
Automatic Selection of an Update Strategy for Management Data

Ernö Kovács

University of Stuttgart, Institute of Parallel and Distributed High Performance Systems (IPVR),
 Breitwiesenstr. 20-22, 70565 Stuttgart, Germany,
E-mail: ernoe.kovacs@informatik.uni-stuttgart.de

ABSTRACT
Systems management operations are based on data that

is distributed throughout the network. Monitoring this
information requires network messages and can increase
network traffic significantly. Selecting the right update
strategy for such continuous management activities
reduces the network load. Automatic selection of an
update strategy is based on two factors: the access behav-
ior of the managing applications and the change behavior
of the data. In addition, management applications may
have special requirements on the actuality of the data. We
show how an optimal update strategy can be selected
regarding access rate, change rate and the requirements of
the application. In this way the task of selecting the right
strategy and updating the management data can be sepa-
rated from the logic of the management task itself. At last
we describe an implementation and the use in a network
service trading system.

Key Words: Systems Management, Distributed Man-
agement System, System Monitoring, Update Strategies,
Trading

1. Introduction

Systems management has to monitor many different
objects, which are distributed throughout the system, and
which belong to different application fields or managed
subsystems. During management operations information
from these objects must be collected. This requires net-
work messages and can consume a good deal of network
bandwidth. Selecting the right strategy to update locally
available information could reduce the network load sig-
nificantly. An important factor that influences the update
strategy is the characteristics of the management data

 This work was supported in parts by IBM Germany under study contract
S142 “Management of Distributed Systems”

itself. While fast changing data should only be accessed
when needed, data with a very slow change rate could be
stored in the local cache and updated whenever a change
occurs. The decision where to collect the information, and
when to update the local information is further influenced
by the requirements of the management application. A lot
of systems management functions can operate on slightly
out-of-date data if certain, management function depended
constraints are not violated. The selection of the update
strategy should be made automatically by the management
system. In this way the information collecting task can be
adapted to new objects and new situations by just focusing
on the requirements and not by changing internal working
parameters, customizing polling intervals, setting event fil-
ters, or else.

As an example, consider the characteristics of the
counter of free blocks on a hard disk that is under heavy
usage. The management function that monitors the counter
signals the system administrator when the disk fills up.
The value of the counter changes very fast. In this case
accesses to the counter should be made in very small inter-
vals. Later in the evening disk accesses and counter
changes slow down. Now the polling interval for this
counter would be much to small, resulting in unneeded
communication overhead. The management system should
adapt to this situation automatically and extend the polling
interval. The problem here is that a fixed update rate was
selected by a management function. Another aspect of the
same problem is that similar data items (e.g. free block
counters for different disks) behave differently. Usually,
one update strategy is selected for all counters, whether
this is appropriate or not. Again, it would be wise to adapt
the update strategy for all items individually.

For a lot of applications the value of the management
data must not be up-to-date to the last second, thus
enabling the management system to store and access older
copies of the management data. By relat ing the
requirements of the management application to the update
strategies we can reach a communication behavior of the

Appeared in:
Proceedings of the IEEE First
International Workshop on
System Management,
Los Angeles, 1993

management system that is less demanding for the whole
system. To solve this problem we must take the following
steps: First, we need a notation to express the requirements
of the management application. Second, we must take this
requirements and select an update strategy, that still guar-
antees the expressed requirements, but minimizes network
traffic. Third, by observing the behavior of manager and
managed application we can adapted the strategy automat-
ically to individual changes of the system behavior.

At the end, the system reduces the task of optimally
accessing management data from the real management
function to just defining the appropriate requirements. A
management application should only declare what data is
needed and how up-to-date the date should be. After that
the management application accesses the data when
needed. The management system is responsible to access
data on a per-request-base or to use local copies and to
keep them up-to-date. Communication activities like peri-
odic polling of the data or sending out change reports are
performed by the underlying communication system and
can be tailored to the characteristics of the management
system and the management data. This results in a uniform
way to access management information and to an easy
programming model for management application.

In the following, we present our model of the character-
istics of management data. Then we describe several pos-
sible update strategies and the parameters that influence
this strategies. After that we conclude how to select a strat-
egy with minimum cost. We then examine how a manager
can state its requirements on the actuality of the data using
delay predicates. We examine the delay predicates and dis-
cover that they are based on two different kinds of mea-
sure for actuality. We than show how this two measures
can be used to implement an abstract actuality manager
that can be tailored to special requirements for special
data. At the end we give an overview how this is imple-

mented in theMELODY management system and used for
trading of services that are accessible over the network.

2. Characteristics of management data

Our system model consists of managed systems and
management systems. Management application on the
management systems access management data on man-
aged system that represent real world objects. Some of this
data may be stored in local copies on the management sys-
tem and updated by using a certain update strategy. In this
section we define our system model and introduce a nota-
tion to talk about certain aspects of the system. The intro-
duced terms are later used to discuss different update
strategies and network traffic rates, to identify values of a
management data at different time, and to distinguish
between the original information and local copies on man-
agement systems.

Figure 1 presents our model of the system and the char-
acteristics of the management data. We study the case
where pieces of management information (called xi, 1 ≤ i
≤ I) originate from managed systems mj (1 ≤ j ≤ J) and
are used on management systems Mk (1 ≤ k ≤ K). When
used on the management system, we call the piece of
information x’i to distinguish between the real information
and the information on the management system. x’i
denotes a piece of information in the local cache of the
management system. We also use only x or x’ if we refer
to any xi or x’i. We call x(t) the value of x at the time t. The
dependency between x and x’ can be stated as follows:

x’(t0) = x(t0-α)

α consists of the communication delay d and the delay
between the last update of x’ and the moment of the cur-
rent access (t0). The communication delay d is also called
theuncertainty interval because one will always need this
transfer time. Note thatα is not a constant and depends on
the time t0.

Figure 1: System model

Uk(x’ i)

Uj(xi)Ak(x’ i)

Real World

x1, x2 ... xIx’1,x’2, ... x’ I

Client Client

Update Protocol

Aj(xi)

mjMk

Both, x and x’, have access rates and update rates on mj
and Mk. This is written as Aj(x) [Ak(x’)] for the access rate
and Uj(x) [Uk(x’)] for the update rate. Uk(x’) only counts
the explicit change reports from x. This means an access to
x may implicitly update the value of x’, but is not counted
as an update for x’. It should be clear that the value of the
different rates depend on the selected update strategy. For
example, if the update strategy is report every change, then
Uk(x’) is the same as Uj(x). Also in this case Aj(x) is zero,
because a manager only accesses the local copy x’.

3. Update strategies

There are three methods to access x and to update x’ on
the management system:

1. Direct Access:
Each access to the value results in a network access

to x. The time to access x is twice the communication
delay d. The value of x’ is the best we can get regard-
ing the uncertainty interval: x’(t0) = x (t0 - d) (t0 is the
time the value is delivered to the management applica-
tion).

The number of packets exchanged for one manager
is twice the access rate for x’, one packet for the re-
quest and one for the reply: 2*Ak(x’). The packets ex-
changed for all managers is 2 *∑Ak(x’). Assuming
that the access rates of all managers are comparable,
this gives: 2K*A(x’). The access rate at the managed
system m is Am(x) = ∑Ak(x’).

2. Report Changes:
Each update of x is sent to all managers. In this case

U(x) = U(x’) on each manager. The network packet
rate however is the number of managers interested in x
(written as K) multiplied by U(x): K * U(x). Note that
in this case we store x’ on the manager.

The time to access x’ is just the time to access the
local cache. The value of x’ is the best we can get:
x’(t0) = x (t0 - d) (t0 is the time when x’ is updated on
the management system). Actually, x’(t0) = x (t0 - di)
with 0 ≤ di ≤ d, reflecting the fact that x can change
somewhere in the uncertainty interval, but the new
change report has not arrived yet.

3. Periodic Polling / Periodic Reporting:
A third method to update x’ is to periodically poll

the value of x or to receive a periodic report from x. If
we call the rate for this period P(∆t) and∆t the length
of the period, then A(x) = P(∆t) = U(x’). There is no
relation between U(x), P(∆t), and A(x’). The number
of network packets are 2K * P(∆t) (Polling) and K *
P(∆t) (Report).

The time to access x’ is just the time to access the
local copy. The value of x’ is x’(t0) = x (t0 - di) with 0
≤ di ≤ (t0-t), t is the time of the last update, reflecting
the fact that x changed somewhere between the last up-
date and the present.

Looking at the packet rates it is easy to see that one has
to find the minimum of 2A(x’), U(x) or P(∆t), to have a
rule for selecting the best strategy. A(x’) and U(x) can be
observed at the manager or at the managed system. The
value for P(∆t) must be determined by other means, for
example by the requirements of the application.

Some more discussion about where to collect the net-
work information and how to decide what update strategy
should be used in the static case, can be found in [1]. In the
following we examine how a manager can express its
requirements on the actuality of the data and how this
influences the decisions to select a certain strategy.

4. Delay predicates

Requirements can be expressed by predicates that are
true when the requirement is met. In our case we use delay
predicates to state requirements about the delay between x
and x’ (This notation of predicates is based on the work
done in [2] and [3] about stashing and quasi-copies). We
give predicates for different delay measures. We also state
a minimum strategy that could be used to fulfill the predi-
cate.

1. Null Predicate: N(x’) ≡ { ∃t: x’ = x(t) }
The Null Predicate expresses that there are no re-

quirements on the maximum delay of x’. It is always
true after one access to x. As a result the attribute may
be stored as a quasi-copy on the client node and used
from now on for every access. This predicate is useful
for constant x.

2. Time Predicate: D(x’) ≡ { d(x’)≤ α }
The function d(x’) is defined as follows: If x’(t) =

x(t-a) then d(x’) = a. In other words, x’(t) should not be
older than x(t-α). The easiest way to fulfill this predi-
cate is to use a periodic update policy with parameter

Strategy Network Rate Access Time

Direct Access 2K * Ak(x’) 2 d

Change Report K * U(x) 0

Periodic Access 2K * P(∆t) 2 d

Periodic Reporting K * P(∆t) 0

Table 1: Comparison of different strategies

∆t ≤ a. This guarantees the correct delay for this pred-
icate.

3. Change Predicate: C(x’) ≡ c(x’) ≤ β
The function c(x’) is defined as follows: Let Cr be

the sequence of discrete values of x. If x(t)= Cj and
x’(t)=Ci, then c(x’) = j-i. This predicate requests that x’
must be one of the lastβ values of x. One strategy to
fulfill this predicate, a change report must be send at
least after every β changes. Note, that the direct access
is also suitable to fullfil this predicate.

4. Version Predicate: V(x’) ≡ v(x’, f()) ≤ ε
The idea of this predicate is to define main versions

of x and count only new versions instead of all changes
of x. The function f() is the version criterion that de-
cides which change in x is a new version. Let Vr be a
sequence of main versions of x with Vr = Cj. If x(t)= Cj
= Vs and x’(t) = Ci = Vt then v(x’) = s-t. In this case,
Vsand Vt represent major changes in x and the predi-
cate expresses that x’ should not be more thanε ver-
sions behind x. Version predicates are used in
conjunction with special knowledge about the possible
versions of the attribute. The decision function f()
must be known in advanced to use this predicate.

The update policy can be the same as in 3, with the
exception that this time not every change in x is report-
ed.

5. Delta Predicate: L(x’) ≡ l(x, x’) ≤ δ
The function l(x’) is defined as |x’(t) - x(t)|. This

predicate requires that the absolute difference between
x and x’ is smaller thanδ. This predicate is useful for
an attribute with an total ordering and a compare oper-
ator (e.g. integers or real numbers). It is used when
small changes within a certain range are allowed, but a
discrepancy bigger thanδ should not go unrecorded.

6. Threshold Predicate: T(x’)≡ {t(x, x’,τ) = TRUE}
The function t(x’, τ) is TRUE if both x(t) and x’(t)

are bigger or smaller thanτ. In the other case t(x’,τ) is
FALSE. So t’(x, x’,τ) is defined as TRUE if both x(t-
u) and x’(t) are bigger or smaller thanτ. The growth of
the value of x above (below) a certain threshold τ is the
condition that triggers a change report.

These delay predicates capture different aspects of the
delay between x and x’. Many of them require additional
parameters or some form of definition, e.g. what is a new
version or how is a delta computed. So the above list
defines some classes of delay predicates containing many
different real predicates. For real implementations we need
certain predefined data type dependent version functions
and for special cases the exact definition of the version

function.We deal with after the next section, where we
examine some general principals of the predicates.

When looking at the delay predicates we notice that the
direct access mechanism could fulfill every predicate.
With respect to the uncertainty interval, the direct access
mechanism guarantees the most current value of x, but
may result in unnecessary network traffic. For the time
predicate a periodic strategy or a change report strategy
may be selected. For this case the time predicate gives us a
value for∆t. This could be used to select a best update
strategy according to our discussion in the last section.

Looking at the change predicate we notice thatβ
reduces the update rate of x. Instead of U(x) one can select
U(x) / β for the update rate when computing a new strat-
egy. All other predicates also reduce the update rate, but
the effect depends on the new value of x and on some
additional parameters like the threshold or the delta. No
periodic update strategy can guarantee the change, ver-
sion, delta and threshold predicate. This must be either
done by the direct access or by the change report strategy.

Delay predicates as stated above are implicitly used in
many management systems. An example of a system that
uses some form of a time predicate is the Meta system
([4]) that states the maximum polling interval for a sensor.
The sensor must be polled at this (or shorter) period to
avoid missing significant events. [5] describes strategies
for a decentralized resource management that uses a form
of the delta predicate to update informations about the load
factor of one machine. Several different management plat-
forms have implemented some forms of delay predicates
to define event generation. [6] uses forms of delay predi-
cates in an ai systems to control the amount of input date
during real-time diagnostics.

In the following section we show how the different
delay predicates can be reduced to two basic forms. This
basic forms can be used to build an abstract actuality man-
ager which can be tailored to many different delay predi-
cates.

5. What do delay predicates measure?

Delay predicates capture a certain aspects of the dis-
crepancy between the original source of the information
and the value that is used on another node. They restrict
the allowed delay according to a certain measure. We now
examine the characteristics of the delay predicates to find
out what is really measured. The result will be that delay
predicates measure two different aspects of the delay
between x and x’.

Figure 2 shows the changes of x over the time t. The
value of x changes in discrete steps. Let ti be the time
when the value of x changes the i-th time. Let Ci be the i-

th new value of x (Ci = x(ti)). ∆ti is the time period in
which x keeps its i-th value, that is the time period from ti
to ti+1. ∆ti,j is the time period from ti to tj. In the same way
is ∆Ci defined as the interval between the Ci and Ci+1
(with the size 1), and∆Ci , j the interval between Ci and Cj.
We now show that the delay predicates define intervals on
one of the two axes. We can measure the delay from x’ to
x with respect to time intervals. If x’(t) = x(ti), then we can
use t - ti+1 as a measure for the distance between x’ and x.
We select ti+1 because x keeps its value until ti+1. In other
words x’ is t - ti+1 time units behind x. This is called the
time measure. A time predicate restricts the length of the
interval on the time axis.

We can state the delay between x’ and x with respect to
the changes in the value of x. If x(t) = Ci and x’(t) = Cj,
then the number of missed changes (∆Ci , j)is the measure
for the distance between x’ and x. In other words, the
value of x’ is i-j changes behind x. This is the change mea-
sure. A change predicate restricts the length a interval on
change axis.

Some other measures are:

• changes in the version of a datum, where a version is a
major change in the value of x (version measure).

In this case we just use a bigger raster to measure the
changes. Instead of counting every change some defini-
tion for a major change is used. As defined above, the
definition of a major change may vary. The change
measure is a special kind of the version measure.

• changes of the value of x (delta measure).

As above, not every change in x is counted. We have
here another definition of a new version. Note that for
this measure we must store the value of the latest
update to compare the new value with. This is called
the base value of a predicate.

• reaching a threshold defined for x (threshold measure).

The new version is reached, when a certain thresh-
old is crossed. As above, we need to store an additional
base value, in this case the threshold value.

Looking at the figure and regarding the different mea-
sures, we see that there are only two relevant measures, the
time measure and the version measure. The time measure
gives values for the distance on the time axis. The version
measure measures distances in between values of x. There
are several different ways to express distances for the
value of x. They are all based on counting some form of
changes in x. Therefore, the different forms of the version
measure may exist and could be adapted to the needs of
the application or the semantics of the data. Instead of
implementing every possible delay predicate, one can
implement an abstract mechanism for the time and the ver-
sion measure and then a way to adapt the version measure
to the other measures. All that is needed for the other mea-
sures is some form of functions that decides wether a
change in the value of x should be regarded as a new ver-
sion or not.

6. Combined delay predicates

Delay predicates may be combined to fulfill the needs
of different management applications running on the same
node or to express different requirements on the delay. As
an example, it should be possible to state that the informa-

version of x

time tt1

C1

∆Ci {

{

∆ti
Figure 2: Behaviour of management data x

tion should not be older than 10 minutes and should be
within a 10% range of the value of x. This could be
expressed with a time predicate and a delta predicate. We
now have to examine the dependencies between combined
delay predicates.

It should be clear that combined delay predicates are
combined using a logical AND. This means that each
delay predicate should be met. Using a logical OR would
allow the system to choose the less demanding predicate.
For this reason we don’t consider this as an option. Com-
bining predicates of the same kind could be reduced to
meeting the strongest predicate and forgetting about the
rest. A problem arises when predicates of different kinds
and measures are combined.

We can define four classes of delay predicates. The first
contains all time predicates, the second all change predi-
cate, the third all version predicates with the same version
function, and the fourth all delta predicates. Predicates of
different classes are independent of each others, so it is not
feasible to determine a strongest predicate. For this case
the strongest predicate of each category must be super-
vised. When some actions like updating x’ are performed
to meet a single predicate, the base values of all other
predicates (e.g. the compare value for a delta predicate)
should also be set to the new value. In this case U(x) must
be computed as the sum of all changes that would trigger
an update.

Here the difference between an event that is triggered if
a certain value has changed for more than 10% and a delta
predicate can be observed. The delta event is always trig-
gered, when the value is out of range. The delta predicate
just ensures that the value of x’ is within a range of x. If
the value of x’ increases in small steps due to update strat-
egies needed for other delay predicates, the delta predicate
would never trigger an update. The value of x’ may always
be in the correct distance to x. This may be confusing for
people who think more in the event based way. A delay

predicate however is only a statement about the discrep-
ancy between a copy x’ and the original value x. On the
other hand, it is easy to implement the range checking
function on the manager side and to verify this after each
update of x’.

7. Automatic adaptation of the strategy

The decision which update strategy to select is strictly
based on A(x’), U(x) and P(∆t). P(∆t) is given by the delay
predicates that are declared for x. The problem is to collect
the other factors, to select the right update strategy and to
adapt the system to the new strategy.

Initially, either sound estimates for access and update
rate can be provided or we have to start with an arbitrary
update strategy. From that on the access rate can be veri-
fied by observing the real behavior of the management
application and adapting the value of A(x’). This is partic-
ular needed if more than one managing application
accesses x’. A(x’) can be collected on the management
system and is available there at nearly no cost. The update
rate U(x) can be observed on the application side in the
same manner.

To adapt the strategy, these factors must be collected
occasionally at the instance that makes the strategy deci-
sion (usual the management system). This could be done
in regular intervals, when a new delay predicate is
expressed by a management application, or when a rate
has changed significantly. The different rates are collected
and in the case of an strategy change the new strategy
must be propagated securely to both sides of the system.
The cost for this can be minimized by piggybacking the
information to management messages, but from time to
time additional messages are needed. Therefore this only
adds slightly to the overall load.

Manager

Manager

Manager

ManagerManager

Application

Application
Application

Application

Application

Management-
system

Management-
system

Node A Node B

Figure 3: Management system

8. Implementation

The following section describes the implementation of
an actuality manager (AM) that supervises delay predi-
cates [7]. The implementation was part of the on-going
projectMELODY (Management Environment for Large Open
Distributed sYstems). TheMELODY management system has
architecture as presented in figure 3. Management pro-
cesses (managers) and managed components (applica-
tions) communicate with the management systems.
Applications are instrumented using either shared memory
or inter-process communication. They provide manage-
ment objects (MOs) which are accessible for the manage-
ment system. Managers state the name of the managed
objects they want to access. The management system
searches for the management object and provides the man-
agers with a quasi-copy of the searched data. This has the
advantage that managers accessing the same kind of data
only need one copy of the data, but the disadvantage that
managers accessing the same data must be synchronized.
Although suggested by the picture, managers and applica-
tions may reside on the same node. In this case they use
the same management system. Communication between
management system and managers or agents is strictly
asynchronous and message based. The management sys-
tem is implemented in C++ on RS/6000 workstations.

A software component that adapts automatically to
delay predicates and different characteristics of manage-
ment data must be naturally divided in two parts, the one
on the manager side and the one on the managed side. We
call the one on the manager side AMM (AM manager) and
the other AMA (AM agent). Both, AMM and AMA, have
to agree upon the selected strategy and perform certain
kinds of actions. We first describe the tasks that are per-
form by each side, and after this the messages that are

exchanged and the method how our actuality managers are
added to our management system.

The AMM receives and stores the delay predicates for
attributes of MOs. It communicates with the AMA to set
delay predicates that must be supervised on the agent side.
Both sides of the AM collect the access and the update
rates and exchange them in periodic intervals. The AMM
decides which strategy should be used and instructs the
AMA to keep track of the needed actions.

The AM provides the basic mechanism to supervise the
time and the version measure. Other delay predicates are
supported for basic data types like integers (delta and
threshold predicates). Special delay predicates could be
implemented separately from the AM. Consider the case
of a water sensor that has the significant states ice, cold,
normal, hot and boiling. This could be implemented by a
management attribute of type integer giving the exact tem-
perature. The significant states could be modelled by a
range for each state. In addition this management attribute
provides a version function that decides wether a change
of the value is a new version. A new version of the man-
agement attribute equals the transition from one significant
state to the other. Note that the AM implements the
generic part of the system (calling the decision function,
transferring the data), while the special parts (the decision
function) is implemented by the application. This gives
room for many different version predicates and associated
decision functions. Some data type dependent delay predi-
cates (e.g. threshold or delta predicates for integers) were
implemented in our prototype, while other delay predi-
cates that are based on the semantics of the date (e.g. ver-
sion predicate) were implemented in the application.

The AMM sends messages over the network to start and
stop a delay predicate, to change the update strategy, to get
the current update rate and to request a new value for an

Figure 4: Management system with integrated actuality manager

AccessCache

ProducerApplicationProducerManager

Management AgentProducerAM M ProducerAM A-support

Communication System

attribute. The AMA receives the requests and performs the
necessary actions. Every time a management attribute
needs an update, the AMA triggers a change report to be
sent to the management system. Management systems on
different nodes are treated separately.

Due to the message based, asynchronous structure of
the management system, it was very simple to add the two
AM components. There were only a few changes to the
internal message dispatching routine and to the functions
that performs updates and accesses. If a manager accesses
a value of a management attribute, the AMM is asked
wether this value is up-to-date. If the value must be
fetched from the remote application, the request is trig-
gered and the value of the attribute will be delivered to the
manager later. On the other side the AMA is informed of
every change in an attribute. It then computes whether a
change report has to be triggered or not. All other routines
like periodic scheduling of updates or the exchange of
update rates, are handled in the AM separate from rest of
the management system.

Another observation was that due to their independence
it should be possible to instantiate the AM and the man-
agement system on different node. The AM is then respon-
sible to supervise management data on different nodes.
This would increase the network traffic, but enable proxy-
AM for dump devices or move the AM bookkeeping func-
tionality to specialized nodes.

9. Use of delay predicates for service trading

A service trader ([8], [9]) stores information about ser-
vices that are offered somewhere in the network. On
demand of a service user the trader has to select an appro-
priate service, based on requirements, qualities and cost of
the service. The trader has to verify that the offered service
is still available and that the certain service qualities (like
load factors or length of queues) are still valid. If a service
provider vanishes without deleting its offer, a stale offer
may remain. We used our AM to check the existence and
the qualities of a service offer. A special attribute service_-
available could be tested to check the availability of the
service. This attribute and the attributes that express quali-
ties of the service are management attributes of our man-
agement system. For the service_available attribute we set
a time and a change predicate. The time predicate ensures
that there is an upper bound after that the availability is
checked. The change predicate updates the availability
attribute when the service is shut down. Other delay predi-
cates are set for the quality attributes to base the service
selection on up-to-date information. The values of these
delay predicates are determined by the characteristics of
the attributes itself. During the search for an appropriate
service, the trader accesses the management system and

asks for certain service attributes. He need not care about
applying the right update strategy. Therefor the task of
selecting a services is separated from the task of accessing
the most recent version of the attributes.

10. Open problems and future work

Selecting the right update strategy currently depends on
the access rate, the update rate and the requirements of the
managing application. We want to extend this model to
take different communication costs into account, depend-
ing on the topology and the used communication technol-
ogy. Data that originates in the same network as the
accessing manager, could be more often accessed than
information that resides somewhere on the internet. A dis-
tance measure function may help to incorporate this aspect
of distributed systems into our update strategies. For two
managers residing on the same network and accessing the
same remote value, it should be more effective to let one
manager access the remote value and order the other to
access the copy on the first site. At the end, this could lead
to a system that automatically selects the nodes where cop-
ies of the data should be stored for reasons like load bal-
ancing, reduced network traffic on long distance lines and
faster access.

While the system currently tries to guarantee the delay
predicate, we want to examine the cases where the system
does not try to fulfill every delay predicate every minute,
but may decide to delay updates for a certain amount of
time. This can be guided by probabilistic decisions based
on the know values for the access and the update rate.
Another reason to do this may be the case of a failures or
network overload, where the management system should
minimize the messages.

We currently used delay predicates to specify the actu-
ality of monitored date. Another step would be to apply
this kind of declarative programming to control operations
that are executed on many different hosts. In this case the
delay predicates may give thresholds after that the opera-
tion must be carried out.

11. Conclusion

We analyzed some characteristics of management data
and developed a model for the delay between the data and
the copy that is seen by the management application. We
showed how this can be used to access the local copy, to
reduce network traffic and to select an appropriate update
strategy. We then showed that applications can express
their requirements using delay predicates and showed how
this can be used to separate the task of selecting the right
update strategy from the management task itself. Delay
predicates were incorporated into theMELODY management

system ([10], [11]) and used in the field of service trading.
This showed the feasibility and the value of separating
management tasks that access dynamic changing data,
from the burden to select and implement the right updating
strategy.

In the future we want to apply this techniques to auto-
mate some more management tasks, like deciding when to
replicate management data for load-balancing reasons,
selecting the right location to evaluate complex condi-
tions, and to plan for migration of distributed system com-
ponents to minimize network effects. Another area where
a similar approach may be successful are distributed con-
trol operations that may be delayed until a given threshold.

Bibliography:

[1] C. E. Willis. Locating distributed information. In
Proceedings of the IEEE INFOCOM’89, pages
303–311, IEEE Computer Society Press, April
1989. IEEE.

[2] R. Alonso, D. Barbara, and L. L. Cova.
Augmenting availability on distributed file systems.
Technical Report CS-TR-234-89, Princton
University, Department of Computer Science,
Princton, NJ 08544, October 1989.

[3] R. Alonso, D. Barbara, and H. Garcia-Molina. Data
caching issues in an information retrieval system.
ACM Transactions on Database Systems,
15(3):359–384, September 1990.

[4] K. Marzullo, R. Cooper, M. D. Wood, and K. P.
Birman. Tools for distributed application
management.COMPUTER, August 1991.

[5] M. Stumm. Strategies for decentralized resource
management. InProceedings ACM SIGCOMM-87
Workshop on Frontiers in Computer
Communications Technology, Stowe, Vermont,
pages 245–253, August 1987.

[6] R. Washington and B. Hayes-Roth. Input data
management in real-time ai systems. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-89),
pages 250–255, Detroit, Michigan, USA, August
1989.

[7] T. K. Helbig. Strategies to meet demands on
actuality (in german). Diplomthesis 944, University
of Stuttgart, Institute for Parallel and Distributed
High-Performance Systems, Stuttgart, December
1992.

[8] ANSA. Ansaware 3.0 implementation manual.
Manual RM.097.01, Architecture Projects
Management Limited, February 1991.

[9] ISO. Working document on topic 9.1 - odp trader.
Working paper of the ISO/IEC JTC1/SC21/WG7:
N7047, May 1992.

[10] K. Rothermel. Melody - a environment for the
management of distributed systems (in german).
Proceedings of the Workshop: Development Trends
in Computer Networks, Gaußig, November 1991.

[11] I. Barth, E. Kovacs, and F. Sembach. Trading and
management functions in melody (in german).
Proceedings of the workshop: Development Trends
in Computer Networks, Gaußig, November 1991.

