
Trading und Management verteilter Anwendungen:
zentrale Aufgaben für zukünftige verteilte Systeme

Ernö Kovacs
Universität Stuttgart, Institut für parallele und verteilte Höchstleistungsrechner (IPVR),
Breitwiesenstr. 20-22, 70565 Stuttgart, e-mail: ernoe.kovacs@informatik.uni-stuttgart.de

1.0 Einleitung

Die zukünftige Arbeitswelt wird infolge der Orientierung hin zu flexiblen und anpassungsfähi-
gen Organisationsstrukturen aus kleinen, schnell änder- und anpaßbaren Arbeitseinheiten
bestehen. Diese erfordern den verstärkten Einsatz von neuen Informations- und Telekommuni-
kationstechniken um die anstehenden Aufgaben in Büro, Verwaltung, Produktion und Ferti-
gung effizient erledigen zu können. Diese neuen Techniken werden den Nutzern weit über das
heutige Maß hinausgehende Kommunikations- und Kollaborationsmöglichkeiten im verteilten
System geben. Beispiele hierfür sind multimediale Gruppenkommunikation, synchrone und
asynchrone Telekooperationstechniken (z.B. gemeinsam bearbeitbare Objekträume oder eine
verteilte Vorgangssteuerung) oder der Einsatz persönlicher Agenten, die im Netz vorhandene
Dienste nutzen, um benutzerdefinierte Aufgaben zu erledigen.

Existierende Konzepte für Rechnerkommunikation und verteilte Systeme sind dabei nur sehr
bedingt einsetzbar. Einfache Client-Server Systeme unterstützen eine eher statische Vertei-
lungsstruktur, die zwar gewisse Freiheitsgrade bei der Plazierung von Servern (Ortstranspa-
renz) und bei der Zuordnung von Klienten erlaubt, jedoch wenig Möglichkeiten zur
dynamischen und flexiblen Anpassung der Systemstrukturen bietet. Es fehlen Möglichkeiten,
Systemstrukturen rasch und automatisch an Änderungen anzupassen, sowie auf die Dynamik
eines verteilten Systems - beispielsweise auf Änderungen der Last- oder Fehlersituationen -
geeignet zu reagieren. Eine Serverauswahl findet meist nur auf Grund eines vordefinierten Kri-
teriums statt, wobei nur selten eine Optimierung unter Berücksichtigung von statischen und
dynamischen Eigenschaften stattfindet. Eine Steuerung der Vielzahl der beteiligten Kompo-
nenten und der verteilten Abläufe durch ein Systemmanagement wird nur unzureichend unter-
stützt.

Um die geforderte Flexibilität und Anpaßbarkeit an sich ändernde Randbedingungen, sowie
die Zuverlässigkeit und Kontrollierbarkeit der Systeme zu erlangen, müssen die eingesetzten
Entwurfsmethoden und Entwicklungsprinzipien in Hinsicht auf diese Anforderungen weiter-
entwickelt werden. Weiterhin muß die Überwachung und Steuerung berücksichtigt werden,
wobei das Verhalten ganzer Klassen von Objekten des Systems einfach und gezielt angepaßt
werden muß. Dies muß jedoch einhergehen mit geeigneten Abstraktionen für die Erstellung
solcher Systeme, sowie die Delegation ganzer Aufgabenbereiche an entsprechende System-
funktionen (beispielsweise Ressourcenmanagement).

Während verteilte objektorientierte Systeme auf der Basis des OMG-Standards ([OMG91])
das Gewicht auf Interoperabilität und Portabilität legt, adressieren die Gebiete Trading
([ANSA91], [ISO92]) und Management verteilter Systeme die Probleme Flexibilität, Anpaß-
barkeit und Steuerung des Systems. Mit diesen letztendlich entscheidenden Kriterien für die
Akzeptanz eines Systems stellen beide Gebiete zentrale Aufgaben zukünftiger verteilter
Systeme dar. Eine nähere Untersuchung zeigt, daß sehr ähnliche Ansätze verfolgt werden. Es

Erschienen im Tagungsband zum 1.Aachener Arbeitstreffen
“Neue Konzepte für die Offene Verteilte Verarbeitung”
5. September 1994, Aachen, ISBN 3-86073-143-2

wird jeweils Konfigurationsinformation über das System gesammelt und geeignet eingesetzt.
Fehlerinformation wird ausgewertet, korreliert und geeignet berücksichtigt. Der Ablauf eines
verteilten Vorgangs wird durch beide Systeme beeinflußt. Es liegt daher nahe, diese Gebiete in
einem integrierten Ansatz zu untersuchen.

Der vorliegende Bericht ist wie folgt gegliedert: Im Anschluß an diesen Abschnitt wird auf den
Stand der Forschung in beiden Gebieten eingegangen und bestehende Gemeinsamkeiten iden-
tifiziert. Dann wird die prinzipielle Vorgehensweise bei der Integration beider Gebiete disku-
tiert. Im Anschluß daran wird die Architektur des MELODY-Systems vorgestellt und einige
Detailaspekte der Integration besprochen. Der Schwerpunkt wird dabei auf die Optimierung
bei dem Zugriff auf dynamische Zustandsinformation und der Einsatz dieser Optimierungen
im MELODY-Trader gelegt. Der Effekt dieser Optimierungen wird mit Hilfe von Messungen
belegt. Am Ende wird eine Zusammenfassung und ein Ausblick gegeben.

2.0 Stand der Forschung

2.1 Trading

Der Gedanke des Tradings entwickelte sich aus der Idee, die Informationen eines Nameservers
zu erweitern und damit einen Yellow-Page Dienst zu erbringen. Dieser Auskunftsdienst
berücksichtigt vor allen Dingen die Funktionalität und das dadurch geprägte Interface eines
Dienstes im verteilten Systems. Er ermöglicht zu einem gegeben Funktionalitäts- oder Inter-
facespezifikation einen geeigneten Diensterbringer im verteilten System zu finden. Das Tra-
ding erlaubt neue Freiheitsgrade bei der Dienstauswahl, indem mit Hilfe einer Subtyp- oder
Kompatibilitätsrelation die Auswahlmöglichkeiten auf verschiedene, gleichermaßen verwend-
bare Diensttypen erweitert wird. Insbesondere in verteilten objektorientierten Systemen kön-
nen so auch Objekte einer abgeleiteten Klasse gefunden werden. Diese Möglichkeit erlaubt die
gezielte Weiterentwicklung von Diensten unter Beibehaltung einer Aufwärtskompatibilität
([ANSA91]).

Eigenschaften eines Dienstes werden mit Hilfe von beschreibenden Attributen ausgedrückt.
Diese können bei dem Trading-Vorgang berücksichtigt werden und im Auswahl- und Optimie-
rungsprozeß eingesetzt werden. Bei Attributen wird zwischen statischen und dynamischen
Attributen unterschieden. Dynamische Attribute ändern ihren Wert im Lauf der Zeit und erfor-
dern daher geeignete Maßnahmen auf die neue Information zuzugreifen oder die Änderungen
zu propagieren. Die Leistung eines Tradingsystems kann durch eine effiziente Gestaltung die-
ser Zugriffe sehr gesteigert werden.

Zur Strukturierung des Dienstangebots nach beliebigen organisatorischen, administrativen
oder individuellen Kriterien, werden Dienstangebote in Trading-Directories - dem Kontext-
baum (vergleichbar einem File-Directory) - eingetragen. Die Hierarchie dieser Directories
kann beliebig gestaltet werden. Beispielsweise kann eine geographische Lokalisation von
Diensten in der Hierarchie wiedergegeben werden. Die Directory-Hierarchie wird genutzt, um
den Suchbereich für Dienste einzuschränken.

Bei der Gestaltung des Tradingraums wird von einem einheitlichen, hierarchischen Dienst-
raum (wie er z.B. in einem X.500 System besteht) abgesehen. Es werden getrennte Tradingdo-
mänen vorgesehen, innerhalb derer ein einheitliches Tradingsystem etabliert ist.
Tradingdomänen können auf unterschiedliche Arten zusammenarbeiten. Bei föderativen Tra-
dern ([BeRa91]) wird ein Trading-Kontrakt etabliert, der definiert, welche Diensttypen aus
einer Tradingdomäne in einer anderen sichtbar sind, welche Abbildungen von Diensttypen
dabei vorgenommen werden müssen und welche Teile des jeweiligen Dienstraumes exportiert
werden.

2.2 Management verteilter Systeme

Das Management verteilter Systeme beschäftigt sich mit der Beobachtung und Steuerung ver-
teilter Systeme. Das verteilte System wird dabei als eine Sammlung vonManaged Objects
(MOs) aufgefaßt, die jeweils eine reale Ressource repräsentiert- beispielsweise ein Gerät der
Netzinfrastruktur, ein Systemobjekt oder eine Anwendungskomponente. Eine Manipulation
des MOs wirkt auf die reale Ressource ein. Diese Manipulationen werden durch geeignete
Managementfunktionen überwacht und gesteuert. Managementfunktionen werden durch
Managing Objects (MngOs) erbracht.

Zur Reduzierung der mit der Vielzahl von anfallenden Managementaufgaben verbundenen
Komplexität, werden Managementaufgaben häufig nachFunktion, Lebensbereich undZielob-
jektkategorisiert. Die Funktion kann weiter in die fünf BereicheKonfiguration, Fehlerbehand-
lung, Leistungsmanagement, Abrechnung und Sicherheit unterteilt werden. Innerhalb der
Kategorie Lebensbereich werden die PhasenPlanung, Entwurf, Installation, Betrieb und
Migration unterschieden, bei den Zielobjekten hingegend die BereicheNetzwerk, (End-)
System undAnwendungen.

Entwicklungen im Bereich Netzwerk- und Systemmanagement haben bereits Produktstatus
erlangt. Hier gibt es mit SNMP ([Rose91]) und den OSI-Managementprotokollen auch eine
standardisierte Basis. Für den Bereich Management einer verteilten Anwendung existieren
jedoch nur wenig Erfahrungen. SNMP dürfte sich hier als zu starr und unflexibel erweisen. Die
objektorientierten Ansätze des OSI Management sind eine ausreichende Basis, jedoch fehlt es
noch an konkreten Erprobungen und geeigneten Entwicklungsunterstützung. Ansätze wie das
Object Management Framework des DME ([OSF91]) beruhen auf dem CORBA-Standard,
haben jedoch noch keine konkreten Ergebnisse erzielen können. Allgemein wird SNMP als de-
facto Standard akzeptiert, Lösungen auf der Basis des OSI- oder des DME-Framework als die
Zukunft angesehen. Proprietäre Lösungen werden noch auf lange Jahre gute Chance am Markt
haben.

Das Management großer verteilter System muß ebenfalls verteilt sein, um mit der Größe des
Systems umgehen zu können, sowie um eine Überlastung der Managementstation und der
Netzwerke zu vermeiden. Hier bietet sich eine hierarchische Dekomposition der Management-
funktionen an. Einzelne Funktionen dieser Dekomposition können dann auf verschiedenen
Knoten des Netzes ausgeführt werden. Übergeordnete Managementfunktionen führen die
Ergebnisse der untergeordneten Funktionen zusammen. Interessanterweise kann ein Trader bei
der Auswahl eines geeigneten Ausführungsorts für eine Managementfunktion eingesetzt wer-
den. Hilfestellung kann dabei die Strukturierung von MOs in (hierarchisch strukturierte)
Managementdomänen ([SMTK93]) sein. Mit Hilfe dieser Strukturierung können Gruppen von
MOs gebildet werden. EineManagementpolitik ([Mars93]) definiert für eine Gruppe von MOs
eine gemeinsames Verhaltensmuster. Mit Hilfe von Politiken können große verteilte Systeme
einheitlich verwaltet werden. Eine Änderung einer Politik muß dann eine Verhaltensänderung
bei allen betroffenen Objekten nach sich ziehen.

Die Forschung auf den Gebieten Management verteilter Anwendungen, verteiltes Manage-
ment, Managementdomänen und Managementpolitiken ist jedoch noch nicht sehr weit fortge-
schritten, so daß akzeptierte und vereinigende Ansätze fast vollständig fehlen.

2.3 Gemeinsamkeiten

Beide Gebiete haben eine Reihe von Gemeinsamkeiten, die eine integrierte Untersuchung
erforderlich machen. Eine Reihe Gemeinsamkeiten wird im folgenden aufgezählt:

Konfigurationsinformation
Auf der Basis der exportierten Konfigurationsinformation selektiert der Trader geeignete Dien-
sterbringer. Beim Management verteilter Systeme wird Konfigurationsinformation von Mana-
gementfunktionen gesammelt und geeignet gespeichert. Sie bildet dann die Grundlage für

weitere Managementfunktionen, beispielsweise der Fehlersuche oder der Präsentation für
einen Benutzer.

Fehlerinformation
Der von einem Trader vermittelte Dienst wird im Regelfall im Anschluß daran von einem
Klienten angefordert. Daher sollte aus Effizienzgründen der Trader den Zustand eines Servers
überprüfen können und nicht funktionierende Server bei der Vermittlung übergehen. Eine der
Hauptaufgaben des Fehlermanagement ist die Identifikation von aufgetretenen Fehlern, indem
Ereignisse aus dem System gesammelt, gefiltert und korreliert werden. Aufgetretenen Fehlern
kann dann durch geeignete Maßnahmen entgegengewirkt werden.

Leistungsdaten
Ein Trader verwendet bei der Auswahl eines optimalen Dienstes häufig Leistungsdaten über
einen Server, die sich entweder statisch aus prinzipiellen Möglichkeiten eines Servers oder
dynamisch aus sich ändernden Leistungsfaktoren ergeben. Das Leistungsmanagement
beschäftigt sich mit der Ermittlung von Leistungszahlen über ein Objekt des verteilten
Systems. Auch hier können statische Leistungszahlen (beispielsweise die MIPS-Zahl eines
Rechenknotens) oder dynamische Leistungsfaktoren ermittelt werden. Häufig werden Lei-
stungsdaten auch durch langfristige Beobachtungen und Trendanalysen gewonnen (Beispiel:
durchschnittliche Auslastung).

Kosten
Die Kosten einer angeforderten Dienstleistung können ein wesentlicher Faktor bei der Aus-
wahl eines Dienstes sein. Ein Trader muß daher über die Tarife eines Dienstes und einzelner
Operationen informiert sein. Das Abrechnungsmanagement beschäftigt sich mit genau dieser
Gestaltung von Tarifen und mit der Sammlung von Abrechnungsinformation.

Sicherheit
Ein Trader sollte nur Dienste vermitteln, die für einen Klienten auch verfügbar sind. Es ist
daher wichtig, daß bei der Dienstauswahl auch die Überprüfung der Autorisierungsrechte
erfolgt. Dies muß natürlich eng mit dem Sicherheitsmanagement zusammenarbeiten, welches
die Autorisierungsrechte verwaltet.

Aus den aufgezählten Beispielen läßt sich unschwer erkennen, daß ein enger Zusammenhang
zwischen einem Tradingsystem und dem Managementsystem für die verteilten Dienste
besteht. Ein integrierter Ansatz bei der Behandlung beider Systeme ist daher erforderlich.

3.0 Integrationskonzepte

Es gibt eine Reihe von unterschiedlichen Konzepten, wie Trading und Management integriert
werden können:

Vollständige Integration
Bei der vollständigen Integration wird das Trading als eine spezielle Managementfunktion auf-
gefaßt, woraufhin Interaktionen mit dem Trader dann mit Hilfe von Managementprotokollen
erfolgen. Dieser Ansatz hat den Vorteil, daß sowohl im Trader als auch in dem Managementsy-
stem ein einheitliches Informationsmodell verwendet wird. Es sind daher keine aufwendigen
Abbildungsschritte notwendig. Managementframeworks nach dem OSI- oder CORBA-Stan-
dard erlauben eine vollständige Abbildung der Trader-Schnittstelle auf das Interface eines Tra-
der-MOs. Es muß sich jedoch zeigen, ob eine solche Lösung dem Traderproblem angemessen
ist. Weiterhin erzwingt diese Lösung die vollständige Ablösung bestehender Trading-Systeme
und den Ersatz durch ein entsprechendes Trader-MO.

Hierarchische Integration
Der Trader bildet eine Anwendung, die auf Managementinformation zugreift. Diese Lösung
ermöglicht es, das Managementsystem unabhängig von dem Trader zu halten. Es besitzt eine

einfache und klare Struktur. Der Trader muß das Informationsmodell des Managementsystems
auf das eigene Informationsmodell abbilden. Die Schnittstelle des Managementsystems muß
derart gestaltet werden, daß es die benötigte Managementinformation effizient dem Trader zur
Verfügung stellen kann. Aus der Sicht des Traders ist dies eine ausreichende Lösung. Jedoch
werden hierbei die Möglichkeiten des Traders zur Steuerung des Systems nicht ausgenutzt.
Beispielsweise kann die Auswahl eines Dienstes durch das Systemmanagement beeinflußt
werden. Dazu müßte das Management auf den Trader zugreifen können, was bei eines strikt
hierarchischen Integration nicht möglich ist.

Gleichberechtigte Integration
Bei der gleichberechtigten Integration stellen beide Systeme eine Schnittstelle zur Verfügung,
über die das andere zugreifen kann. So kann der Trader sich über die Fehlerinformation des
Managementsystems informieren, während das Managementsystem den Auswahlprozeß durch
die Definition geeigneter Regeln (Politiken) beeinflussen kann. Während der Instanziierung
einer Managementfunktion kann durch den Trader eine geeignete Ausführungsumgebung
ermittelt werden, u.v.m. Es muß jedoch sehr stark darauf geachtet werden, daß die wechselsei-
tigen Nutzungen nicht zu Deadlock-Situationen führen.

Die vollständige Integration vereinigt beide System auf der Basis gemeinsamer Kommunikati-
onsprotokolle und einem einheitlichen Informationsmodell. Auf Grund der bereits bestehen-
den getrennten Entwicklungen wird dies in der Praxis selten der Fall sein. Die hierarchische
Integration ist ein einfaches Modell, welches für den Trader durchaus ausreichend sein mag.
Es berücksichtigt jedoch die Anforderungen des Management nur unzureichend. Eine gleich-
berechtigte Integration birgt die Problematik, daß die Interaktionen zwischen den System sehr
sorgfältig entworfen werden müssen, um Verklemmungen und gegenseitige Abhängigkeiten
zu vermeiden. Es ergeben sich aber viele Möglichkeiten, die Ansätze beider Gebiete gemein-
sam zu nutzen.

4.0 Die MELODY-Architektur

Das MELODY-System (Management Environment for Large Open Distributed sYstems)
beinhaltet eine Trader-Komponente und ein verteiltes Managementsystem für verteilte Anwen-
dungen. Trader und Managementsystem sind in erster Linie hierarchisch integriert, d.h. der
Trader nutzt die Möglichkeiten des Managementsystems, um

• auf dynamische Zustandsinformation von Anwendungskomponenten zuzugreifen,
• die Verfügbarkeit eines Dienstes zu überprüfen,
• über aufgetretene Fehler informiert zu werden,
• über kontinuierliche Eigenschaften eines Dienstes (beispielsweise prozentuale Verfügbar-

keit) informiert zu sein
• sich über Umgebungs-Eigenschaften eines Dienstes (z.B. Systemlast, Netz-Roundtripzeiten

zwischen Klient und Server, u.v.m.) zu informieren.

Im Trader sind jedoch auch Vorkehrungen getroffen, um Managementpolitiken durchzusetzen.
So können im Trader Regeln gespeichert werden, die bei einer Dienstauswahl durch den Tra-
der direkt angegeben, indirekt durch den Trader durchgesetzt werden oder als DEFAULT-Aus-
wahlkriterium gelten. Hier werden erste Ansätze für eine gleichberechtigte Integration
sichtbar. Im folgenden wird die Trader-Architektur vorgestellt, bevor auf die Eigenschaften des
Managementsystems eingegangen werden.

4.1 Die Architektur und das Informationsmodell des Traders

Der MELODY-Trader (Wira94) besteht aus einem Trader User Agent (TUA) und einem Tra-
der Service Agent.(TSA). Der TUA kommuniziert mit dem TSA. Der TSA führt die eigentli-

chen Trader-Operationen aus. Er speichert den Kontextbaum, den Diensttyp-Graphen und die
Dienstangebote. Ein Operationsmodul führt auf den Trader-Datenstrukturen die Traderopera-
tionen aus. Das Managementmodul stellt Managementinformation über den Trader bereit und
kommuniziert mit dem Managementsystem.

Der TUA bietet die Operationen des Traders einem Tradernutzer (Klient, Server oder System-
manager) an und wird zu einem entsprechenden Programm hinzugelinkt. Es existieren ein gra-
phisches und ein textbasiertes Interface, mit dem die entsprechenden Traderoperationen direkt
aufgerufen werden können.

Dienstangebot und Dienstattribute
Ein Dienstangebot besteht aus dem Namen des Dienstes, dem Diensttyp und den Dienstattribu-
ten. Dienstattribute können aus verschiedenen Quellen stammen. Beispielsweise sind statische
Attribute im Trader gespeichert, während auf dynamische Attribute mit Hilfe des MELODY-
Managementsystems zugegriffen werden muß. Andere Zugriffsarten, beispielsweise auf persi-
stente Information in einer Datenbank, sind denkbar. Um diese Zugriffsheterogenität zu ver-
bergen, wird das Access Location Object (ALO) eingeführt, das eine abstrakte
Zugriffsmöglichkeit auf den Wert eines Attributs bietet. In Abhängigkeit von der Art des Attri-
buts wird ein von einem ALO abgeleitetes Objekt instanziiert, welches die geforderte Zugriffs-
art verwendet.

Zugriffsschemata
Bei einigen Attributen hängt der Zugriff noch von dem Wert anderer Variablen ab, beispiels-

Management-
Modul

Operation-
Modul

Kontextbaum Diensttypgraph

Dienstangebot

Trader User
Agent

Trader Service Agent

Trader User
Agent

Management-
Modul

Operation-
Modul

Kontextbaum

Fakultät Informatik

IPVR

VS AS BV ISE

IFI

MELODY

ServiceTyp1 ServiceTyp2

ServiceTyp12

ServiceA

- Interface
- Selektionsregeln
- Diensttypattribute

- Dienstattribute

insertType
deleteType
listType/s
modifyType

insertContext
deleteContext
listContext/s

insertService
deleteService
listService
modifyService

isAvailable
getHost

searchService
selectService

Diensttypgraph

Dienstangebot

Tr
ad

er
-I

nt
er

fa
ce

Q
ue

lle
n-

In
te

rf
ac

e

Tr
ad

er
-I

nt
er

fa
ce

Q
ue

lle
n-

In
te

rf
ac

e

Quellen-Referenzen

Verwaltungsinformationen

Zugrifssspezifikation

startAccess
requestValue
getValue
readValue
modifyALO
stopAccess

weise dem Ort des Diensterbringers. Hierzu können durch einAccess Location Template (ALT)
Zugriffsschemata definiert werden. Beispielsweise ist die Systemlast ein Dienstattribut, das
durch das ALT definiert wird. Diese ALT enthält eine Variable für den Rechner, auf dem der
Dienst läuft. Beim Zugriff auf ein Dienstattribut werden die ALT-Variablen im Kontext des
konkreten Dienstes evaluiert. Beim Beispiel der Systemlast wird bei der Verwendung des
Attributs dynamisch der Rechner bestimmt, auf dem der konkrete Dienst läuft und dann auf
dessen Systemlast zugegriffen.

Selektions- und Optimierungskriterien
Bei der Dienstauswahl kann ein Auswahl- und ein Optimierungskriterium angegeben werden.
Das Auswahlkriterium ist ein boolscher Ausdruck, wogegen das Optimierungskriterium eine
Vergleichszahl zur Ordnung der Dienste liefert. Beide Ausdrücke beinhalten Dienstattribute
oder Zugriffsschemata. Selektions- und Optimierungskriterien können im Trader gespeichert
werden und mit Hilfe eines Namens referenziert werden. Dies vereinfacht z.B. dem Klienten
die Angabe von Auswahlkriterien, da er nur einen definierten Namen und keinen Ausdruck
angeben muß. Durch die Indirektion kann auch das Systemmanagement unabhängig von den
Klienten die Auswahlkriterien beeinflussen. Neben diesen expliziten Auswahlregel, gibt es
noch DEFAULT-Regeln, die beim Diensttyp angegeben werden können. Diese werden ausge-
wählt, wenn der Klient keines explizites Auswahlkriterium angibt. Weiterhin gibt es noch
implizite Auswahlregel, die im Trader gespeichert sind. Diese werden implizit zu einem vorge-
gebenen Kriterium hinzugefügt.

4.2 Das MELODY-Managementsystem

Das MELODY-Managementsystem besteht aus einem Management-Agenten (MMA), der auf
jedem Systemknoten läuft. Komponenten einer Anwendung (oder eines Dienstes) melden sich
beim MMA an und stellen ihre Managementinformation zur Verfügung. Eine Managementan-
wendung greift mit Hilfe ihres lokalen MMA auf Managementinformation zu. Hierzu kommu-
nizieren die MMAs verschiedener Systeme.

Managed Objects (MOs)
MOs repräsentieren die Managementinformation einer Anwendung. Sie besitzen einen globa-
len Namen, beschreibende Attribute, eine Reihe von möglichen Events und Aktionen. Der glo-
bale Name identifiziert das MO eindeutig und läßt sich zu der Knotenadresse des MOs
auflösen. Attribute können synchron oder asynchron gelesen und geschrieben werden.
Genauso kann die Strukturinformation eines MOs (Anzahl und Typ der Attribute, Anzahl,
Name und Parametertyp der Events, Anzahl, Name und Parametertyp der Aktionen) dyna-
misch gelesen werden.

Das MELODY-Managementsystem unterstützt das Anlegen von Kopien von entfernten MOs
auf dem eigenen Knoten (Schattenobjekte). Diese Schattenobjekte sind eine inkonsistente
Kopie des Originalobjekts. Das Managementsystem sorgt dafür, daß vorgegebene Aktualitäts-
anforderungen beim Zugriff auf das Schattenobjekt eingehalten werden ([Kova93], [Helb92]).
Dabei wird dynamisch eine optimale Zugriffsstrategie ausgewählt (Direct Access oder Repor-
ting).

Managing Objects (MngO)
MngO sind Objekte, die eine Managementfunktion ausführen. Beispielsweise kann eine
MngO die Verfügbarkeit einer laufenden Anwendungskomponente überwachen. MngO kön-
nen dynamisch auf sogenannten Object Servern instanziiert werden und berechnen abgeleitete
(indirekte) Information über eine Anwendungskomponente. MngO können auch Informatio-
nen über das jeweilige System, über die Verzögerung zwischen zwei Knoten, u.v.m. liefern.

4.3 Zusammenarbeit zwischen Trader und Managementsystem

Dynamische und indirekte Attribute
Das Managementsystem stellt die dynamischen und die indirekten Attribute eines Dienstes zur

Verfügung, indem mit dem Dienstangebot die entsprechenden Angaben über die Beziehung
zwischen einem Dienstattribut und einem Managementattribut exportiert werden. Weiterhin
kann der Trader MngO instanziieren, um eine Anwendungskomponente zu überwachen und
um beobachtete (indirekte) Information über die Komponente zu erhalten. Die Vorgehensweise
hierbei folgt strikt der hierarchischen Integration, da das Tradingsystem das Managementsy-
stem verwendet.

Die Auswertung eines Auswahlkriteriums erfolgt in zwei Stufen. In der ersten Stufe werden
die Teilausdrücke bewertet, die nur statische Attribute besitzen. Hat sich dann kein Ergebnis
ergeben, so erfolgt der Zugriff auf dynamische Attribute. Der Zugriff kann in unterschiedlicher
Weise erfolgen:

• Synchron - Jeder Attributzugriff wird synchron durchgeführt
• Asynchron - Alle Attributzugriffe eines Dienstes werden angestoßen, bevor auf die Ergeb-

nisse gewartet wird.
• Parallel - es stehen eine Anzahl Threads bereit, die jeweils ein Dienstangebot auswerten.

Diese Ansätze reduzieren die Antwortzeiten von Anfragen mit dynamischen Parametern
erheblich. Jedoch besteht weiterhin das Problem, daß bei einer großen Menge an zutreffenden
Diensten viele Netzzugriffe und somit ein hohe Kommunikationsaufwand entsteht. Eine wei-
tere Reduzierung kann durch ein lokales Cachen der Information erreicht werden. Dabei müs-
sen jedoch unterschiedliche Eigenschaften der Attribute (z.B. Änderungsfrequenz, die
Wichtigkeit akkurater Information) berücksichtigt werden.

Fehlermeldungen
Das Managementsystem kann Ereignisnachrichten direkt an den Trader weitergeben. Diese
informieren ihn z.B. über den Absturz eines Servers. Dieser kann dann als nicht verfügbar
markiert werden und bei späteren Vermittlungen nicht berücksichtigt werden.

Auswahlregel
Im Trader können durch das Systemmanagement Auswahlregeln gespeichert werden, die bei
der Dienstauswahl referenziert werden. Durch diese Indirektion kann das Systemmanagement
Einfluß auf die gewählte Auswahlstrategie nehmen. Mit Hilfe von impliziten und DEFAULT-
Regel können weitere Verhaltensmuster für die Dienstnutzung erzwungen werden.

Ressourcenmanagement
Der MELODY-Trader kann die Möglichkeiten des Managementsystems nutzen, um in einem
Server Reservierungen für den Klienten vorzunehmen. Implementiert wurde eine einfache, auf
einem Timeout-basierende Reservierungsstrategie.

5.0 Leistungsmessungen

Die folgenden Leistungsmessungen wurden anhand eines Beispielszenarios durchgeführt bei
dem ein Compiledienst durch den Trader vermittelt wurde. Als dynamische Attribute dienten
die Anzahl der Compile-Jobs in der Warteschlange, die bisherige mittlere Bearbeitungszeit, die
Systemlast des zugehörigen Knotens (ein indirektes Attribut), u.a. Messungen wurden mehr-
fach durchgeführt und Extremwerte eliminiert. Die Last auf den einzelnen Rechnern, sowie
auf dem Netz wurde minimiert. Gemessen wurde auf IBM RS/6000-Workstations unter AIX,
die durch ein Ethernet verbunden sind.

Die Ergebnisse demonstrieren das Systemverhalten für die folgenden Einstellungen:

• Keine Aktualitätsprädikate / keine Parallelität:

Unterschiedliche Linien in dem Diagram zeigen eine steigende Anzahl von dynamischen Para-
metern. Der asynchrone Zugriff führt zu einer deutlichen Verbesserung der Vermittlungszeiten.
Wie zu erwarten bleibt der Aufwand bei nur einem dynamischen Attribut gleich.

• Keine Aktualitätsprädikate / Parallelität:

Innerhalb des Traders existiert eine vordefinierte Anzahl von Threads. Die Berechnung der
Auswahlkriterien für einzelne Dienstangebote wird jeweils einem Thread übergeben. Durch
die parallele Auswertung ergeben sich dann kaum noch Unterschiede zwischen der synchronen
und der asynchronen Auswertung, da die Wartezeiten auf Rückantworten durch parallel arbei-
tende Threads genutzt wird. Die Knicke in den Kurven lassen sich durch die Anzahl der einge-
setzten Threads (in der Meßreihe drei) begründen..

• Aktualitätsprädikate / keine Parallelität

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

V
e
rm

it
tl
u
n
g
s
z
e
it

Anzahl Compile Server

1 Thread / Synchron

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

V
e

rm
it
tl
u

n
g

s
z
e

it

Anzahl Compile Server

1 Thread / Asynchron

Synchron Asynchron

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

V
e
rm

it
tl
u
n
g
s
z
e
it

Anzahl Compile Server

3 Threads / Synchron

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

V
e

rm
it
tl
u

n
g

s
z
e

it

Anzahl Compile Server

3 Threads / Asynchron

Synchron Asynchron

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

V
e
rm

itt
lu

n
g
sz

e
it

Anzahl Compile Server

1 Threads / Synchron

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

V
e

rm
itt

lu
n

g
sz

e
it

Anzahl Compile Server

1 Threads / Asynchron

Synchron Asynchron

In diesem Beispiel wurden für die eingesetzten dynamische Attribute sinnvolle, aber unter-
schiedliche Aktualitätsprädikate gesetzt. Da es bei Aktualitätsprädikaten auch auf die Fre-
quenz der Zugriffe ankommt, damit der Cache gefüllt ist, wurde vor den Messungen erst eine
Einschwingphase vorneangestellt, die den Cache gut füllt.

6.0 Zusammenfassung und Ausblick

Das vorliegende Paper motiviert die Bedeutung von Flexibilität und Systemkontrolle für
zukünftige verteilte Systeme. Es zeigt auf, daß die beiden Forschungsgebiete Trading und
Management verteilter Systeme zentrale Themen für diese Aufgabenstellung sind. Es führt in
die aktuelle Forschung ein und zeigt die engen Querbezüge auf. Es werden Ansätze zur Inte-
gration besprochen und eine Realisierung anhand des MELODY-Systems gezeigt. Dabei wer-
den einige Detailprobleme herausgegriffen, genauer erläutert und die gefundenen Lösungen
durch Messungen bestätigt.

Bei den Messungen muß die Skalierbarkeit der Lösungen noch nachgewiesen werden. Weiter-
hin läßt sich erwarten, daß sich die Zusammenarbeit zwischen Managementsystem und Trader
noch weiter verbessern läßt - z.B. durch eine bessere Zusammenarbeit beim Starten von Dien-
sten, durch Verbesserungen bei der Fehlertoleranz oder durch bessere Ressourcenmanage-
mentstrategien. Hier ergeben sich noch eine Reihe von offenen und interessanten
Fragestellungen.

Literatur:
[ANSA91] ANSA. ANSAware 3.0 Implementation Manual. Manual RM.097.01, Architecture Pro-

jects Management Limited, February 1991.
[BeRa91] Mirion Bearman, Kerry Raymond. Federating Traders: an ODP Adventure. In Jan de Meer,

Volker Heymer (Hrsg.),Proceedings of the International IFIP Workshop on Open Distri-
buted Processing, 1991.

[Helb92] Tobias K. Helbig. Strategien zur Einhaltung von Aktualitätsanforderungen. Diplomarbeit
Nr. 944, Universität Stuttgart, Institut für Parallele und Verteilte Höchstleistungsrechner,
Stuttgart, Dezember 1992.

[ISO92] ISO. Working Document on Topic 9.1 - ODP Trader.Working paper of the ISO/IEC JTC1/
SC21/WG7: N7047, May 1992.

[Kova93] Ernö Kovacs. Automatic Selection of an Update Strategy for Management Data. InProcee-
dings of the IEEE First International Workshop on Systems Management (IWSM’93), Los
Angeles, April 1993.

[Mars93] Lindsay F. Marshall. Representing Management Policy Using Contract Objects. InIEEE
First International Workshop On Systems Management, Los Angeles, April 1993. IEEE.

[OMG91] OMG. The Common Object Request Broker: Architecture And Specification. Technischer
Bericht 91.12.1, Object Management Group, December 1991.

[OSF91] OSF. The OSF Distributed Management Environment - A White Paper. Technischer Be-
richt, OSF, January 1991.

[Rose91] Marshall T. Rose.The simple book : an introduction to management of TCP-IP -based in-
ternets. Prentice-Hall series in innovative technology. Prentice Hall, Englewood Cliffs, NJ,
1991. XXIX, 347 S.

[SMTK93] M. Sloman, J. Magee, K. Twidle, J. Kramer. An Architecture For Managing Distributed
Systems. InProceedings of the 4th Workshop on Future Trends in Distributed Systems, S.
40–46. IEEE, 1993.

