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Abstract

Distributed multimedia applications combine the advantage of distributed
computing with the capability of processing discrete and continuous media in
an integrated fashion. The development of multimedia applications in distri-
buted environments requires specific abstractions and services, which are
usually not provided by generic operating systems. These services are typi-
cally realized by software components, often referred to as middleware.

TheCINEMA (Configurable INtEgrated Multimedia Architecture) project aims
at the development of powerful abstractions for multimedia processing in dis-
tributed environments. This paper presents a flexible mechanism for the
dynamic configuration of applications. The proposed mechanism allows for
the definition of arbitrary complex flow graphs connecting various types of
multimedia processing elements. Further, processing elements can simply be
composed from other ones to provide higher levels of abstraction. We also
propose the abstraction of a clock hierarchy to permit grouping, controlling,
and synchronization of media streams.

1 INTRODUCTION
Advances in the computer and communication technology have stimulated
the integration of digital audio and video with computing, leading to the
development of distributed multimedia systems. This class of systems com-
bines the advantages of distributed computing with the capability of pro-
cessing discrete media, such as text or images, and continuous media, such as
audio or video, in an integrated fashion. The capability of integrated multime-
dia processing not only enhances conventional application environments, but
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also opens the door for new and innovative applications. A major advantage
of multimedia computing in distributed environments is the possibility of
sharing resources among applications and users where shared resources may
be data objects such as multimedia titles, special processing elements such as
compression modules, or special devices such as professional VCRs.

The processing and communication of media streams requires specific system
services. In general, media streams are associated with a certain quality that
has to be maintained by the underlying system. To be able to guarantee the
required stream quality, system services for allocating and reserving system
resources, such as CPU cycles or network bandwidth, are needed. Moreover,
applications need to control the flow of streams, i.e. they should be able to
start, pause, continue or scale individual streams. In many scenarios, it is
desirable to group related streams and to control groups of streams rather than
individual streams. Finally, powerful services to synchronize multiple streams
are required. Those services should permit applications to specify which
streams are to be synchronized and how these streams temporally relate to
each other.

Generic operating systems usually do not provide those specific multimedia
services. The gap between the functionality offered by operating systems and
the specific needs of distributed multimedia applications is closed by software
components often referred to as middleware. TheCINEMA (Configurable INtE-
grated Multimedia Architecture) system, which is currently under develop-
ment at the University of Stuttgart, belongs to this system category. It
provides abstractions for the dynamic configuration of distributed multimedia
applications. Clients may define arbitrary data flow graphs, connecting
various processing elements called components. Moreover, component nest-
ing is supported to achieve higher levels of abstractions by simply composing
more complex components from already existing ones. The abstraction of a
session allows for atomic resource allocation and reservation for any group of
connected components.CINEMA provides the concept of a clock hierarchy for
grouping and controlling streams and groups of streams. The same abstraction
permits to express arbitrary complex stream synchronization requirements.

The remainder of the paper is organized as follows. In the next section, a brief
overview of related work is given. Then, in Section 3, the way how applica-
tions are configured inCINEMA is described in some detail. This section also
introduces the concept of component nesting. The abstractions for grouping,
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controlling and synchronizing media streams and groups of streams are pre-
sented in Section 4. Finally, we conclude with a brief summary.

2 RELATED WORK
The multitude of problems that arise when integrating multimedia processing
into conventional computer systems and attempting to develop distributed
multimedia applications are addressed in several projects, which put emphasis
on different issues. In the SUMO project [1], the Chorus [2] micro-kernel is
extended to support continuous media. This is done by using the real-time fea-
tures of Chorus and adding stream-based data transfer and quality of service
control inside the operating system. The features are accessible by a low-level
API. The focus of this work is on operating system issues like scheduling, but
not on providing a universal platform and high-level abstractions for develop-
ing and configuring distributed multimedia applications. The problem of con-
figuring distributed applications by using software components that are
interconnected by linked ports is addressed by Conic [3] and its follow-up
project REX [4]. Conic offers languages for programming components and
configuring applications without supporting multimedia data handling. The
configuration process is centralized in a configuration manager which accepts
change specifications for altering configurations.

Specific abstractions for controlling multimedia data streams have been pro-
posed as well. Some of them apply to non-distributed environments only (e.g.
QuickTime [5] or IBM’s Multimedia Presentation Manager [6]), while others
are tailored to specific configurations (e.g. ACME [7] and Tactus [8]), and
mainly are extensions of network window systems supporting streams of
digital audio and video data. General requirements that should be met by
architectures supporting distributed multimedia applications are specified in
the Request for Technology [9] of the Interactive Multimedia Association
(IMA). A response to this request contributed by some companies [10] pro-
poses abstractions to structure and control distributed multimedia environ-
ments while using multi-vendor processing equipment. The proposal assumes
generic multimedia processing elements producing and consuming multime-
dia data via ports that are associated with formats. However, the nesting of
processing elements is not supported and, although grouping is used to handle
resource acquisition, stream control and specification of end-to-end quality of
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service, no means to specify synchronization relationships between data
streams are provided.

3 CONFIGURATION OF MULTIMEDIA
APPLICATIONS

In order to build large software systems, it is necessary to decompose a sys-
tem into modules each of which can be separately programmed and tested.
The system is then composed as a configuration of these software compo-
nents. Component programming and component configuration are separate
activities which have been referred to as “programming-in-the-small” and
“programming-in-the-large”, respectively [11].

Configuration may be static or dynamic. In the first approach to system build-
ing, all components of the system are configured at the same time. If a modifi-
cation of the system is required, the complete system has to be stopped and
rebuilt according to the new configuration specification. Obviously, static con-
figuration is not a feasible approach in the context of distributed multimedia
systems, in which configurations often depend on the available resources and
the quality of service the user asks for at run time. Moreover, multimedia
applications are often highly dynamic in the sense that users may join and
leave the application during run time. Usually, each change in the user com-
munity implies a modification of the configuration. Examples for these appli-
cations can be found in the area of video conference systems or CSCW
systems. Consequently, for multimedia systems the ability to extend and
modify a system while it is running definitely is required. The approach of
dynamic configuration provides this ability: new components can be intro-
duced, existing ones may be replaced and the interconnection of components
can be modified at run time.

In CINEMA, an application consists of at least one client and a set of data flow
graphs. In a data flow graph, the nodes represent components, while the edges
are communication links interconnecting the components. A component pro-
vides the basic abstractions for the processing of continuous media streams,
such as video or audio streams. A continuous media stream is defined to be a
sequence of data units, each of which is associated with a media time (for a
detailed definition e.g. see [12]). The nature of a component’s processing
depends on the type of the component. We distinguish between source com-
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ponents, which produce (e.g. capture) data streams, sink components that con-
sume (e.g. play-out) streams, and intermediate components acting as both
consumers and producers (e.g. filters or mixers). Media streams may originate
at multiple sources, traverse a number of intermediate components and end at
multiple sinks.

A client is a software entity that - by using theCINEMA services - defines data
flow graphs and controls the flow of data within these graphs during run time.
It configures (its portion of) an application just by naming the components to
be used and interconnecting them according to the application logic that has
to be achieved. Furthermore, it may dynamically change the initial configura-
tion during run time as needed. A data flow graph may be arbitrarily distri-
buted over several nodes of a distributed system. As will be seen below,
components are configuration independent, which means that their internal
logic is independent of the configuration they are used in. Thus, from the
client’s point of view, there is no conceptual difference whether two adjacent
components run either on the same node interconnected by a local link or on
different nodes connected by a remote link.

A client may only control the flow of streams in the flow graphs defined by
itself. In particular, a client may start, halt or scale data streams only in its so-
calledapplication domain, which is defined to be the set of data flow graphs
specified by this client. Depending on the type of application, one or more
clients may participate in the process of configuring the application. If multi-
ple clients participate, the application is structured into several application
domains, one for each participant. Each client only knows and controls the
objects in its domain. When sharing components between clients, their
domains overlap. The overlapping portions contain the shared components. In
other words, shared components may be controlled by multiple clients. Refer
to the simple conferencing scenario depicted in Figure 1.1 for an example. In

Figure 1.1 Application Domains in a Conferencing Scenario
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this scenario, the application consists of several domains, each of which links
two components - a virtual microphone and speaker of a given user - to a
shared mixer component. Whenever a new user joins the application, a new
domain linking the new user’s (virtual) microphone and speaker to the shared
mixer is added.

After this brief overview of the process of configuration inCINEMA, we can
now take a closer look at the concepts provided for defining flow graphs,
which are components, ports and links.

3.1 Components and Ports
The processing of continuous media data streams is done by software and
hardware modules, called devices. Devices may be e.g. microphones or
speakers having specific hardware interfaces and software drivers. InCINEMA,
the processing functionality is abstracted by components. When creating a
component, a client specifies the devices that are to be used. Components con-
sume data units of streams reading from their input ports and produce data by
writing to their output ports. To build up data flow graphs, components are
interconnected by links between the components’ ports.

From the client’s point of view, a component offers different interfaces to con-
trol and manipulate its behavior, the component control interface, the clock
interface, and the port interface. Thecomponent control interface is used to
access state information of a component and alter its stream handling beha-
vior. It is specific in the sense that it depends on the processing function per-
formed by the component. For example, the interface of a component
abstracting from a speaker device may provide a method to adjust the volume
of the presentation. Theclock interface is optional for sources and mandatory
for sinks and is used to control the flow of data units. A detailed description of
clocks is given in Section 4. Theport interface is used by components to

Figure 1.2 The Component’s Interfaces
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send stream data to other components that are interconnected by links or to
receive data from them. This decouples the multimedia processing from the
transmission of data units between processing stages and allows the usage of
the same component in scenarios having local as well as remote communica-
tion. To be able to check mismatching connections, each port is associated
with a stream type. If a component handles multiple stream types, a new
stream type containing the others may be defined. In Figure 1.3, we show an
example of a stream type hierarchy. In this example, a port of type “video”
can be connected to either one of type “video”, “video-grey”, or “video-
color”. In a stream type hierarchy, the descendents of a node are specializa-
tions of this node.

The interfaces described above are used by clients to control components and
to connect them to build up data flow graphs. In theCINEMA system, compo-
nents are managed by additional interfaces. An example for such an internal
interface is the resource allocation interface, that is used to negotiate the qua-
lity of service and to reserve the required resources to ensure it.

After looking at the interfaces provided by components, we now focus on the
definition of components. Configuration independence [3] is a major property
to build up components that can be used in a dynamically configured distri-
buted system. This makes it possible to use a component in arbitrary configu-
rations without having to change its processing functionality. Configuration
independence is achieved by developing components using a special pro-
gramming language and compiling and linking them to independent objects.
In CINEMA, we use an object-oriented programming language, the Component
Programming Language (CPL) that is based on C++, to program components.
It allows the creation of a class hierarchy with inheritance to build up specia-
lized component classes out of existing ones. The following example shows
the programming of a microphone component in CPL:

Figure 1.3 Stream Type Hierarchy
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COMPONENT microphone
:: SOURCE // class to derive from

// define method to map devices
MAP ( device MICRO ); // device parameter

dev_name = MICRO; // handle device parameter
ENDMAP

// define method to initialize component
INIT (int sensitivity); // specific client-IF

dev = open(dev_name,"r"); // open the device
dev_set_samplerate(dev,8000); // rate = 8000 Hz
dev_set_sensitivity(dev,sensitivity); //set value

ENDINIT
// stream type definition

TYPE 8kHz_Audio :: Audio; // derive 8KHz_Audio from Audio
// definition of port named audio

OUTPORT audio 8kHz_Audio;
// define method to adjust microphone’s sensitivity

METHOD int sensitivity_adjust(int sensitivity)
result = dev_get_sensitivity(dev); // get value
dev_set_sensitivity(dev, sensitivity); // set value
return result; // return old value

ENDMETHOD
// definition of stream-handling function

ACTION
data = dev_get_data(dev); // get audio samples
audio->put(data); // put samples to output port

ENDACTION
ENDCOMPONENT

In theCINEMA system, the code segments of a component are executed in dif-
ferent threads. The stream handling segment, defined in theACTION clause,
is periodically executed in a real-time thread, whereas the methods of the
component control interface are executed in a non-real-time thread. Resource
requirements of the real-time thread are calculated when a session, which in
CINEMA is the abstraction for atomic resource reservation, is established (see
Section 4.1).
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3.2 Creation of Data Flow Graphs
So far, we have introduced the definition of components, the functional build-
ing blocks. In this section, we will describe how a client builds up data flow
graphs by connecting the components’ ports by means of links.

To build an application, a client first establishes the processing functionality
by creating the appropriate components. This is done by using a library with a
set of functions and classes that is provided by theCINEMA system. No specia-
lized configuration language is needed which offers the advantage to expand
and shrink applications dynamically at run time depending on actual require-
ments. Moreover, it allows the integration of multimedia processing functio-
nality into existing (non-multimedia) applications. Creating and accessing
components does not differ from accessing normal C++-objects. It is done by
using appropriate object methods.

As shown above, components may be shared by multiple clients if more than
one client participates in the configuration of an application. InCINEMA,
shared components are associated with a globally unique identifier. All clients
sharing a given component create this component in their application domain
by providing the component’s global identifier. Of course, only the create
operation issued first establishes the component, while all succeeding ones
just enable the callers to access the (already existing) component.

The following code fragment shows the creation of the component objects in
the conferencing example illustrated in Figure 1.1. The mixer component is
defined as a shared component using the global identifierconference .

micro = COMPONENT("microphone",micro_dev);
mixer = COMPONENT("audio_mixer",NULL,"conference");
speaker = COMPONENT("speaker",speaker_dev);

For component initialization, each component provides a method called
init . The code example below initializes the microphone and the speaker
component and specifies the sensitivity to 50 and the volume to 40. The ini-
tialization has to be done before defining a session.

micro ->init("sensitivity",50);
speaker->init("volume",40);
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After component objects have been created, they are connected by creating
links among their ports. The component’s port objects are accessed by using
the methodport  in connection with the port identifier. In our code fragment,
we link the output port of the microphone component (namedaudio ) and the
input port of the mixer component (namedaudio_in ). A second link is
established between the output port of the mixer component (audio_out )
and the input port of the speaker component (audio ).

link(micro->port("audio"), mixer->port("audio_in"));
link(mixer->port("audio_out"), speaker->port("audio"));

It is important to mention that building up a data flow graph only describes the
topology of an application. Linking components does not imply the reserva-
tion of resources. To enable communication, sessions have to be established.

3.3 Nesting Components
In many areas, nesting has turned out to be a very powerful concept for build-
ing higher levels of abstractions. InCINEMA, more complex components,
called compound components, can be composed from other components.
Compound components contain a part of a data flow graph. They are used like
non-nested, basic components, i.e. from the client’s point of view, there is no
difference in using basic or compound components since the internal structure
of compound components is hidden.

Constructing compound components from existing ones is straightforward.
Instead of programming anACTION clause, a part of a data flow graph is
defined using already existing components. The components used to build the
compound component are declared in theUSE clause. The way they are inter-
connected by links is defined in theLINK  clause. Component control inter-

Figure 1.4 Compound Component

stereo-
microphone

microphone

microphone

po
rt

po
rt

component
control



CINEMA - An Architecture for Distributed Multimedia Applications 11

faces of the nested components are accessed through a common interface
provided by the compound component. The mapping of these interfaces is
defined when building a compound component.

As an example for the programming of a compound component (see Figure
1.4), we show the definition of a component representing a stereo microphone
component. This component uses two components of class microphone as
they were declared in Section 4.

COMPONENT stereo_micro
// define Method to map devices

MAP ( device MICRO_l, device MICRO_r );
dev_MICRO_l = MICRO_l; // handle device parameter
dev_MICRO_r = MICRO_r; // handle device parameter

ENDMAP
// define mothod to initialize component

INIT ( int sensitivity );
// init nested components with provided parameters

micro_l->init(sensitivity); // initialize micro_l
micro_r->init(sensitivity); // initialize micro_r

ENDINIT
// define the ports of the compound component

OUTPORT audio_l 8kHz_Audio;
OUTPORT audio_r 8kHz_Audio;

// create component objects
USE

micro_l = COMPONENT("microphone",dev_MICRO_l);
micro_r = COMPONENT("microphone",dev_MICRO_r);

ENDUSE
// build up flow graph with links

LINK // use "this" to refer to compound component
link(micro_l->port("audio"),this->port("audio_l"));
link(micro_r->port("audio"),this->port("audio_r"));

ENDLINK
// map the specific interfaces to nested ones

METHOD int sensitivity_adjust(int sensitivity)
result = micro_l->sensitivity_adjust(sensitivity);
result = micro_r->sensitivity_adjust(sensitivity);
return result; // return value

ENDMETHOD
ENDCOMPONENT
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4 COMMUNICATION AND
SYNCHRONIZATION

Multimedia data streams are transmitted in arbitrarily structured flow graphs
of interconnected components. Ensuring a satisfying stream quality over long
periods of time while using current computer and network equipment makes
the reservation of resources inevitable. Furthermore, due to the temporal
dimension of time dependent data streams, there is a need to specify and con-
trol temporal properties of streams. Setting initial parameters like data rate or
start values has to be enabled as well as scaling (i.e. changing speed or direc-
tion) at presentation time. The appropriate control interface inCINEMA is the
media clock. However, an interface that only allows to handle individual data
streams is insufficient. Due to tight relationships between different streams,
they need to be grouped together and be handled as a unit. This facilitates the
control over complex scenarios and is a prerequisite for specifying synchroni-
zation relationships between data streams. Especially, the latter is essential in
a multimedia system where the quality of a presentation of time dependent
data streams strongly depends on observing given synchronization require-
ments (e.g. lip synchronization of audio and video where the tolerable skew is
in the range of 80 ms [13]). The grouping of data streams has to be supported
by concepts that are adaptive to the dynamics of interactive and cooperative
multimedia applications where at any time new users enter running applica-
tions (e.g. teleconferencing) and others leave. InCINEMA, the means to group
control interfaces, to handle them as a unit and to specify synchronization
relationships is given by the concept of clock hierarchies. In the following, the
concepts to meet the requirements are explained in detail.

4.1 Session
In CINEMA, a session is the abstraction of resource reservation. It is associated
with a set of quality of service parameters. By creating a session, a client
causes theCINEMA system to reserve the resources that are needed to guarantee
the specified quality of service requirements. This is done in an all-or-nothing
fashion. After a session has been established, the transmission and processing
of multimedia data may be started.

A session encompasses parts of the flow graph which is defined by a client. Its
actual extension is defined by specifying a set of source and sink components.
Intermediate components and interconnecting data paths are determined from
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the data flow graph by theCINEMA system. For example, a point-to-point audio
session may be created by the following statement. It describes the compo-
nents and their ports that are part of the session as well as the desired quality
of service parameters:

create_session(micro ->port("audio"),
speaker->port("audio"),
QoS(Rate(min = 8000, max = 44100),

SampleSize(min = 8, max = 16),
Delay(min = 50, max = 150));

In CINEMA, quality of service is treated on different levels of abstraction. With
sessions, application-specific quality of service specifications are associated.
They represent the presentation quality a client wants to achieve at sinks.
High-level quality of service parameters, such as picture size and picture rate,
depend on the stream type. As resource reservation is independent from the
application-level semantics of data streams, high-level parameters are mapped
to low-level parameters, such as packet size and packet rate. Low-level
parameters are based on parameters used in reservation protocols for multi-
media transport systems (e.g. SRP [14], ST-II [15]).

The architecture of resource reservation is separated into two layers: global
and local resource management. The global resource management is responsi-
ble for negotiation of the quality of service parameters at all the nodes partici-
pating in a session and mapping the high-level onto low-level parameters by
using a distributed resource reservation protocol. Quality of service parame-
ters are specified at sinks and transferred and negotiated in a sink-to-source
direction. Our resource reservation protocol bases on ideas used in RSVP [16]
and is designed to perform in arbitrary structured networks of components,
which are distributed over any number of nodes (end-to-end reservation, for
details see [17]). The local resource management reserves the resources as
they are demanded by components or links. This leads to the implementation
of several resource managers at each node, one for each individual resource
(e.g. for memory, CPU utilization, network bandwidth). To perform resource
management for CPUs, we have implemented a split-level scheduler using a
modified rate-monotonic algorithm [18].

The success or failure of the establishment of a session determines whether a
given application can be started and maintained according to the specified
quality of service. Thus, creating a session is the prerequisite to transmit and
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process data units. Based on this, the following sections describe how tempo-
ral properties of streams are specified and data streams are controlled during
run time.

4.2 Clocks
The temporal dimension of continuous media streams is defined by so-called
media time systems. The media time system associated with a stream is the
temporal framework to determine the media time of the stream’s data units. In
CINEMA, media time systems are provided by media clocks (or clocks for
short). A clockC is defined as follows:C ::= ( R, M, T, S ). The clock
attributes have the following meaning: R determines the ratio between media
and real-time. M is the start value of the clock in media time, i.e. the value of
the clock at the first clock tick. T is the start time of the clock in real-time. S
determines the speed of the clock. Media time progresses in normal speed ifS
equals 1. A speed larger than 1 causes the clock to move faster, a speed
smaller than 1 causes it to progress slower, and a negative speed causes it to
move backwards. A clock relates media time to real-time. It “ticks” after it
has been started and media time (m) can be derived from real-time (t):

Clocks are the basic abstraction for clients to control the flow of media
streams. They may be attached to components. Clocks attached to sink com-
ponents control the temporal progress of data streams processed by those
components. This is expressed more precisely by theclock condition: a data
unit having media timem is processed at real-timet only if the controlling
clock is ticking and its value equals m at timet. Conceptually, this means that
the presentation of a stream is started, paused or scaled when the controlling
clock is started, halted or the clock speed is changed, respectively. Clocks
attached to source components are typically required in flow graphs where
multiple sources contribute data to a given sink (e.g. in a mixer scenario). In
this case, source clocks are needed to individually start sources and to deter-
mine their start values. For more details on source clocks refer to [19].

The most important clock operations for controlling streams are the follow-
ing. The operationStart(M)  starts the clock at media timeM, by doing this
it starts the controlled stream as well. The clock attributeT is set to the real-
time at which the clock is actually started.Halt(M)  halts the clock when it
reaches clock valueM, i.e. the stream controlled by this clock is paused.Pre-

m M S R t T–( )⋅+=
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pare(M)  prepares the starting of the clock at media timeM by preloading the
buffers along the communication paths of the controlled stream. AfterPre-
pare  has been performed, the clock can be started immediately whenStart
is issued.Clear()  clears the internal buffers associated with the controlled
stream.Scale(M,S)  changes the speed of the clock toS when media time
M is reached, i.e. it scales the stream controlled by the clock.

In the simple scenario shown in Figure 1.5, clockC controls the presentation
of a video stream. The play-out is started with frame 15. The play-out rate is
doubled when the presentation reaches frame 3000, and the presentation is
halted when reaching frame 5000.

4.3 Clock Hierarchies
In this section, we will introduce the notion of a clock hierarchy, which is the
basic abstraction for grouping media streams, controlling groups of streams,
and stream synchronization.

Remember that clocks attached to components control the streams processed
by them. A number of streams can be grouped by linking their controlling

Figure 1.5 Controlling a Video Stream

Figure 1.6 Grouping Streams
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clocks in a hierarchical fashion to a common clock, which then controls the
entire group. Stream groups can be grouped again to groups at a higher level.
In the example given in Figure 1.6, clockC6 controls streamsS1 and S2, while
C7 controlsS4 andS5. C8 controls the subgroups represented byC6 andC7 as
well as streamS3, and thus all streams in the given scenario can be started,
halted or scaled collectively by means of this clock.

A clock operation issued at a clock not only affects this clock but the entire
(sub)hierarchy of this clock. Conceptually, an operation called at a clock is
propagated in a root-to-leaf direction through the clock’s (sub)hierarchy,
where it is performed at every clock in this hierarchy. In general, clock opera-
tions can be issued at every level of the clock hierarchy. Additionally, clock
hierarchies may dynamically grow and shrink even if clocks are ticking. This
feature together with the capability of halting and starting individual subhier-
archies is very important in interactive applications, especially in those where
multiple users with their individual needs participate in the same application.

Clocks provide individual media time systems which may relate to each other
in various ways. Clock synchronization and propagation of clock operations is
done on the basis of so-calledreference points. A reference point defines the
temporal relationship of two media time systems. More precisely, reference
point [C1 : P1, C2 : P2] defines that media time P1 in C1’s time system corre-
sponds to media timeP2 in C2’s time system, which means thatP1 andP2
relate to the same point in real-time (see Figure 1.7). Given this reference
point, media time can be transformed from one to the other time system as fol-
lows:

Clocks may be linked in two different ways: a link may establish either acon-
trol  or a synchronization relationship between two clocks. A control rela-
tionship between two clocks enables the propagation of clock operations
without synchronizing them. Typically, control relationships are defined in
settings where groups of streams are to be controlled collectively and a rather
loose temporal coupling of the grouped streams is sufficient. Although con-
trol hierarchies include reference points, this information is considered only
when clock operations are propagated to automatically transform the opera-

m2 m1 P1–( )
S2R2

S1R1

----------- P2+⋅=
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tion’s arguments. However, after a hierarchy has been started, its clocks may
drift out of synchronization and may be manipulated arbitrarily. For example,
two different subhierarchies of the same hierarchy may be scaled in different
ways, or clocks in the hierarchy may be halted and continued at any later time
with arbitrary start values.

A synchronization relationship goes a step further. In addition to propagation,
it ensures that the clocks involved progress synchronously. From the clock
condition introduced in the previous section it can be concluded that two
streams are synchronized if their controlling clocks are synchronized. Thus,
synchronization hierarchies are a general and very powerful concept to
specify arbitrary synchronization requirements between media streams. The
structure of the synchronization hierarchy specifies which streams have to be
synchronized, while the reference points in the hierarchy define how the tem-
poral dimensions of the streams relate to each other. The system guarantees
that all streams controlled by the clocks of the hierarchy are processed syn-
chronously. When a subhierarchy is halted and started once again at a later
point in time, this is performed in conformance with the temporal constraints.

Example
Figure 1.8 shows a simple telecooperation scenario with two users. Subject to
the cooperation is an experiment shown on videoV2. We assume that addi-
tional speech channels exist which allow the users to talk to each other. The
two users commonly viewV2. To ensure that both see the same information at
the same time,V2 must be played out synchronously. BesidesV2, user 1 views
video V1, which shows the same experiment from a different perspective.
Consequently, V1 andV2 are to be synchronized. User 2 additionally views
video V3, which shows a similar experiment. Since the two experiments
roughly correspond to each other in their temporal dimension,V1 andV3 are
grouped by a control relationship. We assume that media time 500 inV3 corre-
sponds to media time 5 inV2.

Figure 1.7 Transforming Media Time
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The presentation of all video streams can be started by issuingStart  at
clock C5. Moreover, this clock can be used to collectively scale, pause and
restart the entire configuration. User 1 may pauseV1 or V2 by haltingC1 or
C2, respectively. Halted clocks may be continued in a synchronized fashion,
i.e. after restart ofC2, for example, the presentation ofV2 is not only synchro-
nized withV1 but also withV2’s presentation at the site of user 2. SinceC3 and
C4 are linked with a control edge,V3 can be scaled, paused and restarted at
any position independent ofV1’s andV2’s state of the presentation. So, the
presentationV3 can be adjusted manually as needed.

If another user desires to join the scenario, the clock hierarchy has to be
extended dynamically. After the corresponding session has been established,
the clock controllingV2’s presentation at the new user’s site is linked by a
sync edge to clockC5. By issuing the start operation,V2’s presentation is
started synchronously to the ongoing presentations.

4.4 Clock Hierarchies and Nesting
In the context of synchronization, nesting means that arbitrary complex clock
hierarchies may be defined within compound components and thus remain
invisible for the components’ outside world. A clock hierarchy of a compound
component is defined at the time the component is composed and specifies
internal synchronization and control relationships between the clocks defined
within this component. Only the root of internal clock hierarchies is exported
and thus becomes visible to the components’ outside world. The operations

Figure 1.8 A Simple Telecooperation Scenario
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issued at an exported clock are propagated through the clock hierarchy and
thereby control the internal processing. Exported clocks may again be
involved in clock hierarchies at higher levels of abstraction.

The compound component shown in Figure 1.9 provides the abstraction of a
television set, capable of playing out a video stream and two audio streams in
a synchronized fashion. The component shown contains two basic compo-
nents, a video decompression component (D) and sink component implement-
ing a video output window (W). In addition, it includes another compound
component, which consists of two filter components (F) and two speaker
components (S). The nested compound component provides the abstraction of
an audio output device, whose operation is controlled by clockC2. The TV
component exports clockC1, which is used to start, pause or scale the audio-
visual output.

5 CONCLUSIONS
The efficient development of distributed multimedia applications requires
abstractions and services that are provided by a specialized software layer.
Such a middleware layer is based on general purpose operating systems and
adds functions and protocols supporting distributed multimedia applications,
including those for communication, synchronization and resource manage-
ment. TheCINEMA system is such a middleware layer. Our paper focused on
the description of the service interface ofCINEMA. We described components
that provide multimedia processing functionality and may be nested to facili-
tate the reusability of software and to achieve higher levels of functional
abstractions. Distributed multimedia applications are created by interconnec-

Figure 1.9 Nested Components
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ting the components’ ports with links which allows the definition of arbitrary
flow graphs. Before starting the flow of data units, the creation of sessions
results in the reservation of system resources that are needed to ensure quality
of service requirements. With media clocks and clock hierarchies we pro-
posed abstractions to control individual data streams as well as groups of
streams. We discussed the usage of clock hierarchies to specify synchroniza-
tion relationships between data streams and showed how they may be used to
handle the requirements of dynamic, interactive and cooperative multimedia
applications. Finally, it was outlined how clock hierarchies are used to control
the propagation of operations in compound components.

When implementing multimedia system services, certain requirements arise
that have to be met by the operating systemsCINEMA is layered on. For exam-
ple the ability to schedule multiple independent multimedia processing tasks
by observing real-time deadlines requires the support of real-time scheduling
algorithms as well as preemptive threads, which the processing functions are
mapped to. Current operating systems only partially fulfil this requirement.
Furthermore, multimedia data is transmitted between components on the same
node as well as on different nodes. The latter involves making use of transport
protocols. When designing theCINEMA prototype that is based on IBM AIX
and DCE as well as on the SUN Solaris operating system, it was decided to
encapsulate multimedia transmission functionality into link objects. This
offers two major advantages. It allows to use identical interfaces for data
transmission between local and remote components which simplifies the con-
figuration of applications significantly. Moreover, it decouples theCINEMA

implementation from the transmission mechanism that actually is used. Due
to the lack of a real-time transport system, in our current prototype link
objects are based on UDP. For the next version it is planned to replace UDP
by a real-time protocol which only requires a reimplementation of the link
object. However, all other parts of the system are not affected.

The implementation of theCINEMA prototype is still in progress. The first ver-
sion is working. It supports a restricted set of the functionality described in
this paper. For example, it is possible to establish applications in a distributed
environment and to control and to synchronize the flow of data units in
limited configurations. Our future work is directed towards extending the pro-
totype and gaining more experience in using our abstractions by experiment-
ing with applications.
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