GI/ITG-Fachtagung “Kommunikation in Verteilten Systemen”,
Chemnitz, Germany, February 22-24, 1995

Implementierung multimedialer Systemdienste inCINEMA

Ingo Barth, Tobias Helbig, Kurt Rothermel
Universitat Stuttgart
Institut fur Parallele und Verteilte Hochstleistungsrechner
Breitwiesenstr. 20-22
D-70565 Stuttgart

Email: {barth,helbig,rothermel}@informatik.uni-stuttgart.de

Zusammenfassung.Die Erstellung verteilter Multimedia-Anwendungen setzt leistungsfahige
Entwicklungsplattformen voraus, innerhalb deren Probleme wie die Ubertragung multimedialer
Daten, die Gewahrleistung der Dienstgite durch Reservierung von Ressourcen und die Synchro-
nisation von Datenstromen gel6st werdeZINEMA (Configurable INtEgrated Multimedia
Architecture) bietet als eine solche Entwicklungsplattform Abstraktionen zur Nutzung multime-
dialer Systemdienste an, womit funktionale Bearbeitungseinheiten erstellt, komplexe
Verarbeitungstopologien in verteilten Systemen aufgebaut und unter Einhaltung von Synchronisa-
tions- und Dienstgiite-Spezifikationen gesteuert werden kdénnen. In diesem Papier werden nach
einem kurzen Uberblick tiber die Abstraktionen @mweEmA-Dienstschnittstelle die internen
Strukturen und Ablaufe vorgestellt, mit denen die Multimedia-Dienste in verteilten Systemen
erbracht werden.

1 Einleitung

Voraussetzung fur die effiziente Erstellung verteilter Multimedia-Anwendungen sind geeignete
und leistungsféahige Entwicklungsplattformen. Solche Plattformen bieten vielfaltige Unterstuit-
zungsfunktionen, die sowohl die Bereiche der Multimedia-Kommunikation, der Synchronisa-
tion von Datenstromen als auch der Ressourcen-Verwaltung abdecken. Dabei wird die Funk-
tionalitéat von Betriebs- und Transportsystemen benutzt und angereichert durch spezielle, auf
Multimedia-Verarbeitung zugeschnittene Abstraktionen. Eine solche Plattform Gighita
(Configurable INtEgrated Multimedia Architecture) dar. Miivema werden multimediale
Datenstrome beliebiger Komplexitat (mehrere Quellen und Senken, beliebige Verbindungs-
topologie) Ubertragen, verarbeitet und prasentiert.

In Cinema werden als zentrale Abstraktion funktionale Bausteine (sogenannte Komponenten)
definiert, in welchen die Verarbeitung der multimedialen Datenstrome stattfindet. Sie lassen
sich zu komplexen Topologien verknipfen und schachteln. Um die Kommunikation und Ver-
arbeitung multimedialer Daten zu ermdglichen, werden Sessions definiert, an die eine
bestimmte Dienstgute gebunden ist, welche d@mskva unter Reservierung der notwendigen
Ressourcen erbracht wird. Der Flu3 von Dateneinheiten in beliebig strukturierten FluR-Graphen
wird Uber sogenannte Medien-Uhren gesteuert. Mit diesen werden die zeitlichen Eigenschaften
der Datenstrome sowie Synchronisationsbeziehungen zwischen Datenstromen spezifiziert und
der Datenflu® durch Aufruf von Steueroperationen beeinflu3t. Die sich aus der Verwaltung und
Reservierung von Ressourcen, der Verwaltung der Konfiguration komplexer Szenarien und der
Synchronisation von Datenstromen ergebenden Schwierigkeiten werden vor dem Dienstnutzer
von Cinema, dem Klienten, verborgen.

Mit den vonCinema bereitgestellten Abstraktionen erhéalt ein Klient Zugriff auf multimediale
Dienste in verteilten Systemen, deren Implementierung in diesem Papier ndher vorgestellt wird.
Zuerst wird in Abschnitt 2 ein Blick auf verwandte Arbeiten geworfen und in Abschnitt 3 ein

Uberblick tiber die Abstraktionen démema-Dienstschnittstelle gegeben. Im Abschnitt 4 wird

die Umsetzung der Systemdienste anhand der drei wichtigsten Problembereiche dargestellt. Es
wird auf dasKonfigurationsmanagemeaingegangen, mit dem ganze Anwendungstopologien
Uber Rechner und Prozesse hinweg verteilt, instanziiert und durch Kommunikationskanale ver-
bunden werden sowie auf deessourcenmanagemedds die Bereitstellung der Betriebsmittel

zur Erbringung der Multimedia-Dienste erbringt. Weiterhin werden die Struktur&ydekro-
nisationsmanagemengsir Steuerung und Synchronisation von Datenstromen dargestellt. Das
Papier schliel3t mit einer Zusammenfassung.

2 Verwandte Arbeiten

Die vielfaltigen Probleme, die durch die Integration von multimedialer Informationsverarbei-
tung in konventionelle Rechnersysteme entstehen, haben auf verschiedenen Gebieten Aktivita-
ten angeregt. Aus dem Wissen Uber die Unzulanglichkeiten konventioneller Transport- und
Betriebssysteme (vgl. [BuLi91]) fur die Handhabung multimedialer Daten, wurden Erweiterun-
gen von Kommunikationsdiensten angestrebt (z.B. Integration von Synchronisationsmechanis-
men [EDP92], [BCG92] und Einbeziehung von Dienstgite-Parametern [CCGH92]). Mit
HeiTS [HHS91] wird ein Transportsystem fiir Multimedia-Systeme bereitgestellt, welches
Garantien fur die Ubertragung von Datenstromen auf ausgewahlten Netzwerken geben kann. Im
SUMO-Projekt [CBRS93] wird das Chorus-Betriebssystem [R@Q fiir die Verarbeitung

von kontinuierlichen Medien erweitert. Dazu wird ein strombasierter Kommunikationsdienst
realisiert und die Dienstguteverwaltung in das Betriebssystem integriert. Der Schwerpunkt sol-
cher Arbeiten liegt auf der Schaffung der jeweils speziellen Funktionalitat, auf die dann mit
geeigneten Schnittstellen zugegriffen werden kann. Das ZieCwana, eine universelle Platt-

form zum Entwurf verteilter Multimedia-Systeme bereitzustellen und verschiedenste System-
dienste zu integrieren, steht hierbei nicht im Vordergrund.

Ein vielverwendetes Konzept, verteilte Anwendungen aus einfachen Bausteinen aufzubauen,
die nur Gber Ports miteinander verknupft werden mussen, wurde mit Conic [KrMa85] und dem
Nachfolgeprojekt REX [MKSD90] aufgegriffen und findet sich in einer Reihe anderer Projekte

in abgewandelter Form wieder (IMA [Hewl93], QuickTime [Appl91], SUMO [CBRS93],
Cinema). In Conic wird dabei eine Sprache fur die Programmierung von Komponenten und App-
likationen angeboten, die allerdings keine Aspekte der multimedialen Datenverarbeitung
bertcksichtigt. Die Konfiguration wird durch einen zentralisierten Konfigurationsmanager auf-
gebaut und Anderungen werden durch diesen umgesetzt. Die gemeinsame Benutzung von
Komponenten in mehreren Konfigurationsbeschreibungen ist nicht vorgesehen.

Die weitergehende Frage des Entwurfes von geeigneten Abstraktionen zum Entwurf von Mul-
timedia-Systemen wurde ebenfalls in verschiedenen Arbeiten in Angriff genommen. ACME
(Abstractions for Continuous Media [HGA90]) stellt Abstraktionen fur die Aufnahme und Wie-
dergabe von Audio- und Videodaten zur Verfiigung. Sie dienen der Erweiterung konventioneller
Fenster-Oberflachen um kontinuierliche Daten. Mit ihnen kdnnen einfach Client-Server-Struk-
turen zur Kommunikation und Présentation von Audio- und Videodaten entwickelt werden.
Eine ahnliche Zielsetzung verfolgt Tactus [DNNR92], wohingegen mit QuickTime [Appl91]
und IBM’s Multimedia Presentation Manager [IBM92] Toolkits zur lokalen Prasentation von
Audio und Video auf Rechnern kommerziell zur Verfiigung stehen. In [BZJwird eine inte-
grierte Plattform und ein Verarbeitungsmodell fur offene verteilte Multimedia-Anwendungen
auf der Basis von ANSA vorgestellt. Dabei werden die Kommunikation und Synchronisation
durch Dienste modelliert, die zu einer verteilten Multimedia-Anwendung zusammengesetzt
werden kdnnen. DdRequest for TechnologiMA92] der Interactive Multimedia Association

(IMA) zeigt die grundsatzlichen Anforderungen an eine Architektur fir verteilte Multimedia-
Anwendungen. In dem von mehreren Firmen erstellten Vorschlag [Hewl93] zu diesem RFT
werden Abstraktionen fiir die Struktur und den Aufbau einer verteilten Multimedia-Umgebung
unter dem Aspekt der herstellertibergreifenden Verarbeitung vorgestellt. Die Schachtelung von
Grundbausteinen zur Erzeugung hoherer Abstraktionsebenen ist jedoch mit den bisher vorge-
schlagenen Abstraktionen und Konzepten ebensowenig maglich wie die automatische Umset-
zung von Synchronisationsbeziehungen.

3 Anwendungskonzepte und Abstraktionen in CINEMA

In diesem Abschnitt werden kurz die Abstraktionen vorgestellt, die einem Nutz€hnemna

zur Erstellung und Steuerung verteilter Multimedia-Anwendungen zur Verfligung stehen. Fur
eine detaillierte Diskussion der Konzepte Komponente, Port, Link, Session und Medien-Uhr sei
auf [RBH94] und [RoHe94a] verwiesen.

3.1 Konfiguration von Verarbeitungstopologien

Kontinuierliche Datenstrome bestehen aus einer Sequenz von Dateneinheiten, die mit Zeitmar-
ken assoziiert sind (vgl. z.B. [Herr91]). Die Verarbeitung der Dateneinheiten kontinuierlicher
Strome findet irCinema in Komponenten statt, welche die aktiven Einheiten bilden. Sie besit-

zen neben den funktionsspezifischen Schnittstellen, wie beispielsweise Lautstarke- oder Kon-
trast-Regler, auch generische Schnittstellen, Uber welche si€wenr-System unabhéngig

von ihrer internen Funktionalitdt und Implementierung verwaltet werden. Wir unterscheiden
zwischen Quellen, die Datenstrome erzeugen, Senken, die nur konsumieren und zwischengela-
gerten Komponenten, die Daten lesen, transformieren und veréandert wieder abgeben. Kompo-
nenten konsumieren und produzieren Daten durch Zugriffe auf typisierte FRants bilden
konfigurationsunabhangige Datenzugriffspunkte, d.h. einer Komponente bleibt verborgen, ob
vom Port gelesene Daten von einer anderen Komponente erzeugt wurden, die auf dem gleichen
oder einem anderen Rechner lokalisiert ist. Die Implementierung von Komponenten und das
Testen ihrer Funktionsfahigkeit ist somit vollstdndig von dem spateren Anwendungsszenario
entkoppelt, was deutlich die Modularisierung und Strukturierung von Anwendungen fordert.

Komponenten sind entweder elementare Bausteine oder werden durch Schachtelung aus ande-
ren Komponenten erzeugt. Dadurch lassen sich héhere funktionale Abstraktionsebenen bilden.
Das Konzept der Schachtelung erlaubt es, die von Programmiersprachen bekannten Eigenschaf-
ten der Kapselung von Funktionalitat auf die Erzeugung multimedialer Verarbeitungsbausteine
zu Ubertragen, was die Strukturierung von Anwendungen und die Wiederverwertbarkeit von
Code erleichtert. Bei Komponenten wird unterschieden zwischen solchen, die nur fir eine
Anwendung bekannt und zugreifbar sind und den tber global eindeutige Bezeichner adressier-
ten, von mehreren Anwendungen gemeinsam benutzten Komponenten, den sogenannten
“globalen Komponenteri, welche in Mehrbenutzeranwendungen die Bindeglieder zwischen

den beteiligten Anwendungen bilden.

Multimedia-Anwendungen werden konfiguriert, indeimks zwischen den Ausgabe- und Ein-
gabeports von Komponenten definiert werden. Mit diesem Konfigurationsmechanismus lassen
sich beliebige, auf die Problemstellung zugeschnittene Anwendungstopologien, sogenannte
FluR-Graphen, aufbauen. Wahrend mit Links die Topologie von Anwendungen beschrieben
wird, dient die Abstraktiosessiorezur Reservierung von Ressourcen. Datenstrome kdnnen erst
verarbeitet und Ubertragen werden, wenn die zugehoérige Session eingerichtet wurde. Dies

/ Port Medien-Uhr |_ \
o, (5

Mikrophon- ’k@é

Komponente
%\/ Link : EE
Session

Abb.: 1 Beispielszenario: Audio-Konferenz

A /

geschieht durch Angabe einer Menge von Quellen und Senken, die Uber ein beliebiges Netz-

werk von zwischengelagerten Komponenten verbunden sind. Sessions sind assoziiert mit

Dienstgute-Parametern, aus denen der Bedarf an Ressourcen abgeleitet wird. Eine Session
besteht somit aus einem Teil der Anwendungstopologie, deren Instanziierung ganz oder gar

nicht erfolgt. Nach der Erstellung einer Session kann der Flul3 von Dateneinheiten gestartet wer-

den.

3.2 Steuerung und Synchronisation von Datenstrémen

Zur Steuerung des Flusses von Dateneinheiten wird die Abstraktion der Medien-Uhr und das
Konzept der Uhren-Hierarchie eingefiliviedien-Uhren dienen der Spezifikation temporaler
Eigenschaften von Datenstromen. Sie spannen dazu das Medienzeit-System auf, d.h. sie ver-
walten eine Menge von zeitbezogenen Parametern wie das Raten-VerRaiwischen
Medien- und Echtzeit, den Startwert der Medieneitlie ZeitT des Echtzeit-Beginns der Ver-
arbeitung sowie einen relativen Geschwindigkeitsfal&aur Skalierung der Verarbeitung.
Medien-Uhren sind mit Quellen- oder Senken-Komponenten assoziiert. Mit dem Starten einer
Uhr wird die Verarbeitung von Daten entsprechend der zeitlichen Spezifikationen fur den zuge-
hérigen Datenstrom eingeleitet. Die Skalierung der Dateniibertragung (d.h. Anderung von
Richtung oder Geschwindigkeit) oder das Anhalten von Strémen erfolgt durch Anpassung des
Voranschreitens der Zeit von Uhren.

Uhren-Hierarchien beschreiben Beziehungen zwischen Medien-Uhren und damit zwischen
den zugehdrigen Datenstromen. Sie werden benutzt, um Gruppen von Datenstrémen zu bilden,
diese als Einheit zu steuern sowie um Synchronisationsbeziehungen zu spezifizieren. Die Grup-
pierung von Datenstromen erfolgt durch Zuordnen der sie steuernden Medien-Uhren zu einer
gemeinsamen, Ubergeordneten Uhr. Operationen, deren Aufruf an lUbergeordneten Medien-
Uhren erfolgt, werden in Richtung der Blatter von Uhren-Hierarchien propagiert. Durch die
Gestaltung der Struktur der Uhren-Hierarchie und die Auswahl der Hierarchie-Stufe, auf der
Operationen ausgelost werden, ist eine flexible Gruppierung von Stromen gegeben. Dies wird
erganzt durch die Mdglichkeit zum Sperren der Propagierung von Operationen, was es erlaubt,
ganze Teil-Hierarchien auszublenden und dartber beispielsweise die Zustandigkeitsbereiche
verschiedener Benutzer gegeneinander abzugrenzen.

Die Propagierung von Operationen und die Spezifikation von Synchronisationsbeziehungen
erfolgt durch die Kopplung der von Medien-Uhren aufgespannten Medienzeitsysteme. Das
geschieht auf der Basis von Referenz-PunktenREferenz-PunktRP [C; : P;, G, : P,] defi-

niert, daf’ die Medienzd®; im Zeitsystem der UNE, zur MedienzeiP, im Zeitsystem voit,
korrespondiert. Das erlaubt die Transformation der Medienzeiten ineinamdef(m,) mit

m, = (m —P)DSLRZ+P
2 1 1 Sl[Rl 2
P. my
: ! : ; —» C
RP [C: P, G Pyl § l
R— TN S S - O
P2 m2:?

Abb.: 2 Transformation von Medienzeit

Uhren-Hierarchien bilden dynamische Strukturen, die auch zur Laufzeit einer Anwendung an
Anderungen in der Systemstruktur angepaft werden kénnen. So lassen sie sich erweitern bzw.
verkleinern, wenn bei Mehrbenutzer-Anwendungen neue Benutzer hinzukommen oder andere
ausscheiden. Veranderte Anforderungen an die Gruppierung von Datenstrémen (z.B. das Erzeu-
gen oder Auflésen von Gruppen) lassen sich durch Umgestaltung der Struktur der Hierarchie
leicht realisieren. Dies unterstltzt die Handhabung der in interaktiven und kooperativen Multi-
media-Anwendungen auftretenden Dynamik.

Zusétzliche Flexibilitat in der Steuerung von gruppierten Datenstrémen wird durch Attribute
der Kanten von Uhren-Hierarchien erreicht. So ist es moglich, die Beziehung zwischen Uhren
auf eine Steuerbeziehung zu beschranken. Hierdurch wird eine lose Kopplung der Zeitsysteme
ohne feste Synchronisation festgelegt. Trotz zusammengefal3ter Ausfihrung von Operationen
der Gruppe ist ein Drift von Stromen oder eine getrennte Skalierung méglich. Anders bei der
Synchronisationsbeziehung. Mit ihr wird der Gleichlauf der Medienzeiten und darlber die zeit-
liche Bindung von Datenstréomen abgesichert. Dies geschieht sowohl wéahrend der Verarbeitung
von Daten wie auch beim spéteren Hinzuschalten weiterer Strome.

4 Realisierung der Systemdienste von CINEMA

Mit den im vorherigen Abschnitt beschriebenen Abstraktionen und Konzepten steht eine
Dienstschnittstelle zur Verfigung, die es erlaubt, komplexe und dynamische Multimedia-
Anwendungen aufzubauen und zu steuern. Um die damit ausdrtickbare Vielfalt von Funktionen
tatsachlich zu erbringen, wir@nema auf Betriebs- und Transportsysteme aufgesetzt, deren
Funktionalitat fur die Verarbeitung multimedialer Daten angereichert wird. In diesem Abschnitt
erfolgt dazu die Beschreibung ausgewahlter Systemstrukturen und AblauBeen Nach

der Vorstellung der Programmierschnittstelle fir Zugriffe auf Systemdienste werden die Archi-
tekturen zur Umsetzung der wesentlichen Systemdienste, d.h. der Verwaltung und Konfigura-
tion komplexer Topologien, der Steuerung und Synchronisation von Datenstromen sowie der
Ressourcen-Reservierung (vgl. Abb. 3) vorgestellt. Auf die Realisierung der Ereignisverwal-
tung wird nicht im Detail eingegangen.

==

Cinema-Programmierschnittstelle

Konfigurations- | | Synchronisation & Ressourcen- Ereignis-
Verwaltung Stromsteuerung Verwaltung Verwaltung

Abb.: 3 Architektur des Giema-Systems

4.1 CINEMA-Programmierschnittstelle

Die vonCinema bereitgestellten Abstraktionen zum Aufbau verteilter Multimedia-Anwendun-
gen werden den Klienten Uber diaema-Programmierschnittstelle zuganglich gemacht. Mit
dieser Programmierschnittstelle kann der Klient mittels einer objektorientierten Programmier-
sprache multimediale Verarbeitungstopologien erzeugen und steuern. Der Aufbau von Topolo-
gien ist dynamisch zu einem beliebigen Zeitpunkt zur Laufzeit méglich.

Dazu erzeugt der Klient zuerst Komponentenobjekte (im Beispiel Zedengéra und Zeile 2
display), fur die er als Parameter die Komponentenklasse und die gewtinschte Lokation spe-
zifiziert. Die Ports (im Beispielideo) der Komponentenobjekte werden dann durch Links
(Zeile 3) miteinander verbunden. Uber die Quellen- und Senkenports der Topologie erfolgt die
Definition einer Session unter Angabe von Dienstglite-Parametern (Zeilen 5-10). Neben den
Komponentenobjekten kann der Klient Uhrenobjekte erzeugen, die er mit Quellen und Senken
assoziiert (Zeile 4) und ggf. in einer Uhren-Hierarchie miteinander in Beziehung setzt. Die
Steuerung des Flusses von Dateneinheiten wird durch Aufruf der Methoden von Uhrenobjekten
vorgenommen (Zeile 11).

Beispiel-Code:
1 comp_camera = COMPONENT(“camera”, Cameral);

2 comp_display = COMPONENT(“display”, Displayl);

3 link(comp_camera->port(“video”),comp_display->port(“video"));

4 comp_display->associate(clock);

5 create_session(comp_camera ->port(“video”),

6 comp_display->port(“video”),

7 QoS(Rate (min= 15, max= 25),

8 Picturewidth (min = 200, max = 400),

9 Pictureheight (min = 150, max = 300),
10 Delay (min = 150, max = 250));
11 clock->start();

Die Objekte und Funktionen der Programmierschnittstelle werden dem Klienten in einer Biblio-
thek zur Verfigung gestellt. Die Objekte (wie die Komponenten im obigen Beispiel) sind
Proxyobjekte [Shap86]. Als lokale Platzhalter der tatsachlichen, i.a. entfernt instanziierten
Objekte nehmen sie Nachrichten des Klienten entgegen und leiten sie transpareGiamegas
System (z.B. das Konfigurationsmanagement) oder die tatsachlich Objektinstanzen weiter. Die
Proxyobjekte sind stets lokal zum Klienten, verhalten sich wie die tatsachliche Realisierung des

entfernten Objekts und erlauben es deshalb, die Dienst€nenm leicht in objektorientierte
Programmiersprachen (wie z.B. C++) zu integrieren.

4.2 Konfigurationsmanagement

Verteilte Multimedia-Anwendungen i@inema bestehen aus einem Geflecht von Komponenten,

die Uber Kommunikationskanéale miteinander verbunden sind. Die Aufgabe des Konfigurations-
managements ist es, aus der vom Klienten vorgegebenen Spezifikation des Geflechts eine
ablauffahige Instanziierung im verteilten System aufzubauen. Dafir muissen geschachtelte
Komponenten aufgeldst und das daraus entstandene Komponentengeflecht auf die Rechnerkno-
ten verteilt und instanziiert werden. Aul3erdem mussen von mehreren Klienten gemeinsam
genutzte Komponenten verwaltet und Information Uber Topologien und Komponenten fur
andere Managementbereiche Ge&ma-Systems zur Verfigung gestellt werden. Zuséatzlich zur
Instanziierung von Komponenten werden durch das Konfigurationsmanagement die Kommuni-
kationskanale zwischen den Ports der Komponenten durch Instanziierung von Linkobjekten
aufgebaut.

Im folgenden wollen wir die Instanziierung der Komponenten auf den Knoten néher betrachten.
Hierflr gehen wir von bereits lokalisierten Komponenten aus, d.h. fur jede Komponente ist vom
Klienten vorgegeben, auf welchem Knoten ihre Realisierung zu instanziie’re[bidsl(ompo-

nenten werden auf den Knoten in speziellen Prozessen, den sogeRammMeRrozessen, aus-
gefuhrt, in denen Threads flr die Aktivierung der Komponentenmethoden zur Verfligung ste-
hen. In Cinema werden Threads verwendet, da sie sowohl Nebenlaufigkeit mit geringem
ProzelRwechsel-Aufwand wie auch effiziente Kommunikation durch gemeinsame Adressberei-
che unterstitzen. Fur die Zuordnung von Komponenten zu Threads stehen verschiedene Alter-
nativen zur Auswabhl. Sie werden im folgenden unter dem Aspekt des Einflusses auf die Ende-
zu-Ende-Verzogerung eines Datenstroms diskutiert.

Die einfachste Form der Verteilung von Komponenten auf Threads ist die Zuordnung jeder
Komponente zu einem eigenen Thread. Aufgrund der Mdglichkeit, jede Komponente indivi-
duell aktivieren zu kdnnen, laf3t sich die maximale Nebenlaufigkeit erreichen. Die hohe Zahl
von Threads entlang eines Datenpfades bewirkt aber eine hohe Ende-zu-Ende-Verzdgerung.
Dies resultiert aus zusatzlichen Verzégerungen, die durch das Scheduling von Threads einge-
fuhrt werden und zur reinen Bearbeitungs- und Kommunikationsverzégerung hinzukommen.
Die in Multimedia-Systemen ublichen Schedulingverfahren Reite-MonotonicndEarliest-
Deadline-First[6]) gehen von einer Verzégerung der Aktivierung aus, die aus der Differenz
zwischen dem ersten moglichen Aktivierungszeitpunkt und der Deadline resultiert und groR3er
als die reine Bearbeitungszeit ist. Da die Verfahren stauvermeidend sind, betragt diese zusatzli-
che Verzégerung pro Thread eine Perfoded ist unabhéngig von der Bearbeitungszeit. Das
bedeutet beispielsweise bei einem Videostrom mit einer Rate von 25 Bildern pro Sekunde, dal3
pro Komponente eine Verzdgerung von 40 msec eingefthrt wird. Bei flunf aufeinanderfolgen-
den Komponenten summiert sich dies bereits zu einer Verzégerung von 200 ms, zu der die Ver-
zégerungen aufgrund der Ubertragung von Daten noch hinzukommen.

Abhilfe kann durch zwei MaRnahmen geschaffen werden: Einerseits konnen Schedulingverfah-
ren dahingehend verbessert werden, dafld kirzere Schedulingverzogerungen erreicht werden

1. Die Moglichkeit einer automatischen Verteilung von zwischengelagerten Komponenten unter Betrachtung der
Systemlast und Ressourcenverflgbarkeit wird derzeit untersucht.
2. Periode = Verzégerung durch das Scheduling + Bearbeitungszeit

Kamera Kompr. Dekomp O_O Display

Kamera Kompr. Dekomp. O_O Display

Abb.: 4 Verteilung einer Topologie auf Threads

(vgl. hierzu Abschnitt 4.4), andererseits kann durch die Zusammenfassung von mehreren Kom-
ponenten in einen Thread die Gesamtzahl der Threads und somit die durch sie eingefihrte Ver-
zobgerung verringert werden. Die Zusammenfassung von Komponenten in einen Thread

bewirkt, daf3 nur noch eine Wartesituation auftreten kann. Dies erfordert, dal3 die Dateneinhei-

ten, die von einer Komponente erzeugt werden, vollstandig von der nachsten Komponente kon-
sumiert werden. Es entsteht so eine Bearbeitungspipeline, bei der nur die erste Komponente
Daten konsumieren kann, die von Komponenten stammen, die in anderen Threads oder auf
anderen Knoten liegen. Abb. 4 zeigt eine Topologie eines Konferenzszenarios mit der Thread-

zuordnung.

4.3 Stromsteuerung und Synchronisationsmechanismen

In Cinema wird mit Medien-Uhren und Uhren-Hierarchien eine einheitliche, universelle Dienst-
Schnittstelle zur Steuerung und Synchronisation von Datenstromen angeboten. Die fir die
Erbringung der dadurch zur Verfigung gestellten Funktionalitat gewahlte Architektur wird im
weiteren vorgestellt.

Ein Synchronisationsservice wird allgemein durch geeignete Synchronisationsprotokolle
erbracht. Viele der in der Literatur vorgeschlagenen Protokolle (vergleiche z.B. [EDP92],
[RRVK92], [AnH091]) sind auf spezielle Systemumgebungen, Datentypen oder Topologien
zugeschnitten. Dem rechnungtragend, ermdglichCdieva-Architektur die Integration unter-
schiedlicher Synchronisationsprotokolle, welche dann alternativ in Abhangigkeit vom Synchro-
nisationsszenario verwendet werden kdénnen. Hierdurch wird sowohl die Auswahl des bestge-
eigneten Protokolls fir eine bestimmte Konfiguration wie auch die Erweiterbarkeit des Systems
unterstutzt.

Das Synchronisationssubsystem yorema besteht aus drei Schichten (Abb. 5). Die Medien-
Uhren-Verwaltungsschicht (Media Clock Management Layer - MCML) verwaltet Uhrenob-
jekte sowie die Struktur von Uhren-Hierarchien und tragt die Verantwortung fur die Propagie-
rung von Uhrenoperationen. Der verteilte Synchronisationsdienst wird durch die Stromsyn-
chronisationsschicht (Stream Synchronization Layer - SSL) erbracht. Sie besteht aus einzelnen
FluR3steuerungs- und Synchronisationsmodulen, von denen jedes ein spezielles Steuerungs- und
Synchronisationsprotokoll realisiert. Diese Synchronisationsmodule benutzen die Basisdienste,
wie beispielsweise Pufferverwaltung, Scheduling oder den Kommunikationsdienst fur Multi-
mediadaten, die durch diznema-BasisdienstschichOnema Base Services Layer - CBSL) ver-

fugbar gemacht werden. Aus der Sicht des Synchronisationssubsystems subsumiert die CBSL

(Medien-Uhren und Uhren-HierarchieD

Medienuhren-Verwaltungsschicht (MCML)

Stromsynchronisationsschicht (SSL)

Sync. Mody] Sync. Modul),

Cinema Basisdienstschicht (CBSL)

Abb.: 5 Schichten der Architektur des Synchronisationsdienstes

diejenigen Basisfunktionen, die von anderen Managementteile@das-Systems erbracht
werden.

Medien-Uhren-Verwaltungsschicht (MCML)

Die MCML verwaltet die Struktur und den Status von Medien-Uhren und Uhren-Hierarchien.
Sie bildet die durch Uhren-Hierarchien gebotene, anwendungsorientierte Schnittstelle auf die
stromorientierte Schnittstelle der Synchronisationsmodule ab.

Zur Verwaltung von Medienuhren werden Informationen Uber die von einer Anwendung ange-
legten Uhren, ihre Verknipfung zu Uhren-Hierarchien und ihren aktuellen Status, wie z.B. zu
welcher Komponente sie zugeordnet sind, ob sie ticken oder ob Sperren gesetzt sind, unterhal-
ten. Um die strukturelle Konsistenz von Uhren-Hierarchien zu gewahrleisten, werden Konsi-
stenzuberprifungen durchgefihrt. Aulerdem sind Medien-Uhren einem der Synchronisations-
module der SSL zugeordnet. Derzeit erfordert die Auswahl eines geeigneten
Synchronisationsmoduls fur ein Anwendungsszenario entsprechende Hinweise durch den
Klient. Es werden jedoch Kriterien zur automatischen Modulauswahl untersucht.

Die MCML ist weiterhin zustandig fur die Propagierung von Uhrenoperationen in Hierarchien.
Dabei werden die jeweiligen Parameter einer Operation in das Zeitsystem der betroffenen Uhr
transformiert. Wird eine Operation zu einer Uhr propagiert, die mit einer Komponente verbun-
den ist, erfolgt eine Notifikation des zustandigen Synchronisationsmoduls, welches fur die
Umsetzung im verteilten System sorgt.

Stromsynchronisationsschicht (SSL)

Synchronisationsmodule realisieren die vorhandenen Synchronisationsprotokolle unter Ver-
wendung der von deéZinema Basisschicht bereitgestellten Funktionen.

Auf ein Synchronisationsmodul wird tUber das stromorientierte, generische Modul-Interface
(GMI) zugegriffen, welches eine einheitliche Schnittstelle zu den verschiedenen Synchronisa-
tionsmodulen darstellt. Das GMI ermdglicht die Spezifikation von zeitlichen Eigenschaften ein-
zelner Strome und von Synchronisationsbeziehungen zwischen ihnen. Uber das GMI wird dem
Synchronisationsmodul die zu steuernde Konfiguration verbundener Komponenten in Form

eines FluRRgraphen bekannt gemacht. Weiterhin wird das Starten, Stoppen und Skalieren von
FluRgraphen als Ganzes oder in Teilen unterstutzt. Der Ansatz profitiert vom objektorientierten
Programmierparadigma, da die Schnittstellen zu speziellen Synchronisationsmodulen aus der
generellen Schnittstelle durch Uberdefinieren der jeweiligen Funktionen erzeugt werden.

Intern besteht ein Synchronisationsmodul aus einem GMI-Agenten und einer Reihe von soge-
nannten Synchronisationmodul-Agenten (SM-Agenten). Der GMI-Agent implementiert die
Schnittstelle zum Modul und instanziiert SM-Agenten auf den Knoten, die am jeweiligen Kom-
munikationsszenario beteiligt sind. Welche Knoten dies sind, wird aus der FluRgraph-Spezi-
fikation ermittelt, die durch die MCML bereitgestellt wurde. Nach ihrer Instanziierung steuern
die SM-Agenten kooperativ den Fluf von Dateneinheiten entsprechend des gewéahlten Synchro-
nisationsprotokolls.

Derzeit sind in unseren Prototyp zwei Synchronisationsprotokolle integriert. Eines erlaubt die
synchrone Wiedergabe gespeicherter Daten [Sche94], das andere die Synchronisation von
“Live”-Datenstromen durch Schiatzung und Angleichung der Ubertragungszeiten unterschied-
licher Ubertragungskandle. Letzteres ist eine modifizierte Version des Flow Synchronization
Protocols [EDP92]. Ein weiteres Protokoll [RoHe94b], welches eine weitgehende Anpassung
der Dienstgite unter unterschiedlichen Strategien erlaubt, wird gegenwaértig implementiert.

Cinema Basisdienstschicht (CBSL)

Wichtigste Aufgabe der CBSL ist die Erweiterung von Betriebssystemfunktionen, um die
Anforderungen verteilter multimedialer Verarbeitung zu erfillen. So wird beispielsweise das
Echtzeit-Scheduling unabhangiger Verarbeitungsprozesse durch einen erweiterten Betriebssy-
stemscheduler verfugbar gemacht. Multimediale Datenkommunikation ist gekapselt in Link-
Objekte, welche uber einheitliche Schnittstellen die Ubertragung von Daten zwischen Kompo-
nenten erbringen. Dabei kbnnen sich Komponenten entweder auf dem gleichen Knoten oder
entfernt voneinander auf verschiedenen Knoten befinden, wodurch die Konfiguration verteilter
Anwendungen erleichtert wird. Letztlich bietet die CBSL eine erweiterte Pufferverwaltung, die
es erlaubt, Speicher flr eine Session zu reservieren und fest im Hauptspeicher zu verankern.

Beispiel

Das Zusammenwirken der unterschiedlichen Schichten der Synchronisationsarchitektur soll
mit dem folgenden Beispiel (Abb. 6) verdeutlicht werden. Es wird von einem Synchronisations-
protokoll ausgegangen, das auf dem Ausgleich von Ubertragungszeiten verschiedener Kanéale
basiert. Vereinfachend wird angenommen, daf? alle Kommunikationsverzogerungen zwischen
GMI-Agent und SM-Agenten sowie zwischen Quelle und Senke der Multimedia-Datenpfade
bekannt seien. Aus Platzgrinden wird im folgenden nur die Startphase der synchronen
Datenuibertragung betrachtet.

syn¢ RP[C4:0, C3:0]

syn¢ RP,[C,:10, G:0]

Abb.: 6 Beispielszenario

Sobald der Klient die Startoperatiors.Start(0) aufruft, werden im MCML die folgenden
Aktionen ausgeldst: Zuerst findet die Propagierung der Operation zu den Medienyhreh C

C, statt, wobei die Parameter entsprechend abgebildet werden. AnschlieRend wird die ermittelte
Menge von Operationen {CStart(0), G.Start(10)} auf die Modulschnittstelle des ausgewéhl-

ten Synchronisationsmoduls abgebildet:

ModulGMI->StartFlow(C 1, M ;=0, C 5, M ,=10, Zeit=sofort);

Der GMI-Agent des Moduls fiihrt daraufhin die Kommunikation zu den SM-Agenten der ent-
fernten Lokationen und hierliiber den tatsachlichen Start der Stréme aus. Dazu werden die Start-
zeiten der periodischen Verarbeitungseinheiten auf den Knoten der Quelleth $ sowie der

Senken @ und D, im voraus berechnet und tber Steuerbotschaften an die SM-Agenten der
Knoten tbermittelt (siehe Abb. 7). Mit dem Eintreffen der Botschaften wird das Scheduling der
Verarbeitungseinheiten durch die SM-Agenten initialisiert und zur gegebenen Zeit gestartet.

GMI-Agent SM-Agent| | SM-Agent| | SM-Agent| | SM-Agent
Knoten § Knoten S | | Knoten D | | Knoten DB,

>
StartTask($, O, t - Delay(S,D,))

StartTaskTgi, 10, ¢ - Delay(S,D»))

StartTasr(Q, 0, b

>
StartTask(D, 10, §)

Abb.: 7 Austausch von Steuerbotschaften

4.4 Ressourcenmanagement

Die Qualitat multimedialer Anwendungen wird von der Einhaltung der vom Klienten spezifi-
zierten Randbedingungen, den Dienstgute-Parametern, bestimmt. Da die Verarbeitung multi-
medialer Daten hohe Anforderungen an die Leistungsfahigkeit von Ressourcen (z.B. CPU,
Bandbreite, Speicher) stellt, ist es notwendig, die Einhaltung der Dienstglte durch geeignete
Verwaltung, Reservierung und Zuteilung der Ressourcen abzusichern. Aufgabe des Res-
sourcenmanagements ist es deshalb, aus Dienstgute-Vorgaben des Klienten den Bedarf an Res-
sourcen auf den jeweiligen Knoten des verteilten Systems zu ermitteln, beim Verwalter der Res-
source zu reservieren und zur Laufzeit zuzuteilen. Bei der Reservierung von Ressourcen handelt
es sich um einen dynamischen Verhandlungsprozel3, bei dem eine Anpassung zwischen den
Winschen des Klienten und den Mdglichkeiten des Systems (maximal verfigbare Kapazitat,
Lastsituation) erzielt werden muf3.

Bisherige Arbeiten zur Reservierung von Ressourcen in Multimedia-Systemen entstammen vor
allem dem Netzwerkbereich (SRP [AHS90], RSVP [ZD#, ST-Il [Topo90]). Sie unterstiit-

zen Punkt-zu-Punkt-Verbindungen und Multicast-Topologien. Die betrachteten Dienstgute-
Parameter werden durch die Anforderungen an die Kommunikationssysteme bestimmt (z.B.
Ubertragungsverzdgerung, Jitter, Burst, Paket-GroRe, Paket-Verlust-Rate etc.). Da die Schnitt-
stelle zur Dienstglteaushandlung bei einer Multimedia-PlattfornCwima auf einer héheren

Abstraktionsebene liegt, sind diese Parameter fiir eine direkte Ubernahme nicht geeignet. Viel-
mehr orientieren sich die mit Sessions assoziierten Parameter an den Eigenschaften und Typen
der zu Ubertragenden und verarbeitenden Datenstrome. So sind beispielsweise bei einem Video-
strom Bildrate, Bildgro3e oder Farbtiefe geeignete Parameter. Zusatzlich ist die Aushandlung
von Ende-zu-Ende-Eigenschaften (wie z.B. der Gesamtverzogerung) in komplexen Verarbei-
tungstopologien mit mehreren Quellen und Senken bei beliebiger interner Vernetzung notwen-
dig.

In Cinema ergeben sich somit zwei Ebenen von Dienstgute-Parametern. Die héhere Abstrak-
tionsebene enthalt die vom Typ des Datenstromes (wie Audio, Video) abhangigen Parameter,
die zur Gestaltung der Dienstschnittstelle der Multimedia-Plattform bendtigt werden. Die tie-
fere Abstraktionsebene enthélt Parameter, die von den Eigenschaften der Ressourcen (wie bsw.
dem Netzwerk) bestimmt sind und nicht vom Typ des Stromes abh&ngen. Mit ihnen arbeiten die
individuellen Ressourcenverwalter und nutzen sie u.a. zur Ermittlung der freier Kapazitaten.
Zwischen beiden Abstraktionsebenen ist eine Abbildung der Dienstgite-Parameter notwendig.
Diese Abbildung findet neben der Aushandlung von Dienstgute-Parametern im Ressourcen-
Reservierungsprotokoll vo@inema (vgl. [BaFi94]) statt. Sie ist von der Verarbeitungsfunktio-
nalitat der Komponenten abhangig. Der Abbildungsschritt kann folglich nur von Komponenten
selbst durchgefiihrt werden. Hierzu bieten sie eine Methode an, die aus stromtypabh&ngigen
Dienstgute-Parametern der Eingabeports stromtypabhangige und -unabhangige Parameter fur
die jeweiligen Ausgabeports und den Ressourcenbedarf fir die Bearbeitung bestimmt.

Dies soll an dem in Abb. 7 dargestellten Ablauf der Ressourcenreservierung naher erlautert wer-
den. Es wird exemplarisch die Abbildung der Bildgrol3e, als Vertreter eines stromtypabhéngigen
Parameters, auf die PaketgroRe als Vertreter fur einen stromtypunabhdngigen Parameter
betrachtet. Das Delay als Ende-zu-Ende-Parameter wird dabei ebenfalls akkumuliert. Auf den
Ressourcenbedarf wird nicht ndher eingegangen.

2. QoS-Ausgabe: 300x225, 67500 Bytes, 20 ms
3. QoS-Eingabe: 67500 Bytes, 200 ms
4. QoS-Ausgabe: 67500 Bytes, 100 ms
1.8 2. M4, A 6.
T ¢ 3 T ¢ > T 6 L 5. QoS-Eingabe: 300x225
6. QoS-Ausgabe: 20 ms

Compla Link Ccompz 1. QoS-Wunsch: 400-200x300-150

Ressourcenmanagement

Als Parameter werden betrachtet: stromorientiert: Bildgroe
stromunabhangig: Paketgré3e und Delay

Abb.: 8 Beispiel des Ablaufs einer Ressourcenreservierung

Die Quellenkomponente erhalt als Parametervorgabe den Dienstgitewunsch des Klienten (1.).
Daraus wahlt sie, z.B. auf Grund der von der Komponente tatsachlich unterstitzten BildgroRen,
geeignete Parameterwerte aus den vorgegebenen Intervallen aus. Fur diese Parameterwerte
berechnet sie nun die Paketgrofie, z.B. indem sie die Breite mit der Hohe multipliziert (8 Bit
Farbtiefe). Zusatzlich berechnet die Komponente die Zeit, die sie fir die Bearbeitung bendtigt.
Die ausgewahlten Parameter, die Paketgrof3e und die Bearbeitungszeit sind das Ergebnis des
Aufrufs (2.).

Zur Bearbeitungszeit wird der Scheduling-Overhead (hier: 30 ms) addiert und dann von der
max. Verzégerungsvorgabe (z.B. 250 ms) des Klienten abgezogen, was die neue Verzégerungs-
vorgabe ergibt. Diese wird als Grenzwertvorgabe flr die Kommunikationsverbindung im Link-
objekt zusammen mit der Paketgrof3e an das Linkobjekt Ubergeben (3.). Das Ergebnis der Ver-
handlung Uber die Kommunikationsverbindung wird in Form der max. moglichen Paketgréi3e
und dem fir die Ubertragung festgestellten Verzogerungswert zuriickgegeben (4.). Dieser Ver-
zdgerungswert wird wiederum von der Verzdgerungsvorgabe abgezogen und somit eine neue
Vorgabe ermittelt. Der Senkenkomponente wird die Bildgro3e als Eingabeparameter tibergeben
(5.). Sie berechnet daraus die Zeit, die sie fur die Bearbeitung bendétigt (6.). Diese Bearbeitung-
szeit wird zusammen mit dem Scheduling-Overhead von der Verzégerungsvorgabe abgezogen.
Bleibt die Verzogerungsvorgabe positiv, so war die Reservierung erfolgreich und es kann in
einem zweiten Durchlauf die minimale Verzégerung durch Freigabe von Ressourcen bzw. Ein-
fuhrung zusétzlicher Puffer eingestellt werden.

Die Reservierung und Zuteilung von Ressourcen setzt Verwalter fiir die einzelnen Betriebsmit-
tel voraus. In der Literatur sind hier beispielsweise das Bandbreitenmanagement in [VHN92],
Speicher-Verwalter [McR093] und Scheduler der CPU [6] beschrieb@&mewa gibt es derzeit
Implementierungen fir die Verwaltung der Ressourcen Speicher und CPU. Fr letzteres wurde
das Rate-Monotonic-Schedulingverfahren erweitert [Bart94]. Es werden Scheduling-Klassen
mit unterschiedlichen Garantie-Stufen eingefuhrt. Die oberste Klasse bekommt eine Verzdge-
rungsgarantie des Schedulings, die kirzer als beim normalen Rate-Monotonic-Verfahren ist. In
der anderen gelten die normalen Werte des Rate-Monotonic-Verfahrens, jedoch sind im ungiin-
stigen Fall Fristverletzungen mdglich.

5 Zusammenfassung

In diesem Papier wurde di@nema-Architektur vorgestellt, welche eine Entwicklungsplattform

fur die Erstellung und Steuerung komplexer, verteilter Multimedia-Anwendungen bereitstellt.
Cinema bietet als Dienstschnittstelle eine Menge von Abstraktionen an, Uber die transparent die
darunterliegenden multimedialen Systemdienste angesprochen werden. Mit den Systemdien-
sten wird die Funktionalitat bereitgestellt, um Konfigurationen von Komponenten und Links,
die zu Flu3-Graphen verknlpft wurden, in verteilten Systemen zu installieren, um die Uber Ses-
sions ausgehandelte Dienstgute durch die Reservierung von Ressourcen zu erbringen und um
den FluR3 von Dateneinheiten unter Einhaltung von Synchronisationsbeziehungen zu steuern. In
der Summe zielen die bereitgestellten Funktionen darauf ab, die Licke zwischen der von
Betriebs- und Transportsystemen bereitgestellten Menge an Diensten und den Anforderungen
bei Aufbau und Betrieb verteilter Multimedia-Anwendungen zu verringern. Immer wiederkeh-
rende, automatisierbare Aufgaben, sollen dabei durch die System-Plattform erbracht werden,
um einen Grol3teil der Schwierigkeiten, der Details und der Komplexitat beim Entwurf von
Multimedia-Anwendungen vor Anwendungsprogrammierern zu verbergen.

Derzeit ist ein erster Prototyp d€siema-Systems lauffahig. Er erlaubt den Aufbau einfacher,
verteilter Anwendungsszenarien unter Verwendung der beschriebenen Abstraktionen innerhalb
unseres lokalen Rechnernetzes. Datenstrome innerhalb der Anwendungsszenarien kdnnen
gesteuert und synchronisiert Ubertragen werden. Die Implementierung zunehmend erweiterter
Funktionalitat ist derzeit in vollem Gange. Parallel dazu wird weitere Forschungsarbeit gelei-
stet, um beispielsweise den Entwurf von Protokollen zur Ressourcen-Aushandlung und Strom-
Synchronisation voranzutreiben, um Multicasting von Daten durch Teilstrombildung zu opti-
mieren oder die Auflésung geschachtelter Komponenten zu erméglichen.

6 Literatur

[AHS90] David P. Anderson, Ralf Guido Herrtwich, Carl Schaefer. SRP: A Resource
Reservation Protocol for Guaranteed-Performance Communication in the Internet.
Technischer Bericht No. UCB/CSD 90/562, Computer Science Division (EECS)
University of California, Berkeley, CA, 2 1990.

[AnH091] David P. Anderson, George Homsy. Synchronization Policies and Mechanisms in a
Continuous Media I/O ServeReport No. UCB/CSD 91/617, Computer Science Division
(EECS), University of California, Berkeley, CA1991.

[Appl91] Apple Computer Inc., Cupertino, CA, USAuickTime Developer’s Guig@991.
[BaFi94] Ingo Barth, Walter Fiederer. Session Reservati@nifs. in Vorbereitung 1994.

[Bart94] Ingo Barth. Extending the Rate Monotonic Scheduling Algorithm to Get Shorter
Delays. In2nd International Workshop on Advanced Teleservices and High-Speed
Communication Architectures, IWACA ‘94, Heidelhe3g104-114, 9 1994.

[BCA+92] G.Blair, G. Coulson, P. Auzimour, L.Hazard, F. Horn, J.B. Stefani. An Integrated
Platform and Computational Model for Open Distributed Multimedia ApplicatiorZrdn
International Workshop on Network and Operating Systems Support for Digital Audio and
Videq S. 209-222, 11, 1992.

[BCG+92] Gordon Blair, Geoff Coulson, Francisco Garcia, David Hutchison, Doug Shepherd.
Towards new Transport Services to Support Distributed Multimedia Applicatiodsh In
IEEE ComSoc International Workshop on Multimedia Communicatibh892.

[BuLi9l] Dick C. Bulterman, Robert van Liere. Multimedia Synchronisation and UNIX. In
2nd International Workshop on Network and Operating System Support for Digital Audio
and Video 11 1991.

[CBRS93] Geoff Coulson, Gordon S. Blair, Philippe Robin, Doug Shepherd. Extending the
Chorus Micro-Kernel to Support Continuous Media ApplicationBrbteedings of the 4th
International Workshop on Network and Operating Systems Support for Digital Audio and
Videq S. 49-60, 11 1993.

[CCGH92] Andrew Campell, Geoff Coulson, Francisco Garcia, David Hutchison. A
Continuous Media Transport and Orchestration ServicsSIBCOMM’'92 Conference
Proceedings Communications Architectures and Proto&I199-110, 8 1992.

[DNNR92] Roger B. Dannenberg, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine.
Tactus: Toolkit-Level Support for Synchronized Interactive Multimedia. 3imd
International Workshop on Network and Operating System Support for Digital Audio and
Videq 11 1992.

[EDP92] Julio Escobar, Debra Deutsch, Craig Partridge. Flow Synchronization Protocol. In
IEEE Global Communications Conferend2 1992.

[Herr91] Ralf Guido Herrtwich. Time Capsules: An Abstraction for Access to Continuous-
Media DataThe Journal of Real-Time Systems, Kluwer Academic Publjshe355-376,
3 1991.

[Hewl93] Hewlett-Packard Company, International Business Machines Corporation, SunSoft
Inc. Multimedia System Services, Version 1.0, verfugbar tber ftp: ibminet.awdpa.ipm.com
7 1993.

[HGA90] George Homsy, Ramesh Govindan, David P. Anderson. Implementation Issues for
a Network Continuous—Media 1/0 ServeReport No. UCB/CSD 90/597, Computer
Science Division (EECS), University of California, Berkeley, €2990.

[HHS+91] D. Hehmann, R. G. Herrtwich, W. Schulz, T. Schuett, R . Steinmetz. Implementing
HeiTS: Architecture and Implementation Strategy of the Heidelberg High-Speed Transport
System. Ir2nd Intl. Workshop on Network and Operating System Support for Digital Audio
and Videg 11 1991.

[IBM92] IBM Corporation.Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00 and S41G-2926-0992.

[IMA92] Interactive Multimedia Association, Compatibility Project, Annapolis, MD, USA.
Request for Technology: Multimedia System Services, Version 2.0, verfugbar tber ftp:
ibminet.awdpa.ibm.coyil 1992.

[KrMa85] Jeff Kramer, Jeff Magee. Dynamic Configuration for Distributed Syst&aiE
Transaction on Software Engineerjri§E-11(4):424-436, 4 1985.

[LiLa73] C.L. Liu, James W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environmendournal of the ACM20(1):46-61, 1 1973.

[McR093] Brian Craig McKellar, Jan Roos. Buffer Management in Communication Systems.
Technical Report 43.9312, IBM ENC, Heidelberg, Germagag3.

[Mill90] David L. Mills. On the Accuracy and Stability of Clocks Synchronized by the
Network Time Protocol in the Internet Systebomputer Communications Reviesv 65—
75, 1990.

[MKSD90] Jeff Magee, Jeff Kramer, Morris Sloman, Naranker Dulay. An Overview of the REX
Software Architecture. Ir2nd IEEE Computer Society Workshop on Future Trends of
Distributed Computing Systeni) 1990.

[NaSm92] Klara Nahrstedt, Jonathan M. Smith. The Integrated Media Approach to Networked
Multimedia Systems. 2 1992.

[RAA+90] M. Rozier, V. Abrossimov, F.Armand, |I.Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, W. Neuhauser. Overview of the Chorus
Distributed Operating Syster@horus Systémes CS/TR-90-29.990.

[RBH94] Kurt Rothermel, Ingo Barth, Tobias Helbig. CINEMA - An Architecture for
Configurable Distributed Multimedia Applications. Krchitecture and Protocols for
High-Speed NetworksO. Spaniol, A. Danthine, W. Effelsberg. Kluwer Academic
Publishers 1994, S. 253-271.

[RoHe94a] Kurt Rothermel, Tobias Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Stream$echnical Report 2/94, University of Stuttgaft1994,
(zur Veroffentlichung eingereicht).

[RoHe94b] Kurt Rothermel, Tobias Helbig. ASP: Adaptive Synchronization Protocol for
Continuous Data StreamBechnical Report 14/94, University of Stuttgh?t1994.

[RRVK92] P. Venkat Rangan, Srinivas Ramanathan, Harrick M. Vin, Thomas Kaeppner.
Media Synchronization in Distributed Multimedia File System®roceedings of the 4th
IEEE ComSoc Int. Workshop on Multimedia Communications, Monterey (CA),3JSA
315-324, 4 1992.

[Shap86] Marc Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy
Principle. Proceedings of the 6th International Conference on Distributed Computer
Systems5 1986.

[Sche94] Volker Scheel. Ausgabesynchronisation und Skalierung gespeicherter
multimedialer Datenstrom@neva. Diplomarbeit, University of Stuttgart/IPVR, 3 1994.

[Topo90] C. Topolcic. Experimental Internet Stream Protocol, Version 2 (SR 1190
10 1990.

[VHN92] Carsten Vogt, Ralph G. Herrtwich, Ramesh Nagarajan. HeiRAT: The Heidelberg
Resource and Administration Technique - Design Philosophy and GBais.ENC
Technical Report No. 43.9218992.

[ZDE+93] Lixia Zhang, Steve Deering, Debora Estrin, Scott Shanker, Daniel Zappala. RSVP:
A New Resource ReSerVation Protod&EE Network9 1993.

