
2nd CaberNet Plenary Workshop, Dublin, 23-25 March 1994

Programming Abstractions for Handling Multimedia Data in

CINEMA

 Tobias Helbig, Kurt Rothermel
University of Stuttgart

Institute of Parallel and Distributed High-Performance Systems
Breitwiesenstr. 20-22

D-70565 Stuttgart
Germany

Email: {helbig, rothermel}@informatik.uni-stuttgart.de

1 Introduction

An efficient and effective development of distributed multimedia applications is only possible

if appropriate development platforms are provided. Those platforms, often referred to as mid-

dleware, sit on top of operating systems and provide various functions supporting distributed

multimedia applications, including those for communication, synchronization and resource

management. TheCINEMA (Configurable INtEgrated Multimedia Architecture) system, which is

under development at IPVR, falls into this system category.CINEMA focuses on communication

and synchronization aspects of multimedia applications. It is able to convey and synchronize

multimedia streams of arbitrary complexity: streams may have multiple sources and sinks and

may comprise substreams of different types. Furthermore, the “path” connecting a source with

a sink may involve any number of (end) systems. Therefore, inCINEMA the notion of end-to-end

is used in a much broader sense than in the transport layer, where end-to-end characterizes a

communication relationship between “directly” connected (end) systems. InCINEMA, end-to-end

aspects are defined between the sources and sinks of a multimedia stream, where a stream may

pass any number of intermediate end systems before reaching its sinks and thus may involve

multiple transport connections.

CINEMA is built on top of a standard operating system and provides powerful programming

abstractions, which simplify the development of distributed multimedia applications. Applica-

tions can be composed out of (possibly already existing) building blocks, so-called components,

more complex components can be build out of existing ones, and components can be linked to

arbitrary complex topologies. In order to convey multimedia applications, sessions with a cer-

tain quality of service can be set up, and multimedia flows can be controlled by media clocks.



2 Basic Abstractions of CINEMA 2

The concept of a media clock is also used to specify synchronization requirements between

related streams. All aspects of resource management, configuration management and where and

how synchronization is done are hidden from theCINEMA user.

The remainder of the extended abstract is structured as follows. First, we introduce the basic

abstractions ofCINEMA and describe how they are used to build a multimedia application. Then,

we show how to describe temporal and synchronization relations and how to control the trans-

mission and presentation of data units. Finally, we give a short overview over the functional

architecture of theCINEMA run time system and conclude with a brief summary.

2 Basic Abstractions ofCINEMA

A multimedia system consists of hardware and software devices like speakers, microphones or

one or more processors. Devices are mapped to components. A component is the abstraction

that provides the multimedia processing functionality. It is equipped with a set of generic inter-

faces that enables theCINEMA run time system to control components independently of their

actual functionality and implementation. Components send and receive data units of multimedia

data streams via typed ports. It is distinguished between input and output ports. According to

the input and output ports a component possesses it represents a source of a data stream, a filter,

mixer or sink. There are no restrictions regarding the number of ports a component may have.

Components are interconnected via links. A link connects output and input ports of the same

type and is used to describe communication paths between components. By that, the “topology”

of an application is defined much the same way as in the REX system [MKSD90].

A sessions consists of the part of the topology an application wants to be treated as a single unit.

The session is defined by a set of sources and sinks (intermediate components are found out

internally) that are arbitrarily interconnected either directly or indirectly via intermediate com-

ponents. Quality of service parameters are associated with sessions. When a session is created,

CINEMA instantiates the involved components, establishes communication paths and reserves the

resources (CPU, bandwidth, buffer) required to ensure the specified quality of service. So, in

CINEMA a session is the unit of resource allocation.

Multimedia data is conveyed as flows, which are controlled by media clocks. Data units of flows

are created at one or more sources. Each data unit has a timestamp that characterizes its temporal

properties. Data units may pass filter or mixer components where they are processed or merged.



3 Example for Creating a Session 3

Finally, they are played out at sinks. Media clocks are associated with sources and sinks where

they provide the interface to control flows. This is done by setting parameters of media clocks,

by starting, stopping or changing the speed or direction of the advancing of the clock’s time.

To control a flow, an application first defines the initial values of clocks which correspond to

the timestamps of data units that are to be played out. Then, it sets rates with which the time of

clocks changes and the stepwidth between consecutive values. These settings determine tempo-

ral properties of flows. The actual transmission of data units is started or stopped by starting or

stopping media clocks since the advancing of time of media clocks coincides with the produc-

tion, processing and presentation of timestamped data units. Clocks provide the means to selec-

tively start or stop parts of flows (e.g. switch off a specific source or sink) as well as starting

whole flows at once by manipulating groups of clocks.

At sinks, the settings of media clocks in conjunction with the timestamp of each data unit deter-

mine its play out time. The actual time of the sink’s media clock corresponds to the timestamp

of the data unit currently being played out. This provides an simple way to express the applica-

tion’s synchronization requirements. By correlating the values of the sink’s media clocks, an

application may specify the data units that are to be played out synchronously.

3 Example for Creating a Session

The usage of the above mentioned abstractions is illustrated by the following example. Assume,

there is a file server at node N1 that allows the retrieval of video V (full motion, full color). It

is intended to display V at a workstation (node N2). Unfortunately, the screen is only able to

display black and white images. Thus, a filter is needed that transforms the color video into a

black and white one.

S F D

C

node N1 node N2



4 Flow Activation and Synchronization 4

Before viewing the film the appropriate components have to be created or fetched from a

library. After that the topology will be specified. A file retrieval component S is to be specified

for being instantiated at node N1 and initialized with video V. Then, the black and white display

component D has to be specified for being created at node N2. Finally, a filter F is defined with-

out mentioning any specific location. It may be chosen by theCINEMA system. After that, the

links have to be defined. The output port of S is connected to the input port of F. The output port

of F is to be linked to the input port of D. When the whole topology is declared to be the session,

it is instantiated by theCINEMA system.

4 Flow Activation and Synchronization

After having created the session that led to the instantiation of components at appropriate nodes,

the establishment of data transmission channels and the reservation of resources, the temporal

properties of the flow have to be specified. Let’s assume the video was recorded with a rate of

25 frames per second. The timestamps are equal to the frame numbers (first one is 1, increment

is 1). It is intended to start the presentation with the 1000th frame and display the video with its

original frame rate.

Thus, the parameters of the media clock being attached to the display are set to appropriate val-

ues: Its initial value is 1000. It “ticks” 25 times per second and each time changes its value by

one. By issuing a start command at the media clock, the flow of data units from the file retrieval

source S to the display D via the filter F is started instantly.

Changing the way data units are presented, is easily done by changing the parameters of the

media clock. To jump to a specific frame in the video, the actual value of the clock is overwritten

by the number of the frame. To slow down the presentation, either the clock’s rate or its step-

width is adapted. And viewing the video backwards requires the value of the clock to be decre-

mented with each tick.

The following example illustrates how to control a more complex flow in a flexible way and

how a synchronization relationship is defined.

As part of a teleconferencing tool, there is a mixer component that consumes data units from

each connected input port, merges them into one data unit that is multicasted to the connected

speaker components. To participate in the teleconference, an application connects its micro-

phone and speaker component to the audio mixer and expands the existing session. It then spec-



5 The Functional Architecture of CINEMA 5

ifies the temporal characteristics of the data units it will produce and consume (allowing theCIN-

EMA system to perform consistency checks). By starting the media clock that is associated with

the speaker, the application may start the flow of data units that originates at the mixer compo-

nent. Consequently, it listens to the conversation of other participants without actually contrib-

uting to it as long as the clock of the microphone is not started. By starting the source’s clock,

the flow of data units from microphone to mixer is started, too. By issuing the start command

to the microphone’s and speaker’s clocks at once, the application at once fully participates in

the conference.

When it is intended to synchronize the multicasted output of the mixer component so that some

or all participants of the conference receive the same data unit at the same time, this is specified

by declaring a synchronization relationship between the speaker’s clocks. Hence, the times of

the media clocks are bound together, forcing the clocks to change their values synchronously.

That leads to the synchronous output of data units.

5 The Functional Architecture of CINEMA

Internally, theCINEMA system is structured into four main building blocks. There is the configu-

ration manager that configures components programmed by application programmers. It anal-

yses specified topologies and decides where to place components. Furthermore, the configura-

tion manager establishes the appropriate communication channels. The resource manager takes

into account the application’s quality of service needs. It manages the given resources of a com-

puter system (CPU, network bandwidth, memory allocation, special devices) by reserving

resources, monitoring given guarantees and graceful degrading the quality of service within

specified margins in case of error or overload. The synchronization manager ensures the tem-

poral requirements and synchronization relationships specified by an application and provides

run time support for controlling the flow of data units. It instantiates the appropriate synchroni-

zation mechanisms depending on the application’s requirements and provides flow control

when transmitting data units. Finally, the event manager handles events and triggers the corre-

Audio Mixer

Speaker 1

Speaker 2

Micro 1

Micro 2



6 Summary 6

sponding actions. It is used internally to forward events and trigger actions, as well as externally

to inform an application when a certain state of the presentation is reached.

6 Summary

We have briefly sketched the abstractions of theCINEMA system, which enables an application

to build and control complex, distributed multimedia scenarios.CINEMA aims at closing the gap

between the functionality provided by networks and operating systems and the demand for cre-

ating multimedia applications. Its emphasis therefore lies on end-to-end-issues that cover more

than a single transport system hop and in supporting functional components with multiple input

and output ports.

Thus,CINEMA differs in its approach from other research efforts currently being done. We neither

try to expand the functionality provided by transport systems (OSI layer 4) by introducing

grouping or synchronization issues at this level ([EDP92], [BCG+92]). Also, we do not want to

tailor our approach to specific configurations such as being done by [AnHo91], [DNNR92],

which essentially are extending window systems by multimedia functionality. Our work may be

seen in the context of the goals defined by the IMA [Asso92] to support distributed multimedia

applications by providing basic system services support.

Currently, the main abstractions and concepts of theCINEMA project and its architecture are

defined. By now, we have an early prototype which supports simple application scenarios sim-

ilarly to the examples above. Our future work is directed at refining our abstractions and devel-

oping protocols for resource reservation, stream control and synchronization as well as config-

uration management for arbitrary complex scenarios.

7 References

[AnHo91] David P. Anderson, George Homsy. Synchronization Policies and Mechanisms in a
Continuous Media I/O Server.Report No. UCB/CSD 91/617, Computer Sience
Division (EECS), University of California, Berkeley, CA, 2 1991.

[Asso92] Interactive Multimedia Association. Request for Technology: Multimedia System
Services, Version 2.0, 11 1992.

[BCG+92] Gordon Blair, Geoff Coulson, Francisco Garcia, David Hutchinson, Doug
Shepherd. Towards new Transport Services to Support Distributed Multimedia



7 References 7

Applications. In 4th IEEE ComSoc International Workshop on Multimedia
Communications, 4 1992.

[DNNR92] Roger B. Dannenberg, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine.
Tactus: Toolkit-Level Support for Synchronized Interactive Multimedia. In3nd
International Workshop on Network and Operating System Support for Digital
Audio and Video, 11 1992.

[EDP92] Julio Escobar, Debra Deutsch, Craig Partridge. Flow Synchronization Protocol. In
IEEE Global Communications Conference, 12 1992.

[MKSD90] Jeff Magee, Jeff Kramer, Morris Sloman, Naranker Dulay. An Overview of the
REX Software Architecture. In2nd IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, 10 1990.


