398046511104
(double) (mn1 + mn2) = 4398046511104.0009765625

In this example the two exponents are chosen such that their difference
of 52 is exactly the number of bits in the mantissa of the double precision
representation. Hence the result of the addition is a representable machine
number and therefore correct within the double precision representation.

5.) Addition of 2−10 and 243

284

Chapter B
Addition of machine numbers

Please enter e1 = -10
Please enter e2 = 43

mn1 = 2^e1 = 0.0009765625
mn2 = 2^e2 = 8796093022208

(float) (mn1 + mn2) = 8796093022208
(double) (mn1 + mn2) = 8796093022208

Now the difference of the two exponents is 53 and therefore the result of the
addition is no longer a representable machine number using double precision.
As a result of that, the output represents the machine number to which the
exact result of the addition is mapped.
As one can see, the result of a simple addition of two floating point numbers
is not always correct, because it is not a representable machine number with
respect to the chosen precision, whereby it even cannot be guaranteed, that
the error is a small quantity. This demonstrates, that one has to be always
careful when interpreting computational results.

285

Appendix C

Differential equations with
higher order time derivatives

C.1 Motivation

Due to the architecture of the AnT 4.669 simulation package, only of first or-
der time derivatives of the state vector are treatable. To be able to deal with
ordinary differential equations (ODEs), delay differential equations (DDEs)
and partial differential equations (PDEs) with higher order time derivatives
of the state vector, one has to transform the original differential equation into
an equivalent system of differential equations with first order time derivatives.
Due to the fact, that non-autonomous dynamical systems can be easily con-
verted into autonomous ones by extending the state space introducing a new
state variable representing the time, only autonomous dynamical systems are
considered (see Chap. 3, the remark 1 on page page 47).

C.2 Transformation of differential equations

with higher order time derivatives

In the following, the compact notation dk
t = dk

dtk
for the time derivative

operators is used.

286

Chapter C
Differential equations with higher order time derivatives

C.2.1 Transformation of ordinary differential equa-
tions (ODEs)

Consider the following ordinary differential equation (ODE):

dn
t s(t) = f

(
s(t), dts(t), . . . , d

n−1
t s(t), p

)
(C.1)

As introduced in section 3.2, s(t) is the Ns-dimensional state vector and p
is a Np-dimensional vector of system parameters. Defining now n − 1 new
state vectors s1(t), . . . , sn−1(t) and identifying s0(t) with s(t), Eq. (C.1) can
be easily converted into the following set of differential equations where only
first order time derivatives of the new state vectors appear on the right hand
side.

dts0(t) = s1(t)
...

dtsi(t) = si+1(t) (C.2)
...

dtsn−1(t) = f
(
s0(t), s1(t), . . . , sn−1(t), p

)
The differential equation (C.1) and the system of differential equations (C.2)
are equivalent and as a consequence, dynamical systems which can be de-
scribed by Eq. (C.1) are fully supported by the AnT 4.669 software package.

Due to the fact, that this transformation is always possible for all explicit
ODEs, all differential equations of this type can be simulated and investigated
by the AnT 4.669 software package.

C.2.2 Transformation of delay differential equations
(DDEs)

Consider the following delay differential equation (DDE):

dn
t s(t) = f

(
s(t), s(t− τ1), . . . , s(t− τm),

dts(t), dts(t− τ1), . . . , dts(t− τm), . . . , (C.3)

dn−1
t s(t), dn−1

t s(t− τ1), . . . , d
n−1
t s(t− τm), p

)
287

Chapter C
Differential equations with higher order time derivatives

Again as introduced ins section 3.2, s(t) is the Ns-dimensional state vector
and p is a Np-dimensional vector of system parameters and τ1, . . . , τm is a
finite set of time delays. Now, as in section C.2.1, the n−1 new state vectors
s1(t), . . . , sn−1(t) are defined and s0(t) is identified with s(t). Eq. (C.3) can
now easily be converted into the following set of differential equations where
on the right hand side only first order time derivatives of the new state vectors
appear.

dts0(t) = s1(t)
...

dtsi(t) = si+1(t) (C.4)
...

dtsn−1(t) = f
(
s0(t), s0(t− τ1), . . . , s0(t− τm),

s1(t), s1(t− τ1), . . . , s1(t− τm), . . . ,

sn−1(t), sn−1(t− τ1), . . . , sn−1(t− τm), p
)

The differential equation (C.3) and the system of differential equations (C.4)
are equivalent and as a consequence, dynamical systems which can be de-
scribed by Eq. (C.3) are fully supported by the AnT 4.669 software package.

Due to the fact, that this transformation is always possible for explicit DDEs,
all differential equations of this type can be simulated and investigated by
the AnT 4.669 software package.

288

Appendix D

Partial differential equations
with higher order time
derivatives

D.1 Motivation

Due to the architecture of the AnT 4.669 simulation package, only first
order time derivatives of the state vector are allowed. To be able to treat
partial differential equations with higher order time derivatives or such equa-
tions where mixed partial derivatives with respect to time and other indepen-
dent variables occur, one has to transform the original PDE into a system
of PDEs with only first order time derivatives. Due to the fact, that this
transformation is not always possible, not all partial differential equations
can be simulated and investigated by AnT 4.669.

D.2 Transformation of partial differential

equations with higher order time deriva-

tives

D.2.1 PDEs with pure time and space derivatives

Consider the following partial differential equation:

289

Chapter D
Partial differential equations with higher order time derivatives

∂n

∂tn
s(x, t) = f

(
s(x, t),

∂s(x, t)

∂xi

,
∂s(x, t)

∂t
,
∂2s(x, t)

∂xi1∂xi2

,
∂2s(x, t)

∂t2
,

. . . ,
∂n−1s(x, t)

∂xi1 . . . ∂xin−1

,
∂n−1

∂tn−1
s(x, t), p

)
(D.1)

As introduced in section 3.2, s(x, t) is the Ns-dimensional state vector and
p is a Np-dimensional vector of system parameters. If one defines n− 1 new
state vectors s1(x, t), . . . , sn−1(x, t), whereby s0(x, t) is identified with s(x, t),
then Eq. (D.1) can be converted into the following set of partial differential
equations where on the right hand side only first order time derivatives of
the new state vectors appear.

∂

∂t
s0(x, t) = s1(x, t)

...
∂

∂t
si(x, t) = si+1(x, t) (D.2)

...
∂

∂t
sn−1(x, t) = f

(
s0(x, t),

∂s0(x, t)

∂xi

, s1(x, t),
∂2s0(x, t)

∂xi1∂xi2

, s2(x, t),

. . . ,
∂n−1s0(x, t)

∂xi1 . . . ∂xin−1

, sn−1(x, t), p
)

The partial differential equation (D.1) and the system of partial differen-
tial equations (D.2) are equivalent and as a consequence, dynamical systems
which can be described by partial differential equations like (D.1) are sup-
ported by the AnT 4.669 software package.

D.2.2 PDEs with mixed time and space derivatives

If the dynamical system has to be described by partial differential equations
with mixed time and spatial derivatives, a conversion to a system of partial
differential equations like the conversion presented in section D.2 is not always
possible. However, the dynamical systems corresponding described by partial
differential equations where the conversion is possible are also supported

290

Chapter D
Partial differential equations with higher order time derivatives

by the AnT 4.669 software package. For instance, if the highest order
time derivative is a pure time derivative, then the procedure presented in
section D.2.1 is still applicable and the dynamical system is supported.

291

Appendix E

Client/server example runs

E.1 Motivation

In chapter 7 the client/server architecture of the AnT 4.669 software pack-
age is presented. In this chapter some illustrative examples are collected
which demonstrate some of the features and capabilities of this architecture.
The capability of the computing clients to adapt their number of fetched
scan-points from the server to their current load for instance is illustrated in
section E.2.

E.2 Load based adaptation of the clients

The following is a typical output of a client during the execution of a scan.
In this case the logistic map was investigated in the parameter interval
α ∈ [0.001, 4] using 300 scan points with 50000 iterations per scan-point and
the period analysis investigation method which tries to select the parameter
intervals in which the periods 2, 3, 4, 5, 6, 7, 8, 16, 32, 64 occur. Because this
is an illustrative example, a server and only one client were used. The server
and the client were started using the following commands:

AnT logistic -m server

AnT logistic -m client -s serverhostname -n 1 -t 3

As a consequence of the options -n 1, specifying the number of scan-points
to be fetched from the server initially and -t 3, specifying the time in

292

Chapter E
Client/server example runs

seconds which a client should run before fetching further scan-points from
the server.

After the number of scan-points which were fetched the first time are pro-
cessed, the client can calculate the time necessary for the tasks to be done
for one scan-point and with this information the client can calculate how
many scan points it needs to be busy for the specified time. Here, the client
fetches the next time about 30 scan-points from the server. After the third
fetch, additional processes were started on the client causing a decrease in
the number of fetched scan-points form server to about 20 scan-points in the
average. In the last phase of the scan, the number of fetched scan-points
increases again to about 30, because the additional processes were stopped.
This simple example demonstrates the capability of adaptation of the clients.

--//------------/-------------------------------

// AnT 4.669 / Release 3a, (c) 1999-2004

//------------/---------------------------------

Name of the dynamical system: logistic

Name of the configuration file:

runmode: client

Adding investigation method for key: ’period_analysis’ ...

investigation method added successfully.

Adding investigation method for key: ’general_trajectory_evaluations’ ...

investigation method added successfully.

Adding investigation method for key: ’lyapunov_exponents_analysis’ ...

Number of lyapunov exponents to be calculated: 1

use L2 norm for vectors.

use random vectors as initial deviations.

investigation method added successfully.

allocated size of the continuous orbit: 1000

the following real-valued objects are scannable:

alpha

initial_state[0][0]

parameter[0]

the following int-typed objects are scannable:

lyapunov_exponents_analysis::steps_between_reorthonormalization

scannable objects inspected.

loading the system... system loaded successfully

293

Chapter E
Client/server example runs

starting scanMachine...

Client speed: 0 scanpoints/second

fetching 1 scanpoints

numScanPoints: 1

Client speed: 4.052142976 scanpoints/second

fetching 32 scanpoints

numScanPoints: 32

Client speed: 10.72182689 scanpoints/second

fetching 32 scanpoints

numScanPoints: 32

Client speed: 5.910639261 scanpoints/second

fetching 17 scanpoints

numScanPoints: 17

Client speed: 7.430482374 scanpoints/second

fetching 22 scanpoints

numScanPoints: 22

Client speed: 10.67583365 scanpoints/second

fetching 32 scanpoints

numScanPoints: 32

Client speed: 6.991285145 scanpoints/second

fetching 21 scanpoints

numScanPoints: 21

Client speed: 4.339294836 scanpoints/second

fetching 15 scanpoints

numScanPoints: 15

Client speed: 4.100501655 scanpoints/second

fetching 16 scanpoints

numScanPoints: 16

Client speed: 6.333102175 scanpoints/second

fetching 26 scanpoints

numScanPoints: 26

Client speed: 6.506928252 scanpoints/second

fetching 21 scanpoints

numScanPoints: 21

Client speed: 7.51931928 scanpoints/second

fetching 29 scanpoints

numScanPoints: 29

Client speed: 10.89106568 scanpoints/second

294

Chapter E
Client/server example runs

fetching 33 scanpoints

numScanPoints: 33

Client speed: 9.574331044 scanpoints/second

fetching 30 scanpoints

numScanPoints: 3

Client speed: 7.618041554 scanpoints/second

fetching 29 scanpoints

numScanPoints: 0

’ANPClient::getScanPoint’: could not fetch any scan points!

Client is getting down... Bye!

Bye!

E.3 Taking over for a broken down client

The following example demonstrates the possibility of taking over the tasks
given to another client, but which is broken down. The server and the client
were started using the following commands:

AnT logistic -m server

AnT logistic -m client -s serverhostname -n 100

Then after the complete calculation is finished, without breakdown of the
client, the server stops with the following message:

total: 300, calculated 300, progress 100.00 %.

closing socket: 4

accepting connections now

connection established

on opened socket: 4

Done.

closing socket: 4

83.309132 sec

3.601045801 scanpoints/sec

scanMachine stopped.

simulation successfully completed.

Bye!

295

Chapter E
Client/server example runs

In the case of a breakdown of the only computing client, the computation
stops but the server is still running and accepting connections from possible
other clients. Starting another computing client on the same (after a possible
reboot) or another machine, the output of the server after the complete
calculation is finished looks like:

total: 300, calculated 300, progress 100.00 %.

closing socket: 4

accepting connections now

connection established

on opened socket: 4

Done.

closing socket: 4

130.825503 sec

2.293130874 scanpoints/sec

scanMachine stopped.

simulation successfully completed.

Bye!

Of course - as expected - when starting again only one comparable client, the
overall performance is less in this case as indicated by the total time needed
for the scan and the average value of the calculated scan-points per second.

296

Bibliography

[1] Alekseev, V. M. Symbolic Dynamics, 11th Mathematical School.
Kiev, 1976. In Russian.

[2] Annual report of the Lawrence Livermore National Laboratory.
http://www.llnl.gov/annual01/, 2001.

[3] Annual report of the Lawrence Livermore National Laboratory.
http://www.llnl.gov/annual02/, 2002.

[4] The Ant 4.669 software package.
http://www.ant4669.de/.

[5] The ant 4.669 software package.
http://www.AnT4669.de.

[6] Auto.
http://indy.cs.concordia.ca/auto/.

[7] Avrutin, V. Zum Verhalten dynamischer Systeme mit einer stckweise
glatten Systemfunktion. PhD thesis, Universität Stuttgart, 2004.

[8] Avrutin, V., Wackenhut, G., and Schanz, M. On dynamical
systems with piecewise defined system functions. In Proc. of Int. Conf.
”‘Tools for Mathematical Modelling”’ MATHTOOLS’99 (1999).

[9] Banerjee, S., and Grebogi, C. Border collision bifurcation in
two-dimensional piecewise smooth maps. Phys. Rev. E59, 4 (1999),
4052–4061.

[10] Batista, A., and Carlson, J. M. Bifurcations from steady sliding
to slip in boundary lubrication. Phys. Rev. E57 (1998), 4986–4996.

297

BIBLIOGRAPHY

[11] Berryman, A. Population cycles of the Douglas-fir tussock moth
(Lepidoptera: Lymantriidae): the time-delay hypothesis. Canadian
Entomologist 110 (1978), 513–518.

[12] Blazejczyk-Okolewska, B., and Kapitaniak, T. Dynamics of
impact oscillators with dry friction. Chaos, Solitons & Fractals 7, 9
(1996), 1455–1459.

[13] Blazejczyk-Okolewska, B., and Kapitaniak, T. Co-existing
attractors of impact oscillators. Chaos, Solitons & Fractals 9, 8 (1998),
1439–1443.

[14] Bowen, R. Symbolic dynamics. Ann. Math. Soc. 8 (1982).

[15] Brigham, E. The Fast Fourier Transform and Applications. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[16] Butcher, M., Nassauer, O., and Young, S. Nuclear Fu-
tures: Western European Options for Nuclear Risk Reduction. Tech.
rep., British American Security Information Council and the Berlin
Information-center for Transatlantic Security (BITS)., December 1998.
BASIC/BITS Research Report 98.6.

[17] Chin, W., Ott, E., Nusse, H. E., and Grebogi, C. Grazing
bifurcations in impact oscillators. Phys. Rev. E50, 6 (1994).

[18] CLAPACK (f2c’ed version of LAPACK).
http://www.netlib.org/clapack/.

[19] Collet, P., and Eckmann, J.-P. Iterated maps on the interval as
dynamical systems. Birkhäuser, 1980.

[20] Cook, L. Oscillation in the simple logistic growth model. Nature 207
(1965), 316.

[21] Cooley, J., and Tukey, O. An Algorithm for the Machine Calcu-
lation of Complex Fourier Series. Math. Comput. 19 (1965), 297.

[22] Crawford, D. CTH 3D Comet Impact Simulations.
http://sherpa.sandia.gov/planet-impact/comet/. Sandia National
Laboratories.

298

BIBLIOGRAPHY

[23] Crawford, D. The Impact of an Asteroid off the New York Coast.
http://sherpa.sandia.gov/planet-impact/asteroid/, 1998. Sandia
National Laboratories.

[24] Crawford, D. Real (not reel) deep impacts: Sandia scientists predict
what an asteroid strike would look like, really.
http://www.sandia.gov/media/comethit.htm, 1998. Sandia National
Laboratories.

[25] Concurrent Versions System.
http://www.cvshome.org/.

[26] cygwin.
http://www.cygwin.com/.

[27] di Bernardo, M., Budd, C. J., and Champneys, A. R. Grazing,
skipping and sliding: analysis of the nonsmooth dynamics of the dc/dc
buck converter. Nonlinearity 11, 4 (1998), 858–890.

[28] di Bernardo, M., Budd, C. J., and Champneys, A. R. Corner
collision implies border-collision bifurcation. Physica D154, 3-4 (2001),
171–194.

[29] di Bernardo, M., Budd, C. J., and Champneys, A. R. Grazing
and Border-Collisions in Piecewise-Smooth Systems: A Unified Ana-
lytical Framework. Phys. Rev. Lett. 86, 12 (2001), 2554–2556.

[30] di Bernardo, M., Budd, C. J., and Champneys, A. R. Normal
form maps for grazing bifurcations in n-dimensional piecewise-smooth
dynamical systems. Physica D160, 3-4 (2001), 222–254.

[31] di Bernardo, M., Garofalo, F., Glielmo, L., and Vasca, F.
Switchings, Bifurcations and Chaos in DC/DC Converters. Fundamen-
tal Theory and Applications 45 (1998), 133–141.

[32] di Bernardo, M., Johansson, K. H., and Vasca, F. Sliding
bifurcations in piecewise smooth dynamical systems. In Proceedings
NDES00 (Catania, Italy, June 2000).

[33] di Bernardo, M., Vasca, F., and Olivar, G. Routes to chaos
in the voltage controlled buck converter without latch. In Nonlinear
phenomena in Power Electronic Circuits. IEEE Press, 2001.

299

BIBLIOGRAPHY

[34] Ding, E. Wave number for unimodal maps. Phys. Rev. A37, 5 (1988),
1827–1830.

[35] Ding, E. Wave number and symbolic dynamics. Phys. Rev. A39, 2
(1989), 816–829.

[36] Doxygen.
http://www.doxygen.org/.

[37] Dynamical systems: Simulation and visualization.
http://www.geom.uiuc.edu/software/dstool/.

[38] Dynamical systems software.
http://www.dynamicalsystems.org/sw/sw/.

[39] Dutta, M., Nusse, H. E., Ott, E., Yorke, J. A., and Yuan, G.
Multi-attractor bifurcations: a source for unpredictability in piecewise
smooth systems. Phys. Rev. Lett. 83 (1999), 4281–4284.

[40] Dynamics solver.
http://tp.lc.ehu.es/jma/ds/ds.html.

[41] Edwards, D., and Hamson, M. Guide to Mathematical Modelling
(Mathematical Guides). Palgrave Macmillan, 1994.

[42] Feigin, M. I. Doubling of the Oscillation Period with C-Bifurcations
in Piecewise-Continuous Systems. Prikl. Math. Mekh. 34 (1970), 861–
869. (in russian).

[43] Feigin, M. I. On the Generation of Subharmonic Modes in a
Piecewise-Continuous System. Prikl. Math. Mekh. 38 (1975), 810–818.
(in russian).

[44] Feigin, M. I. On the Structure of C-Bifurcation Boundaries of
Piecewise-Continuous Systems. Prikl. Math. Mekh. 42 (1978), 820–
829. (in russian).

[45] Feudel, U., Witt, A., Lai, Y.-C., and Grebogi, C. Basin
bifurcation in quasiperiodically forced systems. Phys. Rev. E58, 3
(1998), 3060–3066.

300

BIBLIOGRAPHY

[46] Fftw.
http://www.fftw.org/.

[47] Field, R., Körös, E., and Noyes, R. Oscillations in Chemical Sys-
tems. II. Thorough Analysis of Temporal Oscillation in the Bromate-
Cerium-Malonic Acid System. J. Am. Chem. Soc. 94 (1972).

[48] Foale, S. Analytical determination of bifurcations in an impact os-
cillator. Proc. R. Soc. Lond. A347 (1994), 353–364.

[49] Free Software Foundation.
http://www.gnu.org/fsf/.

[50] Fukuda, T., Buss, M., Hosokai, H., and Kawauchi, Y. Cell
structured robotic system cebot: Control, planning and communication
methods. Robotics and Autonomous Systems 7 (1991), 239 – 248.

[51] Fukuda, T., Kawauchi, Y., and Asama, H. Dynamically recon-
figurable robotic systems - optimal knowledge allocation for cellular
robotic system (cebot). Journal of Robotics and Mechatronics 2, 6
(1990), 22 – 30.

[52] Fukuda, T., and Ueyama, T. Cellular Robotics and Micro Robotic
Systems, vol. 10 of World Scientific Series in Robotics and Automated
Systems. World Scientific, 1994.

[53] Gambaudo, J.-M., Procaccia, I., Thomae, S., and Tresser,
C. New Universal Scenarios for the Onset of Chaos in Lorenz-Type
Flows. Phys. Rev. Lett. 57, 8 (1986), 925–928.

[54] Garey, M., and Johnson, D. Computers and Intractability. Free-
man and Company, San Francisco, 1979.

[55] Garloff, J. Interval mathematics. a bibliography. Freiburger
Intervall-Berichte 85/6 (1985), 1–222.

[56] Garloff, J. Bibliography on interval mathematics. continuation.
Freiburger Intervall-Berichte 87/2 (1987), 1–50.

[57] Gause, G. The struggle for existence. Williams and Wilkins, Balti-
more, 1934.

301

BIBLIOGRAPHY

[58] Glass, L., and Mackey, M. Oszillation and chaos in physiological
control systems. Science 197 (1977), 287.

[59] Glass, L., and Mackey, M. From Clocks to Chaos, The Rhythms
of Life. Princeton University Press, Princeton, NJ, 1988.

[60] Gleick, J. Chaos: Making a New Science. Penguin Books, New York,
1988. 144-153.

[61] Gleick, J. Chaos: Making a New Science. Penguin Books, New York,
1988.

[62] GNU’s Not Unix!
http://www.gnu.org/.

[63] GNU autoconf.
http://www.gnu.org/software/autoconf/.

[64] GNU automake.
http://www.gnu.org/software/automake/.

[65] GNU libtool.
http://www.gnu.org/software/libtool/.

[66] Licences.
http://www.gnu.org/licenses/licenses.html.

[67] Golub, G., and Loan, C. V. Matrix Computations. North Oxford
Academic, Oxford, 1983.

[68] GNU General Public License.
http://www.gnu.org/copyleft/gpl.html.

[69] Grassberger, P., and Procaccia, I. Measuring the strangeness
of strange attractors. Physica 9 (1983), 189–208.

[70] Guckenheimer, J., and Williams, R. F. Structural Stability of
Lorenz Attractors. Publ. Math. IHES 50 (1979), 307–320.

[71] Hairer, E., Nørsett, S., and Wanner, G. Solving Ordinary
Differential Equations I, 2nd revised edition 2000 ed. Springer-Verlag,
1987.

302

BIBLIOGRAPHY

[72] Haken, H. Laser Theory, vol. XXV/2c of Encyclopedia of Physics.
Springer-Verlag, 1970.

[73] Haken, H. Licht und Materie I: Elemente der Quantenoptik (in ger-
man). B.I. Wissenschaftsverlag, 1979.

[74] Haken, H. Licht und Materie II: Laser (in german). B.I. Wis-
senschaftsverlag, 1985.

[75] Haken, H., Schanz, M., and Starke, J. Treatment of combina-
torial optimization problems using selection equations with cost terms.
part i: Two-dimensional assignment problems. Physcica D134/2
(1999), 227–241.

[76] Hall, B. Beej’s guide to network programming.
http://www.ecst.csuchico.edu/∼beej/guide/net/, 2001.

[77] Hénon, M. A two-dimensional mapping with a strange attractor.
Commun. Math. Phys. 50 (1976), 69.

[78] Hinrichs, N., Oestreich, M., and Popp, K. Dynamics of oscilla-
tors with impact and friction. Chaos, Solitons & Fractals 8, 4 (1997),
535–558.

[79] Hitzl, D., and Zele, F. An exploration of the hénon quadratic map.
Physica D14 (1985), 305–326.

[80] Hsu, C. S. Cell-to-Cell Mappings. Springer, N.Y., 1987.

[81] Hunt, C. TCP/IP Network Administration, Second Edition. O’Reilly
and Associates, Inc., 1998.

[82] I, P., and Lefever, R. Symmetries breaking instabilities in dissipa-
tive systems II. Journal of Physical Chemistry 48 (1968), 1695.

[83] Iu, H. H. C., and Tse, C. K. Bifurcation behavior in parallel-
connected buck converters. Fundamental Theory and Applications 48
(2001), 233–240.

[84] Jensen, R. V., and Myers, C. R. Images of the Critical Points of
Nonlinear Maps. Phys. Rev. A32 (1985), 1222–1224.

303

BIBLIOGRAPHY

[85] Kaneko, K. Theory and applications of coupled map lattices. John
Wiley & Sons, Ltd., 1993.

[86] Karhunen, K. Zur Spektraltheorie Stochastischer Prozesse. Ann.
Acad. Sci. Fennicae 37 (1946).

[87] Kernighan, B., and Ritchie, D. The C Programming Language.
Prentice-Hall, Englewood Cliffs New Jersey, 1978.

[88] Kingsland, S. Modeling nature. University of Chicago Press,
Chicago, 1985.

[89] Kowalczyk, P., and di Bernardo, M. On a Novel Class of Bi-
furcations in Hybrid Dynamical Systems. In Hybrid Systems: Com-
putation and Control (2001), M. di Bebedetto and A. Sangiovanni-
Vincentelli, Eds., LNCS 2034, Springer, pp. 361–374.

[90] Kulisch, U., and Miranker, W., Eds. Symposium held at IBM
Research Center, Yorktown Heights, N. Y., 1982 (New York, 1983),
Academic Press. ISBN 0-12-428660-7.

[91] Lafrenz, R., Schulé, M., Becht, M., Schanz, M., Molnár,
P., Starke, J., and Levi, P. Experimental study of self–organized
fault–tolerant behavior in robotic systems. In Proceedings of the 16th
national conference on Autonomous Mobile Systems (2000), pp. 210–
217.

[92] Lamba, H., and Budd, C. J. Scaling of lyapunv exponents at non-
smooth bifurcations. Phys. Rev. E50, 1 (1994), 84–90.

[93] Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures.
Princeton University Press, Princeton, NJ, 1991. 128-133.

[94] Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures.
Princeton University Press, Princeton, NJ, 1991.

[95] Lind, D., and Marcus, B. An introduction to symbolic dynamics
and coding. New York, 1995.

[96] Loève, M. Probability Theory. VanNostrand, Princeton, N.J., 1955.

304

BIBLIOGRAPHY

[97] Lorenz, E. N. Deterministic non-periodic flows. J. Atmos. Sci. 20
(1963), 130.

[98] Lorenz, E. N. Irregularity: A fundamental property of the atmo-
sphere. Tellus A (1984), 36.

[99] Lotka, A. Elements of Physical Biology. Williams and Wilkins,
Baltimore, 1925.

[100] Lozi, R. Un attracteur étrange du dype attracteur de hénon. J. Phys.
(Paris) 39 (1978), 69–77.

[101] Maistrenko, Y. L., Maistrenko, V. L., and Chua, L. O. Cy-
cles of Chaotic Intervals in a Time–Delayed Chua’s Circuit. Int. J.
Bifurcation and Chaos 3 (1993), 1557–1572.

[102] Maistrenko, Y. L., Maistrenko, V. L., and Vikul, S. I. Bifur-
cations of attracting cycles of piecewise linear interval maps. J. Tech.
Phys. 37, 3-4 (1996), 367–370.

[103] Maistrenko, Y. L., Maistrenko, V. L., and Vikul, S. I. On
period–adding sequences of attracting cycles in piecewise linear maps.
Chaos, Solitons & Fractals 9, 1/2 (1998), 67–75.

[104] Maistrenko, Y. L., Maistrenko, V. L., Vikul, S. I., and
Chua, L. O. Bifurcations of Attracting Cycles from Time–Delayed
Chua’s Circuit. Int. J. Bifurcation and Chaos 5 (1995), 653–671.

[105] Maple.
http://www.maplesoft.com/.

[106] Mathematica.
http://www.wolfram.com/.

[107] The Mesa 3D Graphics Library.
http://mesa3d.sourceforge.net/.

[108] Metcalfe, V. [comp.unix.programmer] unix-socket-faq for network
programming.
http://www.faqs.org/faqs/unix-faq/socket/.

305

BIBLIOGRAPHY

[109] Metropolis, N., Stein, M. L., and Stein, P. R. On Finite Limit
Sets for Transformations on the Unit Interval. J. Comb. Theory A15
(1973), 25–44.

[110] Milnor, J., and Thurston, W. On iterated maps of the interval.
In Dynamical systems, J. C. Alexander, Ed., vol. 1342 of Lecture Notes
in Mathematics. Springer, 1987, pp. 465–563.

[111] MinGW.
http://www.mingw.org/.

[112] Misiurevicz, M., and Kawczyński, A. L. Periodic orbits for in-
terval maps with sharp cusps. Physica D52 (1991), 191–203.

[113] Molenaar, J., de Weger, J. G., and van de Water, W. Map-
pings of grazing-impact oscillators. Nonlinearity 14 (2001), 301–321.

[114] Moore, R. Interval Analysis. Prentice-Hall, Englewood Cliffs N. J.,
1966.

[115] Moore, R. The dawning. Reliable Computing 5 (1999), 423–424.

[116] Morosawa, S., Nishimura, Y., Taniguchi, M., and Ueda, T.
Dynamics of generalized hénon maps. In Holomorphic Dynamics. Cam-
bridge University Press, 2000, ch. 7.

[117] Nair, P. R. K., and Nandakumaran, V. M. Existence of multiple
attractors and the nature of bifurcations in a discontinuous logistic
map. Pramana 51, 3-4 (1998), 377–385.

[118] Nicolis, G., and Prigogine, I. Self-orgaization in non-equilibrium
systems. Wiley-Interscience, 1977.

[119] Nordmark, A. B. Non-periodic motion caused by grazing incidence
in an impact oscillator. J. Sound Vib. 145, 2 (1991), 279–297.

[120] Nordmark, A. B. Universal limit mapping in grazing bifurcations.
Phys. Rev. E55, 1 (1997), 266–270.

[121] Nusse, H. E., Ott, E., and Yorke, J. A. Border-collision bifurca-
tions: An explanation for observed bifurcation phenomena. Phys. Rev.
E49, 2 (1994), 1073–1076.

306

BIBLIOGRAPHY

[122] Nusse, H. E., and Yorke, J. A. Border-Collision Bifurcations
including ’period two to period three’ Bifurcation for Piecewise Smooth
Systems. Physica D57 (1992), 39–57.

[123] Nusse, H. E., and Yorke, J. A. Border-collision bifurcations for
piecewise smooth one-dimensional map. Int. J. Bif. Chaos 5 (1995),
189–207.

[124] OpenGL.
http://www.opengl.org/.

[125] Osipenko, G. Morse spectrum of dynamical systems and symbolic
dynamics. Proceedings of the 15th IMACS World Congress 1 (1997),
25 – 30.

[126] Osipenko, G. Spectrum of a dynamical system and applied symbolic
dynamics. Journal of Mathematical Analysis and Applications 252, 2
(2000), 587 – 616.

[127] Osipenko, G. S. On a symbolic image of dynamical system. Interuniv.
Collect. sci. Works (1983), 101 – 105. In Russian.

[128] Osipenko, G. S. Localization of the chain recurrent set by symbolic
dynamics methods. In Proceedings of Dynamics Systems and Applica-
tions (1994), vol. 1, Dynamic Publishers Inc., pp. 227 – 282.

[129] Osipenko, G. S. The periodic points and symbolic dynamics. Prog.
Nonlinear Differ. Equ. Appl. 12 (1994), 261 – 267.

[130] Osipenko, G. S. Construction of attractors and filtrations. Banach
center publication 47 (1999), 173 – 192.

[131] Osipenko, G. S., Romanovsky, J. V., Ampilova, N. B., and
Petrenko, E. I. Computation of the morse spectrum. Journal of
Mathematical Sciences 120, 2 (2004), 1155 – 1166.

[132] Pearl, R., and Reed, L. On the Rate of Growth of the population
of the United States since 1790. In Proceedings of the National Academy
of Science (1920), vol. 6, pp. 275–288.

[133] Peitgen, H.-O., and Richter, D. The Beauty of Fractals: Images
of Complex Dynamical Systems. Springer-Verlag, New York, 1986.

307

BIBLIOGRAPHY

[134] Perez, J. M. Mechanism for global features of chaos in a driven
nonlinear oscillator. Phys. Rev. A32, 4 (1985), 2513–2516.

[135] Peterka, F. Bifurcations and transition phenomena in an impact
oscillator. Chaos, Solitons & Fractals 7, 10 (1996), 1635–1647.

[136] Phaser.
http://www.phaser.com/.

[137] Procaccia, I., Thomae, S., and Tresser, C. First-return maps
as a unified renormalization scheme for dynamical systems. Phys. Rev.
A35, 4 (1987), 1884–1900.

[138] Rfc 791: Internet protocol.
http://www.rfc-editor.org/rfc/rfc791.txt, 1981.

[139] Rfc 793: Transmission control protocol.
http://www.rfc-editor.org/rfc/rfc793.txt, 1981.

[140] Ricker, W. Stock and recruitment. Journal of the Fisheries Research
Board of Canada 11 (1954), 559–623.

[141] Rikitake, T. Oscillations of a System of Disc Dynamos. Proc. Cam-
bridge Philos. Soc. 54 (1958), 89.

[142] Ritchie, D. The development of the C language. ACM SIGPLAN
Notices 28, 3 (March 1993), 201–208.

[143] Rivest, T. C. C. L. R. Introduction to algorithms. The MIT elec-
trical engineering and computer science series. MIT Press, 2000.

[144] Roessler, O. E. An equation for continuous chaos. Phys. Lett. A57
(1976), 397–398.

[145] Russell, D., Hanson, J., and Ott, E. Dimension of strange
attractors. Phys. Rev. Let. 45 (1980), 1175–1178.

[146] Schanz, M. Zur Analytik und Numerik zeitlich verzögerter synergetis-
cher Systeme (in german). PhD thesis, Universität Stuttgart, 1997.
Shaker Verlag.

308

BIBLIOGRAPHY

[147] Schulé, M., Schanz, M., Felger, H., Lafrenz, R., Starke,
J., and Levi, P. Control of Autonomous Robots in the RoboCup
Scenario Using Coupled Selection Equations. In Proceedings of the 17th
national conference on Autonomous Mobile Systems (2001), pp. 57–63.

[148] Sharkovsky, A. N., and Chua, L. O. Chaos in some 1-d Discon-
tinuous Maps that Appear in the Analysis of Electrical Circuits. IEEE
Trans. on circuits and systems I 40, 10 (1993), 722–731.

[149] Shayer, L., and Campbell, S. Stability, bifurcation and multista-
bility in a system of two coupled neurons with multiple time delays.
SIAM J. Appl. Math. 61, 2 (2000), 673–700.

[150] SourceForge.net.
http://sourceforge.net/.

[151] Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors. Springer-Verlag, 1973.

[152] Starke, J. Kombinatorische Optimierung auf der Basis gekoppelter
Selektionsgleichungen (in german). PhD thesis, Universität Stuttgart,
Verlag Shaker, Aachen, 1997.

[153] Starke, J., Kubota, N., and Fukuda, T. Combinatorial opti-
mization with higher order neural networks - cost oriented competing
processes in flexible manufacturing systems. In Proceedings of the Inter-
national Conference on Neural Networks (ICNN’95) (November 1995),
vol. 5, IEEE, pp. 2658 – 2663.

[154] Starke, J., and Schanz, M. Dynamical system approaches to com-
binatorial optimization. In Handbook of Combinatorial Optimization,
D.-Z. Du and P. Pardalos, Eds., vol. 2. Kluwer Academic Publisher,
1998, pp. 471–524.

[155] Starke, J., Schanz, M., and Haken, H. Self-organized behaviour
of distributed autonomous mobile robotic systems by pattern formation
principles. In Distributed Autonomous Robotic Systems 3, T. Lueth,
R. Dillmann, P. Dario, and H. Wörn, Eds. Springer Verlag, Heidelberg,
Berlin, New York, 1998, pp. 89 – 100.

309

BIBLIOGRAPHY

[156] Starke, J., Schanz, M., and Haken, H. Treatment of com-
binatorial optimization problems using selection equations with cost
terms. part ii: Np-hard three-dimensional assignment problems. Phys-
ica D134/2 (1999), 242–252.

[157] Stewart, G. On the Early History of the Singular Value Decompo-
sition. SIAM Review 35 (1993), 551.

[158] Stroustrup, B. The C++ Programming Language. Addison-Wesley,
1991.

[159] Stroustrup, B. A history of C++: 1979-1991. ACM SIGPLAN
Notices 28, 3 (March 1993), 271–297.

[160] Stroustrup, B. The Design and Evolution of C++. Addison-Wesley,
1994.

[161] Tarjan, R. Data structures and network algorithms. Society for
Industrial and Applied Mathematics. Philadelphia, Pa., 1991.

[162] Todd, M. D., and Virgin, L. N. An experimental impact oscillator.
Chaos, Solitons & Fractals 8, 4 (1997), 699–714.

[163] TOP 500 SUPERCOMPUTER SITES.
http://www.top500.org/.

[164] Ulam, S., and von Neumann, J. On combination of stochastic and
deterministic processes. Bull. Am. Math. Soc. 53 (1947), 1120.

[165] Vaughan, G., Elliston, B., and Taylor, T. T. I. GNU AU-
TOMAKE, AUTOCONF AND LIBTOOL.
http://sources.redhat.com/autobook/.

[166] Verhulst, P. Recherches mathematiques sur la loi d’accrossement
de la population. Memoirs de l’Academie Royal Bruxelles 18 (1838),
1–38.

[167] Walters, P., Ed. Symbolic dynamics and its applications (July 1991),
American Mathematical Society.

310

BIBLIOGRAPHY

[168] Weisstein, E. ”Bogdanov Map.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/BogdanovMap.html.

[169] Weisstein, E. ”Brusselator Equations.” From MathWorld–A Wol-
fram Web Resource.
http://mathworld.wolfram.com/BrusselatorEquations.html.

[170] Weisstein, E. ”Diffeomorphism.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/Diffeomorphism.html.

[171] Weisstein, E. ”Dirac Equation.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/DiracEquation.html.

[172] Weisstein, E. ”Dynamical System.” From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/DynamicalSystem.html.

[173] Weisstein, E. ”Fast Fourier Transform.” From MathWorld–A Wol-
fram Web Resource.
http://mathworld.wolfram.com/FastFourierTransform.html.

[174] Weisstein, E. ”Fourier Transform.” From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/FourierTransform.html.

[175] Weisstein, E. ”Gingerbreadman Map.” From MathWorld–A Wol-
fram Web Resource.
http://mathworld.wolfram.com/GingerbreadmanMap.html.

[176] Weisstein, E. ”Heat Conduction Equation.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/HeatConductionEquation.html.

[177] Weisstein, E. ”Hénon Map.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/HenonMap.html.

311

BIBLIOGRAPHY

[178] Weisstein, E. ”Korteweg-de Vries Equation.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/Korteweg-deVriesEquation.html.

[179] Weisstein, E. ”Logistic Map.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/LogisticMap.html.

[180] Weisstein, E. ”lozi map.” From MathWorld–A Wolfram Web Re-
source.
http://mathworld.wolfram.com/LoziMap.html.

[181] Weisstein, E. MathWorld.
http://mathworld.wolfram.com/.

[182] Weisstein, E. ”Maxwell Equations.” From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/MaxwellEquations.html.

[183] Weisstein, E. Neumann, John von (1903-1957).
http://scienceworld.wolfram.com/biography/NeumannJohnvon.html.

[184] Weisstein, E. ”Phase Space.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/PhaseSpace.html.

[185] Weisstein, E. Poincaré, Henri (1854-1912).
http://scienceworld.wolfram.com/biography/Poincare.html.

[186] Weisstein, E. ”Rössler Attractor.” From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/RoesslerAttractor.html.

[187] Weisstein, E. ”Schrödinger Equation.” From MathWorld–A Wol-
fram Web Resource.
http://mathworld.wolfram.com/SchroedingerEquation.html.

[188] Weisstein, E. ”Sine Gordon Equation.” From MathWorld–A Wol-
fram Web Resource.
http://mathworld.wolfram.com/Sine-GordonEquation.html.

312

BIBLIOGRAPHY

[189] Weisstein, E. Three-Body Problem.
http://scienceworld.wolfram.com/physics/Three-BodyProblem.html.

[190] Weisstein, E. Turing, Alan (1912-1954).
http://scienceworld.wolfram.com/biography/Turing.html.

[191] Weisstein, E. ”Wave Equation.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/WaveEquation.html.

[192] Weisstein, E. ”Web Diagram.” From MathWorld–A Wolfram Web
Resource.
http://mathworld.wolfram.com/WebDiagram.html.

[193] Wikipedia. Alan Turing.
http://en.wikipedia.org/wiki/Alan Turing/.

[194] Wikipedia. Dynamical system.
http://en.wikipedia.org/wiki/Dynamical system.

[195] Wikipedia. John von Neumann.
http://en.wikipedia.org/wiki/John von Neumann/.

[196] Wikipedia. Logistic map.
http://en.wikipedia.org/wiki/Logistic map.

[197] Wischert, W., Wunderlin, A., Pelster, A., Olivier, M., and
Groslambert, J. Delay-Induced Instabilities in Nonlinear Feedback
Systems. Phys. Rev. E49 (1994), 203.

[198] Wolf, A., Swift, J., Swinney, H., and Vastano, J. Determining
Lyapunov exponents from a time series. Physica D16 (1985), 285–317.

[199] Xpp-aut.
http://www.math.pitt.edu/ bard/bardware/xpp/xpp.html.

[200] Yuan, G., Banerjee, S., Ott, E., and Yorke, J. A. Border-
Collision Bifurcations in the Buck Converter. Fundamental Theory and
Application 45 (1998), 707–716.

[201] Zheng, W.-M. Symbolic dynamics for the gap map. Phys. Rev. A39,
12 (1989), 6608–6610.

313

BIBLIOGRAPHY

[202] Zheng, W.-M. Applied symbolic dynamics for the Lorenz-like map.
Phys. Rev. A42, 4 (August 1990), 2076–2080.

[203] Zhusubaliyev, Z. T., and Mosekilde, E. Bifurcations and Chaos
in piecewise-smooth dynamical systems, vol. 44 of Nonlinear Science
A. World Scientific, 2003.

314

Index

LR symbolic dynamics, 143
PM symbolic dynamics, 143
n-dimensional scan, 97
nD-scan, 97
1D-scan, 96
2D-scan, 97
3D-scan, 97
4-vector, 43
4D-scan, 97

abstract transition, 160
accumulation of small errors, 223
accumulation point, 51
action model, 27
actuators, 31
additive noise, 77, 91
aerospace research, 23
Agnesi map, 111, definition 113
Aizawa system, 245, definition 245
analysis, computer-based 21, 32
ANP, 179, 191
ANP command, 191
AnT client, 174
AnT computation engine, 205
AnT Network Protocol, 179, 191
AnT network server, 175
AnT project, 34, 36
AnT server, 174
AnT-gui, 203, 205
AnT 4.66, 36
AnT 4.669, 35, 36

application, real world 28, virtual
reality 28

arbitrary precision, 225
architecture, client/server 174
arithmetic operation, 282
Arnold tongues, 67
artificial intelligence, 31
assignment problem, 74, three-index

75, three index 222
astronautics, 23
astronomy, 23
attractor, 50, chaotic 51, Feigen-

baum 51, strange 51, peri-
odic 115, chaotic 223

autocorrelation function, 134
automobile research, 23
autonomous dynamical systems, 47
averaging techniques, 34

band-reduction theorem, 143
basin of attraction, 50, 146
batch mode, 30
behavior, human 29, scaling 201
Belousov-Zhabotinsky reaction, 249
bifurcation, transcritical 50, flip

51, period doubling 51, pe-
riod doubling big bang 57,
two-parametric 57, Neimark-
Sacker 67, saddle connection
67, global 132

bifurcation diagram, 50

315

INDEX

bifurcation scenario
period doubling, logistic map 230

bio informatics, 23
Bogdanov map, 66, 67
Bogdanov map (1), definition 66
Bogdanov map (2), definition 66
Bogdanov vector field, 67
bottom-up approach, 34
broken down client, 295
Brusselator, 249
buffer overflow, 200
build process, computer-based 35
Butcher array, 46, 157
butterfly effect, 70

caching effect, 201
CAS, 30
central memory, 32
chain-like topology, 62
change, qualitative 95, quantitative

95
chaos, deterministic 51, microscopic

51, stochastic 51, deter-
ministic 54, deterministic 69,
microscopic 90

chaotic attractor, 51, 70, 223
chaotic behavior, 51
chaotic regime, 51
characteristic polynomial, 227
client/server, 292
client/server architecture, 174
client/server options, 39
climate research, 23
cluster, 37, 173
CML, 57, definition 60
cml universality classes, 234
CML: single cell, 61, definition 61
CMLs, 234

cobweb diagram, 50, 205
CODEL, 72, definition 73
CODEL: single cell, 73, definition 73
combinatorial optimization, 74, 222
command-line option, 37
command-line switch, 37
communication overhead, 201
competition process, 74
complex number, 47
complex quadratic function, 141
complex-valued, 47
complexity, numerical 222
computer algebra system, 30
computer game, 31
computer system, high performance

32
computer-based analysis, 21
computer-based build process, 35
computer-based documentation, 35
computer-based experiment, 23
computer-based simulation, 21, 23
computer-based versioning, 35
computing, distributed 35, scientific

35
concept of evolution in time, 43
concept of space time, 43
concept of state, 43
concept of time, 43
concept of transition, 43
configuration file, 97
configuration space, 45
conjugate momentum, 45
constraint, real-time 31
continuous in time, 43
cosmology, 23
coupled map lattice, 57, definition 60
coupled neurons, 84

316

INDEX

coupled ordinary differential equation
lattice, 72

coupled selection equations, 73, 74,
76, definition 76

coupling, global 59, local 59, global
61, local 61, global 72, local
72

coupling parameter, 59, 72
coupling types, 61
covering, 142
crisis, 132
critical slowing down, 115

damped oscillator, 280
data, simulation 32
data model, 27, definition 28, 156
DDE, 81, definition 82, 286
definition:, simulation process 25,

system 25, data model 28,
execution model 28, simula-
tion entities 28, mathemati-
cal modeling 29

degree of freedom, 44, 45
delay differential equation, 81, defi-

nition 82
delay time, 158
denial-of-service attack, 200
design pattern, 35
design process, 26
deterministic chaos, 51, 54, 69, 70
diagram, cobweb 205
diffeomorphism, 53, 233
differential equation, 286
dimension, parameter space 44,

state space 44
discrete in time, 43
distributed computing, 172
distributed simulation, 174

documentation, computer-based 35
drive simulator, 31
Duffing map, 132, definition 132
dynamical system, 42, 43, dis-

crete in time 48, logistic
map 49, Hénon-Lozi map 54,
Hénon map 55, Lozi map
55, Bogdanov map 66, con-
tinuous in time 67, Lorenz
69, selection equations 74,
coupled selection equations
76, heat conduction equa-
tion 79, Ornstein-Uhlenbeck
process 91, Mackey Glass
129, quadratic map CML
233, Aizawa 245, Rössler
245, Lorenz84 247, Rikitake
248, full Brusselator 249

dynamical system , definition 43
dynamical system continuous in time

, definition 67
dynamical system discrete in time ,

definition 48
dynamical systems, 23, supported

classes of 42, autonomous 47,
non-autonomous 47, stochas-
tic 90

eigenvalue problem, 227
enhanced simulation process, 26
evolution in time, concept of 43
execute method, 160
execution model, 27, definition 28,

156
execution pattern, 161
experiment, computer-based 23
exponent, 224
extended state space, 217

317

INDEX

extendibility, 205

fast Fourier transform, 134
FDE, 88, definition 88
Feigenbaum attractor, 51
file, configuration 97, initialization

97
first order time derivative, 286
fixed point, 50
flexibility, 205
flight simulator, 31
flip bifurcation, 51
floating point number, 224, 225
floating point number representation,

54
flow, turbulent 21
force, stochastic 90
Fourier transform, 134
Free BSD, 36
frequency analysis, 134
full Brusselator system, 249, defini-

tion 251
functional differential equation, 88,

definition 88

game, computer 31
Gaussian white noise, 91
general options, 38
generalized coordinate, 45
generalized momentum, 45
generic transition, 160
geomagnetic field, 248
gingerbreadman map, 233
global bifurcation, 132
global coupled mechanism, 73
global coupling, 59, 61, 72
global coupling mechanism, 59, 61, 72
graphical iteration, 50

Graphical user Interface, 203
graphical user interface, 37, 203, 205
grid computing, 172

Hénon map, 55, definition 55
Hénon-Lozi map, 54, definition 55
heat bath, 90
heat conduction equation, 79, defini-

tion 79
heuristics, 34
hidden bit, 224
high performance computer system,

32
high-performance computing, 172
higher order time derivatives, 286
human behavior, 29
human interaction, 29
human model, 29
human-machine interface, 30

ideal spring, 280
IEEE 754 standard, 224, 282
IEEE representation, 224
implementation phase, 32
influencing quantity, 95
initial condition sensitivity, 54
initial value problem, 90
Initialization, 204
initialization file, 37, 97, 205
initialization phase, 203
integrators, 68
intelligence , artificial 31
interaction, 29, human 29, stochas-

tic 90
interactive mode, 30
interactive simulation, 29, 30
interactive simulation system, 30
interface, human-machine 30

318

INDEX

internalization, 28
invariant measure, 53
invariant set, 146
investigation, simulation-based 21
investigation method, general trajec-

tory evaluation 104, period
analysis 115, region analy-
sis 119, Lyapunov exponents
analysis 128, dimension anal-
ysis 132, frequency analysis
134, spectral analysis 134,
singular value analysis 138,
check for conditions 140, pe-
riod analysis 142, symbolic
image analysis 146, general-
ized Poincaré sections 149

investigation methods, 104
investigation tasks, 32
item, scan 97
iterator concept, 162
IterMachine, 160, 165
IterTransition, 160

Karhunen-Loève expansion, 138
key-value assignment, 205
key-value pair, 205

length scale, 34
life cycle, 35
limit cycle, 51, 115
Linux, 36
load based adaptation, 292
local coupling, 59, 61, 72
local coupling mechanism, 59, 61, 72
logistic map, 49, definition 49
long range interactions, 61
Lorenz 84 system, 247
Lorenz system, 69, definition 69

Lorenz84 system, definition 247
Lozi map, 55, definition 56
Lyapunov exponent, 53, 70, 128
Lyapunov spectrum, 128, 129

machine concept, 164
machine number, 282
machine numbers, 223, addition of

282
Mackey Glass system, 129, definition

129
macroscopic level, 34
mantissa, 224
map, gingerbreadman 233
mass point, 280
material research, 23
mathematical modeling, 28, 29, def-

inition 29
MDDE, 84, definition 84
memory, central 32
memory effect, 81
mesoscopic level, 34
metric tensor, 43
microscopic chaos, 51, 90
minimal set of parameter, 45, 281
mode, batch 30, interactive 30, non-

interactive 30
mode of operation, 174
model, action 27, data 27, execution

27, human 29
modeling, 27, mathematical 28, 29
modes of operation, 174
modularity, 35
Morse spectrum, 146
multi language support, 205
multi-delay differential equation, 84,

definition 84

319

INDEX

multi-dimensional scan, 97, defini-
tion 97

multiple time delays, 84

nano technology, 23
natural measure, 53
Neimark-Sacker bifurcation, 67
network client, 174
network server, 174
noise, additive 77, 90, additive 91
noisy system, 91
non-autonomous dynamical systems,

47
non-generic transition, 160
non-interactive mode, 30
non-interactive simulation, 29, 31
non-interactive simulation system,

30, 203
non-smooth vector field, 57
normalized floating point number,

224
NP-hard, 222
nuclear research, 23
number, complex 47, real 47, float-

ing point 224, normalized
floating point 224, floating
point 225, wave 228

numerical aspects of simulation, 222
numerical complexity, 222

object-orientation, 35
objects, scannable 97
ODE, 68, definition 68, 286
one-dimensional scan, 96, definition

96
open source project, 35
OpenGL, 216
operator, spatial differential80

optimization, combinatorial 74,
combinatorial 222

option, command-line 37
options, general 38, client/server 39
Ordinary differential equation, defi-

nition 68
ordinary differential equations, 68
ordinary map (1), definition 48
ordinary map (2), definition 49
Ornstein-Uhlenbeck process, 91, def-

inition 91

parameter, coupling 59, coupling 72
parameter space, 44
parameter space dimension, 44
parameter window, 51
partial differential equation, 72, 77,

definition 78
pattern, design 35, spatio-temporal

64
PDE, 77, definition 78, 286
PDEs with higher order time deriva-

tives, 289
PDEs with mixed time and space

derivatives, 290
PDEs with pure time and space

derivatives, 289
peer-to-peer, 174
period doubling bifurcation, 51
period doubling big bang bifurcation,

57
period doubling cascade, 51
periodic attractor, 115
phase, implementation 32
phase locked loop, 82
phase locked loop with time delay, 82
phase space, 45

320

INDEX

piecewise-linear map, 120, definition
120

PLL, 82
PLL with time delay, 82, definition

83
plone map CML, definition 64
Poincaré condition, 149
Poincaré map, 115, 149
Poincaré mapping, 142
Poincaré section, 149
point, scan 96
polynomial, characteristic 227
post-scan processing, 175
power law map, 120, definition 121
power spectrum, 134
precision, arbitrary 225
predictor-corrector scheme, 46
principal component analysis, 138
principles, structure formation 64
problem, assignment 74, initial value

90, eigenvalue 227
procedure, scan 96, 97
process, design 26, enhanced sim-

ulation 26, simulation 27,
stochastic 54, competition
74, selection 74

program, symbolic manipulation 30
project, open source 35
prototyping, 22

quadratic map, 233
quadratic map CML, 233, definition

234
qualitative change, 95
quantitative change, 95
quantity, influencing 95

reaction diffusion equation, 249

real number, 47
real world application, 28
real world system, 25
real-time constraint, 31
real-time scenario, 31
real-valued, 47
recurrence equation, 49
recurrence level, 65, 158
recurrent map, definition 65
Reduction, 280
redundant parameter, 45
regime, chaotic 51
region analysis, 175
relativity theory, 43
representation, floating point num-

ber54
research, aerospace 23, automobile

23, climate 23, material 23,
nuclear 23

reuse-ability, 35
Rikitake system, 248, definition 249
ring-like topology, 62
run-mode, client 174, server 174,

standalone 174
Runge-Kutta, 157
Runge-Kutta scheme, 46
Rössler system, 245, definition 247

saddle connection bifurcation, 67
scaling, space 45, time 45
scaling behavior, 201, 230
scaling parameters, 281
scan, 1D- 96, one-dimensional 96, n-

dimensional 97, nD- 97, 2D-
97, 3D- 97, 4D- 97, multi-
dimensional 97

scan item, 97
scan item sequence, 97

321

INDEX

scan mode 0, 98
scan mode 1, 98
scan point, 96
scan procedure, 96, 97
scan run, 97
scan types, supported 98
ScanMachine, 160, 166
ScanMachine.post transition, 175
scannable objects, 97
scenario, real-time 31
scientific computing, 35
scientific visualization, 216
selection equations, 73, 74, coupled

74, definition 74
selection process, 74
self-generation, 248
self-organization, 64
self-similarity, 230
sequence, scan item 97
shadowing theorem, 223
shared data, 205
shell script, 37
short range interactions, 64
sign, 224
simulation, computer-based 21,

computer-based 23, 29, inter-
active 30, non-interactive 31,
numerical aspects of 222

simulation data, 32
simulation entities, definition 28
simulation methodology, 29
simulation process, 25, definition 25,

27
simulation run, 98
simulation system, 29
simulation task, 29
simulation tasks, 32
simulation technique, 29

simulation-based investigation, 21
singular memory effect, 81
singular value decomposition, 138
slowing down, critical 115
small errors, accumulation of 223
SMP, 30
socket, 189
Solaris, 36
solution curve, 50
solvers, 68
space scaling, 45
space technology, 23
space time, 43, concept of 43
space time state, 43
spatial differential operator, 80
spatio-temporal pattern, 64
spatio-temporal structure, 64
spectral analysis, 134
speedup anomalies, 201
speedup factor, 201
spring , ideal 280
standalone mode, 174
state, 42, concept of 43, 44, compo-

nent 44, space 44, variable
44, vector 44

state space, 44, extended 217
state space dimension, 44
step size, 90
stepper, 46
stochastic chaos, 51
stochastic dynamical systems, 90
stochastic force, 90
stochastic interaction, 90
stochastic process, 54
stochastic system, 91
strange attractor, 51, 70
stream socket, 189
structure, spatio-temporal 64

322

INDEX

structure formation principles, 64
structure-defining transition, 160
structured code, 35
supercomputing, 172
superlinear speedup, 201
supported classes of dynamical sys-

tems, 42
supported investigation methods, 103
supported scan types, 98
switch, command-line 37
symbolic description level, 143
symbolic dynamics, 142
symbolic function, 143
symbolic image, 146
symbolic image analysis, 146
symbolic image construction, 146
symbolic manipulation program, 30
symmetry, 70, 88
symmetry breaking, 132
symmetry recovering, 132
symmetry-breaking, 70, 88
symmetry-recovering, 70, 88
system, definition 25, real world 25,

simulation 29, computer al-
gebra 30, spatial inhomoge-
neous 72, noisy 91, stochas-
tic 91

system of differential equations, 286

task-specific transition, 160
tent map, 121, definition 121
theorem, shadowing 223
three body problem, 69
three index assignment problem, 222
three-index assignment problem, 75
three-way handshake, 188
time, concept of 43
time delay, 81, 82

time derivative of higher order, 286
time scale, 34
time scaling, 45
time-critical, 30
TOP 500 list, 172
top-down approach, 34
topology, chain-like 62, ring-like 62
trajectory, 50, 223
transcritical bifurcation, 50
Transformation of DDEs, 287
transformation of differential equa-

tions, 286
Transformation of ODEs, 287
Transformation of PDEs, 289
transition, concept of 43, ScanMa-

chine.post 175
transition , definition 43
transition concept, 160
truncation effect, 54
turbulent flow, 21
Turin machine, 143
two-parametric bifurcation, 57
types of coupling, 61

user instruction, 205
user interface, graphical 37

VCO, 82
vector field, non-smooth 57
versioning, computer-based 35
virtual reality, 23
virtual reality application, 28
visualization, 23, 216, scientific 216
voltage controlled oscillator, 82

wave number, 111, 228
web diagram, 50
Wiener process, 91
wind channel, 21

323

INDEX

Windows, 36
word-list attack, 200
wrapper, 46

324

Zusammenfassung

In dieser Ausarbeitung wird das Software-Projekt AnT vorgestellt, welches
im Rahmen meiner Habilitation am Institut für Parallele und Verteilte
Systeme an der Universität Stuttgart entstand. Ziel dieses Software-Projekts
war die Entwicklung einer flexiblen, leicht wartbaren, plattformübergrei-
fenden und offenen Simulations- und Analyse Software für nichtlineare
dynamische Systeme. Dabei wurde von Anfang an ein großer Wert darauf
gelegt, sowohl ein breites Spektrum von Klassen dynamischer Systeme zu
unterstützen, als auch eine große Sammlung von Untersuchungsmethoden
bereitzustellen. Daher wurde an vielen Stellen dem Einsatz generischer
Konzepte Vorrang vor der Berücksichtigung reiner Performanzaspekte
gegeben. Diese Entscheidung ist nicht zuletzt durch die rasante Entwicklung
auf dem Gebiet der Hardware, sowohl was die Prozessoren als auch die
Speicherkomponenten betrifft, begründet. Die geplanten Einsatzfelder der
Software sind vor allem Ausbildung und Lehre sowie die Forschung. Die
Arbeit ist folgendermaßen strukturiert:

In Kapitel eins (Introduction) wird die Arbeit motiviert und ein Überblick
über die relevanten Themen und beteiligten wissenschaftlichen Disziplinen
gegeben. Die Bedeutung der Begriffe Simulation, Analyse und mathemati-
sche Modellierung werden im Kontext der Arbeit präzisiert und diskutiert.
Besonders hervorgehoben wird der Begriff des Simulationsprozesses, der Si-
mulation und Analyse als einen in der Regel iterativ ablaufenden Prozess
definiert und den Anwender beziehungsweise Designer des Systems als ex-
terne Prüfinstanz mit einbezieht. In der folgenden Abbildung 1 ist dieser
Simulationsprozess schematisch dargestellt.

I

Zusammenfassung

Abbildung 1: Der Simulationsprozess (schematisch)

Zusätzlich wird auf die interaktive und nicht-interaktive Simulation ein-
gegangen. Im Rahmen des Software-Projekts AnT ist der Simulatorkern
also der eigentliche Simulator als eine nicht interaktive Simulationsmaschine
ausgelegt worden. Dies hat konzeptionelle Gründe die hauptsächlich im
geplanten Einsatzgebiet der Software liegen. Der Simulatorkern wird im
folgenden als AnT computation engine bezeichnet.

Das zweite Kapitel (The AnT project) stellt einen Überblick über die Ziele,
Anforderungen, Randbedingungen und Eigenschaften des AnT Projekts
dar. Es werden einige historische und technische Aspekte erläutert, sowie
einige Grundprinzipien der Funktionalität beschrieben. Außerdem wird eine
kurze Einführung in die Benutzung der Software und ihrer Fähigkeiten
gegeben.

Im Kapitel drei (Supported classes of dynamical systems) werden die
für das Verständnis der Arbeit notwendigen mathematischen Grundlagen
kurz dargestellt. Insbesondere wird der Begriff eines dynamischen Systems
definiert. Dies geschieht auf einem Abstraktionsniveau, welches es erlaubt,
eine Vielzahl dynamischer Systeme unter einem einheitlichen und verall-
gemeinerten Gesichtspunkt zu betrachten. Daran orientierend werden die
wichtigsten unterstützen Klassen dynamischer Systeme aufgeführt und
ihre charakteristischen Eigenschaften im Kontext der Arbeit diskutiert,
sowie repräsentative und illustrative Beispiele gegeben. Abschließend wird
eine Klassifikation dynamischer Systeme auf Basis der erwähnten einheit-
lichen Sichtweise vorgenommen, die in der folgenden Tabelle 1 dargestellt ist.

Im vierten Kapitel (Scanning dynamical systems) wird der für die Unter-
suchung dynamischer Systeme wichtige Begriff eines scans eingeführt und
seine Bedeutung auf dem Gebiet der nichtlinearen Dynamik betont. Die

II

Zusammenfassung
G

ed
äc

h
tn

is

Z
u
st

an
d

In
d
ex

ie
rb

ar
ke

it

Z
ei

t

Repräsentant

- k - k gewöhnliche DGL
- k - d Abbildungen
- k k k partielle DGL
- k k d (nicht bekannt)
- k d k gekoppelte gewöhnliche DGL
- k d d Gitter gekoppelter Abbildungen
- d - k diskrete Komponente hybrider gewöhnlicher DGL
- d - d endliche Automaten, Petri Netze,

diskrete Komponente hybrider Abbildungen
- d k k (nicht bekannt)
- d k d (nicht bekannt)
- d d k (nicht bekannt)
- d d d zelluläre Automaten
+ k - k zeitverzögerte DGL, Funktional-DGL
+ k - d Rekurrente Abbildungen
+ k k k partielle zeitverzögerte DGL, partielle Funktional-DGL
+ k k d (nicht bekannt)
+ k d k Gitter gekoppelter zeitverzögerter DGL
+ k d d Gitter gekoppelter rekurrenter Abbildungen
+ d - k diskrete Komponente hybrider zeitverzögerter DGL
+ d - d Stapelautomaten

diskrete Komponente hybrider rekurrenter Abbildungen
+ d k k (nicht bekannt)
+ d k d (nicht bekannt)
+ d d k (nicht bekannt)
+ d d d zelluläre Automaten mit Gedächtniseffekten

Tabelle 1: Einige Klassen dynamischer Systeme
Legende: ’k’ - kontinuierlich, ’d’ - diskret, ’+’ - vorhanden, ’-’ nicht vorhan-
den

III

Zusammenfassung

verschiedenen Möglichkeiten scans durchzuführen, sowie die Begriffe scan
item und scan item sequence werden erklärt. Direkt damit verbunden ist die
Analyse des Verhaltens dynamischer Systeme in Abhängigkeit von bestimm-
ten Einflussgrößen wie beispielsweise Systemparameter, Anfangswerte oder
gar Methodenparameter. Dabei wird die folgende Sichtweise eingenommen:
Unter einem scan versteht man die Untersuchung bestimmter Eigenschaften
eines dynamischen Systems unter Variation einer oder mehrerer Einfluss-
größen. Die Fähigkeit der AnT Software, scans sehr flexibel durchführen
zu können, ist eine ihrer charakteristischen Stärken. Konzeptionsbedingt
können fast beliebige scans durchgeführt werden und zwar sowohl ein-
dimensional als auch mehrdimensional. Die Anzahl der zu variierenden
Einflussgrößen ist dabei eigentlich nur durch Performanzaspekte beschränkt.
Vorgestellt werden auch die verschiedenen implementierten Varianten scans
durchzuführen.

Im Kapitel fünf (Supported investigation methods) werden die implemen-
tierten Untersuchungsmethoden detailliert beschrieben. Die Untersuchung
des Verhaltens dynamischer Systeme ist die wichtigste Aufgabe auf dem
Gebiet der nichtlinearen Dynamik, weil sie die Basis sowohl für qualitati-
ve als auch quantitative Aussagen, Vergleiche und Vorhersagen darstellt,
sowie eine gezielte Verbesserung oder Veränderung der zugrundeliegenden
mathematischen Modelle ermöglicht. Daher werden in diesem Kapitel eini-
ge Beispiele vorgestellt, anhand derer die Anwendung der implementierten
Untersuchungsmethoden illustriert wird. Die folgende Liste zeigt die aktuell
implementierten Untersuchungsmethoden:

I Allgemeine Trajektorienauswertung
I Periodenanalyse
I Berechnung der Lyapunov Exponenten
I Regionenanalyse
I Dimensionsanalyse
I Frequenzanalyse
I Hauptkomponentenanalyse
I Konditionsauswertung
I Symbolische Sequenzanalyse
I Analyse der Symbolischen Abbildung
I Berechnung verallgemeinerter Poincaré Schnitte

Was die Einzelheiten der Untersuchungsmethoden betrifft, so können diese

IV

Zusammenfassung

im Rahmen dieser Arbeit weder detailliert dargestellt werden, noch kann auf
die mathematischen Grundlagen auf denen sie basieren genauer eingegangen
werden. Es wird stattdessen ein pragmatischer Zugang gewählt, der es
Anwendern die die Methoden bereits kennen ermöglicht, diese bei der
Untersuchung der sie interessierenden dynamischen Systemen einzusetzen.

Im sechsten Kapitel (Simulating and investigating dynamical systems)
werden generische Architekturkonzepte für die Simulation und Analyse
zeitabhängiger Prozesse vorgestellt. Insbesondere werden die verwendeten
Basiskonzepte und die darauf aufbauenden Strukturen eingeführt. Aus
softwaretechnischer Sicht können diese Konzepte als Entwurfsmuster für
die Simulation und die Analyse dynamischer Systeme angesehen werden.
Sie stellen gewissermaßen eine Basisfunktionalität bereit auf der nach
einem Baukastenprinzip die gesamte Architektur der Software beruht. Aus
Sicht der Programmiersprachen, stellen die erwähnten Entwurfsmuster die
grundlegenden Strukturelemente einer abstrakten Programmiersprache für
die Simulation und die Analyse dynamischer Systeme dar. Der bereits
erwähnte Schritt, dynamische Systeme auf einem bestimmten Abstrakti-
onsniveau unter einem einheitlichen und verallgemeinerten Gesichtspunkt
zu betrachten, stellt die notwendige Voraussetzung für die Anwendung der
erwähnten generischen Simulationskonzepte dar. Die Tatsache, dass ein
dynamisches System als ein iterativer bzw. zyklischer Prozess angesehen
werden kann, der sukzessive einen Zustand z(t) zum Zeitpunkt t in einen
zeitlich darauffolgenden Zustand z(t + ∆t) abbildet, hat zwei wesentliche
Designaspekte zur Folge. Zum einen legt es die Verwendung einer abstrakten
Transition (abstract transition) nahe und zum anderen die eines abstrakten
Iterators (abstract iterator), der in Abbildung 2 schematisch dargestellt ist.
Die Transition kann beispielsweise verwendet werden, um den beschriebenen
Zustandsübergang zu realisieren, während der Iterator verwendet wird um
den Prozesscharakter softwaretechnisch abzubilden. Dabei spielt es keine
Rolle, ob die zeitliche Änderung ∆t in endlichen Zeitschritten erfolgt oder
in infinitesimal kleinen, da die infinitesimale Änderung auf jeder digitalen
Rechnerarchitektur sowieso diskretisiert werden muss, was letztlich dazu
führt, dass auch zeitkontinuierliche dynamische Systeme aus softwaretech-
nischer Sicht als zeitdiskrete Systeme behandelt werden müssen. Die von
einer Simulation geforderte wiederholte Anwendung des Zustandsübergangs
legt ein weiteres Konzept nahe, das man als Maschinenkonzept bezeichnen
kann. Sowohl ein einzelner Simulationslauf, als auch ein kompletter scan

V

Zusammenfassung

previous state

next state

iterator proxy

system
function

Abbildung 2: Der Iterator (schematisch)

sind softwaretechnisch über entsprechende Maschinen, nämlich die Iterator
Maschine (iter machine) und die Scan Maschine (scan machine) realisiert.
Die beiden Maschinen sind in den Abbildungen 3 und 4 schematisch darge-
stellt. Die Abbildungen verdeutlichen einerseits, wie die einzelnen Konzepte
zusammenwirken und andererseits wie durch die Verwendung abstrakter
Klassen die Wiederverwendung von Komponenten ermöglicht wird.

Im Kapitel sieben (Distributed computing) wird die Notwendigkeit und
die große Bedeutung von verteiltem Rechnen für die Simulation und
Analyse dynamischer Systeme begründet, sowie die Fähigkeiten der ent-
wickelten Software in diesem Zusammenhang vorgestellt. Es wird die
verwendete Client/Server Architektur und das speziell hierfür entwickelte
Netzwerk-Protokoll (AnP) erklärt. Die Fähigkeit, bestimmte zeitaufwändige
Berechnungen auf mehrere Rechenknoten zu verteilen ist eine weitere Stärke
des entwickelten Softwarepakets. Insbesondere hochaufgelöste ein- oder
mehrdimensionale scans sind ideal parallelisierbar, da die entsprechend der
selektierten Untersuchungsmethoden durchzuführenden Berechnungsschritte
unabhängig voneinander sind. Sie können beispielsweise auf einem Cluster
sehr elegant in vertretbarer Zeit durchgeführt werden. Die Berechnungen
können allerdings auch auf verschiedenartigen Rechenknoten und unter ver-
schiedenen Betriebssystemen (Linux, Solaris, Windows) ausgeführt werden.
Essenziell ist lediglich die Vernetzung der einzelnen Knoten wobei das dem
entwickelten Netzwerk-Protokoll das TCP/IP-Protokoll zugrunde liegt. Der
Server ist der einzige Knoten, dem die konkrete Aufgabenstellung, das heißt
die Initialisierungsdatei zur Verfügung gestellt wird. Die einzelnen Clients
erhalten die Information über die durchzuführenden Berechnungen direkt

VI

Zusammenfassung

iteration
initialization

methods
plug-ins proxy

iterator

methods
plug-ins

system
function

iteration stop
criterion (timer)

methods
plug-ins

IterMachine

Abbildung 3: Die Iterator Maschine (schematisch)

scan
initialization

methods
plug-ins

iteration
machine

methods
plug-ins

scan stop
criterion
methods
plug-ins

ScanMachine

iteration
initialization
methods
plug-ins proxy
iterator

methods
plug-ins

system
function

iteration stop
criterion (timer)
methods
plug-ins

IterMachine

Abbildung 4: Die Scan Maschine (schematisch)

VII

Zusammenfassung

Abbildung 5: Das Hauptfenster der grafischen Benutzeroberfläche AnT-gui

Man kann von Grund auf mit einer völlig neuen Initialisierung starten oder
eine bereits existierende Initialisierungsdatei laden und bearbeiten. Nach der
Bearbeitung kann die neue Initialisierung gesichert und ein Simulationslauf
direkt gestartet werden.

vom Server und benötigen daher nur die Information welcher Knoten der
Server ist und welches System behandelt wird. Die Verteilung der einzelnen
scan Punkte kann auf zwei verschiedene Weisen erfolgen. Zum einen kann
eine beim Starten eines Clients fest eingestellte Anzahl von scan Punkten
vergeben werden und zum anderen kann eine Zeitspanne vorgegeben werden,
die einem Client für die Bearbeitung der scan Punkte zur Verfügung steht,
bevor er erneut mit dem Server für die Übermittlung weiterer scan Punkte
Verbindung aufnimmt. Unter einem scan Punkt versteht man beispielsweise
bei einem Parameterscan, die Anwendung der in der Initialisierungsphase
des Servers festgelegten Untersuchungsmethoden bei einem einzigen Wert
des Parameters.

Kapitel acht (AnT-gui: the graphical user interface) befasst sich mit der
grafischen Benutzeroberfläche der Simulationssoftware (siehe Abb. 5). Es
werden die vier Initialisierungsschritte der AnT computation engine vor-
gestellt und der Zusammenhang zwischen ihnen erklärt. Es wird außerdem
auf die vielseitigen Möglichkeiten des Initialisierungsprozesses eingegangen.
Mit Hilfe der grafischen Benutzeroberfläche können Anwendern die Software

VIII

Zusammenfassung

relativ einfach für ihre Aufgaben- und Problemstellungen einsetzen. Aus
softwaretechnischer Sicht ist hier besonders hervorzuheben, dass die Benut-
zeroberfläche selbst fast vollständig automatisch generiert wird und zwar auf
Basis der Informationen einer zentralen Datei des Simulationspakets. Diese
Datei enthält die gesamte Information über die vernetzten Zusammenhänge
der Steuerungsmechansimen und Konfigurationen und wird auf der einen
Seite von der AnT computation engine selbst verwendet um die Einstel-
lungen eines Anwenders bei einem Simulationslauf auf Vollständigkeit und
Konsistenz hin zu überprüfen. Auf der anderen Seite wird die gleiche Infor-
mation verwendet und die grafische Benutzeroberfläche mit den notwendigen
Eingabefeldern zu versehen und Abhängigkeiten automatisch aufzulösen
bzw. auf unvollständige oder inkonsistente Eingaben aufmerksam zu machen.

Das Kapitel neun (Visualization of dynamical systems) befasst sich mit den
direkten grafischen Ausgabemöglichkeiten der Software. Diese Animationen
basieren auf der OpenGL Bibliothek und sind optional. Das heißt, dass
Benutzer, die über diese Bibliothek nicht verfügen, diese Funktionalität zwar
nicht verwenden können, dafür aber alle anderen vorgestellten Funktiona-
litäten. Die von der AnT computation engine erzeugten Ausgabedateien
liegen im ASCII-Format vor und können daher mit allen gängigen Visua-
lisierungswerkzeugen wie beispielsweise dem weit verbreiteten Programm
gnuplot dargestellt werden.

Im zehnten Kapitel (Numerical aspects of simulation) werden einige Be-
merkungen zu den numerischen Aspekten der Simulation gemacht und
insbesondere auf das Auftreten numerischer Artefakte hingewiesen. Dieses
Kapitel umreißt lediglich einen ganz kleinen Teil der numerischen Schwierig-
keiten die bei der Simulation und Analyse dynamischer Systeme auftreten
können. Generell kommen hier einerseits die üblichen und bekannten
Effekte der Gleitpunktarithmetik zum tragen und andererseits spezielle
Probleme und Phänomene die sehr eng mit bestimmten charakteristischen
Eigenschaften der untersuchten dynamischen Systeme zusammenhängen.

Im Kapitel elf (Examples) werden einige weiterführende Beispiele ausführ-
lich behandelt, die die Fähigkeiten der Software illustrieren. Insbesondere
werden hier anhand der konkreter Beispiele fast alle implementierten
Untersuchungsmethoden präsentiert. Außerdem werden ein- und mehrdi-
mensionale scans vorgestellt und zwar nicht nur übliche scans nach den

IX

Zusammenfassung

Systemparametern sondern auch nach den Anfangswerten und sogar nach
einigen Methodenparametern. Bei der Auswahl der Beispiele wurde explizit
darauf geachtet, dass möglichst viele der unterstützten Systemklassen zum
Einsatz kommen.

Die Arbeit wird abgeschlossen mit einem kurzen Ausblick im Kapitel zwölf
(Conclusion). Hier werden die Hauptvorteile der Simulations- und Analyse-
software kurz zusammengefasst und basierend auf einem kleinen Überblick
über ähnliche Software Projekte auf zukünftige Erweiterungsmöglichkeiten
bzw. Entwicklungsrichtungen hingewiesen.

X

