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Abstract
Many new applications like groupware systems, news and file distribution or audio and video
systems are based on multicast as a prerequisite for scalability. Many of these applications
need a reliable multicast support, which is realized in a scalable way by tree based multicast
transport protocols, where the receivers are organized in a so-called ACK tree. Tree based
approaches raise the problem of setting up and maintaining the ACK tree, which is usually
done by variations of the expanding ring search (ERS) approach. In this paper we present an
alternative approach for building up ACK trees that is based on the concept of a distributed
token repository service. Our analysis and simulations show that our approach leads to a
significantly lower message overhead compared to ERS and results in better shaped ACK
trees, which has a positive effect on reliability and delay.
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1. INTRODUCTION
Multicast support is a prerequisite for many applications to ensure

scalability for large receiver groups. Although multicast support is already
available in the Internet, the provided IP multicast service offers only best
effort semantics [5]. Several protocols have been proposed to overcome this
drawback by a protocol layer on top of IP multicast [7, 10, 16, 19, 20].

All reliable multicast protocols are based on the same concept,
controlling the successful delivery by some kind of acknowledgments
returned by the receivers to the source. Simple approaches, where all
receivers send their acknowledgment messages directly to the sender can
cause the well-known ACK implosion problem [9, 13, 15]. To overcome the
ACK implosion problem, the most promising approaches are tree-based



protocols [4, 7, 10, 19, 20]. They ensure scalability by organizing all group
members in a so-called ACK tree. Instead of sending an acknowledgment
message directly to the sender, each receiver confirms the correct delivery
only to its parent in the ACK tree, which is responsible for possible
retransmits. Dependent on the concrete protocol, an inner node in the ACK
tree sends an acknowledgment to its parent either after it has received the
corresponding message correctly or it first collects all acknowledgments
from child nodes. This means, in the latter case an inner node sends an
aggregated ACK to its parent after it has received the multicast message and
the corresponding ACK from each child, confirming the correct message
delivery for the entire subhierarchy. Since each node in the ACK tree has an
upper bound on the number of its children, no node and no part of the
network is congested with messages.

Tree-based protocols raise the problem of setting up the ACK tree. A
new member joining a multicast group must be connected to the group’s
ACK tree, which is usually done by a technique called expanding ring
search (ERS). ERS is a multicast-based search technique for discovering a
suitable parent node in the ACK tree, by gradually increasing the search
scope. The advantage of ERS is its simplicity and robustness against node
and network failures. However, our performance evaluations will show that
the use of ERS on a large scale has several shortcomings, since it results in a
large message overhead and causes particular problems in combination with
source-based or unidirectional core based routed networks.

In this paper we propose an alternative approach for constructing ACK
trees, called token repository service (TRS). Our approach is based on a dis-
tributed token repository. The TRS stores tokens, where a token provides
basically the right to connect to a certain parent node in the ACK tree. A
node joining a group asks the TRS for a token of this group, which identifies
the parent to connect to.

We have developed three strategies to implement the TRS, the proxy-
server strategy (TRS-PS) [11, 12], the random-choice strategy (TRS-RC)
[17] and the minimal-height strategy (TRS-MH) [14]. The strategies have
different characteristics. The proxy-server strategy is easy to implement and
to integrate into the Internet structure. The random-choice strategy results in
better shaped ACK trees and lower message overhead, but on the other hand
needs an infrastructure to be established. The minimal-height strategy is an
extension to the random-choice strategy, creating ACK trees with minimal
height. In contrast to ERS, all three strategies provide scalability in the ACK
tree construction and better shaped ACK trees, necessary for ensuring
reliable multicasting with high reliability, low delays and high throughput.

The remainder of this paper is organized as follows. In the next section
the background and related work are discussed. Section 3 gives an overview
of the token repository service. In the following sections, the three TRS



strategies are described in detail. The behaviour of our approach in the
presence of failures is considered in Section 7. In Section 8 and Section 9
performance evaluations based on theoretical analysis and simulations are
presented before we conclude with a brief summary.

2. BACKGROUND AND RELATED WORK
When a new member joins a reliable multicast group the question arises
how it will be connected to the group’s ACK tree. The problem is to connect
the new member to a k-bounded parent that is not already occupied, i.e. has
not already k children. k is the maximum number of children a node can
accept. The bound k for a node depends on various characteristics, such as
the node’s performance, reliability or load.

Most approaches to establish an ACK tree are based on expanding ring
search (ERS) [20]. ERS is a common technique to search for resources in a
network [2]. With the basic ERS approach for setting up ACK trees, the
joining node looks for a parent in the ACK tree by sending multicast search
messages with increasing search scopes (see Figure 1). The first message is
sent with a time-to-live (TTL) of one, i.e. it is limited to the sender’s LAN.
If a non- occupied group member receives this message it returns an answer
allowing the new member to connect to it. If no node answers within a
certain time, the TTL is increased and a new search message is sent. The
joining node repeats this until an answer arrives or the maximum TTL of
255 is reached. Note that increasing the TTL step by step reduces the
network load and detects preferably parents that are close to the searching
node.

Several proposed protocols reverse the method described above by
making the non-occupied ACK tree nodes search for child nodes with
multicast invitation messages (ERA, expanding ring advertisement) [10, 7]
and some protocols use a combination of both approaches [4].

Our analysis and simulation results will show that ERS/ERA result in a
large message overhead. An additional drawback of ERS and ERA are their
dependency on the various routing protocols, resulting in particular
problems with each of them. ERS and ERA with distance vector multicast
routing (DVMRP) [18] lead to a vast overhead at all involved routers
because a new multicast routing tree is to be build for each sender. This
means each node that joins a group via ERS enforces a new, separate routing
tree. If ERA is used, a routing tree must be maintained for all non-occupied
nodes in the ACK tree. Note that if a member is only a receiver of multicast
messages, these trees are only used for the ERS/ERA search. With an
unidirectional shared tree approach like PIM-SM [6], the use of ERS and



ERA result in a traffic concentration at the core, an even higher message
overhead compared to DVMRP and ACK trees of poor quality with respect
to tree height and delay.

A further serious drawback of ERA is the message overhead due to the
invitation messages, which are sent even if no node wants to join. ERS has
the additional drawback that it cannot be used in unidirectional multicast
networks. For example, ERS cannot be used in satellite broadcast networks,
where there is no multicast backchannel or only an inefficient one.

3. OVERVIEW OF THE
TOKEN REPOSITORY SERVICE

In this section we will describe the interface, concept and
implementation idea of the token repository service, which is our proposed
infrastructure for building up ACK trees. Then in the following sections 4, 5
and 6 the three strategies TRS-PS, TRS-RC and TRS-MH are described in
detail.

3.1 Inter face and Concept of the Token Repository Service

The basic concept of our approach are tokens which represent the right to
connect to a certain node in a given ACK tree. When a k-bounded node has
created or joined a group, k tokens are generated and stored in the
repository. The creating or joining node is called the tokens’  owner. A token
is defined by a 3-tuple <group, owner, height>, where group identifies the
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multicast group of the owner. We define the height of a token to be the
height of its owner in the corresponding ACK tree. The root node has height
1 in the tree. The height of any other node in the tree is one higher than the
height of its parent.

Initially, there are k tokens of a group in the repository, generated on
behalf of a create group operation. When a node, say N, wants to join a
given group, it asks the TRS for a token of this group. The repository service
then selects a token of this group, returns it to N and generates new tokens
with owner N. The joining node N is now able to connect to the received
token’s owner in the corresponding ACK tree.

When a node leaves a group, it removes all of this group’s tokens out of
the repository for which it is the owner. The leaving node has allocated a
token belonging to its parent in the ACK tree. This token is returned to the
repository, which then can be reused by some other node joining this group
later. The operations provided by the TRS are summarized in Table 1.

Table 1.  Operations provided by the TRS
Operation Description

repCreateGroup (Group, K) This operation makes Group known to the
repository service. The caller becomes the root
of the ACK tree, which is K-bounded.

repDeleteGroup (Group) This operation deletes all token information of
Group in the repository.

repJoinGroup (Group, New-
Member, K) returns (Token)

repJoinGroup is called when the node
identified by NewMember wants to join
Group, where NewMember is K- bounded. The
operation returns a token identifying the parent
in the ACK tree to connect to.

repLeaveGroup (Group,
Member)

This operation deletes all of Group’ s tokens
owned by Member.

repAddToken (Group,
Owner)

repAddToken adds a new token to the
repository owned by Owner. It is called by
Owner when a child of Owner disconnects
from the Group’ s ACK tree.

repRefreshToken (Group,
Owner, Number)

To provide fault tolerance, repRefreshToken is
periodically called by the tokens’  owner. It
indicates how many child nodes (Number) can
still be accepted (see Section 7).



3.2 Implementation of the Token Repository Service

In this section, we will describe the basic principles of implementing the
TRS. To meet the design goals of scalability and reliability, the token
repository service is implemented as a distributed system of token repository
servers, repServers for short. Each repServer is responsible for a domain,
where each domain encompasses a disjunct set of nodes. For example,
repServer S1 in Figure 2 is responsible for domain 1 consisting of nodes N1x.
Domains should structure the network by communication distance, i.e. the
communication distance between two nodes in the same domain is typically
smaller than between two nodes in different domains. A repServer,
responsible for a particular node in its domain, is called this node’s home
repServer. In Figure 2, S1 is the home repServer of the nodes N1x. During
normal operation nodes access the token repository service only via their
home repServer (see Section 7 for failure situations).

Tokens are stored on the distributed repServers. Note that not all tokens
of a group are stored at only one repServer, thus several repServers may
store tokens for the same group and usually a repServer stores tokens of a
number of groups.

If a node requests a token from its home repServer and this repServer
possesses a token of the requested group, it simply delivers such a token.
Since a token is always stored at the repServer responsible for its owner’s
domain, a repServer possesses tokens of a group only when a node in its
domain has created or joined this group before. As a consequence, usually a
repServer does not possess tokens for each group. Therefore, it is possible
that a node’s home repServer cannot satisfy a token request although
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another repServer could provide a suitable token. For example, assume that
all tokens of a group are stored on a single repServer S1, responsible for
domain 1. If a node in another domain, say domain 2 for example, requests
its home repServer S2 for a token, our approach must ensure that finally S2

can deliver one of S1’ s tokens to the requesting node.

To meet this requirement, a repServer initiates a token search for a
group’s token if a node in its domain requests a token and none is available
locally. In the proxy-server strategy, a token search is processed by ERS. All
repServers belong to the same well-known multicast group. If a repServer
has to search for a token, it starts an ERS search on the repServers’
multicast group. If a repServer receives such a token search message and
possesses a token of this group, it hands over one token to the searching
repServer.

In the random-choice and minimal-height strategy, all repServers are or-
ganized in a tree structure. Nodes access the token repository service only
via leaf repServers, which store the token information. Non-leaf repServers
are necessary to facilitate the token search procedure, if no local token is
available. Each non-leaf repServer maintains a group-specific set of all child
repServers that belong to a token containing subhierarchy. A token search is
processed by forwarding the search step-by-step to the parent in the
repServer hierarchy, i.e. in leaf-to-root direction until one is reached which
knows a token containing subhierarchy. Then the search is forwarded in
reverse direction, i.e. in root-to-leaf direction to such a child repServer. This
is repeated until a leaf repServer is reached which hands over a token to the
searching node.

Note that our search mechanism ensures the following:
1.  always a token is selected whose owner is as close as possible to the

joining node and
2.  if there are several tokens whose owners are close to the joining node,

the one with the lowest height is chosen.
In summary, if a requested token is available locally at the requestor’s

home repServer, the requestor and the owner of this token are in the same
domain. This is the best case in terms of communication overhead between
the repServers and communication distance between requestor and owner in
the ACK tree. If a token is not available locally, the search procedure tries to
find a token in a domain close to the requestor’s domain.



3.3 Token Information
A repServer stores all tokens of a group in a token basket, i.e. one token

basket exists for each group known at the repServer. A token basket has the
following structure:

• Group: Unique multicast group identifier.
• SetOfTokenPackets: The tokens are grouped according to their owner

into so-called token packets.
Each token packet includes the following information:
• Owner: Unique identifier of the tokens’  owner. A node receiving a to-

ken from this packet is allowed to connect to owner in the correspond-
ing ACK tree.

• Height: Owner’s height in the corresponding ACK tree. The height is
used to distinguish the “quality”  of alternative tokens. A token with
low height is preferable since its use results in an ACK tree with low
height and therefore low average path length.

• NoOfTokens: Number of tokens in this token packet.
• ExpDate: Expiration date of the token packet (see Section 7).
A token basket is to be established when the first set of tokens associated

with the corresponding group is created and it is deleted when the last of this
group’s token has been removed from it. Each token basket contains a set of
token packets. A token packet encloses all of a group’s tokens belonging to
the same owner.

4. THE TOKEN REPOSITORY SERVICE WITH
PROXY SERVER STRATEGY (TRS-PS)

In this section we will describe the group management operations create
group, join group, leave group and delete group for TRS-PS in more detail.
TRS-PS is the first implementation strategy, which is based on ERS. When
describing these operations, we assume the absence of failures.
Communication and node failures will be considered in Section 7.

4.1 Create Group Operation

A node N creates a new multicast group by initiating a repCreateGroup
(Group, K) operation at its home repServer S (see Table 1). Subsequently, S
creates a token basket for Group including one token packet with owner N.
K specifies the number of tokens in the token packet. The height of the
token packet is initialized with one, because owner N as the root node has
height one in the ACK tree. For example, assume node N11 in Figure 2 sends
a repCreateGroup operation to its home repServer S1, responsible for



domain 1. Subsequently, S1 will create a token basket for this group. Figure
3 depicts this scenario in more detail and after the token basket is created.

4.2 Delete Group Operation

When the operation repDeleteGroup (Group) is invoked at a repServer,
this server deletes the Group’ s token basket and sends a DeleteGroup
(Group) message to all other repServers. Since all repServers belong to a
well-known multicast group, this can simply be done by a multicast
message. Each repServer receiving DeleteGroup (Group) removes the
Group’ s token basket. Note that it is sufficient to send DeleteGroup by the
best effort IP multicast service since the expiration date mechanism
described in Section 7 ensures that all outdated state information is finally
removed despite of node and communication failures.

4.3 Join Group Operation

When a node triggers a repJoinGroup (Group, NewMember, K)
operation at its home repServer S, S checks whether a token for Group is
locally available. If such a token exists locally, S removes one token with
lowest height from the token packet and sends it to the requestor of
repJoinGroup. Subsequently, S creates a new token packet for owner
NewMember with K tokens. The height of the new token packet is the height
of the delivered token increased by one. Assume for example that in the
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scenario depicted in Figure 3 a node belonging to domain 1, say N12, sends a
repJoinGroup operation to its home repServer S1. S1 has a locally available
token for the requested group which is delivered to N12.

Now we will consider the situation that a repServer S has no local tokens
for a requested group. If this is the case, S initiates a token search by using
ERS. The search starts with a multicast TokenSearch (Group, Requestor)
message to the repServers’  group address with a TTL of one. If no repServer
returns an answer within a certain time, S repeats the search message with
an increased TTL, and again waits for an answer. This process is continued
until S receives an answer or the maximum TTL of 255 is reached.

A repServer receiving a TokenSearch (Group, Requestor) message has to
check whether it has a token for the requested Group. If this is the case, it
responds to Requestor with an unicasted TokenAvail (Group, Height,
Provider) message, where Height is the minimal height of Group’ s local
tokens at the token Provider. Since each ERS search message may result in
more than one answer, S has to choose one responding node. The Height
value is used as a token quality metric. S chooses the responding token
provider R with the lowest token height by sending a unicast GetToken
message to R. Finally, S receives the requested token with a Token message
from R and R removes this token from its token packet.

After S has received a token, it establishes a token basket for Group,
including a token packet for NewMember, where NewMember was the caller
of repJoinGroup. Then the received token is handed over to NewMember.

To illustrate the token search procedure by means of an example, take
Figure 3 and assume that node N31 wants to join a group and therefore sends
a repJoinGroup message to its repServer S3. S3 checks whether it has a token
for this group. Since there is no locally available token, S3 has to initiate a
token search by multicasting TokenSearch with increasing TTL until a token
is found. The first few multicast messages with a TTL less than 4 do not
reach other repServers. The token search message with a TTL of 4 is
received by repServer S2, however S2 has no tokens and therefore does not
reply to S3. The next search message with a TTL of 5 is received by S1,
which owns a suitable token and answers with a TokenAvail message.
Subsequently, S3 stops multicasting TokenSearch messages and sends a
GetToken message to S1. Finally, S1 sends the requested token to S3 which
forwards it to the searching node N31. Since S3 creates new tokens with
owner N31, following join requests in domain 3 can be processed by S3

without further token searches.

During this two phase token search procedure - phase one includes
TokenSearch and TokenAvail, phase two includes GetToken and Token



messages - the following infrequent situation may occur. If a repServer
responds with a TokenAvail message, it indicates that at this moment a
suitable token is available, i.e. the token will not be reserved for the
requesting repServer. Note that this design leads to a stateless and thus light-
weight protocol. For example assume that S1 in Figure 3 has only one token
and receives two TokenSearch messages, one from S2 at time t2 and one
from S3 at time t3, where t2 is before t3. S1 responds to S2 with TokenAvail but
also to S3 since S1 cannot know whether S2 will choose S1’ s token or has
already chosen another one. Therefore, it can occur that both, S2 and S3

request S1’ s token by sending a GetToken message. In this case, S1 hands
over its token to the first caller of GetToken; all other requestors receives a
NoToken message, instead.

If a repServer S receives a NoToken message it simply chooses another
repServer provided that S has received more than one TokenAvail message
in the first search phase. Otherwise, S simply continues the token search
procedure by sending a new TokenSearch message with increased TTL.

4.4 Leave Group Operation

When a node N leaves a group, all of its tokens are removed. The used
multicast transport protocol must ensure that a node is only allowed to leave
a group if it has no child nodes in the ACK tree, i.e. is a leaf node. A non-
leaf node can leave a group after it has arranged a rejoining for all child
nodes at other ACK tree nodes. As we assume that a node has no children in
the ACK tree when it leaves the group, all tokens owned by N are in the
group’s token basket stored on N’ s home repServer S. When receiving
repLeaveGroup (Group, Member), S removes N’ s token packet from the
Group’ s token basket.

If N leaves a group this affects not only the tokens owned by N, but also
the token owned by N’ s parent in the ACK tree. Conceptually, if N leaves a
group it releases its parent’s token allocated by N so far. Hence N’ s parent
adds this token by means of the repAddToken operation to the token basket
of its home repServer when it recognizes that N leaves the group (see Table
1).

Note that this mechanism, namely adding tokens by the parent, ensures
robustness of our approach. Assume that a node in the ACK tree crashes.
The crashed node is not able to return its allocated token to the TRS.
Therefore, the parent of the leaving or crashed node has to add the token.



5. THE TOKEN REPOSITORY SERVICE WITH
RANDOM CHOICE STRATEGY (TRS-RC)

For the TRS-RC strategy, the network is also structured into domains but
in contrast to TRS-PS, the domains are hierarchical. The root domain
includes all nodes of the network, while the leaf domains encompass
disjunct set of nodes. Inner domains contain the nodes of their child
domains. Figure 4 shows the association of nodes to domains. RepServer S1

is responsible for domain 1 and repServer S4 is responsible for domain 4,
which consists of several subdomains.

A client accesses the token repository service only via the leaf repServers

in its domain, called this node’s home repServer. In Figure 4, S1 is the home
repServer for all nodes N1x of domain 1.

All token information is stored on leaf repServers. To facilitate searching
for token information for each group a so-called group tree is maintained,
which is a subtree of the hierarchy of repServers. A group’s group tree
contains all leaf repServers that store token baskets of this group and all
transitive parents of these nodes in the repServer hierarchy. Group tree
information is stored in group records on non-leaf repServers, where a
repServer only stores a group record of a group, say G, if one of its
transitive (leaf) children store tokens of G. A group record of repServer S
includes the following fields:

• Group: Identifier of the corresponding group.
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• Sub: This is a bitmap encoding the list of S’ s children in the group
tree. Each entry in the bitmap corresponds with one child repServer.
An entry is set equal to 1 if the corresponding child repServer is part
of this group’s group tree; otherwise it is set equal to 0.

• ExpDate: This field defines when the group record expires (see
Section 7 for details).

Of course, a group tree may grow and shrink during its lifetime, i.e.
group records are to be created, updated and deleted dynamically. When a
token basket is created, the repServer performing this operation connects to
the group’s group tree by sending a TokenAvail message to its parent in the
repServer hierarchy. This message is forwarded in a leaf-to-root direction
until it is received by a repServer that already stores a group record or the
root node is reached. All non-leaf repServers forwarding this message
establish the corresponding group record. When a token basket is removed a
NoTokenAvail message is sent to the repServer’s parent. A non-leaf
repServer receiving this message checks whether the message’s sender was
its only child in the group tree. If this is the case, it deletes the group record
and forwards the NoTokenAvail message to its parent. Otherwise, it just
removes the message’s sender from the group record’s Sub list.

The following subsections describe the create group, delete group, join
group and leave group operations in more detail.

5.1 Create Group Operation

When a new group is created, an initial group tree must be established.
Assume that S is the leaf repServer at which the repCreateGroup operation
was issued. The group tree to be established consists of S and all transitive
parents of S in the repServer hierarchy. When repCreateGroup (Group, K)
(see Table 1) is issued, S creates a token basket for Group with the number
of tokens specified by K, where the requestor becomes the owner of these
tokens. Subsequently, S sends a CreateGroup request to its parent. When
receiving a CreateGroup request, a non-leaf repServer creates and initializes
a group record and sends a CreateGroup to its parent.

Figure 5 illustrates a scenario, where a node creates a group and two
other nodes join this group. Node N11 creates group G by sending a
repCreateGroup request to its home repServer S1. Upon receipt of this
request, S1 creates k tokens <G, N11, 1> in G’ s token basket, assuming that
N11 (i.e. the root of G’ s ACK tree) is k-bounded, i.e. will accept at most k
children. The height of the created tokens is 1, since N11 is the root node in
the created ACK tree and we have defined the root node to has height 1 (see
Section 3.1). Moreover, group records are established on each non-leaf



repServer along the path from S1 to the root repServer. After their creation
they indicate how to find a token containing leaf repServer, starting at the
root node.

5.2 Delete Group Operation
When the operation repDeleteGroup (Group) is issued at a leaf

repServer, this server deletes the Group’ s token basket and sends a
DeleteGroup request to its parent. Non-leaf repServers forward this request
along the edges of Group’ s group tree, and each repServer receiving this
request deletes all state information associated with Group. Note that the
expiration mechanism ensures that all state information is removed within a
certain time despite of node and communication failures.

5.3 Join Group Operation
When a repJoinGroup (Group, NewMember, K) returns (Token)

operation is called, the called leaf repServer, say S, checks whether tokens
for Group are locally available. If this is the case, S removes a token from
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Figure 5:  Create and join operations at the
repServer hierarchy with TRS-RC



the token packet with the smallest height value in the tokens’  3-tuple
<group, owner, height> and returns this token to the caller. It also generates
a new token packet for NewMember with K tokens and puts it into Group’ s
token basket.

In Figure 5, N12 resides in the same domain as N11, and hence sends its
repJoinGroup request also to S1. When receiving this request, S1 checks
whether tokens for G are locally available. It finds a token <G, N11, 1> and
delivers it to N12. In addition, it creates k tokens <G, N12, 2> in G’ s token
basket, assuming that N12 will accept at most k children. After receiving
token <G, N11, 1>, N12 can connect to N11 in G’ s ACK tree.

If no token basket exists for Group instead, S starts the token search
procedure, which proceeds in two phases, the leaf-to-root directed and root-
to-leaf directed search phase. S initiates the leaf-to-root directed search
phase by sending a TokenSearch request to its parent in the repServer
hierarchy. This request is forwarded in a leaf-to-root direction in the
repServer hierarchy until a repServer is found that is part of Group’ s group
tree (i.e., stores the corresponding group record) and has at least one child in
this tree being not on the path to S. This repServer initiates the downward
search phase by sending a TokenSearch to one of its children in Group’ s
group tree. This request is forwarded along the edges of the group tree in a
root-to-leaf direction until it arrives at a leaf repServer. If a repServer has
more than one child in the group tree it randomly selects one of them for
forwarding the request. The leaf repServer receiving the TokenSearch
request removes a token with the lowest height value from Group’ s token
basket and delivers the token directly, without using the TRS hierarchy, to S.

When receiving the token, S establishes a token basket, including a token
packet for NewMember as described above, and delivers the token to the
caller of repJoinGroup. In order to connect itself to Group’ s group tree, it
sends a TokenAvail message to its parent.

For example, assume that N31 in Figure 5 wants to join G. N31 contacts its
home repServer S3, which notices that no tokens are locally available for G
and hence starts a token search operation. With this search mechanism, the
repServer (recursively) asks its parent until the first repServer S4 is found
that belongs to G’ s group tree, i.e., stores a group record for G. G’ s group
tree information stored in non-leaf repServers is used to find the path from
S4 down to S1. A token <G, N11, 1> at S1 is selected and handed over to S3.
After that, S3 delivers the token to N31. Finally, group records for G are
established on the path from S4 to S3, and new tokens <G, N31, 2> are
generated and stored in G’ s token basket on S3. The next repJoinGroup



request concerning G can be served by S3 without involving a search
operation.

5.4 Delete Group Operation
When a node, say N, leaves a group, it conceptually releases a token

owned by its parent. Hence, N’ s parent is requested to add this token by
means of the repAddToken operation to the token basket of its home
repServer when it recognizes that N leaves the group. As we assume that a
node has no children in the ACK tree when it leaves the group, all tokens
owned by N should be in the group’s token basket stored on N’ s home
repServer at the time the repLeaveGroup operation is called. When
receiving this call, N’ s repServer removes N’ s token packet from the group’s
token basket. If the token basket becomes empty, it is removed and a
NoTokenAvail message is sent to the parent repServer.

6. THE TOKEN REPOSITORY SERVICE WITH
MINIMAL HEIGHT STRATEGY (TRS-MH)

In the following we will an overview of TRS-MH. The Minimal-Height
strategy is described in detail, including pseudo code, in [14]. TRS-MH cre-
ates ACK trees with minimal height which improves reliability and round
trip delay in the ACK tree. Note that the reliability of a node depends on its
own reliability and the reliability of all nodes on the path from its parent
node to the root node, because they are necessary to send a retransmission in
case of data loss. Therefore, the lower the number of intermediate nodes on
the path to the root, the higher the reliability from this node’s perspective.
Furthermore, small path lengths result usually in lower delays between the
root node and all receivers, which improves throughput of protocols with
aggregated acknowledgments [8, 19].

The basic concept of TRS-MH is quite simple. If a client requests a token
from the token repository service, a token with minimal height in its 3-tuple
<group, owner, height> has to be delivered. Therefore, new nodes connect
always as close as possible to the root node in the ACK tree, which results
in height-balanced ACK trees. A height balanced ACK tree is a tree with
minimal height for a given k-bound, i.e. height=

�
logk(R(k-1)+1) � , where R is

the number of nodes in the tree (see Section 8).

The implementation of TRS-MH is similar to TRS-RC but more complex
than the previous strategies. Again, a group tree has to be maintained
identifying the repServers that store tokens for a given group. Group tree
information is stored in group records with the following structure:



• Group: Unique multicast group identifier.
• MinHeightGlobal: Minimal height of tokens in the entire repository

hierarchy.
• MinHeightSub[]: Vector determining the minimal token height for

each child domain.
• ExpDate: This field defines when the group record expires (see

Section 7 for details).

In contrast to TRS-RC, leaf repServers store a group record, too,
consisting only of Group, MinHeightGlobal and ExpDate. MinHeightGlobal
determines the minimal height of all tokens in the entire repository
hierarchy. If the height of a locally available token is not greater than
MinHeightGlobal, a local token can be delivered to the requesting client.
Otherwise, a token search has to be performed to find a token with minimal
height, i.e. a token with height equal to MinHeightGlobal.

A token search of TRS-MH consists of two phases, too. In the first phase
of the token search, a TokenRequest is forwarded in leaf-to-root direction
until a repServer is found that is part of the group tree and the following
condition holds: min(MinHeightSub) ≤ MinHeightGlobal. If this condition
holds at a repServer, a minimal-height token can be found in this repServer’s
subhierarchy, i.e. at one of the transitive children, and hence the search
domain needs no further enlargement.

In the second search phase, each repServer forwards the TokenRequest
message to a child s with MinHeightSub[s] = min(MinHeightSub) until a
leaf repServer is reached. If more than one subhierarchy satisfies this
condition, the repServer randomly selects one of them. Finally, the found
leaf repServer removes a token with minimal height from Group’ s token
basket and delivers it directly to the searching leaf repServer, without using
the TRS hierarchy.

If a repServer delivers a token to another repServer or a client,
MinHeightGlobal of this repServer is updated to the token’s height if it is
greater than MinHeightGlobal. If this repServer is not already connected to
the group tree or MinHeightGlobal or the minimal height of all locally
available tokens has changed, it sends a HeightUpdate (minimal local token
height, MinHeightGlobal) to its parent. A non-leaf repServer receiving a
HeightUpdate message checks whether the corresponding group record
already exists and creates one otherwise. Then the receiver updates
MinHeightSub[i], where i was the sender of HeightUpdate, to the received
value of the minimal token height and MinHeightGlobal to the received
value of MinHeightGlobal, provided that MinHeightGlobal is not decreased.
The forwarding of HeightUpdate (Group, min(MinHeightSub), MinHeight-



Global) to the parent in the TRS hierarchy is then repeated as long as at
least one of min(MinHeightSub) or MinHeightGlobal undergoes a change
and the root node is not already reached. The details of TRS-MH are
described in [14].

7. FAULT TOLERANCE OF THE TOKEN
REPOSITORY SERVICE

In the previous sections we have described the group management opera-
tions during normal conditions without considering communication and
node failures. In this section we will describe the behaviour in such failure
situations.

When a group management operation is to be performed and the home
repServer is not available caused by a crash or network partition, any other
repServer can be selected to execute those operations. To be able to select
another repServer, each client maintains a list of some alternative
repServers. Of course, when selecting another repServer, those that are in
close domains are preferable. Note that using another repServer results in
larger distances between parent and child nodes in the created ACK tree,
which increases network load and delay for the reliable multicast protocol.

All token information is maintained according to the soft state principle.
Token packets are associated with an expiration date. If the expiration date
is reached, it must either be extended or the token packet will be discarded
automatically. Obviously, the lifetime of a token packet depends on the
lifetime of its owner. To prevent a token packet from expiring, the token’s
owner periodically refreshes the token information of not already used
tokens, which extends their expiration date. If no refresh message is
received within two refresh cycles, the token packet is discarded. On the
other hand, if a refresh message is received without storing the
corresponding tokens, these tokens are created. The mechanism for group
records used in TRS-RC and TRS-MH is analogous. In most cases the
updating of group records through a TokenAvail or HeightUpdate message
due to a change in the group tree is sufficient to extend the group record’s
expiration date of the parent node. If group tree changes are too infrequent,
additional TokenAvail or HeightUpdate messages are sent to prevent the
parent’s group record from being discarded.

Although our protocols discard token packets explicitly during normal
operations, this mechanism allows to design a robust but nevertheless light-
weight protocol, ensuring even in the presence of node and communication
failures that eventually all outdated information is removed. In addition, this



mechanism allows us to keep token information in volatile memory, which
is necessary to provide a high repServer throughput. If the token information
is lost due to a repServer crash, the refresh mechanism recovers the lost
data.

The mechanisms described above ensure that tokens are not permanently
lost. However, token loss can result in higher overhead for finding a token in
the TRS and disadvantageous ACK trees. For example, assume that the
home repServer of a node has crashed. Then a token from another domain is
used in case the home repServer is not yet available or the tokens are not yet
recovered. This leads to larger distances in the ACK tree between parent and
child nodes, which increase network load and delay for the reliable multicast
transport protocol.

As this refresh mechanism is only necessary to discard outdated informa-
tion and recover tokens in case of node or communication failures, the
refresh cycles can be rather large. Furthermore, only nodes that are not
already occupied need to refresh their token information. Therefore, the
additional communication overhead is low.

8. PERFORMANCE ANALYSIS
In this section we present some analytical results comparing the TRS

strategies with ERS and ERA. We have evaluated the maximum message
overhead and the maximum height of the created ACK tree.

8.1 Message overhead
The following message overhead evaluation considers only the overhead

for group management rather than the overhead on routing layer or the
reliable multicast transport protocol. We assume a scenario in which the join
and leave operations are independent, i.e. all join operations are processed
before the first leave operation and we do not consider possible rejoining
overhead when non-leaf nodes leave the ACK tree. Furthermore, we assume
the absence of failures. As the message overhead of ERA depends mainly on
the time period, it is not considered here.

Using ERS, create, delete and leave a group is not explicitly done,
therefore the message overhead is 0. The worst case for joining a group is
that 255 multicast search messages must be sent to find a parent node, since
255 is the maximum time-to-live value in an IP packet and that all nodes that
have already joined the ACK tree reply to the searching node. The
maximum number of messages nj for joining a group is therefore as follows:
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Index m identifies multicast messages and j is the number of join
operations (see Table 2). Since there is a square component in the formula,
the worst case message overhead is quadratic.

The message overhead for creating a group using TRS-PS is one
message, the repCreateGroup message. To delete a group, repDeleteGroup
is sent to the home repServer which sends one multicast DeleteGroup
message to all other repServers.

To join a group repJoinGroup must be sent to the repServer and then a
token is replied. If a repServer has no local token for a requested group, a
token search is invoked by sending multicast search messages. In the worst
case 255 search messages are sent and every other repServer sends an
answer message. Finally, the token is handed over, which needs additionally
two messages. Such a token search is processed only once per repServer and
the repServer at which the group is created needs no token search at all. The
maximum number of messages for joining a group is therefore as follows,
where B is the number of requested repServers:
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If we assume that we have a large number of join operations, that means
if j >> B then:

j
j
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This means, the number of messages rises linear with the number of join
operations. To leave a group only one message, repLeaveGroup is sent to
the repServer.

The message overhead for creating a group using TRS-RC is one
message to the home repServer and (t-1) messages to establish the group
tree, where t is the height of the TRS tree. To delete a group,
repDeleteGroup is sent to the home repServer which forwards it along the
edges of the group tree. The number of messages is therefore:
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To determine the number of messages for joining a group we distinguish
between the first (B-1) joins and the remaining ones. We assume, that the



first (B-1) joins are issued at different home repServers and therefore result
in a token search. In worst case, the token search must be forwarded to the
root node and from the root node to a leaf node which results in 2(t-1)
messages. If the token is handed over, the group tree must be updated which
results in (t-1) messages. 3 messages are necessary to send repJoinGroup to
the home repServer, hand over a token to the searching repServer and finally
return the token to the client. After the first (B-1) joins all remaining ones
involve no further token search and therefore result in only 2 messages per
join operation:
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If a client leaves a group this can result in a necessary update of the
group record. So, in worst case t messages are necessary.

Now we want to analyse the TRS-MH strategy. The number of messages
to create a group, delete a group and leave a group are equal to TRS-RC. In
worst case the repJoinGroup operation results everytime in a token search
and update of the group records:
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Figure 6 depicts the maximum number of sent messages for the ERS,
TRS- PS, TRS-RC and TRS-MH approaches. The number of join operations
range from 1000 to 10000. Note that the y-axis has a logarithmic scaling. In
this scenario it is assumed, that one group is created, the depicted number of
nodes on the x-axis join this group and half the number of joining nodes
leave the group. The results show that ERS cannot be applied for large
receiver groups. The TRS approaches provide significantly better
scalability. The best scheme in terms of message overhead is TRS-RC. In
contrast to ERS and TRS-PS it sends no multicast search messages and in
contrast to TRS-MH it results in less overhead to search for a token in the
repServer hierarchy and update the group records.



8.2 Tree height

The height of the created ACK tree influences its reliability and round
trip delay. Desirable are trees with low height (see Section 6). Using
ERS/ERA, the maximum height of the created ACK tree is only limited by
the number of join operations, i.e. in the worst case the height can be equal
to j-l+1, where j is the number of join operations and l the number of leave
operations.

With TRS the height of the created ACK tree is determined by the
number of join operations and the number of requested repServers. If only
one repServer is requested, a tree with minimal height is created since for
each token request the token with minimal height in the ACK tree is
delivered. Therefore, the height can be calculated as follows:
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Figure 6:  Maximum number of sent messages



�
+−+

�
=

�
+−

�
=�=

=

++++=

++++==

−
−

−
−−+−−−++−+−

−

−−
−

−−
−

−
−

−

−−
−

=

)1)1)(1((log

:operationsjoin  h height wit Tree

)1)1((log

...

...

:ary tree-k complete ain  nodes ofNumber 

)1(

1

)1(

112...2110

)1(

1)1(

)1(

2)1(

)1(

)1(

)1(

0)1(

1210
1

0

1

kjh

j

kNhN

N

N

kkkkkN

k

kk

hk

k

hkhkhkhkkkkk

k

hkk

k

hkk

k

kk

k

kk

hh
h

i

i

Table 2.  Notation and summary of analytical results

n
x
... ........ Number of messages to create (x=c), delete (x=d), join (x=j) or leave (x=l) a

group.
c, d, j, l ...Number of create, delete, join or leave operations.
B............ Number of (leaf) repServers requested for a token.
N............ Number of nodes in a complete k-ary tree.
h............. Height of the created ACK tree.
t.............. Height of the TRS hierarchy.
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If we consider B instead of one repServer, the worst case is that at B-1
repServers only one join operation is processed and that each of these join
operations results in a parent with maximum height in the ACK tree. All
other join operations are processed by one repServer. The maximum height
can be expressed as follows:
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The maximum tree height for TRS-RC is equal to the results of TRS-PS.
For TRS-MH the tree height is equal to the height of a balanced tree:�
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Figure 7 depicts the maximum resulting ACK tree height of 1000 to
10000 join operations. The result of TRS-MH is equal to the height of a
balanced k- bounded tree and therefore optimal. ERS and ERA can result in
large tree heights, which is disadvantageous for round trip delays in the
ACK tree and reliability.
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Figure 7:  Maximum resulting ACK tree height



9. SIMULATIONS
We have performed simulations using the NS2 network simulator [1] to

compare the token repository service with expanding ring search strategies.
The networks are generated with the network generator Tiers [3].

Fig. 8 depicts the dependency between received messages and various
levels of background load. In this simulation study we have used 200 join
operations and the routing protocol DVMRP. The background load is
measured as the percentage of busy links during the simulation time, i.e. a
background load of 100% means that each network link was busy during the
entire simulation.

The results show that ERS scales poorly with the background load. If the
background load exceeds a certain level, the number of received messages
rises strongly. This behaviour is caused by increased message delays due to
high background load. When the delay of a search and the resulting answer
message exceeds the timeout interval, the sender of ERS starts a new
multicast message with increased TTL. Note that the timeout parameter for
ERS specifies the time per hop, a node waits for an answer to arrive, before
it sends a new search message with an increased TTL. For example, if the
timeout is one second and the search scope ten hops then the node
performing ERS waits ten seconds for an answer before it starts a new
search. The lower this time to wait is, the sooner a new search message is
sent and therefore the earlier the effect of strongly increasing message
overhead occurs. However, the timeout parameter can only be increased
within a certain range, since this influences the delay of a join operation.
Moreover, as it can be seen in the chart, increasing the timeout interval also
increases the message overhead in case of low background load. For
example in Figure 8 the message overhead of ERS with 5s timeout interval
is up to 6% background load higher than that of the other ERS curves with
lower timeout intervals. Since it takes longer for a node to join the ACK tree
if the timeout interval is increased, it also takes longer before the joining
node itself is able to accept child nodes. Therefore, other joining nodes must
possibly search in a larger scope to connect to the ACK tree.
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ERA results in a high message overhead independent of the background
load. With increased background load, the message overhead seems to de-
crease but this is only caused by our simulation scenario. The use of ERA
leads to network congestion and therefore to a high message delay. Since the
simulated time period was restricted, not all invitation messages were
delivered during simulation time.

The message overhead of both token repository services, with random-
choice strategy and proxy server strategy, is much lower compared to ERS
and ERA and moreover, independent of the background load, always
constant. The minimal-height strategy, which is not included in the figure,
results in about the same message overhead as the random-choice strategy.
We have also simulated the proxy server strategy with various timeout
intervals but the results have differed only slightly.
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Figure 9 shows the results of another simulation study to determine the
influence of network size on scalability. 50 join operations are simulated
with DVMRP and PIM-SM routing. The message overhead of TRS-RC,
TRS-MH and ERA is constant, independent of the network size and routing
protocol. The results show that TRS-PS sends more messages than TRS-RC
and TRS- MH and the number of messages increases with larger networks.
However, compared to ERS and ERA the number of messages is always
smaller and rises only slightly with the network size.

The last simulation results depicted in Figure 10 investigate the average
path length respectively height of the created ACK trees. The path length af-
fects the reliability of the created ACK tree. The multicast service may be
disrupted for a node if one of its parents in the ACK tree becomes
unavailable. Therefore, the lower the number of parents the higher the
reliability from this node’s perspective. So, the average path length of the
ACK tree can be used as a quality criterion for reliability, since it is
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equivalent to the average number of nodes that must rejoin the tree if a
single ACK tree node fails. Furthermore, low tree height results usually in
low delays in the ACK tree.

Figure 10 shows that TRS-PS as well as TRS-RC and ERA lead to ACK
trees with low path lengths that are near to the theoretical minimum. Note
that TRS-MH creates ACK trees with minimal path length. The use of ERS
results in unbalanced ACK trees especially in combination with the routing
protocol PIM-SM, i.e. the failure of a single node may lead to a vast
overhead for example for rejoining its child nodes. This is caused by the
characteristic of PIM- SM that multicast messages are always disseminated
from the same core node in the network. Therefore, ERS finds always nodes
close to this core and nodes that are far away from the core node get no
child nodes, which results in large tree height.

10. SUMMARY
In this paper we have presented the token repository service, which is an

efficient and robust approach for constructing ACK trees. The basic concept
of our approach is a distributed repository storing tokens, which represent
the right to connect to a certain node in an existing ACK tree.

Compared to the various approaches based on expanding ring search, the
TRS has several advantages. It needs no bidirectional multicast support for
joining nodes and produces network load only when a receiver joins a
group. Furthermore, using the TRS, the undesired impact of the multicast
routing protocol on the ACK tree construction in terms of scalability and
quality of the created ACK trees is almost eliminated. In contrast to ERS
with DVMRP, the TRS needs no separate routing tree to be established for
each receiver joining the group. In contrast to ERS with PIM-SM, the
disadvantageous core based dissemination of multicast messages hardly
influences the results of the TRS. We can conclude from the presented
simulation results that the TRS appreciably improves scalability. But also in
terms of round trip delay and reliability of the created ACK trees, the
proposed TRS performs in many cases better than ERS approaches.
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