Draft, July 2017

Load balancing with p4est for
Short-Range Molecular Dynamics with

ESPResSo

Steffen HIRSCHMANNE! Malte BRUNN®, Michael LAHNERT®,
Colin W. GLASSE, Miriam MEHL® and Dirk PELUGER®

A Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
b High Performance Computing Center Stuttgart, University of Stuttgart, Germany

Abstract. For short-range molecular dynamics (MD) simulations with heteroge-
neous particle distributions that dynamically change over time, highly flexible and
dynamical load balancing methods are mandatory to achieve good parallel scalabil-
ity. Designing and implementing load balancing algorithms is complex, especially
for existing applications which were not designed to support arbitrary domain de-
compositions. In this paper, we present our approach to incorporate general domain
decompositions and dynamic re-balancing into the existing MD software package
ESPResSo. We describe the relevant interfaces and abstractions which enable us to
reuse the physics algorithms in ESPResSo, without major re-implementations. As
proof-of-concept, we show the implementation of a domain decomposition based
on space-filling curves and a dynamic re-balancing mechanism using an enhanced
version of the p4est library. The results indicate that our load balancing mecha-
nism is capable of reducing the imbalance amongst processes and the total runtime
of simulations in simple and complex scenarios. At the same time, the implemen-
tation of models and solvers in ESPResSo remains largely unchanged.

Keywords. Load balancing, distributed memory parallelization, domain decomposition,
space-filling curves, molecular dynamics

1. Introduction

Short-range molecular dynamics (MD) [112] is an important simulation method in com-
putational sciences. For example, in [3] it is used in conjunction with dynamic binding
of particles to study the agglomeration of soot particles. To reduce the complexity of cal-
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culating the interactions for N particles to &(N), the so-called Linked-Cell method [4}5]]
is employed. The simulation of large amounts of particles still requires parallelization
based on a domain decomposition approach, which is known to be scalable beyond other
approaches for distributed memory parallelization, like atom or force decomposition [6].
However, we need sub-domains with more complex shapes than cuboids and suitable
load balancing algorithms to address inhomogeneities of the particle distribution in space
and time. In [[7], we theoretically assess how to cope with inhomogeneities and iden-
tify relevant quantities for load balancing decisions. To verify these observations in real
world applications, we present an implementation of one particular sophisticated domain
decomposition and load balancing algorithm in ESPResSo. ESPResSo [8l9] currently
uses rectangular domain decomposition and does not employ any kind of (dynamic) load
balancing. In order to reuse all implemented physics of the code base, we aim to incor-
porate load balancing in a minimally invasive way. In this work, we explain the neces-
sary interfaces for the integration of non-uniform domain decomposition and dynamical
load balancing in existing short-range molecular dynamics simulation codes. Building
upon these general concepts, we present a domain decomposition and load balancing
method for ESPResSo based on space-filling curves (SFC). For the implementation, we
utilize the existing p4est [10] library, which uses the Z-curve or Morton order [11] as
an underlying principle for grid cell ordering in quad- or octree grids and as a domain
partitioning tool. p4est provides a lot of efficiently implemented features required for
domain partitioning such as the determination of cell neighborhoods and ghost layers of
grid partitions.

Related Work. SFC-based decompositions are widely used for (adaptive) octree
grids. A general introduction can, e.g., be found in [12]]. Approaches to SFC-based de-
compositions for MD can, e.g., be found in [[13]]. The underlying idea is to distribute the
computational load by splitting the linearization of the (linked) cells, given by the SFC,
into contiguous sections with equal load. We describe the algorithm we use for partition-
ing in [7]. We base our implementation for SFC-partitioning on the p4est library [[10]
which provides a collection of algorithms and data structures for adaptive mesh refine-
ment and mesh partitioning using octree grids (including grids composed of multiple
trees). It is well-known to be scalable to up to hundreds of thousands of processes [14415]].

Other partitioning methods used in the literature are: Graph partitioning, see e.g. [10]
for a model which incorporates dynamic re-balancing, and recursive bisection, see
e.g. [L7]. The latter is used in 1s1 mardyn [18]] and NAMD [19/20]. GROMACS [21] uses
a similar, non-recursive approach. In contrast to these global algorithms (SFC-based par-
titioning and graph partitioning), local algorithms adapt an existing partitioning by only
local exchanges of information and cells. They are, thus, considered to be inherently suit-
able for re-partitioning during runtime. Two prominent examples of local algorithms are
diffusive strategies [22123]] and grid-based methods [24425] which are used in IMD [26].
In our SFC-based partitioning, migration after re-partitioning is likely to happen only be-
tween a process and its predecessor and successor along the SFC. It therefore resembles
a local algorithm in terms of communication requirements.

The authors in [27)28]] conclude that SFC-based methods are efficient in terms of
runtime and memory consumption, while generally giving a partitioning of good qual-
ity. Buchholz [29] draws the same conclusion for MD simulations in the MD-software
Is1 mardyn on homogeneous and inhomogeneous scenarios. In his experiments, the SFC-
based method and a recursive bisection approach usually yield the best partitioning. For
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example, the simulation of droplets composed of Lennard-Jones particles using an SFC-
based decomposition is up to four times faster compared to a regular decomposition.
This motivates that we test our concepts for a general domain decomposition with the
SFC-based method. As mentioned before, we do this in ESPResSo which currently only
supports a regular domain decomposition into equally sized rectangular sub-domains [9].
We use the p4est library to avoid the re-implementation of grid structures; the technical
realization of the partitioning and neighborhood detection has already been integrated
into ESPResSo in [30U31] for Lattice-Boltzmann simulations on adaptive grids.

Linked-Cell and Parallelization Basics & Interfaces. In molecular dynamics sim-
ulations with short-range interactions, the so-called Linked-Cell method [413]] is typically
used to identify particles within the cut-off radius of a given particle in constant time:
All particles are binned into a grid with mesh width & > r,;, where r.,, is the largest cut-
off radius in the simulation, which is the maximum interaction range between particles.
Thus, all interaction partners of a particle can be found in a neighborhood of 27 grid cells
in three-dimensional simulations. The algorithmic building blocks defining the interfaces
for the domain partitioning of a Linked-Cell grid implementation are: (1) Traversal of all
local cells, (2) mapping of a particle position to the corresponding cell, (3) traversal of
neighbor cells of a given cell, (4) traversal of all particles in a cell. To reduce the num-
ber of communication events, a domain decomposition requires introducing a so-called
ghost layer around each sub-domain. It contains ghost cells mirroring boundary cells of
neighboring processes such that all processes can calculate local interactions indepen-
dently. Exchanging this information between different processes is called ghost commu-
nication. During the simulation, particles can leave their sub-domain and, thus, have to
be migrated to the respective neighboring process. This step is called particle exchange.
During particle exchange, all available information of migrated particles is exchanged,
whereas ghost communication only exchanges the information required to compute par-
ticle interactions, i.e. positions and type. In summary, every process of a parallel deploy-
ment needs to (5) know which are its (geometrically) neighboring processes, (6) be able
to map a particle position to the correct partitioning and corresponding process, (7) de-
termine the ghost communication structure.

The structure of this work is as follows: In Section 2] we describe interfaces for par-
allelization based on a non-regular domain decomposition. In Section 3| we explain how
we use p4est and how we achieve dynamic re-balancing in ESPResSo. Section[d]reports
on results of the new domain decomposition and re-balancing. Finally, we summarize
our work in Section [5]and conclude with a note on future research topics.

2. Non-Regular Domain Decomposition

We choose to use the existing interfaces in ESPResSo as much as possible to implement
non-regular domain decomposition in a minimally invasive way. In the following, we
outline the ESPResSo interfaces and our adaptions. The newly developed interfaces are
applicable in ESPResSo, but were developed as a general template for domain decom-
position and load balancing interfaces for existing MD simulation software.

Grid and Domain Decomposition. The current implementation of the Linked-Cell
grid (“domain decomposition” in ESPResSo) is described in [9]. It is a general interface
for a grid whose cells hold particles. ESPResSo stores the cells in a one-dimensional
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Figure 1. In gray: One-dimensional storage of cells. For cell ¢, the implementation of the neighborhood as
a list of pointers or indices is shown (the first five neighbors only). Note that 14 is the number of half-shell
neighbors in 3D.

array. Furthermore, each cell has its own list of neighboring cells (see Figure [T). This
comes in handy, as it can be used to represent non-box-shaped subdomains, where, in
addition, the numbers of inner and ghost cells are not known a-priori. Reusing internal
data structures of ESPResSo or other existing MD solvers is essential for our minimally
invasive integration, as all physics algorithms implemented in the code at hand depend
on these core data structures. In conclusion, to comply with the ESPResSo interfaces, an
underlying grid implementation needs to provide the number of inner and ghost cells as
well as the cell neighborhood information. The mappings of particle positions to cell and
particle positions to process depend on the organizational structure of the used grid and
domain partitioning and, therefore, specific functions need to be implemented for every
grid- and partitioning-type.

Communication. The dimension-wise, synchronized communication scheme [0]
used in ESPResSo exploits a regular communication structure (two neighbors for each
process in every coordinate direction). Since we assume no specific structure in the shape
of subdomains, we also can not assume such a structure anymore. Therefore, we imple-
ment asynchronous ghost communication and particle exchange, which work for subdo-
mains of arbitrary shape.

Farticle Exchange. To migrate particles, we traverse all local particles and determine
if a local particle left its subdomain. If so, the particle position corresponds to a ghost
cell, of which we know the owner’s rank. For some features, it is not guaranteed that
all out-of-subdomain particles reside in ghost cells. For this, we use the global *position
to process’ mapping. The communication scheme is as follows: First, an asynchronous
receive operation for each neighbor is posted to receive the number of particles to be ex-
pected. Then, out-of-subdomain particles are sorted into the corresponding send buffers.
Afterwards, the following data are sent to all neighbors: (1) The particle count, (2) the
particles themselves (if any), and (3) dynamic data associated with these particles (e.g.,
bond lists). After sending these data, a process waits for the particle counts from each
process to arrive and then posts asynchronous receive operations for particles and dy-
namic data.

Ghost communication. The ghost communication routine needs to know which ghost
cells to receive from which neighbor as well as which boundary cells to send to which
neighbor. To this end, ESPResSo provides a structure called GhostCommunication
which consists of an operation (send or receive), a rank, and a list of cells to be
sent or received. The specification of one ghost communication step consists of a list
of GhostCommunications. This interface can be used for communications on arbi-
trarily structured domains, see Figure [2] However, the routine which performs the ac-
tual communication assumes that the domain is decomposed regularly into box-shaped
subdomains and that the GhostCommunications are ordered such that a synchronous
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Figure 2. A segment of a non-regularly shaped subdomain with 6 ghost cells and 3 boundary cells. Exemplary,
a list of two GhostCommunications is shown, the first a send operation on three boundary cells and the second
a receive operation of six ghost cells. The list is tagged as being asynchronous.

communication does not cause deadlocks. We provide a ghost communication function
which works asynchronously and accepts arbitrary communication specifications, such
that it can be used in combination with non-box-shaped subdomains and an arbitrary
amount of neighboring processes. Therefore, we extend the interface by introducing an
asynchronous flag. If a list of GhostCommunications is tagged as asynchronous (as
depicted in Figure [2) ESPResSo dispatches to our newly created asynchronous commu-
nication function. It works analogously to the communication scheme sketched above.

Determining the communication volume. Ghost communication includes communi-
cation across periodic domain boundaries. In ESPResSo, positions of particles involved
in this case are shifted to the corresponding periodic image of the simulation box. As a
consequence, however, if two processes share periodic domain boundaries in different di-
rections, a single cell may need to be replicated multiple times at a unique neighbor pro-
cess (multiple images). Note that this means that on the one hand the receiver has multi-
ple distinct ghost cells, which are identical on the sending process and that, on the other
hand, the sending process has to determine how often and with which shifts a neighbor
process expects to receive the boundary cells. In order not to change how ESPResSo han-
dles the calculation of particle distances, we have to account for these possibly multiple
copies of the same cell and provide shift values. ESPResSo associates a shift value with
each GhostCommunication which the sender adds to all outgoing particles. The shift
value itself is, therefore, either 0, the box length or the negative box length. To generalize
this concept, we iterate over all boundary cells and each of these cells’ respective neigh-
borhood. If the neighbor is a ghost cell, we determine whether and in which direction
the two cells are separated by a periodic boundary and tag the boundary cell with this
direction (possibly none) and the rank of the neighboring process. These direction-rank
pair tags for each boundary cell are sufficient to fill the communication send lists.

3. Implementation of an SFC-based Domain Decomposition

In this section, we describe the implementation of an SFC-based domain decomposition
in ESPResSo using p4est as a first proof-of-concept for our interfaces for non-regular
subdomains and dynamic re-balancing. The use of p4est may seem like an overkill, as it
provides full functionality for adaptively refined grid whereas our Linked-Cell grids are
always regular, however, p4est not only provides convenient functionalities, but also the
basis for coupling MD and Lattice-Boltzmann simulations in future work. We use p4est
as a tool to populate the existing data-structures in ESPResSo as described in Section 2]
In addition, we implement a number of auxiliary algorithms within ESPResSo comple-
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mentary to pdest’s functionalities, e.g., the mapping of an arbitrary particle position
within the simulation domain to a specific process without using communication.

In order to minimize the amount of unnecessary distance calculations in the Linked-
Cell algorithm, the mesh width / of the grid has to be as close as possible to the cut-off
radius ;. Given a direction i and the respective domain length /;, the standard number of
cells in this direction is n; := |l;/reu |- This ensures that h; = ;/n; > rey,,. Usually, these n;
are not powers of two. This, however, is required as a spatial discretization by p4est with
a single octree. Therefore, we make use of pdest’s feature to combine several octrees to
one grid (forest of octrees): We determine the highest common divisor d of ng, n;, and
ny that is a power of two, i.e., d = 2¢ with a suitable exponent e. With this, the number of
necessary trees in direction i is #; := n;/d. In our dynamic load balancing approach, the
initial domain decomposition is purely based on counting cells per partition. While the
simulation proceeds, we collect data on the actual computational load of grid cells and
use those as a weighting function. This allows us to dynamically adapt the partitioning
towards an optimal load balancing.

To populate ESPResSo’s internal neighbor lists, we first construct the ghost-layer of
each process using p4est_ghost [15]. After that, we encode the process-local neighbor
relations in p4est_mesh [31]]. This information is sufficient to populate the existing data-
structures, including copying and shifting duplicated ghost cells at periodic boundaries.

To implement the auxiliary position to cell and rank mappings, we overlay the do-
main with a single virtual octree with a regular refinement pattern. To map a position
to a process, we perform a binary search over the indices of the first quadrant on each
process, i.e., the indices defining subdomain boundaries, in the virtual octree. Searching
a specific quadrant follows the same basic idea. We map the position of the respective
quadrant to an index in the virtual octree and perform binary search on these indices.

Dynamic Re-balancing. To perform dynamic re-balancing during runtime we im-
plement a new command repart in ESPResSo which can be called at any time. It
takes a string describing the metric (function that gives each cell a weight) used for
re-partitioning. We implement several different metrics: Number of particles per cell,
distance pairs and force pairs to be calculated for particle interactions, bonded inter-
actions and measured runtime. Any linear combination of these is valid as an overall
partitioning metric. After evaluating the weights per cell, the new partition boundaries
are determined by the SFC algorithm described in [7]. With this information, we call
pdest_partition_given which re-partitions in p4est. Afterwards, we need to recre-
ate pdest_ghost and p4est_mesh and re-initialize the cell system of ESPResSo adapt-
ing its internal data structures, cell grid, and GhostCommunications to the new par-
titioning. With the information about the old and the new partitioning, we implement
a third communication routine, an optimized cell-based migration. Since partitions are
plain intervals on the SFC, we can use interval intersection operations to determine if
and how many cells a process needs to send or receive. This decision can be taken locally
at each process. Given the old interval I, and the new one I;, along the curve, the send
volume from process p to g is I, OI; whereas the receive volume is Il’7 M 1,. The cells
to migrate are, again, asynchronously communicated according to the communication
scheme sketched above.
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Figure 3. Runtime in seconds for 1000 successive timesteps each and imbalance for the force calculation. Left:
default ESPResSo, right: our version. The error bars indicate the maximum and minimum runtime, respectively,
while the blue line indicates the average. Note that for the overall performance the maximum runtime is the
critical factor. The imbalance is shown in green. The vertical dashed lines in the right picture indicate time
steps at which re-balancing is performed.

4. Results

In this section, we present results of the new domain decomposition and its dynamic re-
balancing capabilities. First, we verify that the changes we introduced have no significant
adverse affect on the runtime of an unbalanced simulation. Then we check the cost of the
new domain decomposition on a homogeneous simulation: it scales slightly better than
the original version of ESPResSo. Also, the runtime itself is lower if at least 8 nodes are
used. This means that the benefit of asynchronous communication outweighs the run-
time overhead of our new grid creation and the more complex position to cell mapping
which is used for particle exchange during runtime. The force calculation itself remains
unchanged, only the ordering of the cells and the subdomains are different. These re-
sults were obtained from a weak scaling experiment on the Tier-1 supercomputer “Hazel
Hen” at the High Performance Computing Center Stuttgart (HLRS). It is a Cray XC40
installation consisting of 7712 computational nodes linked via Cray Aries interconnect.
Each node is equipped with 24 Intel Haswell cores and 128 GB of RAM.

We also conduct two tests for heterogeneous and dynamical systems with re-
balancing on “Hazel Hen”. The first scenario consists of 1700 initially homogeneously
(but randomly) distributed Lennard-Jones particles with density (particle to volume ra-
tio) 0.1. In this setup, particles start to form small droplets. The density of these droplets
is higher and, thus, the load imbalance across processes of a uniform domain partitioning
is slowly increasing during runtime. We simulate the fluid over the first 10° time steps
and measure the execution times of force calculation, communication and time stepping
plus synchronization accumulated over 1000 timesteps. Using the number of distance
pairs per cell as metric, we re-partition if the imbalance (maximum divided by average)
between the processes is higher than 1.1. Figure [3| shows the cost of the Linked-Cell
algorithm for force calculation and its imbalance between the processes for the unbal-
anced, default version of ESPResSo and the balanced, p4est-based version. As we can
see, even in this simple scenario, we can save calculation time and we effectively keep
the imbalance down at a level close to 1. However, the distance pairs metric does not
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Figure 4. Runtime broken down into its components
for the Lennard-Jones scenario. Note that “Integra-
tion” refers to all computations except for the force
calculation and synchronization. Left: Default ver-
sion of ESPResSo, right: Our version with dynamic
re-balancing. The time required for re-balancing is

Agglomeration Scenario

T T
B Force Calc.
B Comm.
B Integr.

30

20

Runtime [s]

1 &) ®3) ) ©)

Metric

Figure 5. Runtime after re-balancing of the agglom-
eration scenario for 1000 timesteps. The different
bars show different metrics used: (1) No re-partition-
ing, i.e. each cell uniformly weighted, (2) number of
distance pairs, (3) number of force pairs, (4) number
of particles and (5) number of bonded interactions.

only about 17 seconds in total.

take into account costs other than force calculations. We can see this by breaking down
the total runtime of the simulation into the contributions of force calculation, communi-
cation and time stepping plus synchronization, see Figure ] This drastically reduces the
performance we can gain in such a simple scenario and shows that we should not disre-
gard the communication cost. This is especially relevant for scenarios where the commu-
nication versus computation ratio is high. We can also see that the cost of re-balancing
(approximately 17 seconds for all re-balancing steps) is negligible in this scenario.

To test re-balancing in a more complex scenario, we use ESPResSo’s dynamic bind-
ing and bonded, harmonic interaction features [8] in conjunction with a Lennard-Jones
fluid. For dynamic binding of particles, we use the “All Bonds Model” from [32]. The
simulation has 3.2 million particles and the setup is adapted from [3]]. From this sim-
ulation, we take a snapshot and simulate it for 1000 timesteps, take measurements as
described above, re-partition it with different metrics and simulate it, again, for 1000
timesteps. The results are shown in Figure [5] As we can see, the optimal choice of a
metric is very important in this example. The number of LJ particle pairs performs worst
amongst the tested metrics. This is due to the different algorithmic costs. First, the cell
size has to be increased in order to transfer all possible bond partners of local particles
in the ghost exchange. Furthermore, for all possible LJ force pairs, a collision detection
is performed. These facts make the LJ force pairs metric perform better than the LJ dis-
tance pairs metric. Additionally, there are costs associated with the bonded interactions.
These are highly relevant as partitioning based only on the number of bonded interac-
tions performs better than based on LJ force pairs: The harmonic bonds are more costly
to calculate than simple LJ interactions. However, the best partitioning amongst all tested
is achieved by simply using the number of particles per cell as a metric. Note, that we
assume that there exists a linear combination of the metrics used here which performs
better than any single one. Also note, that unlike with the number of distance pairs as
metric in this scenario and the Lennard-Jones scenario, the communication cost does not
increase with the number of particles as metric.
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5. Conclusion

We have presented a minimally invasive way to implement an arbitrary (non-regular) do-
main decomposition and dynamic re-balancing into an existing MD simulation software.
We implemented the concepts in ESPResSo for an SFC-based domain decomposition
using the p4est library as a proof-of-concept. We have shown relevant interfaces and
abstractions. We have sketched the current implementation on ghost communication in
ESPResSo and how we reuse ghost communication and data structures from ESPResSo.
We have described the necessity and the implementation of asynchronous communica-
tion.

We have presented tests on scaling and re-balancing. The new implementation scales
better than the version of ESPResSo which uses a domain decomposition into equally
sized boxes on a Cartesian grid, while exact numbers depend strongly on the scenario.
Finally, we have demonstrated that the new dynamic re-balancing has the potential for
gains in runtime if employed correctly. We also have shown that (especially considering
SFCs), the underlying algorithmic physics models need to be known and incorporated
into the metric for re-balancing to achieve good re-balancing.

Future Work. Based on the results for different metrics we got in Section {4 the
question of the optimal metric for a given scenario arises. We plan to address this in the
future and try to make it possible to determine good load-balancing schemes for scenarios
in general. The other open issue shown in this section was the cost of communication.
Incorporating communication cost into the SFC-based method is not trivial, however, as
the boundary is given implicitly and the costs for moving cells cannot be attributed to
cells but depend on the overall partitioning.

Another future task we aim for is to provide load balancing and metrics in case
of coupled simulations, in particular coupling ESPResSo with the Lattice-Boltzmann
method (LBM) [31]. MD and LBM are both available in the default version of
ESPResSo. Finally, our goal is to implement more of the load balancing methods men-
tioned in the related work, to be able to compare between different methods and devise
good overall load balancing strategies.
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