Erschienen im Tagungsband zum 1.Aachener Arbeitstreffen
“Neue Konzepte fur die Offene Verteilte Verarbeitung”
5. September 1994, Aachen, ISBN 3-86073-143-2

Trading und Management verteilter Anwendungen:
zentrale Aufgaben flr zuklnftige verteilte Systeme

Erno Kovacs
Universitat Stuttgart, Institut fur parallele und verteilte Hochstleistungsrechner (IPVR),
Breitwiesenstr. 20-22, 70565 Stuttgart, e-mail: ernoe.kovacs@informatik.uni-stuttgart.de

1.0 Einleitung

Die zukunftige Arbeitswelt wird infolge der Orientierung hin zu flexiblen und anpassungsfahi-
gen Organisationsstrukturen aus kleinen, schnell ander- und anpaf3baren Arbeitseinheiten
bestehen. Diese erfordern den verstarkten Einsatz von neuen Informations- und Telekommuni-
kationstechniken um die anstehenden Aufgaben in Blro, Verwaltung, Produktion und Ferti-
gung effizient erledigen zu kbnnen. Diese neuen Techniken werden den Nutzern weit Gber das
heutige Mal3 hinausgehende Kommunikations- und Kollaborationsmdglichkeiten im verteilten
System geben. Beispiele hierfur sind multimediale Gruppenkommunikation, synchrone und
asynchrone Telekooperationstechniken (z.B. gemeinsam bearbeitbare Objektraume oder eine
verteilte Vorgangssteuerung) oder der Einsatz personlicher Agenten, die im Netz vorhandene
Dienste nutzen, um benutzerdefinierte Aufgaben zu erledigen.

Existierende Konzepte fir Rechnerkommunikation und verteilte Systeme sind dabei nur sehr
bedingt einsetzbar. Einfache Client-Server Systeme unterstlitzen eine eher statische Vertei-
lungsstruktur, die zwar gewisse Freiheitsgrade bei der Plazierung von Servern (Ortstranspa-
renz) und bei der Zuordnung von Klienten erlaubt, jedoch wenig Méglichkeiten zur
dynamischen und flexiblen Anpassung der Systemstrukturen bietet. Es fehlen Mdglichkeiten,
Systemstrukturen rasch und automatisch an Anderungen anzupassen, sowie auf die Dynamik
eines verteilten Systems - beispielsweise auf Anderungen der Last- oder Fehlersituationen -
geeignet zu reagieren. Eine Serverauswahl findet meist nur auf Grund eines vordefinierten Kri-
teriums statt, wobei nur selten eine Optimierung unter Berticksichtigung von statischen und
dynamischen Eigenschaften stattfindet. Eine Steuerung der Vielzahl der beteiligten Kompo-
nenten und der verteilten Ablaufe durch ein Systemmanagement wird nur unzureichend unter-
stutzt.

Um die geforderte Flexibilitat und AnpalRbarkeit an sich &ndernde Randbedingungen, sowie
die Zuverlassigkeit und Kontrollierbarkeit der Systeme zu erlangen, missen die eingesetzten
Entwurfsmethoden und Entwicklungsprinzipien in Hinsicht auf diese Anforderungen weiter-
entwickelt werden. Weiterhin muR die Uberwachung und Steuerung berticksichtigt werden,
wobei das Verhalten ganzer Klassen von Objekten des Systems einfach und gezielt angepalf3t
werden mul3. Dies mul3 jedoch einhergehen mit geeigneten Abstraktionen fir die Erstellung
solcher Systeme, sowie die Delegation ganzer Aufgabenbereiche an entsprechende System-
funktionen (beispielsweise Ressourcenmanagement).

Waéhrend verteilte objektorientierte Systeme auf der Basis des OMG-Standards ([OMG91))
das Gewicht auf Interoperabilitdt und Portabilitat legt, adressieren die Gebiete Trading
(JANSA91], [1S0O92]) und Management verteilter Systeme die Probleme Flexibilitat, Anpal3-
barkeit und Steuerung des Systems. Mit diesen letztendlich entscheidenden Kriterien fur die
Akzeptanz eines Systems stellen beide Gebiete zentrale Aufgaben zuklnftiger verteilter
Systeme dar. Eine ndhere Untersuchung zeigt, dal’3 sehr ahnliche Ansatze verfolgt werden. Es

wird jeweils Konfigurationsinformation Uber das System gesammelt und geeignet eingesetzt.
Fehlerinformation wird ausgewertet, korreliert und geeignet bertcksichtigt. Der Ablauf eines
verteilten Vorgangs wird durch beide Systeme beeinflul3t. Es liegt daher nahe, diese Gebiete in
einem integrierten Ansatz zu untersuchen.

Der vorliegende Bericht ist wie folgt gegliedert: Im Anschlul3 an diesen Abschnitt wird auf den
Stand der Forschung in beiden Gebieten eingegangen und bestehende Gemeinsamkeiten iden-
tifiziert. Dann wird die prinzipielle Vorgehensweise bei der Integration beider Gebiete disku-
tiert. Im Anschluf daran wird die Architektur des MELODY-Systems vorgestellt und einige
Detailaspekte der Integration besprochen. Der Schwerpunkt wird dabei auf die Optimierung
bei dem Zugriff auf dynamische Zustandsinformation und der Einsatz dieser Optimierungen
im MELODY-Trader gelegt. Der Effekt dieser Optimierungen wird mit Hilfe von Messungen
belegt. Am Ende wird eine Zusammenfassung und ein Ausblick gegeben.

2.0 Stand der Forschung

2.1 Trading

Der Gedanke des Tradings entwickelte sich aus der Idee, die Informationen eines Nameservers
zu erweitern und damit einen Yellow-Page Dienst zu erbringen. Dieser Auskunftsdienst
bertcksichtigt vor allen Dingen die Funktionalitat und das dadurch gepragte Interface eines
Dienstes im verteilten Systems. Er ermoéglicht zu einem gegeben Funktionalitats- oder Inter-
facespezifikation einen geeigneten Diensterbringer im verteilten System zu finden. Das Tra-
ding erlaubt neue Freiheitsgrade bei der Dienstauswahl, indem mit Hilfe einer Subtyp- oder
Kompatibilitatsrelation die Auswahlmdglichkeiten auf verschiedene, gleichermal3en verwend-
bare Diensttypen erweitert wird. Insbesondere in verteilten objektorientierten Systemen kén-
nen so auch Objekte einer abgeleiteten Klasse gefunden werden. Diese Mdglichkeit erlaubt die
gezielte Weiterentwicklung von Diensten unter Beibehaltung einer Aufwartskompatibilitat
([ANSA91)).

Eigenschaften eines Dienstes werden mit Hilfe von beschreibenden Attributen ausgedruckt.
Diese konnen bei dem Trading-Vorgang bericksichtigt werden und im Auswahl- und Optimie-
rungsprozell eingesetzt werden. Bei Attributen wird zwischen statischen und dynamischen
Attributen unterschieden. Dynamische Attribute &ndern ihren Wert im Lauf der Zeit und erfor-
dern daher geeignete MaRnahmen auf die neue Information zuzugreifen oder die Anderungen
zu propagieren. Die Leistung eines Tradingsystems kann durch eine effiziente Gestaltung die-
ser Zugriffe sehr gesteigert werden.

Zur Strukturierung des Dienstangebots nach beliebigen organisatorischen, administrativen
oder individuellen Kriterien, werden Dienstangebote in Trading-Directories - dem Kontext-
baum (vergleichbar einem File-Directory) - eingetragen. Die Hierarchie dieser Directories
kann beliebig gestaltet werden. Beispielsweise kann eine geographische Lokalisation von
Diensten in der Hierarchie wiedergegeben werden. Die Directory-Hierarchie wird genutzt, um
den Suchbereich fur Dienste einzuschranken.

Bei der Gestaltung des Tradingraums wird von einem einheitlichen, hierarchischen Dienst-
raum (wie er z.B. in einem X.500 System besteht) abgesehen. Es werden getrennte Tradingdo-
manen vorgesehen, innerhalb derer ein einheitliches Tradingsystem etabliert ist.
Tradingdoménen kénnen auf unterschiedliche Arten zusammenarbeiten. Bei féderativen Tra-
dern ([BeRa91l]) wird ein Trading-Kontrakt etabliert, der definiert, welche Diensttypen aus
einer Tradingdomane in einer anderen sichtbar sind, welche Abbildungen von Diensttypen
dabei vorgenommen werden mussen und welche Teile des jeweiligen Dienstraumes exportiert
werden.

2.2 Management verteilter Systeme

Das Management verteilter Systeme beschaftigt sich mit der Beobachtung und Steuerung ver-
teilter Systeme. Das verteilte System wird dabei als eine Sammluniylaaged Objects

(MOs) aufgefaldt, die jeweils eine reale Ressource reprasentiert- beispielsweise ein Gerét der
Netzinfrastruktur, ein Systemobjekt oder eine Anwendungskomponente. Eine Manipulation
des MOs wirkt auf die reale Ressource ein. Diese Manipulationen werden durch geeignete
Managementfunktionen Uberwacht und gesteuert. Managementfunktionen werden durch
Managing Objects (MngO®rbracht.

Zur Reduzierung der mit der Vielzahl von anfallenden Managementaufgaben verbundenen
Komplexitat, werden Managementaufgaben haufig kactktion Lebensbereiclind Zielob-
jektkategorisiert. Die Funktion kann weiter in die funf BereiBloafiguration Fehlerbehand-

lung, Leistungsmanagemenfbrechnungund Sicherheitunterteilt werden. Innerhalb der
Kategorie Lebensbereich werden die PhaBéanung Entwurf, Installation Betrieb und
Migration unterschieden, bei den Zielobjekten hingegend die Berdigtewerk, (End-)
Systermund Anwendungen

Entwicklungen im Bereich Netzwerk- und Systemmanagement haben bereits Produktstatus
erlangt. Hier gibt es mit SNMP ([Rose91]) und den OSI-Managementprotokollen auch eine
standardisierte Basis. Fur den Bereich Management einer verteilten Anwendung existieren
jedoch nur wenig Erfahrungen. SNMP durfte sich hier als zu starr und unflexibel erweisen. Die
objektorientierten Ansatze des OSI Management sind eine ausreichende Basis, jedoch fehlt es
noch an konkreten Erprobungen und geeigneten Entwicklungsunterstitzung. Ansatze wie das
Object Management Framework des DME ([OSF91]) beruhen auf dem CORBA-Standard,
haben jedoch noch keine konkreten Ergebnisse erzielen kénnen. Allgemein wird SNMP als de-
facto Standard akzeptiert, Lésungen auf der Basis des OSI- oder des DME-Framework als die
Zukunft angesehen. Proprietéare Losungen werden noch auf lange Jahre gute Chance am Markt
haben.

Das Management grol3er verteilter System mul ebenfalls verteilt sein, um mit der Gro3e des
Systems umgehen zu koénnen, sowie um eine Uberlastung der Managementstation und der
Netzwerke zu vermeiden. Hier bietet sich eine hierarchische Dekomposition der Management-
funktionen an. Einzelne Funktionen dieser Dekomposition kdnnen dann auf verschiedenen
Knoten des Netzes ausgefiihrt werden. Ubergeordnete Managementfunktionen fithren die
Ergebnisse der untergeordneten Funktionen zusammen. Interessanterweise kann ein Trader bei
der Auswahl eines geeigneten Ausfihrungsorts flr eine Managementfunktion eingesetzt wer-
den. Hilfestellung kann dabei die Strukturierung von MOs in (hierarchisch strukturierte)
ManagementdomandfSMTK93]) sein. Mit Hilfe dieser Strukturierung kdnnen Gruppen von
MOs gebildet werden. Eindanagementpoliti{[Mars93]) definiert fiir eine Gruppe von MOs

eine gemeinsames Verhaltensmuster. Mit Hilfe von Politiken kénnen grol3e verteilte Systeme
einheitlich verwaltet werden. Eine Anderung einer Politik muRR dann eine Verhaltensanderung
bei allen betroffenen Objekten nach sich ziehen.

Die Forschung auf den Gebieten Management verteilter Anwendungen, verteiltes Manage-
ment, Managementdomanen und Managementpolitiken ist jedoch noch nicht sehr weit fortge-
schritten, so dal3 akzeptierte und vereinigende Ansatze fast vollstandig fehlen.

2.3 Gemeinsamkeiten

Beide Gebiete haben eine Reihe von Gemeinsamkeiten, die eine integrierte Untersuchung
erforderlich machen. Eine Reihe Gemeinsamkeiten wird im folgenden aufgezahlt:

Konfigurationsinformation

Auf der Basis der exportierten Konfigurationsinformation selektiert der Trader geeignete Dien-
sterbringer. Beim Management verteilter Systeme wird Konfigurationsinformation von Mana-
gementfunktionen gesammelt und geeignet gespeichert. Sie bildet dann die Grundlage fur

weitere Managementfunktionen, beispielsweise der Fehlersuche oder der Prasentation fur
einen Benutzer.

Fehlerinformation

Der von einem Trader vermittelte Dienst wird im Regelfall im Anschlu? daran von einem
Klienten angefordert. Daher sollte aus Effizienzgriinden der Trader den Zustand eines Servers
uberprufen kbnnen und nicht funktionierende Server bei der Vermittlung tbergehen. Eine der
Hauptaufgaben des Fehlermanagement ist die Identifikation von aufgetretenen Fehlern, indem
Ereignisse aus dem System gesammelt, gefiltert und korreliert werden. Aufgetretenen Fehlern
kann dann durch geeignete Mal3hahmen entgegengewirkt werden.

Leistungsdaten

Ein Trader verwendet bei der Auswahl eines optimalen Dienstes haufig Leistungsdaten tber
einen Server, die sich entweder statisch aus prinzipiellen Mdglichkeiten eines Servers oder
dynamisch aus sich &ndernden Leistungsfaktoren ergeben. Das Leistungsmanagement
beschaftigt sich mit der Ermittlung von Leistungszahlen Uber ein Objekt des verteilten
Systems. Auch hier kdnnen statische Leistungszahlen (beispielsweise die MIPS-Zahl eines
Rechenknotens) oder dynamische Leistungsfaktoren ermittelt werden. Haufig werden Lei-
stungsdaten auch durch langfristige Beobachtungen und Trendanalysen gewonnen (Beispiel:
durchschnittliche Auslastung).

Kosten

Die Kosten einer angeforderten Dienstleistung kdnnen ein wesentlicher Faktor bei der Aus-
wahl eines Dienstes sein. Ein Trader muf3 daher tUber die Tarife eines Dienstes und einzelner
Operationen informiert sein. Das Abrechnungsmanagement beschaftigt sich mit genau dieser
Gestaltung von Tarifen und mit der Sammlung von Abrechnungsinformation.

Sicherheit

Ein Trader sollte nur Dienste vermitteln, die fir einen Klienten auch verfligbar sind. Es ist
daher wichtig, daR bei der Dienstauswahl auch die Uberprifung der Autorisierungsrechte
erfolgt. Dies mufl3 natirlich eng mit dem Sicherheitsmanagement zusammenarbeiten, welches
die Autorisierungsrechte verwaltet.

Aus den aufgezahlten Beispielen lafit sich unschwer erkennen, daf3 ein enger Zusammenhang
zwischen einem Tradingsystem und dem Managementsystem fur die verteilten Dienste
besteht. Ein integrierter Ansatz bei der Behandlung beider Systeme ist daher erforderlich.

3.0 Integrationskonzepte

Es gibt eine Reihe von unterschiedlichen Konzepten, wie Trading und Management integriert
werden konnen:

Vollstandige Integration

Bei der vollstandigen Integration wird das Trading als eine spezielle Managementfunktion auf-
gefaldt, woraufhin Interaktionen mit dem Trader dann mit Hilfe von Managementprotokollen
erfolgen. Dieser Ansatz hat den Vorteil, dal3 sowohl im Trader als auch in dem Managementsy-
stem ein einheitliches Informationsmodell verwendet wird. Es sind daher keine aufwendigen
Abbildungsschritte notwendig. Managementframeworks nach dem OSI- oder CORBA-Stan-
dard erlauben eine vollstandige Abbildung der Trader-Schnittstelle auf das Interface eines Tra-
der-MOs. Es mul3 sich jedoch zeigen, ob eine solche Lésung dem Traderproblem angemessen
ist. Weiterhin erzwingt diese Losung die vollstandige Ablésung bestehender Trading-Systeme
und den Ersatz durch ein entsprechendes Trader-MO.

Hierarchische Integration
Der Trader bildet eine Anwendung, die auf Managementinformation zugreift. Diese Losung
ermdglicht es, das Managementsystem unabhangig von dem Trader zu halten. Es besitzt eine

einfache und klare Struktur. Der Trader muf3 das Informationsmodell des Managementsystems
auf das eigene Informationsmodell abbilden. Die Schnittstelle des Managementsystems muf3
derart gestaltet werden, dal3 es die bendtigte Managementinformation effizient dem Trader zur
Verfligung stellen kann. Aus der Sicht des Traders ist dies eine ausreichende Lésung. Jedoch
werden hierbei die Mdglichkeiten des Traders zur Steuerung des Systems nicht ausgenutzt.
Beispielsweise kann die Auswahl eines Dienstes durch das Systemmanagement beeinflul3t
werden. Dazu muR3te das Management auf den Trader zugreifen kdnnen, was bei eines strikt
hierarchischen Integration nicht moglich ist.

Gleichberechtigte Integration

Bei der gleichberechtigten Integration stellen beide Systeme eine Schnittstelle zur Verfigung,
Uber die das andere zugreifen kann. So kann der Trader sich Uber die Fehlerinformation des
Managementsystems informieren, wahrend das Managementsystem den Auswahlprozel3 durch
die Definition geeigneter Regeln (Politiken) beeinflussen kann. Wéahrend der Instanziierung
einer Managementfunktion kann durch den Trader eine geeignete Ausfiihrungsumgebung
ermittelt werden, u.v.m. Es mul3 jedoch sehr stark darauf geachtet werden, dafl3 die wechselsei-
tigen Nutzungen nicht zu Deadlock-Situationen fuhren.

Die vollstandige Integration vereinigt beide System auf der Basis gemeinsamer Kommunikati-
onsprotokolle und einem einheitlichen Informationsmodell. Auf Grund der bereits bestehen-
den getrennten Entwicklungen wird dies in der Praxis selten der Fall sein. Die hierarchische
Integration ist ein einfaches Modell, welches fiir den Trader durchaus ausreichend sein mag.
Es bericksichtigt jedoch die Anforderungen des Management nur unzureichend. Eine gleich-
berechtigte Integration birgt die Problematik, dafd die Interaktionen zwischen den System sehr
sorgfaltig entworfen werden missen, um Verklemmungen und gegenseitige Abhangigkeiten
zu vermeiden. Es ergeben sich aber viele Mdglichkeiten, die Ansatze beider Gebiete gemein-
sam zu nutzen.

4.0 Die MELODY-Architektur

Das MELODY-System (Management Environment for Large Open Distributed sYstems)
beinhaltet eine Trader-Komponente und ein verteiltes Managementsystem fir verteilte Anwen-
dungen. Trader und Managementsystem sind in erster Linie hierarchisch integriert, d.h. der
Trader nutzt die Moglichkeiten des Managementsystems, um

» auf dynamische Zustandsinformation von Anwendungskomponenten zuzugreifen,
» die Verfugbarkeit eines Dienstes zu Uberprifen,
» Uber aufgetretene Fehler informiert zu werden,

» Uber kontinuierliche Eigenschaften eines Dienstes (beispielsweise prozentuale Verfligbar-
keit) informiert zu sein

» sich Uber Umgebungs-Eigenschaften eines Dienstes (z.B. Systemlast, Netz-Roundtripzeiten
zwischen Klient und Server, u.v.m.) zu informieren.

Im Trader sind jedoch auch Vorkehrungen getroffen, um Managementpolitiken durchzusetzen.
So kénnen im Trader Regeln gespeichert werden, die bei einer Dienstauswahl durch den Tra-
der direkt angegeben, indirekt durch den Trader durchgesetzt werden oder als DEFAULT-Aus-
wahlkriterium gelten. Hier werden erste Ansatze fir eine gleichberechtigte Integration
sichtbar. Im folgenden wird die Trader-Architektur vorgestellt, bevor auf die Eigenschaften des
Managementsystems eingegangen werden.

4.1 Die Architektur und das Informationsmodell des Traders

Der MELODY-Trader (Wira94) besteht aus einem Trader User Agent (TUA) und einem Tra-
der Service Agent.(TSA). Der TUA kommuniziert mit dem TSA. Der TSA flhrt die eigentli-

chen Trader-Operationen aus. Er speichert den Kontextbaum, den Diensttyp-Graphen und die
Dienstangebote. Ein Operationsmodul fihrt auf den Trader-Datenstrukturen die Traderopera-
tionen aus. Das Managementmodul stellt Managementinformation tber den Trader bereit und
kommuniziert mit dem Managementsystem.

insertType insertContext insertService
deleteType deleteContext deleteService
listType/s listContext/s listService
mo |§/Type \ v / modifyService
isAvailable searchService
getHost Trader User selectService
Agent

Trader Service Agent

Management- Operation-
odul Modul
Kontextbaum Diensttypgraph
Dienstangebot ~

Fakultat Informatik MELOD
V. ServiceTypl ServiceTyp2

IFI
V IS
\ - Interface

- Selektionsregeln

ServiceA - Diensttypattribute
- Dienstattribute

Der TUA bietet die Operationen des Traders einem Tradernutzer (Klient, Server oder System-
manager) an und wird zu einem entsprechenden Programm hinzugelinkt. Es existieren ein gra-
phisches und ein textbasiertes Interface, mit dem die entsprechenden Traderoperationen direkt
aufgerufen werden kénnen.

Dienstangebot und Dienstattribute

Ein Dienstangebot besteht aus dem Namen des Dienstes, dem Diensttyp und den Dienstattribu-
ten. Dienstattribute kbnnen aus verschiedenen Quellen stammen. Beispielsweise sind statische
Attribute im Trader gespeichert, wahrend auf dynamische Attribute mit Hilfe des MELODY-
Managementsystems zugegriffen werden mul3. Andere Zugriffsarten, beispielsweise auf persi-
stente Information in einer Datenbank, sind denkbar. Um diese Zugriffsheterogenitat zu ver-
bergen, wird dasAccess Location Object (ALOkingefuhrt, das eine abstrakte
Zugriffsmoglichkeit auf den Wert eines Attributs bietet. In Abhangigkeit von der Art des Attri-
buts wird ein von einem ALO abgeleitetes Objekt instanziiert, welches die geforderte Zugriffs-
art verwendet.

startAccess —m-
requestValue —m-
getValue —
readValue —»
modifyALO —
stopAccess —m

(Quellen-Referenzen)

(Verwaltungsinformationen)

Trader-Interface
Quellen-Interface

(Zugrifssspezifikation)

Zugriffsschemata
Bei einigen Attributen hangt der Zugriff noch von dem Wert anderer Variablen ab, beispiels-

weise dem Ort des Diensterbringers. Hierzu kénnen durchoemss Location Template (ALT)
Zugriffsschemata definiert werden. Beispielsweise ist die Systemlast ein Dienstattribut, das
durch das ALT definiert wird. Diese ALT enthalt eine Variable fir den Rechner, auf dem der
Dienst lauft. Beim Zugriff auf ein Dienstattribut werden die ALT-Variablen im Kontext des
konkreten Dienstes evaluiert. Beim Beispiel der Systemlast wird bei der Verwendung des
Attributs dynamisch der Rechner bestimmt, auf dem der konkrete Dienst lauft und dann auf
dessen Systemlast zugegriffen.

Selektions- und Optimierungskriterien

Bei der Dienstauswahl kann ein Auswahl- und ein Optimierungskriterium angegeben werden.
Das Auswabhlkriterium ist ein boolscher Ausdruck, wogegen das Optimierungskriterium eine
Vergleichszahl zur Ordnung der Dienste liefert. Beide Ausdriicke beinhalten Dienstattribute
oder Zugriffsschemata. Selektions- und Optimierungskriterien kénnen im Trader gespeichert
werden und mit Hilfe eines Namens referenziert werden. Dies vereinfacht z.B. dem Klienten
die Angabe von Auswabhlkriterien, da er nur einen definierten Namen und keinen Ausdruck
angeben muf3. Durch die Indirektion kann auch das Systemmanagement unabhéangig von den
Klienten die Auswahlkriterien beeinflussen. Neben diesen expliziten Auswahlregel, gibt es
noch DEFAULT-Regeln, die beim Diensttyp angegeben werden kénnen. Diese werden ausge-
wahlt, wenn der Klient keines explizites Auswahlkriterium angibt. Weiterhin gibt es noch
implizite Auswahlregel, die im Trader gespeichert sind. Diese werden implizit zu einem vorge-
gebenen Kriterium hinzugefigt.

4.2 Das MELODY-Managementsystem

Das MELODY-Managementsystem besteht aus einem Management-Agenten (MMA), der auf
jedem Systemknoten lauft. Komponenten einer Anwendung (oder eines Dienstes) melden sich
beim MMA an und stellen ihre Managementinformation zur Verfigung. Eine Managementan-
wendung greift mit Hilfe ihres lokalen MMA auf Managementinformation zu. Hierzu kommu-
nizieren die MMAS verschiedener Systeme.

Managed Objects (MOs)

MOs repréasentieren die Managementinformation einer Anwendung. Sie besitzen einen globa-
len Namen, beschreibende Attribute, eine Reihe von moglichen Events und Aktionen. Der glo-
bale Name identifiziert das MO eindeutig und l&3t sich zu der Knotenadresse des MOs
auflésen. Attribute kdnnen synchron oder asynchron gelesen und geschrieben werden.
Genauso kann die Strukturinformation eines MOs (Anzahl und Typ der Attribute, Anzahl,
Name und Parametertyp der Events, Anzahl, Name und Parametertyp der Aktionen) dyna-
misch gelesen werden.

Das MELODY-Managementsystem unterstitzt das Anlegen von Kopien von entfernten MOs
auf dem eigenen Knoten (Schattenobjekte). Diese Schattenobjekte sind eine inkonsistente
Kopie des Originalobjekts. Das Managementsystem sorgt dafir, daf’ vorgegebene Aktualitats-
anforderungen beim Zugriff auf das Schattenobjekt eingehalten werden ([Kova93], [Helb92]).
Dabei wird dynamisch eine optimale Zugriffsstrategie ausgewahlt (Direct Access oder Repor-

ting).

Managing Objects (MngO)

MngO sind Objekte, die eine Managementfunktion ausfiihren. Beispielsweise kann eine
MngO die Verfugbarkeit einer laufenden Anwendungskomponente tberwachen. MngO kon-
nen dynamisch auf sogenannten Object Servern instanziiert werden und berechnen abgeleitete
(indirekte) Information Uber eine Anwendungskomponente. MngO kdnnen auch Informatio-
nen Uber das jeweilige System, tber die Verzégerung zwischen zwei Knoten, u.v.m. liefern.

4.3 Zusammenarbeit zwischen Trader und Managementsystem

Dynamische und indirekte Attribute
Das Managementsystem stellt die dynamischen und die indirekten Attribute eines Dienstes zur

Verfligung, indem mit dem Dienstangebot die entsprechenden Angaben Uber die Beziehung
zwischen einem Dienstattribut und einem Managementattribut exportiert werden. Weiterhin
kann der Trader MngO instanziieren, um eine Anwendungskomponente zu tGberwachen und
um beobachtete (indirekte) Information Uber die Komponente zu erhalten. Die Vorgehensweise
hierbei folgt strikt der hierarchischen Integration, da das Tradingsystem das Managementsy-
stem verwendet.

Die Auswertung eines Auswahlkriteriums erfolgt in zwei Stufen. In der ersten Stufe werden
die Teilausdrucke bewertet, die nur statische Attribute besitzen. Hat sich dann kein Ergebnis
ergeben, so erfolgt der Zugriff auf dynamische Attribute. Der Zugriff kann in unterschiedlicher
Weise erfolgen:

» Synchron - Jeder Attributzugriff wird synchron durchgefihrt

» Asynchron - Alle Attributzugriffe eines Dienstes werden angestol3en, bevor auf die Ergeb-
nisse gewartet wird.

» Parallel - es stehen eine Anzahl Threads bereit, die jeweils ein Dienstangebot auswerten.

Diese Ansatze reduzieren die Antwortzeiten von Anfragen mit dynamischen Parametern
erheblich. Jedoch besteht weiterhin das Problem, dal? bei einer groRen Menge an zutreffenden
Diensten viele Netzzugriffe und somit ein hohe Kommunikationsaufwand entsteht. Eine wei-
tere Reduzierung kann durch ein lokales Cachen der Information erreicht werden. Dabei mis-
sen jedoch unterschiedliche Eigenschaften der Attribute (z.B. Anderungsfrequenz, die
Wichtigkeit akkurater Information) berticksichtigt werden.

Fehlermeldungen

Das Managementsystem kann Ereignisnachrichten direkt an den Trader weitergeben. Diese
informieren ihn z.B. Uber den Absturz eines Servers. Dieser kann dann als nicht verflgbar
markiert werden und bei spateren Vermittlungen nicht bertcksichtigt werden.

Auswahlregel

Im Trader kbnnen durch das Systemmanagement Auswahlregeln gespeichert werden, die bei
der Dienstauswahl referenziert werden. Durch diese Indirektion kann das Systemmanagement
Einflu3 auf die gewahlte Auswahlstrategie nehmen. Mit Hilfe von impliziten und DEFAULT-
Regel kdnnen weitere Verhaltensmuster fir die Dienstnutzung erzwungen werden.

Ressourcenmanagement

Der MELODY-Trader kann die Mdglichkeiten des Managementsystems nutzen, um in einem
Server Reservierungen fir den Klienten vorzunehmen. Implementiert wurde eine einfache, auf
einem Timeout-basierende Reservierungsstrategie.

5.0 Leistungsmessungen

Die folgenden Leistungsmessungen wurden anhand eines Beispielszenarios durchgefiihrt bei
dem ein Compiledienst durch den Trader vermittelt wurde. Als dynamische Attribute dienten
die Anzahl der Compile-Jobs in der Warteschlange, die bisherige mittlere Bearbeitungszeit, die
Systemlast des zugehorigen Knotens (ein indirektes Attribut), u.a. Messungen wurden mehr-
fach durchgefuhrt und Extremwerte eliminiert. Die Last auf den einzelnen Rechnern, sowie
auf dem Netz wurde minimiert. Gemessen wurde auf IBM RS/6000-Workstations unter AlX,
die durch ein Ethernet verbunden sind.

Die Ergebnisse demonstrieren das Systemverhalten fir die folgenden Einstellungen:

» Keine Aktualitatspradikate / keine Parallelitat:

Synchron Asynchron
8 T T T T T 8 T T . T T
7 7k _
6 6 I 4
= =
oS 505 1
o)) o))
c c
2 4 3 4+
E E
IS 3 = 3F
> 3
2 2k
1 1k
0 . L L 0 L ! I
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Anzahl Compile Server Anzahl Compile Server

Unterschiedliche Linien in dem Diagram zeigen eine steigende Anzahl von dynamischen Para-
metern. Der asynchrone Zugriff flhrt zu einer deutlichen Verbesserung der Vermittlungszeiten.
Wie zu erwarten bleibt der Aufwand bei nur einem dynamischen Attribut gleich.

» Keine Aktualitatspradikate / Parallelitét:

Synchron Asynchron

T T T T T 8 T T T T T

Vermittlungszeit
S
T
1
Vermittlungszeit
S
T
1

0 1 | | | | 0 1 1 | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Anzahl Compile Server Anzahl Compile Server

Innerhalb des Traders existiert eine vordefinierte Anzahl von Threads. Die Berechnung der
Auswahlkriterien fur einzelne Dienstangebote wird jeweils einem Thread tbergeben. Durch
die parallele Auswertung ergeben sich dann kaum noch Unterschiede zwischen der synchronen
und der asynchronen Auswertung, da die Wartezeiten auf Riuckantworten durch parallel arbei-
tende Threads genutzt wird. Die Knicke in den Kurven lassen sich durch die Anzahl der einge-
setzten Threads (in der Mel3reihe drei) begrinden..

» Aktualitdtspradikate / keine Parallelitat

Synchron Asynchron

8 T T T T T 8 T T T T T

7F — 7k 4

6 - — 6 4
2 2
2 4 3 4+ E
: =
= 3 - = 3 - -
s S

2 F 2k

1 1r B

0 1 1 1 1 0 1 1 1 1

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Anzahl Compile Server Anzahl Compile Server

In diesem Beispiel wurden fur die eingesetzten dynamische Attribute sinnvolle, aber unter-
schiedliche Aktualitatspradikate gesetzt. Da es bei Aktualitdtspradikaten auch auf die Fre-
guenz der Zugriffe ankommt, damit der Cache gefullt ist, wurde vor den Messungen erst eine
Einschwingphase vorneangestellt, die den Cache gut fullt.

6.0 Zusammenfassung und Ausblick

Das vorliegende Paper motiviert die Bedeutung von Flexibilitat und Systemkontrolle fir
zuklnftige verteilte Systeme. Es zeigt auf, da die beiden Forschungsgebiete Trading und
Management verteilter Systeme zentrale Themen fur diese Aufgabenstellung sind. Es fuhrt in
die aktuelle Forschung ein und zeigt die engen Querbezige auf. Es werden Anséatze zur Inte-
gration besprochen und eine Realisierung anhand des MELODY-Systems gezeigt. Dabei wer-
den einige Detailprobleme herausgegriffen, genauer erlautert und die gefundenen Losungen
durch Messungen bestatigt.

Bei den Messungen muf3 die Skalierbarkeit der Lésungen noch nachgewiesen werden. Weiter-
hin &3t sich erwarten, dal} sich die Zusammenarbeit zwischen Managementsystem und Trader
noch weiter verbessern laf3t - z.B. durch eine bessere Zusammenarbeit beim Starten von Dien-
sten, durch Verbesserungen bei der Fehlertoleranz oder durch bessere Ressourcenmanage-
mentstrategien. Hier ergeben sich noch eine Reihe von offenen und interessanten
Fragestellungen.

Literatur:

[ANSA91] ANSA. ANSAware 3.0 Implementation Manual. Manual RM.097.01, Architecture Pro-
jects Management Limited, February 1991.

[BeRa91] Mirion Bearman, Kerry Raymond. Federating Traders: an ODP Adventure. In Jan de Meer,
Volker Heymer (Hrsg.)Proceedings of the International IFIP Workshop on Open Distri-
buted Processingl991.

[Helb92] Tobias K. Helbig. Strategien zur Einhaltung von Aktualitatsanforderungen. Diplomarbeit
Nr. 944, Universitat Stuttgart, Institut fir Parallele und Verteilte Hochstleistungsrechner,
Stuttgart, Dezember 1992.

[1ISO92] ISO. Working Document on Topic 9.1 - ODP Traféorking paper of the ISO/IEC JTC1/
SC21/WGT7: N704May 1992.

[Kova93] Ernd Kovacs. Automatic Selection of an Update Strategy for Management Rxacée-
dings of the IEEE First International Workshop on Systems Management (IWSMiS3)
Angeles, April 1993.

[Mars93] Lindsay F. Marshall. Representing Management Policy Using Contract Obje&&Hn
First International Workshop On Systems Manageaod Angeles, April 1993. IEEE.

[OMG91] OMG. The Common Object Request Broker: Architecture And Specification. Technischer
Bericht 91.12.1, Object Management Group, December 1991.

[OSF91] OSF. The OSF Distributed Management Environment - A White Paper. Technischer Be-
richt, OSF, January 1991.

[Rose91] Marshall T. Ros&he simple book : an introduction to management of TCP-IP -based in-
ternets Prentice-Hall series in innovative technology. Prentice Hall, Englewood Cliffs, NJ,
1991. XXIX, 347 S.

[SMTK93] M. Sloman, J. Magee, K. Twidle, J. Kramer. An Architecture For Managing Distributed
Systems. IiProceedings of the 4th Workshop on Future Trends in Distributed SySems
40-46. IEEE, 1993.

