
JVTOS
-

Multimedia Telecooperation
Interconnecting Heterogeneous Platforms

Gabriel Dermler1, Thomas Gutekunst2, Edgar Ostrowski3,

Nelson Pires4, Thomas Schmidt5, Michael Weber6, Heiner Wolf7

University of Stuttgart1 Swiss Federal Institute of Technology (ETH)2 Technical University of Berlin3

IPVR Computer Engineering and Networks Laboratory (TIK) PRZ, Sekretariat MA 073
Breitwiesenstraße 20-22 Gloriastrasse 35, ETH-Zentrum Straße des 17. Juni 136

D-70565 Stuttgart, Germany CH-8092 Zürich, Switzerland D-10623 Berlin, Germany
<dermler@informatik.uni-stuttgart.de> <gutekunst@tik.ethz.ch> <ostrowski@prz.tu-berlin.d400.de>

INTERSIS Automaçáo4 Siemens AG5 German Research Center for Artificial Intelligence (DFKI)6 University of Ulm7

Estrada de Paço de Arcos, 48 ZFE ST SN 21 KIK-TEAMKOM Distributed Systems
PT-2780 Oeiras, Portugal Stuhlsatzenhausweg 3 Stuhlsatzenhausweg 3 Oberer Eselsberg

<M4240@eurokom.ie> D-66123 Saarbrücken, Germany D-66123 Saarbrücken, Germany D-89069 Ulm, Germany
<schmidt@dfki.uni-sb.de> <mweber@dfki.uni-sb.de> <wolf@informatik.uni-ulm.de>

Abstract
JVTOS, the “Joint Viewing and Tele-Operation Service”, is an advanced teleservice allowing dis-
tributed users to work in a collaborative fashion with multimedia. JVTOS offers services for multi-
media collaboration across high-speed networks and is primarily aimed at running in
heterogeneous workstation environments comprising different hardware platforms and also differ-
ent operating and window systems.
JVTOS comprises facilities for session management, floor control, multimedia application sharing,
telepointing, and audio/video communication.
This paper describes the design and implementation of JVTOS on different platforms.

1 Introduction and Motivation
Information processing and data transmission have made the world smaller since the first images
were drawn on cave walls. Today, the technical environment for high-speed data interchange en-
ables humans around the world to collaborate with each other without a need for traveling.
Synchronous collaboration usually takes place with all participants being in the same room. Par-
ticipants are engaged in a face-to-face dialog in which black- or whiteboards, overhead projectors
and other equipment are frequently used. Many telecooperation tools mirror such meeting rooms
with the users sitting in the same room in front of their computers. High-speed networks make a
distributed version of this approach possible, both technically and economically. Multimedia infor-
mation may be transferred via the network offering a joint usage of applications, as well as audio-
visual communication facilities. Users may thus attend a “virtual” meeting without even leaving
their office, being able to retrieve information from their personal or corporate databases.
Several of such telecooperation tools are being brought to the market designed for specific operating
systems. These tools face a world of heterogeneity and so the feasibility of cooperative working
strongly depends on the system the user has access to.
This paper presents a system, its design and its implementation, competing to bridge these gaps
and to overcome the frontiers of proprietary hard- and software: JVTOS. This “joint viewing and
tele-operation service” enables synchronous joint working in heterogeneous workstation environ-
ments comprising different hardware platforms and also different operating and window systems.
Specifically, JVTOS supports SUN Sparcstations with SunOS/Solaris, Siemens-Nixdorf worksta-
tions RW420 with IRIX 4.x, the Apple Macintosh with MacOS, and the IBM PC with MS-Windows.
JVTOS is issue of work package 4.2 within RACE 2060 project CIO [4].



2 Service Description
JVTOS is a new telecooperation service for high-speed networks [5], [7], [9]. It is structured into a
set of four user-level services: Session Management, Application Sharing, Picturephone and Tele-
pointing.
The Session Management Service is the major control of the entire JVTOS teleservice. It adminis-
trates and runs sessions. Sessions are the frame in which a collaboration takes place. The Session
Management Service offers a variety of admission and floor control policies to accommodate differ-
ent ways of cooperative work.
The Application Sharing Service allows cooperation-unaware single-user multimedia applications
to be shared among several heterogeneous workstations. The terms “cooperation-unaware” and
“single-user” denote that the applications were actually constructed for a single user only and hence
are not aware of being run in a group context. Multimedia applications may handle text and graph-
ical information, still pictures, moving pictures (video and animation), and sound [11]. To maintain
the single-user behavior of shared applications, floor control is used to determine which user is al-
lowed to direct input to a shared application.
The Telepointer Service allows a session participant to move a telepointer in shared windows being
visible to all other session participants. The Telepointer Service also distributes the floor holder’s
mouse pointer.
The Picturephone offers desktop video conferencing and thus allows the session participants to com-
municate audiovisually to each other.
The key aims of JVTOS are to support and bridge heterogeneous platforms and the integration of
audio and video in order to have multimedia applications shared. It is an outstanding feature of
JVTOS that it realizes the WISIWYS concept (what I see is what you see) not only for text/graphics
application output as it is done in e.g. Timbuktu or the known X multiplexers (e.g. SharedX, Xmux,
XTV) [1], [2], [3], [10], but also for multimedia applications such as multimedia authoring systems
or film editors. JVTOS is also aimed at dynamic user participation, i.e. participants should be al-
lowed to enter and leave JVTOS during a session.

2.1 Session Management
In the context of a session, users may be invited by the session chairman, or they may request to
join or leave an existing session, the chairman can assign and revoke the floor for shared applica-
tions. The Session Management Service (SMS) coordinates all these operations necessary from the
start of a session until its end. It acts as the mediator between the users and the involved services
by providing a set of operations which are grouped into core session management (e.g. open/close
the session), participant management (e.g. invite a participant), floor control (e.g. assign/revoke the
floor) and service management (start/terminate a service).

Session Mgnt
User Interface

JVTOS on
Machine 1

Session
Mgnt

Service

User
Interface

Session Mgnt
User Interface

JVTOS on
Machine 2

Session
Mgnt

Service

User
Interface

Session Mgnt
User Interface

JVTOS on
Machine 3

Session
Mgnt

Service

User
Interface

Figure 1: Distributed Session Management



The SMS also includes the Management Information Base (MIB) which holds session-static as well
as session-dynamic information. Static information relates to JVTOS users, such as their names
and addresses. Dynamic information relates to session-specific data, such as the current set of par-
ticipants and their roles (e.g. the current floor holder), and the services active in a session at a given
time. The MIB can be accessed by all services to get relevant information. Since the MIB was con-
ceived as a unique global store in a session, it can in particular be used by distributed parts of a
service for non time-critical, intraservice communication across machine boundaries. The MIB pro-
vides the stored data in a network transparent manner, i.e. the clients do not know where the data
is actually stored.
Since the MIB should not and cannot necessarily “know” the semantics of data to be stored in it, a
generic storage concept was conceived. Data is stored in the MIB as so-called attributes [13]. Each
attribute has a header and can have an arbitrary amount of attribute elements. It is possible to cre-
ate, change and delete attributes.
Like the other services, the SMS is realized in physical distributed way (Figure 1). On each machine
the SMS resides as a component of the whole JVTOS system. If a user calls a service the session
management service module on his machine invokes the affected service module.

2.2 Multimedia Application Sharing
A telecooperation environment requires joint viewing. This allows multiple users, each on his own
computer workstation, to view and interact with a single application. A possible solution is to build
a new set of cooperation-aware applications which explicitly support this requirement. Such an ap-
proach has several problems. Perhaps the most critical of these is that users would be limited to the
use of only special cooperation-aware applications. Considering the diversity of computer applica-
tions, this requirement appears very limiting.
Application sharing is another solution to the joint viewing problem. It exploits properties of the
operating/window system to allow joint viewing with unmodified applications. Such an approach
has several advantages. Firstly, users are not required to use new applications, they can share their
existing applications. Secondly, the joint viewing system does not need to be modified to support
new applications or changes to existing applications. Finally, the task of developing a telecoopera-
tion environment will be greatly reduced. Instead of reimplementing many existing programs, the
developers only have to implement an application sharing service.
Applications and terminals are the basic entities in the application sharing service. Application
means a cooperation-unaware single-user multimedia application running on a computer, terminal
denotes the set of a user’s input/output facilities such as display, keyboard, mouse and audio/video
input/output devices. The Multimedia Application Sharing Service (MASS) allows all session par-
ticipants the joint viewing of an application and directing input to the application. The participants
may use different hardware platforms and window systems, namely:
• X11R5 on SUN/SNI workstations
• QuickDraw on Mac
• MS-Windows on PC

The support for heterogeneous platforms comprises three items:
• Application output:

Application output may be presented on any platform.
• Application input:

Application input (which is subject to floor control) may come from any platform.
• Application execution:

A shared application may run on any platform.
The Multimedia Application Sharing Service is divided in an Application Sharing Service (ApSS)
dealing with text/graphic data and an Audio/Video Sharing Service (AVSS) dealing with audio/vid-
eo data.

2.2.1 Text/Graphic Sharing
The ApSS is realized by a distributed X multiplexor (X wedge) [8] which is mainly formed by the
pseudo server, the pseudo client and the translators (The components are called pseudo server and
pseudo clients since they behave like an X server or X clients from the point of view of the applica-
tion and the terminals, respectively).
The pseudo server is the central component of the application sharing service. It is responsible for



establishing connections to the pseudo clients and for keeping track of the X resources created dur-
ing the session. When a new participant is joining, the archived information is used to set up a se-
ries of X requests that brings the new participant’s X server into the required current state. The
requests are sent to the pseudo server which forwards them to the new pseudo client and to the as-
sociated X server respectively.
Pseudo clients reside on terminal’s site. There is one pseudo client for each terminal. Pseudo clients
are dynamically created upon request by a pseudo server and destroyed when not being used any
longer.
X was chosen as the basic interchange protocol for application data because X is a network-trans-
parent, device-independent windowing and graphics system, which is currently supported by most
leading workstation manufacturers. For non-X windowing systems (e.g. Macintosh QuickDraw),
translators map the non-X protocol to the X protocol and vice versa. Implementing non-X to X trans-
lators is a complex but feasible task [12]. For X to non-X translation, commercially available X serv-
ers are used. There are commercially available tools which provide for non-X to X translation (e.g.
XGator for Macintosh). However, we do not know a tool which translates single applications. They
rather translate the whole of a Macintosh screen. Also, they do not have any mechanisms to filter
input or control the floor.
For the Macintosh and the PC platform, the required functionality for QuickDraw/QuickTime resp.
MS-Windows to X translation is the following:
• Output translation:

The translator has to intercept calls to the Macintosh Toolbox/MS Windows (output from an
application) in order to translate them into X requests and send them to the pseudo server.

• Input translation:
X events (input to an application) coming from the pseudo client have to be translated into
Macintosh/MS Window events which subsequently are read from the event queue by the ap-
plication as its input.

2.2.2 Audio and Video Sharing
In addition to text and graphical information, the JVTOS multimedia application sharing service
allows the sharing of continous media. Multimedia applications dealing with continuous media for
input or output are based on system specific interfaces enabling the access to the multimedia ex-
tension of the operating system [11]. For JVTOS, the continuous media interfaces shown in Table
are supported. JVTOS exploits functionality offered by these interface to realize the sharing of mul-
timedia data.

In order to provide multimedia application sharing, the standard continuous media access points
have to be modified such that they convert and distribute the data stream to the real interface
among the machines of the other session members and collect and convert the data streams pro-
duced by these machines [5].

2.3 Telepointing
Communication between JVTOS users which is based on sharing information generated by an ap-
plication, is enhanced by providing globally visible pointing tools, termed telepointers or telemark-
ers. Its purpose is to monitor movements of pointers owned by a user and to display these
movements locally and at remote user sites. In addition, the service tracks the position of the mouse

Sun Sparcstation Xplx (Parallax XVideo Extension),
audio device (“/dev/audio”)

Siemens-Nixdorf
RW 420

SGI Video extension,
audio device (“/dev/audio”)

Apple Macintosh QuickTime (selected components)

IBM PC MME (Multimedia Extension to Windows),
MCI (Media Control Interface)

Table 1: Supported multimedia extensions



pointer of the floor holder and mirrors it on remote displays in the corresponding shared windows.
Each user may own a set of telepointers and move these on his display. A user’s telepointer becomes
visible to others as soon as it enters a shared window, i.e. as soon as it could point to an object which
is jointly viewed and possibly referred to in an audio/video conversation.

The Telepointer Service relies on support from other JVTOS services. From the session manage-
ment it receives address information of session participants and the identity of the current floor
holder. From the sharing service it receives the list of shared windows. Thus, the service is able to
determine when a telepointer is to be “shared” and when so, with whom. A JVTOS user controls
telepointing through a user interface offered by the Telepointer Service. Each user is allowed to cre-
ate one or more telepointers. Besides telemarkers having a rectangular shape containing an arrow-
like pattern, further telepointer shapes with a transparent background are provided. However,
their use is restricted to the windowing systems that support transparency.
The Telepointer Service is implemented in a distributed way in order to reduce the end-to-end de-
lays incurred by various processing layers (Figure 2).

2.4 Picturephone
JVTOS includes a Picturephone, which provides interpersonal audiovisual communication among
JVTOS users. The Picturephone supports two-way audio and two-way video streams between all
participants of a JVTOS session.
During a session, the Picturephone probably runs most of the time. The Picturephone must be
smart enough to allow other multimedia application to run in parallel without degrading their
quality.

On each platform, the user interface is adapted to the native look-and-feel of the target window sys-
tem, but the functions offered are identical. The Session Management Service supplies information
about the session participants enabling the Picturephone to adjust itself according to changes dur-
ing a session. For all session participants, status information is shown indicating connectivity, vis-
ibility, and audibility. There is a gain control for each audio channel and also a gain control for the

UI

Transport System

Application
Sharing
Module

Telepointer
Module

Session
Mngmt
Module

Figure 2: Telepointer Architecture

Picturephone Module

AVCS

Transport System

control flow to/from Picturephone audio/video data flowpicturephone peer protocol

Audio
System

Window
System

Figure 3: Picturephone Architecture



sum of all audio channels. Each video window also displays an indication to which session partici-
pant it belongs. If the underlying hardware supports adjustments for contrast, hue, and brightness,
the JVTOS user is able to modify these values via the user interface.
The Picturephone is implemented in a distributed way (Figure 3). On each participant’s machine
there is a Picturephone module. Rather than transferring data between sources and sinks, the Pic-
turephone module is merely responsible for organizing the data transfer between remote locations.
At the same time it offers the user interface to the local user allowing it to control this transfer. The
data transfer itself is done by the AVCS.

3 Implementation Aspects

3.1 Overview on the Implementation Structure
UNIX. The UNIX operating system provides a pre-emptive multitasking environment for the active
applications. Thus the JVTOS services can be implemented as a set of concurrently executing UNIX
processes. So each of the blocks in Figure 4 is implemented as at least one process. These processes
communicate using available UNIX interprocess communication facilities.

MAC. The Macintosh operating system provides a cooperative multitasking environment for the
active applications. This means that applications determine on their own how much time they use
and how much processing time remains for other applications and background processes. Applica-
tion do not get a guaranteed part of the processing time.
JVTOS as a telecooperation tool is used like a system level service and not like an application. Thus
in a typical application scenario, JVTOS runs in the background while a shared application is in
the foreground. In this case the cooperative multitasking system does not guarantee processing
time for JVTOS and its services. In order to make enough processing time available for JVTOS, the
JVTOS services are implemented as interrupt driven modules (Figure 5).
In general, JVTOS services are accessed by subroutine calls. In the case of drivers they are accessed
by driver control calls. Messages of JVTOS services to higher levels of the hierarchy are delivered
asynchronously by use of callback routines. In the same way the low-level services react asynchro-
nously to events that are produced by the transport system in case of data arrival from remote in-
stances of JVTOS services.

Personal Workstation Personal Workstation

Multimedia
Appl. Sharing

Session
Managment

Tele-
pointing

Picture-
phone

Audio/Video
Communication

Window
Server

Multimedia
Appl. Sharing

Session
Managment

Tele-
Pointing

Picture-
phone

Audio/Video
Communication

Window
Server

Appli-
cation

Figure 4: Implementation Structure on the UNIX Platforms



PC. On the PC platform, there are four different processes running. The Picturephone, the session
management module, and WinX which has two processes, the interceptor and the translator. These
processes communicate using the standard MS Windows interprocess communication protocol Dy-
namic Data Exchange DDE which allows applications to communicate and “share” memory objects.
The Session Management contains the participant/chairman User Interface, the telepointer which
is implemented as a Dynamic Link Library DLL, as well the MIB for Floor Control purposes. The
SM Module sets up a daemon to listen for incoming calls or to initiate a session when using the
chairman capability, then checks for the existence of the Picturephone “atoms” to establish DDE
communication. If they are not present it starts the Picturephone and then sets internally the Mul-
timedia capabilities accordingly. The application brings up the session control panel. The telepoint-
er user interface is triggered when an application is being shared as well as the shared application
control part is added to the SM User Interface.
The WinX module consists of two parts. The interceptor is implemented as DLL that intercepts
from the MS Windows system and filters the messages for the shared applications. The translator
is an application that (1) translates the messages received from the interceptor into X messages and
(2) sends them to the X wedge as well as (3) filters the remote input messages to the shared appli-
cations. The communication between these processes is achieved by using one “atom” to identify the
JVTOS Interceptor and another “atom” for the translator called JVTOS Translator. The JVTOS
translator sends a DDE message initiating the communication, afterwards DDE messages flow
back and forth between these modules.
The Picturephone is a stand-alone application that sets up a daemon waiting for incoming calls and
opens a local video window (if the hardware is present) and creates the “Atom” JVTOS Video which
is used as the “Topic” for DDE communication with other JVTOS applications, the same procedure
applies to the local audio channel and the “Atom” is JVTOS Audio. If none of the hardware require-
ments are satisfied, the application will not start, meaning of course that the PC Workstation is not
able to use the multimedia capabilities.

Macintosh Ap-
plication

X-Server
(MacX)

Multimedia
Application

Sharing

Application
Sharing

Input/Output
Translation

Picturephone

Audio/Video
Sharing

A/V
Communication

Telemarker Display Manager

Management Information Base

Telemarker

Session
Management

JVTOS User
Interface

Application level User-level Services

JVTOS application Drivers and system services

R
em

ot
e 

In
st

an
ce

s 
of

JV
T

O
S

 S
er

vi
ce

s

Figure 5: Implementation Structure on the MAC platform



3.2 Multi-Media Application Sharing

3.2.1 Text/Graphic Sharing
UNIX. On Unix machines the main components of the X wedge are realized as different processes
running simultaneously (Figure 6).
An AS daemon runs on every site potentially taking part in JVTOS. The AS daemon listens for in-
coming requests to initiate local pseudo server or pseudo client processes.

MAC. Quickdraw is not network transparent like the X Window System. It is not even network
aware and does not use any network transport system. This functionality has to be added in order
to make Macintosh applications sharable. Therefore the graphics output of Quickdraw is intercept-
ed, analyzed and translated to the X protocol (Figure 7).

Quickdraw like all other graphics systems consists of a large number of graphics requests. But the
lower interface to the graphics system consists of some bottlenecks where all graphics operations
pass through before they are finally executed. At this point the graphics output may be intercepted
and redirected to a translator. The Quickdraw to X translator (QuiX) analyses all graphics requests
and translates them to the X protocol. In this process it has to be considered, that not all graphics

Terminal
(X Server)

Terminal
(X Server)

Application
(X Client)

Pseudo Client

Pseudo Client

Pseudo Server

Session Manager

Data flow (setup only)
Fork child process

AS Daemon AS Daemon

AS Daemon
Data flow

UNIX Workstation

Remote Host

Figure 6: Application sharing in the UNIX environment

Macintosh
Application

Display

X Server
Pseudo
Client

Pseudo
Server

Pseudo
Client

Pseudo
Server

X Server

Display

X Application

Macintosh Remote Host
Input

Translator

QuiX
Output

Translator
Interceptor

Figure 7: Sharing Macintosh Applications in an X environment



operations may directly be translated to X protocol requests. Some operations have to be converted
to a sequence of X requests. On the other hand in some cases sequences of Quickdraw operations
have to be combined in order to translate them to X Protocol requests. The resulting stream of X
Protocol requests is sent to the pseudo server in order to be distributed to other participants of the
session.
Input of remote users of shared applications like mouse movement and keyboard input, which the
translator receives from the application sharing service are converted to Macintosh specific event
records and sent to the local Macintosh applications
PC. MS Windows is intended for single machine use, it does not provide any means for simple com-
munication between computers over a network. The method JVTOS uses to share MS Windows ap-
plications is similar to the method used by the Mac when making its applications sharable. Since
MS Windows does not require the use of an underlying network, it assumes that all its applications
are running on the local machine. Hence, there is no quick and effective way to tell the windowing
system to display the application on a remote host. To overcome this setback, applications which
are to be shared, require the use of an interceptor. This interceptor has the ability to capture re-
quests, sent by the application to MS Windows, before they arrive at their final destination.

Using the interceptor alone, it is possible to have all application requests captured and sent to other
systems running MS Windows. The remote systems would then accept these request, as if they
were generated locally, and act on the display accordingly. However, it is a well known fact that
JVTOS is a multi-platform service. Hence, there is a possibility of having countless different archi-
tectures involved in a single session. This demands that the sharing of applications is centered
around the X Protocol.
It is at this point where WinX (Windows to X translator) enters the scene. WinX works together
with the interceptor to produce this X Protocol. This is done by having the interceptor relay all ap-
plication requests to both MS Windows and WinX. By passing these requests to the local windowing
system, the application is displayed on the local machine as if nothing had happened. However,
when WinX gets hold of these requests it translates them into their equivalent in X Protocol and
pass them along to the Pseudo-Server running on a remote host (Figure 8).
It should be noted that there are over 1000 different MS Windows calls, and most of them do not
have an equivalent in X Protocol. Therefore, a scheme had to be derived to “mix and match” these
two protocols. This means that a single MS Window message may give way to a set of X Protocol
requests or a single X Protocol request may lead to several MS Windows messages. At the moment,
WinX only makes use of a few of these messages.

X Server Display Translator

InterceptorWinX

MS Windows Application

PC

X Application X Server

Remote Host

Pseudo Server/Client

Figure 8: Sharing MS Windows applications in a X environment



3.2.2 Audio/Video Sharing
UNIX. The distribution of the audio data stream and the required simultaneous running of the Pic-
turephone application and an audio application simultaneously leads to a modification of the Sun
audio device in such a way that it may be opened by several applications at once. This implies also
that mixing of different simultaneous write accesses to the audio device and the multiplexing of
read operations is handled somewhere behind this interface (Figure 9).

The Audio Server allows simultaneous output of audio streams originating from various sources. It
can be understood as a switch panel where an input source can be connected to one or multiple out-
put sinks. Whenever two or more streams meet at an output port, mixing takes place. If an input
port is connected to multiple output ports, multiplexing is done. Coding conversions mediate be-
tween different audio codings. In order to differentiate between the ports, a local input/output port
(original audio device) and application input/output ports are used.
The Audio/Video Communication Service (AVCS) hides the complexity of audio/video processing in
the endsystem behind an application programming interface (API) which provides simple functions
to transfer continuous media data streams from a local source to a remote sink and vice versa. Al-
though the AVCS might be directly used by any application, the design focus was on the support
for sharing multimedia applications. The AVCS is capable of multipeer communication. It negoti-
ates codings and sets up transport connections to remote AVCS entities.
The X wedge informs the AVSS (Figure 10) about the application which should be shared. By re-
ceipt of the application top-level window ID the AVSS is able to resolve any child windows and it
can check, whether video is shown in one of these windows. The AVCS transports a video data
stream from a local video window to a remote instance of on AVCS, which forwards it to the remote
instance of an AVSS. Feeding the data pipe and displaying the video are local tasks at the two end-
systems. The remote AVSS is responsible to define a sink address for the video data stream (a win-
dow ID).
MAC. Audio and video output of applications is not presented by Quickdraw, but by a multimedia
extension called Quicktime. Quicktime works with audio and video data. The structure of Quick-
time is very modular. Quicktime contains a large number of software components, which deal with
the data streams.As Quickdraw, Quicktime is not network aware. Video and audio data are pre-
sented directly on the local hardware. It is neither possible to specify an alternative device nor an-
other host. In order to distribute video and audio the output has to be intercepted and redirected as
with the distribution of standard graphics (Figure 11). There are only a small number of compo-
nents which output audio and video data. These software components are bottlenecks for all audio
and video streams. They can be replaced by pseudo components which call the original system com-
ponents and additionally distribute the data streams via the AVSS to other participants.

Legend
Audio Data Flow

Audio

AVCS

Audio Server Input / Output Ports

Audio Control Flow

Server

Picturephone
Audio

Native Audio Device Transport System

Application
Multimedia Application

Sharing Service

Pseudo
Audio Device

Figure 9: Scenario of using an audio application and the Picturephone simultaneously



Video I/O

Window

Single-User Multimedia Application

Pseudo Interfaces

Audio/Video Sharing (AVSS)

Audio

Audio I/OTransport System

AVCS

Text/Graphics Sharing (ApSS)

System

Text/Graphics
Audio Data
Audio Control Video Control

Video Data

Multimedia Application Sharing

Server

Figure 10: Audio/Video sharing data flow

Application Movie Toolbox / Quicktime

Media Handler

Image Compression
Manager

Sound Manager

Sound Device
Component

Decompressor
Component

Control Information

Data Streams

Pseudo Sound
Device Comp.

Pseudo De-
compressor Comp.

AVSS

Sound Mixer
Component

Figure 11: A shared Quicktime application plays a compressed video with sound



PC. Similarly to what was done for WinX, an additional interceptor has to be developed for audio/
video data. However, this interceptor does not intercept MS Windows messages but instead calls to
and from the actual device drivers. To accomplish this, the interceptor has to listen to two different
communication paths; one being from the MS Windows System Software and the other being the
much less used 'direct' path from the actual application (Figure 12).

As mentioned, this interceptor captures raw data instead of MS Windows messages. For example,
it intercepts the JPEG encoded video right before it reaches the driver and corresponding hardware
decompression. In addition, since the data is coded according to well established standards, there
is no need to make use of a translator. It is then the task of the audio/video sharing service to send
this data to the other participating JVTOS users.

4 Summary and Conclusions
This paper describes the implementation of a system supporting cooperative work. Unlike similar
available systems, JVTOS does this support in a heterogenous and multimedia environment. Het-
erogeneity is present in the flavor of the used platform and applications.
JVTOS runs on four different hardware platforms using different operating and window systems:
SUN/SNI (OSF/Motif), PC (MS-Windows) and MAC(QuickDraw).
Shared applications may be initiated on a workstation of any type. Such applications use the win-
dow system of the workstation they run on, but it still is possible to interact with such applications
using a workstation of any of the other types. The key to this functionality is our use of the X pro-
tocol with video extensions as an interchange protocol and the concept of translators.
Multimedia support is not restricted to the provision of just a Picturephone. Instead, sharing of
multimedia applications is also possible, with the implication that another element of heterogene-
ity has to be taken care of, the handling of different kinds of multimedia toolboxes associated with
the four platforms.
Since JVTOS integrates different endsystems over different high-performance network technolo-
gies the domain of telecooperation is opened to a wider group of potential users and thus potential
collaborators.

Multimedia Hardware

MS Windows Multimedia Application

WinX

MS Windows 3.1 System Software

Device Call Interceptor

Video Device DriversAudio Device Drivers

AVSS

Figure 12: Path of multimedia data within a JVTOS session in a PC



5 References
[1] Hussein M. Abdel-Wahab, Mark A. Feit: “XTV: A Framework for Sharing X Window System

Clients in Remote Synchronous Collaboration” Proceedings, IEEE Conference on Communi-
cations Software: Communications for Distributed Applications and Systems, pp. 159 - 167.
Chapel Hill, 1991.

[2] Michael Altenhofen: “Erweiterung eines Fenstersystems für Tutoring-Funktionen”. Diploma
Thesis at Universität Karlsruhe. Karlsruhe, 1990.

[3] John Eric Baldeschwieler, Thomas Gutekunst, Bernhard Plattner: “A Survey of X Protocol
Multiplexors”. ACM Computer Communication Review, Vol. 23, No. 2, pp. 13 - 22. New York,
1993.

[4] Bauerfeld W.: RACE-Project CIO (R2060): Coordination, Implementation and Operation of
Multimedia Tele-Services on Top of a Common Communication Platform; International
Workshop on Advanced Communications and Applications for High Speed Networks ‘92, pp.
401 - 405, 1992.

[5] Gabriel Dermler, Thomas Gutekunst, Edgar Ostrowski, Frank Ruge: “Sharing Audio/Video
Applications among Heterogeneous Platforms” accepted at the 5th IEEE COMSOC Works-
hop Multimedia ‘94, Kyoto, Japan, May 1994.

[6] Gabriel Dermler, Thomas Gutekunst, Bernhard Plattner, Edgar Ostrowski, Frank Ruge, Mi-
chael Weber: “Constructing a Distributed Joint Viewing and Teleoperation Service in a He-
terogeneous Workstation Environment”. Proceedings, 4th IEEE Workshop on Future Trend
of Distributed Systems in the 1990’s, Lisboa, Sept. 93

[7] Gabriel Dermler, Konrad Froitzheim: “JVTOS - A Reference Model for a New Multimedia
Service”. Proceedings, 4th IFIP Conference on High Performance Networking (hpn ‘92), pp.
D3/1 - D3/15. Edited by A. Danthine, O. Spaniol. Liège, 1992.

[8] Thomas Gutekunst, Bernhard Plattner: “Sharing Multimedia Applications among Heteroge-
neous Workstation”. Proceedings, Second International Conference on Broadband Islands.
Athens, 1993.

[9] Thomas Gutekunst, Thomas Schmidt, Günter Schulze, Jean Schweitzer, Michael Weber: “A
Distributed Multimedia Joint Viewing and Tele-Operation Service for Heterogeneous Work-
station Environments”. Proceedings, GI/ITG Workshop on Distributed Multimedia Systems,
pp. 145 - 159. Edited by W. Effelsberg, K. Rothermel. Stuttgart, 1993.

[10] Greg McFarlane: “Xmux - A system for computer supported collaborative work”. Proceedings,
1st Australian Multi-Media Communications, Applications & Technology Workshop. Sydney,
1991

[11] Konrad Froitzheim, Edgar Ostrowski, Nelson Pires: “Multimedia Applications and how they
Interact with Workstation Hardware and Operating Systems”. Internal Report of RACE/CIO
WP 4.2. Ulm, 1992.

[12] Miroslav Vodslon: “Feasibility of Translating Native Windowing Systems to X Window”. In-
ternal Report of RACE/CIO WP 4.2. Berlin, 1992.

[13] Weber, M., Schmidt T., Luna L.: “Programmers Guide to the JVTOS Management Informa-
tion Base”. Internal Report of RACE/CIO WP 4.2. Saarbrücken, 1993.


