Appeared in:

Proceedings of the IEEE First
International Workshop on
System Management,

Los Angeles, 1993

Automatic Selection of an Update Strategy for Management Data

Erno Kovacs

University of Stuttgart, Institute of Parallel and Distributed High Performance Systems (IPVR),
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany,
E-mail: ernoe.kovacs@informatik.uni-stuttgart.de

ABSTRACT itself. While fast changing data should only be accessed

Systems management operations are based on data thawhen needed, data with a very slow change rate could be
is distributed throughout the network. Monitoring this Stored in the local cache and updated whenever a change
information requires network messages and can increase9CCurs. The decision where to collect the information, and
network traffic significantly. Selecting the right update when to update the local information is further influenced
strategy for such continuous management activities by the requirements of the management application. A lot
reduces the network load. Automatic selection of an Of Systems management functions can operate on slightly
update strategy is based on two factors: the access behayout-of-date data if certain, management function depended
ior of the managing applications and the change behavior constraints are not violated. The selection of the update
of the data. In addition, management applications may Strategy should be made automatically by the management
have special requirements on the actuality of the data. WeSystem. In this way the information collecting task can be
show how an optimal update strategy can be selecteg@dapted to new objects and new situations by just focusing
regarding access rate, change rate and the requirements 0N the requirements and not by changing internal working
the application. In this way the task of selecting the right Parameters, customizing polling intervals, setting event fil-
strategy and updating the management data can be sepat€rs. or else.
rated from the logic of the management task itself. At last As an example, consider the characteristics of the
we describe an implementation and the use in a networkcounter of free blocks on a hard disk that is under heavy
service trading system. usage. The management function that monitors the counter

Key Words Systems Management, Distributed Man- Signals the system administrator when the disk fills up.

agement System, System Monitoring, Update Strategies! ne value of the counter changes very fast. In this case
Trading accesses to the counter should be made in very small inter-

vals. Later in the evening disk accesses and counter
changes slow down. Now the polling interval for this
counter would be much to small, resulting in unneeded
communication overhead. The management system should
adapt to this situation automatically and extend the polling
interval. The problem here is that a fixed update rate was
selected by a management function. Another aspect of the
same problem is that similar data items (e.g. free block
counters for different disks) behave differently. Usually,
one update strategy is selected for all counters, whether
this is appropriate or not. Again, it would be wise to adapt
the update strategy for all items individually.

For a lot of applications the value of the management
data must not be up-to-date to the last second, thus
enabling the management system to store and access older
copies of the management data. By relating the

This work was supported in parts by IBM Germany under study contract f€équirements of the management application to the update
S142 “Management of Distributed Systems” strategies we can reach a communication behavior of the

1. Introduction

Systems management has to monitor many different
objects, which are distributed throughout the system, and
which belong to different application fields or managed
subsystems. During management operations information
from these objects must be collected. This requires net-
work messages and can consume a good deal of networl
bandwidth. Selecting the right strategy to update locally
available information could reduce the network load sig-
nificantly. An important factor that influences the update
strategy is the characteristics of the management date

o ot S
| AKX UK T

My (x’l,x’zv,...x’|) (X1, X2 ... X]) m;

- U Ax) — >

Update Protocol

Figure 1: System model

management system that is less demanding for the wholemented in theMeLooy management system and used for
system. To solve this problem we must take the following trading of services that are accessible over the network.
steps: First, we need a notation to express the requirement
of the management application. Second, we must take this2. Characteristics of management data
requirements and select an update strategy, that still guar
antees the expressed requirements, but minimizes networ! Our system model consists of managed systems and
traffic. Third, by observing the behavior of manager and management systems. Management app“ca’[ion on the
managed application we can adapted the strategy automaimanagement systems access management data on man-
ically to individual changes of the system behavior. aged system that represent real world objects. Some of this
At the end, the system reduces the task of optimally data may be stored in local copies on the management sys-
accessing management data from the real managemertem and updated by using a certain update strategy. In this
function to just defining the appropriate requirements. A section we define our system model and introduce a nota-
management application should only declare what data istion to talk about certain aspects of the system. The intro-
needed and how up-to-date the date should be. After thaduced terms are later used to discuss different update
the management application accesses the data whesstrategies and network traffic rates, to identify values of a
needed. The management system is responsible to accemanagement data at different time, and to distinguish
data on a per-request-base or to use local copies and tbetween the original information and local copies on man-
keep them up-to-date. Communication activities like peri- agement systems.
odic polling of the data or sending out change reports are Figure 1 presents our model of the system and the char-
performed by the underlying communication system and acteristics of the management data. We study the case
can be tailored to the characteristics of the managemenwhere pieces of management information (called x i
system and the management data. This results in a uniforng 1) originate from managed systems (b <j <J) and
way to access management information and to an easyare used on management systems(M< k < K). When
programming model for management application. used on the management system, we call the piece of
In the following, we present our model of the character- information x; to distinguish between the real information
istics of management data. Then we describe several posand the information on the management system. x’
sible update strategies and the parameters that influencdenotes a piece of information in the local cache of the
this strategies. After that we conclude how to select a strat-management system. We also use only x or x’ if we refer
egy with minimum cost. We then examine how a managerto any x or x’;. We call x(t) the value of x at the time t. The
can state its requirements on the actuality of the data usincdependency between x and x’ can be stated as follows:
delay predicates. We examine the delay predicates and dis X'(to) = X(fg-0)
cover that they_ are based on two differe_nt kinds of mea- 4 ~onsists of the communication delay d and the delay
sure for actuallty. We than show how this twq measurespanveen the last update of X' and the moment of the cur-
can be used to implement an abstract actuality manage e access g1 The communication delay d is also called
that can be tailored to special requirements for specialg ncertainty intervabecause one will always need this
data. At the end we give an overview how this is imple- yansfer time. Note that is not a constant and depends on
the time §.

Both, x and X', have access rates and update rateg on v The time to access X' is just the time to access the

and M. This is written as Ax) [A(x)] for the access rate local copy. The value of X" is X§) = X (ip- di) with O

and Y(x) [Uy(x")] for the update rate. {x’) only counts < d; < (tg-t), tis the time of the last update, reflecting
the explicit change reports from x. This means an access tc¢ the fact that x changed somewhere between the last up-
X may implicitly update the value of x’, but is not counted date and the present.

as an update for x'. It should be clear that the value of the | ooking at the packet rates it is easy to see that one has
different rates depend on the selected update strategy. Fcto find the minimum of 2A(x’), U(x) or R{t), to have a
example, if the update strategy is report every change, therryle for selecting the best strategy. A(x’) and U(x) can be

U(X') is the same as;(X). Also in this case £X) is zero, observed at the manager or at the managed system. The
because a manager only accesses the local copy X'. value for PQt) must be determined by other means, for

_ example by the requirements of the application.
3. Update strategies Some more discussion about where to collect the net-

work information and how to decide what update strategy
There are three methods to access x and to update X’ oishould be used in the static case, can be found in [1]. In the
the management system: following we examine how a manager can express its
requirements on the actuality of the data and how this
Influences the decisions to select a certain strategy.

1. Direct Access:

Each access to the value results in a network acces
to x. The time to access x is twice the communication

delay d. The value of x’ is the best we can get regard- Strategy Network Rate | Access Time
ing the uncertainty interval: x{) = x (ip- d) (p is the Direct Access 2K * A(X") 2d
time the value is delivered to the management applica-

tion). Change Report K *U(X) 0
' The number of packets exchanged for one managet Periodic Access 2K * Ry >d
is twice the access rate for X', one packet for the re-

quest and one for the reply: 2§¢’). The packets ex- Periodic Reporting K * Rt) 0
changed for all managers is 23*A,(x’). Assuming

that the access rates of all managers are comparable Table 1: Comparison of different strategies
this gives: 2K*A(x’). The access rate at the managed

system mis A(X) = TAL(X). 4. Delay predicates

2. Report Changes: Requirements can be expressed by predicates that are

Each update of x is sent to all managers. In this aseq,e \hen the requirement is met. In our case we use delay
U(x) = U(x) on each manager. The network packet ragicates to state requirements about the delay between x
rate however is the number of managers interested in xanq x» (This notation of predicates is based on the work
(written as K) multiplied by U(x): K* U(x). Note that qqne in [2] and [3] about stashing and quasi-copies). We
in this case we store X" on the manager. give predicates for different delay measures. We also state

The time to access X' is just the time to access theg minimum strategy that could be used to fulfill the predi-
local cache. The value of x’ is the best we can get: cate.

X'(tg) = X (ip- d) (fp is the time when x’ is updated on

the management system). Actually, ¥)X& x (f- d;) Null Predicate: N(x’) = { [1: X’ = x(t) }

with 0 < d < d, reflecting the fact that x can change The Null Predicate expresses that there are no re-
somewhere in the uncertainty interval, but the new quirements on the maximum delay of . It is always
change report has not arrived yet. true after one access to x. As a result the attribute may

be stored as a quasi-copy on the client node and used

3. Periodic Polling / Periodic Reporting: from now on for every access. This predicate is useful
A third method to update x’ is to periodically poll for constant X.

the value of x or to receive a periodic report from x. If

we call the rate for this period &} andAt the length Time Predicate: D(x)= {d(x)<a}

of the period, then A(x) = Bf) = U(x). There is no The function d(x’) is defined as follows: If x'(t) =
relation between U(x), Bf), and A(x’). The number X(t-a) then d(x’) = a. In other words, x’(t) should not be
of network packets are 2K *Bo (Po|||ng) and K * older than X(tﬂ) The easiest way to fulfill this predi-

P(At) (Report). cate is to use a periodic update policy with parameter

At < a. This guarantees the correct delay for this pred-function.We deal with after the next section, where we
icate. examine some general principals of the predicates.

3. Change Predicate: C(x)E c(x) < B . When looking at the Qelay predicatgs we notice that the
direct access mechanism could fulfill every predicate.
With respect to the uncertainty interval, the direct access
mechanism guarantees the most current value of x, but
may result in unnecessary network traffic. For the time
predicate a periodic strategy or a change report strategy
may be selected. For this case the time predicate gives us a
value forAt. This could be used to select a best update
strategy according to our discussion in the last section.
4. Version Predicate: V(x)=v(x, f()) <€ Looking at the change predicate we notice tBat
The idea of this predicate is to define main versions reduces the update rate of x. Instead of U(x) one can select
of x and count only new versions instead of all changesU(x) / 3 for the update rate when computing a new strat-
of x. The function f() is the version criterion that de- egy. All other predicates also reduce the update rate, but
cides which change in x is a new version. Leb¥ a the effect depends on the new value of x and on some
sequence of main versions of x with/G,. If x(t)= G, additional parameters like the threshold or the delta. No
= Vgand x'(t) = G = V; then v(x') = s-t. In this case, periodic update strategy can guarantee the change, ver-
Vsand V; represent major changes in x and the predi- sion, delta and threshold predicate. This must be either
cate expresses that x’ should not be more theer- done by the direct access or by the change report strategy.

sions behind x. Version predicates are used in Delay predicates as stated above are implicitly used in
COﬂjUﬂCtiOﬂ with Special knowledge about the possible many management Systems_ An examp|e of a System that
versions of the attribute. The decision function f() uses some form of a time predicate is the Meta system
must be known in advanced to use this predicate. ([4]) that states the maximum polling interval for a sensor.
The update policy can be the same as in 3, with theThe sensor must be polled at this (or shorter) period to
exception that this time not every change in x is report- avoid missing significant events. [5] describes strategies
ed. for a decentralized resource management that uses a form
5. Delta Predicate: L(x)= I(x, X) <& of the delta predicqte to update iqformations about the load
. o . ,) factor of one machine. Several different management plat-
The function I(x’) is defined as [X'(t) - x(@)This forms have implemented some forms of delay predicates
predicate requires that the absolute difference betweery, yefine event generation. [6] uses forms of delay predi-

x and x" is smaller thad. This predicate is useful for cates in an ai systems to control the amount of input date
an attribute with an total ordering and a compare OPer-quring real-time diagnostics.

ator (e.g. integers or real numbers). It is used when . . .
small changes within a certain range are allowed, but a In the fc_>IIOW|ng section we show how the different .
discrepancy bigger thaishould not go unrecorded. dela_ly predicates can be reduged to two basic forms. This
basic forms can be used to build an abstract actuality man-
6. Threshold Predicate: T(x) = {t(x, x’,T) = TRUE} ager which can be tailored to many different delay predi-
The function t(x’,t) is TRUE if both x(t) and x'(t) cates.
are bigger or smaller thanIn the other case t(x) is
FALSE. So t'(x, x',T) is defined as TRUE if both x(t- 5. What do delay predicates measure?
u) and x’(t) are bigger or smaller tharThe growth of
the value of x above (below) a certain threshatdthe Delay predicates capture a certain aspects of the dis-
condition that triggers a change report. crepancy between the original source of the information
and the value that is used on another node. They restrict
These delay predicates capture different aspects of thethe allowed delay according to a certain measure. We now
delay between x and x’. Many of them require additional €xamine the characteristics of the delay predicates to find
parameters or some form of definition, e.g. what is a newout what is really measured. The result will be that delay
version or how is a delta computed. So the above listpredicates measure two different aspects of the delay
defines some classes of delay predicates containing manbetween x and x'.
different real predicates. For real implementations we need Figure 2 shows the changes of x over the time t. The
certain predefined data type dependent version functionsvalue of x changes in discrete steps. L.diet the time
and for special cases the exact definition of the versionwhen the value of x changes the i-th time. Leb€the i-

The function c(x’) is defined as follows: Let Be
the sequence of discrete values of x. If x(t)=a6d
X'(t)=C;, then c(X’) = j-i. This predicate requests that x’
must be one of the laBtvalues of x. One strategy to
fulfill this predicate, a change report must be send at
least after everf changes. Note, that the direct access
is also suitable to fullfil this predicate.

version of x

L
tq1 e time t
Ati
Figure 2: Behaviour of management data x

th new value of x (£= x(t;)). At; is the time period in As above, not every change in x is counted. We have
which x keeps its i-th value, that is the time period from t here another definition of a new version. Note that for

to ;1. Atj; is the time period from to §. In the same way this measure we must store the value of the latest
is AC; defined as the interval between thea@d G4 update to compare the new value with. This is called

(with the size 1), andC; ; the interval between;@nd G. the base value of a predicate.

We now show that the delay predicates define intervals one reaching a threshold defined for x (threshold measure).
one of the two axes. We can measure the delay from x’ to The new version is reached. when a certain thresh-
x with respect to time intervals. If X'(t) = Y{tthen we can old is crossed. As above, we need to store an additional

use t - f,; as a measure for the distance between X’ and X. page value, in this case the threshold value.
We select;t; because x keeps its value uniil tIn other
words X' is t - f;; time units behind x. This is called the
time measure. A time predicate restricts the length of the
interval on the time axis.

Looking at the figure and regarding the different mea-
sures, we see that there are only two relevant measures, the
time measure and the version measure. The time measure
,) gives values for the distance on the time axis. The version

We can state the delay between x” and x W,'th respect toaasure measures distances in between values of x. There
the changes in the value of x. If x(t) ¥ &d x'(t) = G, are several different ways to express distances for the
then the number of missed changh€;(;)is the measure 5, of x. They are all based on counting some form of
for the distance between x” and x. In other words, the ¢panges in x. Therefore, the different forms of the version

value of X" is i-j changes behind x. This is the change mea-q55,re may exist and could be adapted to the needs of
sure. A change predicate restricts the length a interval ony, o application or the semantics of the data. Instead of

change axis. implementing every possible delay predicate, one can
Some other measures are: implement an abstract mechanism for the time and the ver-

¢ changes in the version of a datum, where a version is esion measure and then a way to adapt the version measure
major change in the value of x (version measure). to the other measures. All that is needed for the other mea-

In this case we just use a bigger raster to measure thsures is some form of functions that decides wether a

changes. Instead of counting every change some definichange in the value of x should be regarded as a new ver-
tion for a major change is used. As defined above, thesion or not.
definition of a major change may vary. The change
measure is a special kind of the version measure. 6. Combined delay predicates
* changes of the value of x (delta measure).

Delay predicates may be combined to fulfill the needs
of different management applications running on the same
node or to express different requirements on the delay. As
an example, it should be possible to state that the informa-

tion should not be older than 10 minutes and should bepredicate however is only a statement about the discrep-
within a 10% range of the value of x. This could be ancy between a copy x’ and the original value x. On the
expressed with a time predicate and a delta predicate. Weother hand, it is easy to implement the range checking
now have to examine the dependencies between combinefunction on the manager side and to verify this after each
delay predicates. update of x'.

It should be clear that combined delay predicates are
combined using a logical AND. This means that each 7. Automatic adaptation of the strategy
delay predicate should be met. Using a logical OR would
allow the system to choose the less demanding predicate The decision which update strategy to select is strictly
For this reason we don'’t consider this as an option. Com-based on A(x’), U(x) and B(). P(At) is given by the delay
bining predicates of the same kind could be reduced topredicates that are declared for x. The problem is to collect
meeting the strongest predicate and forgetting about thethe other factors, to select the right update strategy and to
rest. A problem arises when predicates of different kinds adapt the system to the new strategy.

and measures are combined. Initially, either sound estimates for access and update

We can define four classes of delay predicates. The firsirate can be provided or we have to start with an arbitrary
contains all time predicates, the second all change predi-update strategy. From that on the access rate can be veri-
cate, the third all version predicates with the same versionfied by observing the real behavior of the management
function, and the fourth all delta predicates. Predicates ofapplication and adapting the value of A(x’). This is partic-
different classes are independent of each others, so it is ncular needed if more than one managing application
feasible to determine a strongest predicate. For this cas@accesses x’. A(x’) can be collected on the management
the strongest predicate of each category must be supersystem and is available there at nearly no cost. The update
vised. When some actions like updating x’ are performed rate U(x) can be observed on the application side in the
to meet a single predicate, the base values of all otheisame manner.

predicates (e.g. the compare value for a delta predicate. To adapt the strategy, these factors must be collected
should also be set to the new value. In this case U(x) musoccasionally at the instance that makes the strategy deci-
be computed as the sum of all changes that would triggeision (usual the management system). This could be done
an update. in regular intervals, when a new delay predicate is
Here the difference between an event that is triggered ifexpressed by a management application, or when a rate
a certain value has changed for more than 10% and a delthas changed significantly. The different rates are collected
predicate can be observed. The delta event is always trigand in the case of an strategy change the new strategy
gered, when the value is out of range. The delta predicatemust be propagated securely to both sides of the system.
just ensures that the value of x’ is within a range of x. If The cost for this can be minimized by piggybacking the
the value of x’ increases in small steps due to update stratinformation to management messages, but from time to
egies needed for other delay predicates, the delta predicattime additional messages are needed. Therefore this only
would never trigger an update. The value of X’ may always adds slightly to the overall load.
be in the correct distance to x. This may be confusing for
people who think more in the event based way. A delay

Application —
Application Application
Application Application

Management- Management-
system system

Node A Node H

Figure 3: Management system

8. Implementation exchanged and the method how our actuality managers are
added to our management system.

The following section describes the implementation of ~ The AM,, receives and stores the delay predicates for
an actuality manager (AM) that supervises delay predi- attributes of MOs. It communicates with the AMb set
cates [7]. The implementation was part of the on-going delay predicates that must be supervised on the agent side.
projectMeLooy (Management Environment for Large Open Both sides of the AM collect the access and the update
Distributed sYstems). Théle.ooy management system has rates and exchange them in periodic intervals. Thg,AM
architecture as presented in figure 3. Management pro-decides which strategy should be used and instructs the
cesses (managers) and managed components (appliciAM 4 to keep track of the needed actions.
tions) communicate with the management systems. The AM provides the basic mechanism to supervise the
Applications are instrumented using either shared memorytime and the version measure. Other delay predicates are
or inter-process communication. They provide manage-supported for basic data types like integers (delta and
ment objects (MOs) which are accessible for the manage-+threshold predicates). Special delay predicates could be
ment system. Managers state the name of the manageimplemented separately from the AM. Consider the case
objects they want to access. The management systenof a water sensor that has the significant states ice, cold,
searches for the management object and provides the marnormal, hot and boiling. This could be implemented by a
agers with a quasi-copy of the searched data. This has thmanagement attribute of type integer giving the exact tem-
advantage that managers accessing the same kind of daiperature. The significant states could be modelled by a
only need one copy of the data, but the disadvantage tharange for each state. In addition this management attribute
managers accessing the same data must be synchronizeprovides a version function that decides wether a change
Although suggested by the picture, managers and applicaof the value is a new version. A new version of the man-
tions may reside on the same node. In this case they usagement attribute equals the transition from one significant
the same management system. Communication betweelstate to the other. Note that the AM implements the
management system and managers or agents is stricthgeneric part of the system (calling the decision function,
asynchronous and message based. The management sytransferring the data), while the special parts (the decision
tem is implemented in C++ on RS/6000 workstations. function) is implemented by the application. This gives

A software component that adapts automatically to room for many different version predicates and associated
delay predicates and different characteristics of manage-decision functions. Some data type dependent delay predi-
ment data must be naturally divided in two parts, the onecates (e.g. threshold or delta predicates for integers) were
on the manager side and the one on the managed side. Wimplemented in our prototype, while other delay predi-
call the one on the manager side)NAM manager) and cates that are based on the semantics of the date (e.g. ver-
the other AM, (AM agent). Both, AM,; and AM,, have sion predicate) were implemented in the application.
to agree upon the selected strategy and perform certair The AM,, sends messages over the network to start and
kinds of actions. We first describe the tasks that are per-stop a de|ay predicatE, to Change the update strategy, to get
form by each side, and after this the messages that arthe current update rate and to request a new value for an

Application
A
\ 4 I
Management @ @ Agent
e —
-support

Communication System

Figure 4: Management system with integrated actuality manager

attribute. The AM receives the requests and performs the asks for certain service attributes. He need not care about
necessary actions. Every time a management attributeapplying the right update strategy. Therefor the task of
needs an update, the AMriggers a change report to be selecting a services is separated from the task of accessing
sent to the management system. Management systems cthe most recent version of the attributes.
different nodes are treated separately.
Due to the message based, asynchronous structure c10. Open problems and future work
the management system, it was very simple to add the twc
AM components. There were only a few changes to the Selecting the right update strategy currently depends on
internal message dispatching routine and to the functionsthe access rate, the update rate and the requirements of the
that performs updates and accesses. If a manager accessmanaging application. We want to extend this model to
a value of a management attribute, the 4 asked take different communication costs into account, depend-
wether this value is up-to-date. If the value must be ing on the topology and the used communication technol-
fetched from the remote application, the request is trig- ogy. Data that originates in the same network as the
gered and the value of the attribute will be delivered to theaccessing manager, could be more often accessed than
manager later. On the other side the AM informed of information that resides somewhere on the internet. A dis-
every change in an attribute. It then computes whether atance measure function may help to incorporate this aspect
change report has to be triggered or not. All other routinesof distributed systems into our update strategies. For two
like periodic scheduling of updates or the exchange of managers residing on the same network and accessing the
update rates, are handled in the AM separate from rest osame remote value, it should be more effective to let one
the management system. manager access the remote value and order the other to
Another observation was that due to their independenceaccess the copy on the first site. At the end, this could lead
it should be possible to instantiate the AM and the man-to @ system that automatically selects the nodes where cop-
agement system on different node. The AM is then respon-ies of the data should be stored for reasons like load bal-
sible to supervise management data on different nodesancing, reduced network traffic on long distance lines and
This would increase the network traffic, but enable proxy- faster access.
AM for dump devices or move the AM bookkeeping func- While the system currently tries to guarantee the delay
tionality to specialized nodes. predicate, we want to examine the cases where the system
does not try to fulfill every delay predicate every minute,
9. Use of delay predicates for service trading but may decide to delay updates for a certain amount of
time. This can be guided by probabilistic decisions based
A service trader ([8], [9]) stores information about ser- 0N the know values for the access and the update rate.
vices that are offered somewhere in the network. On Another reason to do this may be the case of a failures or
demand of a service user the trader has to select an apprcnetwork overload, where the management system should
priate service, based on requirements, qualities and cost ominimize the messages.
the service. The trader has to verify that the offered service We currently used delay predicates to specify the actu-
is still available and that the certain service qualities (like ality of monitored date. Another step would be to apply
load factors or length of queues) are still valid. If a service this kind of declarative programming to control operations
provider vanishes without deleting its offer, a stale offer that are executed on many different hosts. In this case the
may remain. We used our AM to check the existence anddelay predicates may give thresholds after that the opera-
the qualities of a service offer. A special attribute service_- tion must be carried out.
available could be tested to check the availability of the
service. This attribute and the attributes that express quali-11. Conclusion
ties of the service are management attributes of our man:

agement system. For the service_available attribute we se we analyzed some characteristics of management data
a time and a change predicate. The time predicate ensureand developed a model for the delay between the data and
that there is an upper bound after that the availability is the copy that is seen by the management application. We
checked. The change predicate updates the availabilityshowed how this can be used to access the local copy, to
attribute when the service is shut down. Other delay pr9di-reduce network traffic and to select an appropriate update
cates are set for the quality attributes to base the servicestrategy. We then showed that applications can express
selection on up-to-date information. The values of these their requirements using delay predicates and showed how
delay predicates are determined by the characteristics Othjs can be used to separate the task of selecting the right
the attributes itself. During the search for an appropriate ypdate strategy from the management task itself. Delay
service, the trader accesses the management system arpredicates were incorporated into MeLoby management

system ([10], [11]) and used in the field of service trading. [8]
This showed the feasibility and the value of separating
management tasks that access dynamic changing date
from the burden to select and implement the right updating
strategy.

In the future we want to apply this techniques to auto-
mate some more management tasks, like deciding when tc
replicate management data for load-balancing reasons[10]
selecting the right location to evaluate complex condi-
tions, and to plan for migration of distributed system com-
ponents to minimize network effects. Another area where
a similar approach may be successful are distributed conyy]
trol operations that may be delayed until a given threshold.

9]

Bibliography:

[1] C.E. Willis. Locating distributed information. In
Proceedings of the IEEE INFOCOM'8Pages
303-311, IEEE Computer Society Press, April
1989. IEEE.

[2] R.Alonso, D.Barbara, and L.L. Cova.
Augmenting availability on distributed file systems.
Technical Report CS-TR-234-89, Princton
University, Department of Computer Science,

Princton, NJ 08544, October 1989.

[3] R. Alonso, D. Barbara, and H. Garcia-Molina. Data
caching issues in an information retrieval system.
ACM Transactions on Database Systems
15(3):359-384, September 1990.

[4] K. Marzullo, R. Cooper, M. D. Wood, and K. P.
Birman. Tools for distributed application
managemenCOMPUTER August 1991.

[5] M. Stumm. Strategies for decentralized resource
management. IiProceedings ACM SIGCOMM-87
Workshop on Frontiers in Computer
Communications Technology, Stowe, Vermont
pages 245-253, August 1987.

[6] R.Washington and B. Hayes-Roth. Input data
management in real-time ai systems. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (1IJCAI-89)
pages 250-255, Detroit, Michigan, USA, August
19809.

[71 T.K. Helbig. Strategies to meet demands on
actuality (in german). Diplomthesis 944, University
of Stuttgart, Institute for Parallel and Distributed
High-Performance Systems, Stuttgart, December
1992.

ANSA. Ansaware 3.0 implementation manual.
Manual RM.097.01, Architecture Projects
Management Limited, February 1991.

ISO. Working document on topic 9.1 - odp trader.
Working paper of the ISO/IEC JTC1/SC21/WGT:
N7047 May 1992.

K. Rothermel. Melody - a environment for the
management of distributed systems (in german).
Proceedings of the Workshop: Development Trends
in Computer Networks, Gauf3ijovember 1991.

I. Barth, E. Kovacs, and F. Sembach. Trading and
management functions in melody (in german).

Proceedings of the workshop: Development Trends
in Computer Networks, Gauf3ijovember 1991.

