
GI/ITG-Fachtagung “Kommunikation in Verteilten Systemen”,
Chemnitz, Germany, February 22-24, 1995

Implementierung multimedialer Systemdienste inCINEMA

Ingo Barth, Tobias Helbig, Kurt Rothermel
Universität Stuttgart

Institut für Parallele und Verteilte Höchstleistungsrechner
Breitwiesenstr. 20-22

D-70565 Stuttgart

Email: {barth,helbig,rothermel}@informatik.uni-stuttgart.de

Zusammenfassung.Die Erstellung verteilter Multimedia-Anwendungen setzt leistungsfähige
Entwicklungsplattformen voraus, innerhalb deren Probleme wie die Übertragung multimedialer
Daten, die Gewährleistung der Dienstgüte durch Reservierung von Ressourcen und die Synchro-
nisation von Datenströmen gelöst werden.CINEMA (Configurable INtEgrated Multimedia
Architecture) bietet als eine solche Entwicklungsplattform Abstraktionen zur Nutzung multime-
dialer Systemdienste an, womit funktionale Bearbeitungseinheiten erstellt, komplexe
Verarbeitungstopologien in verteilten Systemen aufgebaut und unter Einhaltung von Synchronisa-
tions- und Dienstgüte-Spezifikationen gesteuert werden können. In diesem Papier werden nach
einem kurzen Überblick über die Abstraktionen der CINEMA-Dienstschnittstelle die internen
Strukturen und Abläufe vorgestellt, mit denen die Multimedia-Dienste in verteilten Systemen
erbracht werden.

1 Einleitung

Voraussetzung für die effiziente Erstellung verteilter Multimedia-Anwendungen sind geeignete
und leistungsfähige Entwicklungsplattformen. Solche Plattformen bieten vielfältige Unterstüt-
zungsfunktionen, die sowohl die Bereiche der Multimedia-Kommunikation, der Synchronisa-
tion von Datenströmen als auch der Ressourcen-Verwaltung abdecken. Dabei wird die Funk-
tionalität von Betriebs- und Transportsystemen benutzt und angereichert durch spezielle, auf
Multimedia-Verarbeitung zugeschnittene Abstraktionen. Eine solche Plattform stelltCINEMA

(Configurable INtEgrated Multimedia Architecture) dar. MitCINEMA werden multimediale
Datenströme beliebiger Komplexität (mehrere Quellen und Senken, beliebige Verbindungs-
topologie) übertragen, verarbeitet und präsentiert.

In CINEMA werden als zentrale Abstraktion funktionale Bausteine (sogenannte Komponenten)
definiert, in welchen die Verarbeitung der multimedialen Datenströme stattfindet. Sie lassen
sich zu komplexen Topologien verknüpfen und schachteln. Um die Kommunikation und Ver-
arbeitung multimedialer Daten zu ermöglichen, werden Sessions definiert, an die eine
bestimmte Dienstgüte gebunden ist, welche durchCINEMA unter Reservierung der notwendigen
Ressourcen erbracht wird. Der Fluß von Dateneinheiten in beliebig strukturierten Fluß-Graphen
wird über sogenannte Medien-Uhren gesteuert. Mit diesen werden die zeitlichen Eigenschaften
der Datenströme sowie Synchronisationsbeziehungen zwischen Datenströmen spezifiziert und
der Datenfluß durch Aufruf von Steueroperationen beeinflußt. Die sich aus der Verwaltung und
Reservierung von Ressourcen, der Verwaltung der Konfiguration komplexer Szenarien und der
Synchronisation von Datenströmen ergebenden Schwierigkeiten werden vor dem Dienstnutzer
vonCINEMA, dem Klienten, verborgen.

Mit den vonCINEMA bereitgestellten Abstraktionen erhält ein Klient Zugriff auf multimediale
Dienste in verteilten Systemen, deren Implementierung in diesem Papier näher vorgestellt wird.
Zuerst wird in Abschnitt 2 ein Blick auf verwandte Arbeiten geworfen und in Abschnitt 3 ein

Überblick über die Abstraktionen derCINEMA-Dienstschnittstelle gegeben. Im Abschnitt 4 wird
die Umsetzung der Systemdienste anhand der drei wichtigsten Problembereiche dargestellt. Es
wird auf dasKonfigurationsmanagement eingegangen, mit dem ganze Anwendungstopologien
über Rechner und Prozesse hinweg verteilt, instanziiert und durch Kommunikationskanäle ver-
bunden werden sowie auf dasRessourcenmanagement, das die Bereitstellung der Betriebsmittel
zur Erbringung der Multimedia-Dienste erbringt. Weiterhin werden die Strukturen desSynchro-
nisationsmanagements zur Steuerung und Synchronisation von Datenströmen dargestellt. Das
Papier schließt mit einer Zusammenfassung.

2 Verwandte Arbeiten

Die vielfältigen Probleme, die durch die Integration von multimedialer Informationsverarbei-
tung in konventionelle Rechnersysteme entstehen, haben auf verschiedenen Gebieten Aktivitä-
ten angeregt. Aus dem Wissen über die Unzulänglichkeiten konventioneller Transport- und
Betriebssysteme (vgl. [BuLi91]) für die Handhabung multimedialer Daten, wurden Erweiterun-
gen von Kommunikationsdiensten angestrebt (z.B. Integration von Synchronisationsmechanis-
men [EDP92], [BCG+92] und Einbeziehung von Dienstgüte-Parametern [CCGH92]). Mit
HeiTS [HHS+91] wird ein Transportsystem für Multimedia-Systeme bereitgestellt, welches
Garantien für die Übertragung von Datenströmen auf ausgewählten Netzwerken geben kann. Im
SUMO-Projekt [CBRS93] wird das Chorus-Betriebssystem [RAA+90] für die Verarbeitung
von kontinuierlichen Medien erweitert. Dazu wird ein strombasierter Kommunikationsdienst
realisiert und die Dienstgüteverwaltung in das Betriebssystem integriert. Der Schwerpunkt sol-
cher Arbeiten liegt auf der Schaffung der jeweils speziellen Funktionalität, auf die dann mit
geeigneten Schnittstellen zugegriffen werden kann. Das Ziel vonCINEMA, eine universelle Platt-
form zum Entwurf verteilter Multimedia-Systeme bereitzustellen und verschiedenste System-
dienste zu integrieren, steht hierbei nicht im Vordergrund.

Ein vielverwendetes Konzept, verteilte Anwendungen aus einfachen Bausteinen aufzubauen,
die nur über Ports miteinander verknüpft werden müssen, wurde mit Conic [KrMa85] und dem
Nachfolgeprojekt REX [MKSD90] aufgegriffen und findet sich in einer Reihe anderer Projekte
in abgewandelter Form wieder (IMA [Hewl93], QuickTime [Appl91], SUMO [CBRS93],
CINEMA). In Conic wird dabei eine Sprache für die Programmierung von Komponenten und App-
likationen angeboten, die allerdings keine Aspekte der multimedialen Datenverarbeitung
berücksichtigt. Die Konfiguration wird durch einen zentralisierten Konfigurationsmanager auf-
gebaut und Änderungen werden durch diesen umgesetzt. Die gemeinsame Benutzung von
Komponenten in mehreren Konfigurationsbeschreibungen ist nicht vorgesehen.

Die weitergehende Frage des Entwurfes von geeigneten Abstraktionen zum Entwurf von Mul-
timedia-Systemen wurde ebenfalls in verschiedenen Arbeiten in Angriff genommen. ACME
(Abstractions for Continuous Media [HGA90]) stellt Abstraktionen für die Aufnahme und Wie-
dergabe von Audio- und Videodaten zur Verfügung. Sie dienen der Erweiterung konventioneller
Fenster-Oberflächen um kontinuierliche Daten. Mit ihnen können einfach Client-Server-Struk-
turen zur Kommunikation und Präsentation von Audio- und Videodaten entwickelt werden.
Eine ähnliche Zielsetzung verfolgt Tactus [DNNR92], wohingegen mit QuickTime [Appl91]
und IBM’s Multimedia Presentation Manager [IBM92] Toolkits zur lokalen Präsentation von
Audio und Video auf Rechnern kommerziell zur Verfügung stehen. In [BCA+92] wird eine inte-
grierte Plattform und ein Verarbeitungsmodell für offene verteilte Multimedia-Anwendungen
auf der Basis von ANSA vorgestellt. Dabei werden die Kommunikation und Synchronisation
durch Dienste modelliert, die zu einer verteilten Multimedia-Anwendung zusammengesetzt
werden können. DerRequest for Technology [IMA92] der Interactive Multimedia Association

(IMA) zeigt die grundsätzlichen Anforderungen an eine Architektur für verteilte Multimedia-
Anwendungen. In dem von mehreren Firmen erstellten Vorschlag [Hewl93] zu diesem RFT
werden Abstraktionen für die Struktur und den Aufbau einer verteilten Multimedia-Umgebung
unter dem Aspekt der herstellerübergreifenden Verarbeitung vorgestellt. Die Schachtelung von
Grundbausteinen zur Erzeugung höherer Abstraktionsebenen ist jedoch mit den bisher vorge-
schlagenen Abstraktionen und Konzepten ebensowenig möglich wie die automatische Umset-
zung von Synchronisationsbeziehungen.

3 Anwendungskonzepte und Abstraktionen in CINEMA

In diesem Abschnitt werden kurz die Abstraktionen vorgestellt, die einem Nutzer vonCINEMA

zur Erstellung und Steuerung verteilter Multimedia-Anwendungen zur Verfügung stehen. Für
eine detaillierte Diskussion der Konzepte Komponente, Port, Link, Session und Medien-Uhr sei
auf [RBH94] und [RoHe94a] verwiesen.

3.1 Konfiguration von Verarbeitungstopologien

Kontinuierliche Datenströme bestehen aus einer Sequenz von Dateneinheiten, die mit Zeitmar-
ken assoziiert sind (vgl. z.B. [Herr91]). Die Verarbeitung der Dateneinheiten kontinuierlicher
Ströme findet inCINEMA in Komponenten statt, welche die aktiven Einheiten bilden. Sie besit-
zen neben den funktionsspezifischen Schnittstellen, wie beispielsweise Lautstärke- oder Kon-
trast-Regler, auch generische Schnittstellen, über welche sie vomCINEMA-System unabhängig
von ihrer internen Funktionalität und Implementierung verwaltet werden. Wir unterscheiden
zwischen Quellen, die Datenströme erzeugen, Senken, die nur konsumieren und zwischengela-
gerten Komponenten, die Daten lesen, transformieren und verändert wieder abgeben. Kompo-
nenten konsumieren und produzieren Daten durch Zugriffe auf typisierte Ports.Ports bilden
konfigurationsunabhängige Datenzugriffspunkte, d.h. einer Komponente bleibt verborgen, ob
vom Port gelesene Daten von einer anderen Komponente erzeugt wurden, die auf dem gleichen
oder einem anderen Rechner lokalisiert ist. Die Implementierung von Komponenten und das
Testen ihrer Funktionsfähigkeit ist somit vollständig von dem späteren Anwendungsszenario
entkoppelt, was deutlich die Modularisierung und Strukturierung von Anwendungen fördert.

Komponenten sind entweder elementare Bausteine oder werden durch Schachtelung aus ande-
ren Komponenten erzeugt. Dadurch lassen sich höhere funktionale Abstraktionsebenen bilden.
Das Konzept der Schachtelung erlaubt es, die von Programmiersprachen bekannten Eigenschaf-
ten der Kapselung von Funktionalität auf die Erzeugung multimedialer Verarbeitungsbausteine
zu übertragen, was die Strukturierung von Anwendungen und die Wiederverwertbarkeit von
Code erleichtert. Bei Komponenten wird unterschieden zwischen solchen, die nur für eine
Anwendung bekannt und zugreifbar sind und den über global eindeutige Bezeichner adressier-
ten, von mehreren Anwendungen gemeinsam benutzten Komponenten, den sogenannten
“globalen Komponenten”, welche in Mehrbenutzeranwendungen die Bindeglieder zwischen
den beteiligten Anwendungen bilden.

Multimedia-Anwendungen werden konfiguriert, indemLinks zwischen den Ausgabe- und Ein-
gabeports von Komponenten definiert werden. Mit diesem Konfigurationsmechanismus lassen
sich beliebige, auf die Problemstellung zugeschnittene Anwendungstopologien, sogenannte
Fluß-Graphen, aufbauen. Während mit Links die Topologie von Anwendungen beschrieben
wird, dient die AbstraktionSession zur Reservierung von Ressourcen. Datenströme können erst
verarbeitet und übertragen werden, wenn die zugehörige Session eingerichtet wurde. Dies

geschieht durch Angabe einer Menge von Quellen und Senken, die über ein beliebiges Netz-
werk von zwischengelagerten Komponenten verbunden sind. Sessions sind assoziiert mit
Dienstgüte-Parametern, aus denen der Bedarf an Ressourcen abgeleitet wird. Eine Session
besteht somit aus einem Teil der Anwendungstopologie, deren Instanziierung ganz oder gar
nicht erfolgt. Nach der Erstellung einer Session kann der Fluß von Dateneinheiten gestartet wer-
den.

3.2 Steuerung und Synchronisation von Datenströmen

Zur Steuerung des Flusses von Dateneinheiten wird die Abstraktion der Medien-Uhr und das
Konzept der Uhren-Hierarchie eingeführt.Medien-Uhren dienen der Spezifikation temporaler
Eigenschaften von Datenströmen. Sie spannen dazu das Medienzeit-System auf, d.h. sie ver-
walten eine Menge von zeitbezogenen Parametern wie das Raten-VerhältnisR zwischen
Medien- und Echtzeit, den Startwert der MedienzeitM, die ZeitT des Echtzeit-Beginns der Ver-
arbeitung sowie einen relativen GeschwindigkeitsfaktorS zur Skalierung der Verarbeitung.
Medien-Uhren sind mit Quellen- oder Senken-Komponenten assoziiert. Mit dem Starten einer
Uhr wird die Verarbeitung von Daten entsprechend der zeitlichen Spezifikationen für den zuge-
hörigen Datenstrom eingeleitet. Die Skalierung der Datenübertragung (d.h. Änderung von
Richtung oder Geschwindigkeit) oder das Anhalten von Strömen erfolgt durch Anpassung des
Voranschreitens der Zeit von Uhren.

Uhren-Hierarchien beschreiben Beziehungen zwischen Medien-Uhren und damit zwischen
den zugehörigen Datenströmen. Sie werden benutzt, um Gruppen von Datenströmen zu bilden,
diese als Einheit zu steuern sowie um Synchronisationsbeziehungen zu spezifizieren. Die Grup-
pierung von Datenströmen erfolgt durch Zuordnen der sie steuernden Medien-Uhren zu einer
gemeinsamen, übergeordneten Uhr. Operationen, deren Aufruf an übergeordneten Medien-
Uhren erfolgt, werden in Richtung der Blätter von Uhren-Hierarchien propagiert. Durch die
Gestaltung der Struktur der Uhren-Hierarchie und die Auswahl der Hierarchie-Stufe, auf der
Operationen ausgelöst werden, ist eine flexible Gruppierung von Strömen gegeben. Dies wird
ergänzt durch die Möglichkeit zum Sperren der Propagierung von Operationen, was es erlaubt,
ganze Teil-Hierarchien auszublenden und darüber beispielsweise die Zuständigkeitsbereiche
verschiedener Benutzer gegeneinander abzugrenzen.

Abb.: 1 Beispielszenario: Audio-Konferenz

Mikrophon-
Komponente

Link

Port Medien-Uhr

Session

Die Propagierung von Operationen und die Spezifikation von Synchronisationsbeziehungen
erfolgt durch die Kopplung der von Medien-Uhren aufgespannten Medienzeitsysteme. Das
geschieht auf der Basis von Referenz-Punkten. EinReferenz-PunktRP [C1 : P1, C2 : P2] defi-
niert, daß die MedienzeitP1 im Zeitsystem der UhrC1 zur MedienzeitP2 im Zeitsystem vonC2
korrespondiert. Das erlaubt die Transformation der Medienzeiten ineinander:m2 = f(m1) mit

Uhren-Hierarchien bilden dynamische Strukturen, die auch zur Laufzeit einer Anwendung an
Änderungen in der Systemstruktur angepaßt werden können. So lassen sie sich erweitern bzw.
verkleinern, wenn bei Mehrbenutzer-Anwendungen neue Benutzer hinzukommen oder andere
ausscheiden. Veränderte Anforderungen an die Gruppierung von Datenströmen (z.B. das Erzeu-
gen oder Auflösen von Gruppen) lassen sich durch Umgestaltung der Struktur der Hierarchie
leicht realisieren. Dies unterstützt die Handhabung der in interaktiven und kooperativen Multi-
media-Anwendungen auftretenden Dynamik.

Zusätzliche Flexibilität in der Steuerung von gruppierten Datenströmen wird durch Attribute
der Kanten von Uhren-Hierarchien erreicht. So ist es möglich, die Beziehung zwischen Uhren
auf eine Steuerbeziehung zu beschränken. Hierdurch wird eine lose Kopplung der Zeitsysteme
ohne feste Synchronisation festgelegt. Trotz zusammengefaßter Ausführung von Operationen
der Gruppe ist ein Drift von Strömen oder eine getrennte Skalierung möglich. Anders bei der
Synchronisationsbeziehung. Mit ihr wird der Gleichlauf der Medienzeiten und darüber die zeit-
liche Bindung von Datenströmen abgesichert. Dies geschieht sowohl während der Verarbeitung
von Daten wie auch beim späteren Hinzuschalten weiterer Ströme.

4 Realisierung der Systemdienste von CINEMA

Mit den im vorherigen Abschnitt beschriebenen Abstraktionen und Konzepten steht eine
Dienstschnittstelle zur Verfügung, die es erlaubt, komplexe und dynamische Multimedia-
Anwendungen aufzubauen und zu steuern. Um die damit ausdrückbare Vielfalt von Funktionen
tatsächlich zu erbringen, wirdCINEMA auf Betriebs- und Transportsysteme aufgesetzt, deren
Funktionalität für die Verarbeitung multimedialer Daten angereichert wird. In diesem Abschnitt
erfolgt dazu die Beschreibung ausgewählter Systemstrukturen und Abläufe vonCINEMA. Nach
der Vorstellung der Programmierschnittstelle für Zugriffe auf Systemdienste werden die Archi-
tekturen zur Umsetzung der wesentlichen Systemdienste, d.h. der Verwaltung und Konfigura-
tion komplexer Topologien, der Steuerung und Synchronisation von Datenströmen sowie der
Ressourcen-Reservierung (vgl. Abb. 3) vorgestellt. Auf die Realisierung der Ereignisverwal-
tung wird nicht im Detail eingegangen.

Abb.: 2 Transformation von Medienzeit

m2 m1 P1–()
S2 R⋅

2

S1 R⋅
1

---------------- P2+⋅=

C1

C2

P1

P2

RP [C1: P1, C2 : P2]

m1

m2 = ?

4.1 CINEMA-Programmierschnittstelle

Die vonCINEMA bereitgestellten Abstraktionen zum Aufbau verteilter Multimedia-Anwendun-
gen werden den Klienten über dieCINEMA-Programmierschnittstelle zugänglich gemacht. Mit
dieser Programmierschnittstelle kann der Klient mittels einer objektorientierten Programmier-
sprache multimediale Verarbeitungstopologien erzeugen und steuern. Der Aufbau von Topolo-
gien ist dynamisch zu einem beliebigen Zeitpunkt zur Laufzeit möglich.

Dazu erzeugt der Klient zuerst Komponentenobjekte (im Beispiel Zeile 1camera und Zeile 2
display), für die er als Parameter die Komponentenklasse und die gewünschte Lokation spe-
zifiziert. Die Ports (im Beispielvideo) der Komponentenobjekte werden dann durch Links
(Zeile 3) miteinander verbunden. Über die Quellen- und Senkenports der Topologie erfolgt die
Definition einer Session unter Angabe von Dienstgüte-Parametern (Zeilen 5-10). Neben den
Komponentenobjekten kann der Klient Uhrenobjekte erzeugen, die er mit Quellen und Senken
assoziiert (Zeile 4) und ggf. in einer Uhren-Hierarchie miteinander in Beziehung setzt. Die
Steuerung des Flusses von Dateneinheiten wird durch Aufruf der Methoden von Uhrenobjekten
vorgenommen (Zeile 11).

Beispiel-Code:
1 comp_camera = COMPONENT(“camera”, Camera1);
2 comp_display = COMPONENT(“display”, Display1);
3 link(comp_camera->port(“video”),comp_display->port(“video”));
4 comp_display->associate(clock);
5 create_session(comp_camera ->port(“video”),
6 comp_display->port(“video”),
7 QoS(Rate (min = 15, max = 25),
8 Picturewidth (min = 200, max = 400),
9 Pictureheight (min = 150, max = 300),

10 Delay (min = 150, max = 250));
11 clock->start();

Die Objekte und Funktionen der Programmierschnittstelle werden dem Klienten in einer Biblio-
thek zur Verfügung gestellt. Die Objekte (wie die Komponenten im obigen Beispiel) sind
Proxyobjekte [Shap86]. Als lokale Platzhalter der tatsächlichen, i.a. entfernt instanziierten
Objekte nehmen sie Nachrichten des Klienten entgegen und leiten sie transparent an dasCINEMA-
System (z.B. das Konfigurationsmanagement) oder die tatsächlich Objektinstanzen weiter. Die
Proxyobjekte sind stets lokal zum Klienten, verhalten sich wie die tatsächliche Realisierung des

Abb.: 3 Architektur des CINEMA-Systems

Klient

CINEMA-Programmierschnittstelle

Konfigurations-
Verwaltung

Ressourcen-
Verwaltung

Ereignis-
Verwaltung

Synchronisation &
Stromsteuerung

entfernten Objekts und erlauben es deshalb, die Dienste vonCINEMA leicht in objektorientierte
Programmiersprachen (wie z.B. C++) zu integrieren.

4.2 Konfigurationsmanagement

Verteilte Multimedia-Anwendungen inCINEMA bestehen aus einem Geflecht von Komponenten,
die über Kommunikationskanäle miteinander verbunden sind. Die Aufgabe des Konfigurations-
managements ist es, aus der vom Klienten vorgegebenen Spezifikation des Geflechts eine
ablauffähige Instanziierung im verteilten System aufzubauen. Dafür müssen geschachtelte
Komponenten aufgelöst und das daraus entstandene Komponentengeflecht auf die Rechnerkno-
ten verteilt und instanziiert werden. Außerdem müssen von mehreren Klienten gemeinsam
genutzte Komponenten verwaltet und Information über Topologien und Komponenten für
andere Managementbereiche desCINEMA-Systems zur Verfügung gestellt werden. Zusätzlich zur
Instanziierung von Komponenten werden durch das Konfigurationsmanagement die Kommuni-
kationskanäle zwischen den Ports der Komponenten durch Instanziierung von Linkobjekten
aufgebaut.

Im folgenden wollen wir die Instanziierung der Komponenten auf den Knoten näher betrachten.
Hierfür gehen wir von bereits lokalisierten Komponenten aus, d.h. für jede Komponente ist vom
Klienten vorgegeben, auf welchem Knoten ihre Realisierung zu instanziieren ist.1 Die Kompo-
nenten werden auf den Knoten in speziellen Prozessen, den sogenanntenCINEMA-Prozessen, aus-
geführt, in denen Threads für die Aktivierung der Komponentenmethoden zur Verfügung ste-
hen. In CINEMA werden Threads verwendet, da sie sowohl Nebenläufigkeit mit geringem
Prozeßwechsel-Aufwand wie auch effiziente Kommunikation durch gemeinsame Adressberei-
che unterstützen. Für die Zuordnung von Komponenten zu Threads stehen verschiedene Alter-
nativen zur Auswahl. Sie werden im folgenden unter dem Aspekt des Einflusses auf die Ende-
zu-Ende-Verzögerung eines Datenstroms diskutiert.

Die einfachste Form der Verteilung von Komponenten auf Threads ist die Zuordnung jeder
Komponente zu einem eigenen Thread. Aufgrund der Möglichkeit, jede Komponente indivi-
duell aktivieren zu können, läßt sich die maximale Nebenläufigkeit erreichen. Die hohe Zahl
von Threads entlang eines Datenpfades bewirkt aber eine hohe Ende-zu-Ende-Verzögerung.
Dies resultiert aus zusätzlichen Verzögerungen, die durch das Scheduling von Threads einge-
führt werden und zur reinen Bearbeitungs- und Kommunikationsverzögerung hinzukommen.
Die in Multimedia-Systemen üblichen Schedulingverfahren (wieRate-Monotonic undEarliest-
Deadline-First [6]) gehen von einer Verzögerung der Aktivierung aus, die aus der Differenz
zwischen dem ersten möglichen Aktivierungszeitpunkt und der Deadline resultiert und größer
als die reine Bearbeitungszeit ist. Da die Verfahren stauvermeidend sind, beträgt diese zusätzli-
che Verzögerung pro Thread eine Periode2 und ist unabhängig von der Bearbeitungszeit. Das
bedeutet beispielsweise bei einem Videostrom mit einer Rate von 25 Bildern pro Sekunde, daß
pro Komponente eine Verzögerung von 40 msec eingeführt wird. Bei fünf aufeinanderfolgen-
den Komponenten summiert sich dies bereits zu einer Verzögerung von 200 ms, zu der die Ver-
zögerungen aufgrund der Übertragung von Daten noch hinzukommen.

Abhilfe kann durch zwei Maßnahmen geschaffen werden: Einerseits können Schedulingverfah-
ren dahingehend verbessert werden, daß kürzere Schedulingverzögerungen erreicht werden

1. Die Möglichkeit einer automatischen Verteilung von zwischengelagerten Komponenten unter Betrachtung der
Systemlast und Ressourcenverfügbarkeit wird derzeit untersucht.
2. Periode = Verzögerung durch das Scheduling + Bearbeitungszeit

(vgl. hierzu Abschnitt 4.4), andererseits kann durch die Zusammenfassung von mehreren Kom-
ponenten in einen Thread die Gesamtzahl der Threads und somit die durch sie eingeführte Ver-
zögerung verringert werden. Die Zusammenfassung von Komponenten in einen Thread
bewirkt, daß nur noch eine Wartesituation auftreten kann. Dies erfordert, daß die Dateneinhei-
ten, die von einer Komponente erzeugt werden, vollständig von der nächsten Komponente kon-
sumiert werden. Es entsteht so eine Bearbeitungspipeline, bei der nur die erste Komponente
Daten konsumieren kann, die von Komponenten stammen, die in anderen Threads oder auf
anderen Knoten liegen. Abb. 4 zeigt eine Topologie eines Konferenzszenarios mit der Thread-
zuordnung.

4.3 Stromsteuerung und Synchronisationsmechanismen

In CINEMA wird mit Medien-Uhren und Uhren-Hierarchien eine einheitliche, universelle Dienst-
Schnittstelle zur Steuerung und Synchronisation von Datenströmen angeboten. Die für die
Erbringung der dadurch zur Verfügung gestellten Funktionalität gewählte Architektur wird im
weiteren vorgestellt.

Ein Synchronisationsservice wird allgemein durch geeignete Synchronisationsprotokolle
erbracht. Viele der in der Literatur vorgeschlagenen Protokolle (vergleiche z.B. [EDP92],
[RRVK92], [AnHo91]) sind auf spezielle Systemumgebungen, Datentypen oder Topologien
zugeschnitten. Dem rechnungtragend, ermöglicht dieCINEMA-Architektur die Integration unter-
schiedlicher Synchronisationsprotokolle, welche dann alternativ in Abhängigkeit vom Synchro-
nisationsszenario verwendet werden können. Hierdurch wird sowohl die Auswahl des bestge-
eigneten Protokolls für eine bestimmte Konfiguration wie auch die Erweiterbarkeit des Systems
unterstützt.

Das Synchronisationssubsystem vonCINEMA besteht aus drei Schichten (Abb. 5). Die Medien-
Uhren-Verwaltungsschicht (Media Clock Management Layer - MCML) verwaltet Uhrenob-
jekte sowie die Struktur von Uhren-Hierarchien und trägt die Verantwortung für die Propagie-
rung von Uhrenoperationen. Der verteilte Synchronisationsdienst wird durch die Stromsyn-
chronisationsschicht (Stream Synchronization Layer - SSL) erbracht. Sie besteht aus einzelnen
Flußsteuerungs- und Synchronisationsmodulen, von denen jedes ein spezielles Steuerungs- und
Synchronisationsprotokoll realisiert. Diese Synchronisationsmodule benutzen die Basisdienste,
wie beispielsweise Pufferverwaltung, Scheduling oder den Kommunikationsdienst für Multi-
mediadaten, die durch dieCINEMA-Basisdienstschicht (CINEMA Base Services Layer - CBSL) ver-
fügbar gemacht werden. Aus der Sicht des Synchronisationssubsystems subsumiert die CBSL

Abb.: 4 Verteilung einer Topologie auf Threads

Kamera

Kamera

Display

Display

Mixer

Kompr.

Kompr.

Dekomp.

Dekomp.

diejenigen Basisfunktionen, die von anderen Managementteilen desCINEMA-Systems erbracht
werden.

Medien-Uhren-Verwaltungsschicht (MCML)

Die MCML verwaltet die Struktur und den Status von Medien-Uhren und Uhren-Hierarchien.
Sie bildet die durch Uhren-Hierarchien gebotene, anwendungsorientierte Schnittstelle auf die
stromorientierte Schnittstelle der Synchronisationsmodule ab.

Zur Verwaltung von Medienuhren werden Informationen über die von einer Anwendung ange-
legten Uhren, ihre Verknüpfung zu Uhren-Hierarchien und ihren aktuellen Status, wie z.B. zu
welcher Komponente sie zugeordnet sind, ob sie ticken oder ob Sperren gesetzt sind, unterhal-
ten. Um die strukturelle Konsistenz von Uhren-Hierarchien zu gewährleisten, werden Konsi-
stenzüberprüfungen durchgeführt. Außerdem sind Medien-Uhren einem der Synchronisations-
module der SSL zugeordnet. Derzeit erfordert die Auswahl eines geeigneten
Synchronisationsmoduls für ein Anwendungsszenario entsprechende Hinweise durch den
Klient. Es werden jedoch Kriterien zur automatischen Modulauswahl untersucht.

Die MCML ist weiterhin zuständig für die Propagierung von Uhrenoperationen in Hierarchien.
Dabei werden die jeweiligen Parameter einer Operation in das Zeitsystem der betroffenen Uhr
transformiert. Wird eine Operation zu einer Uhr propagiert, die mit einer Komponente verbun-
den ist, erfolgt eine Notifikation des zuständigen Synchronisationsmoduls, welches für die
Umsetzung im verteilten System sorgt.

Stromsynchronisationsschicht (SSL)

Synchronisationsmodule realisieren die vorhandenen Synchronisationsprotokolle unter Ver-
wendung der von derCINEMA Basisschicht bereitgestellten Funktionen.

Auf ein Synchronisationsmodul wird über das stromorientierte, generische Modul-Interface
(GMI) zugegriffen, welches eine einheitliche Schnittstelle zu den verschiedenen Synchronisa-
tionsmodulen darstellt. Das GMI ermöglicht die Spezifikation von zeitlichen Eigenschaften ein-
zelner Ströme und von Synchronisationsbeziehungen zwischen ihnen. Über das GMI wird dem
Synchronisationsmodul die zu steuernde Konfiguration verbundener Komponenten in Form

Abb.: 5 Schichten der Architektur des Synchronisationsdienstes

Medien-Uhren und Uhren-Hierarchien

Medienuhren-Verwaltungsschicht (MCML)

CINEMA Basisdienstschicht (CBSL)

Stromsynchronisationsschicht (SSL)

Sync. Modul1

GMI

Sync. Moduln

GMI

eines Flußgraphen bekannt gemacht. Weiterhin wird das Starten, Stoppen und Skalieren von
Flußgraphen als Ganzes oder in Teilen unterstützt. Der Ansatz profitiert vom objektorientierten
Programmierparadigma, da die Schnittstellen zu speziellen Synchronisationsmodulen aus der
generellen Schnittstelle durch Überdefinieren der jeweiligen Funktionen erzeugt werden.

Intern besteht ein Synchronisationsmodul aus einem GMI-Agenten und einer Reihe von soge-
nannten Synchronisationmodul-Agenten (SM-Agenten). Der GMI-Agent implementiert die
Schnittstelle zum Modul und instanziiert SM-Agenten auf den Knoten, die am jeweiligen Kom-
munikationsszenario beteiligt sind. Welche Knoten dies sind, wird aus der Flußgraph-Spezi-
fikation ermittelt, die durch die MCML bereitgestellt wurde. Nach ihrer Instanziierung steuern
die SM-Agenten kooperativ den Fluß von Dateneinheiten entsprechend des gewählten Synchro-
nisationsprotokolls.

Derzeit sind in unseren Prototyp zwei Synchronisationsprotokolle integriert. Eines erlaubt die
synchrone Wiedergabe gespeicherter Daten [Sche94], das andere die Synchronisation von
“Live”-Datenströmen durch Schätzung und Angleichung der Übertragungszeiten unterschied-
licher Übertragungskanäle. Letzteres ist eine modifizierte Version des Flow Synchronization
Protocols [EDP92]. Ein weiteres Protokoll [RoHe94b], welches eine weitgehende Anpassung
der Dienstgüte unter unterschiedlichen Strategien erlaubt, wird gegenwärtig implementiert.

CINEMA Basisdienstschicht (CBSL)

Wichtigste Aufgabe der CBSL ist die Erweiterung von Betriebssystemfunktionen, um die
Anforderungen verteilter multimedialer Verarbeitung zu erfüllen. So wird beispielsweise das
Echtzeit-Scheduling unabhängiger Verarbeitungsprozesse durch einen erweiterten Betriebssy-
stemscheduler verfügbar gemacht. Multimediale Datenkommunikation ist gekapselt in Link-
Objekte, welche über einheitliche Schnittstellen die Übertragung von Daten zwischen Kompo-
nenten erbringen. Dabei können sich Komponenten entweder auf dem gleichen Knoten oder
entfernt voneinander auf verschiedenen Knoten befinden, wodurch die Konfiguration verteilter
Anwendungen erleichtert wird. Letztlich bietet die CBSL eine erweiterte Pufferverwaltung, die
es erlaubt, Speicher für eine Session zu reservieren und fest im Hauptspeicher zu verankern.

Beispiel

Das Zusammenwirken der unterschiedlichen Schichten der Synchronisationsarchitektur soll
mit dem folgenden Beispiel (Abb. 6) verdeutlicht werden. Es wird von einem Synchronisations-
protokoll ausgegangen, das auf dem Ausgleich von Übertragungszeiten verschiedener Kanäle
basiert. Vereinfachend wird angenommen, daß alle Kommunikationsverzögerungen zwischen
GMI-Agent und SM-Agenten sowie zwischen Quelle und Senke der Multimedia-Datenpfade
bekannt seien. Aus Platzgründen wird im folgenden nur die Startphase der synchronen
Datenübertragung betrachtet.

Abb.: 6 Beispielszenario

S1

S2

D1

D2

C1

C2

C3

sync, RP1[C1:0, C3:0]

sync, RP2[C2:10, C3:0]

C3.Start(0)

Sobald der Klient die Startoperation C3.Start(0) aufruft, werden im MCML die folgenden
Aktionen ausgelöst: Zuerst findet die Propagierung der Operation zu den Medienuhren C1 und
C2 statt, wobei die Parameter entsprechend abgebildet werden. Anschließend wird die ermittelte
Menge von Operationen {C1.Start(0), C2.Start(10)} auf die Modulschnittstelle des ausgewähl-
ten Synchronisationsmoduls abgebildet:

ModulGMI->StartFlow(C 1, M 1=0, C 2, M 2=10, Zeit=sofort);

Der GMI-Agent des Moduls führt daraufhin die Kommunikation zu den SM-Agenten der ent-
fernten Lokationen und hierüber den tatsächlichen Start der Ströme aus. Dazu werden die Start-
zeiten der periodischen Verarbeitungseinheiten auf den Knoten der Quellen S1 und S2 sowie der
Senken D1 und D2 im voraus berechnet und über Steuerbotschaften an die SM-Agenten der
Knoten übermittelt (siehe Abb. 7). Mit dem Eintreffen der Botschaften wird das Scheduling der
Verarbeitungseinheiten durch die SM-Agenten initialisiert und zur gegebenen Zeit gestartet.

4.4 Ressourcenmanagement

Die Qualität multimedialer Anwendungen wird von der Einhaltung der vom Klienten spezifi-
zierten Randbedingungen, den Dienstgüte-Parametern, bestimmt. Da die Verarbeitung multi-
medialer Daten hohe Anforderungen an die Leistungsfähigkeit von Ressourcen (z.B. CPU,
Bandbreite, Speicher) stellt, ist es notwendig, die Einhaltung der Dienstgüte durch geeignete
Verwaltung, Reservierung und Zuteilung der Ressourcen abzusichern. Aufgabe des Res-
sourcenmanagements ist es deshalb, aus Dienstgüte-Vorgaben des Klienten den Bedarf an Res-
sourcen auf den jeweiligen Knoten des verteilten Systems zu ermitteln, beim Verwalter der Res-
source zu reservieren und zur Laufzeit zuzuteilen. Bei der Reservierung von Ressourcen handelt
es sich um einen dynamischen Verhandlungsprozeß, bei dem eine Anpassung zwischen den
Wünschen des Klienten und den Möglichkeiten des Systems (maximal verfügbare Kapazität,
Lastsituation) erzielt werden muß.

Bisherige Arbeiten zur Reservierung von Ressourcen in Multimedia-Systemen entstammen vor
allem dem Netzwerkbereich (SRP [AHS90], RSVP [ZDE+93], ST-II [Topo90]). Sie unterstüt-
zen Punkt-zu-Punkt-Verbindungen und Multicast-Topologien. Die betrachteten Dienstgüte-
Parameter werden durch die Anforderungen an die Kommunikationssysteme bestimmt (z.B.
Übertragungsverzögerung, Jitter, Burst, Paket-Größe, Paket-Verlust-Rate etc.). Da die Schnitt-
stelle zur Dienstgüteaushandlung bei einer Multimedia-Plattform wieCINEMA auf einer höheren

Abb.: 7 Austausch von Steuerbotschaften

StartTask(D2, 10, t0)

StartTask(D1, 0, t0)

StartTask(S2, 10, t0 - Delay(S2,D2))

StartTask(S1, 0, t0 - Delay(S1,D1))

GMI-Agent SM-Agent
Knoten S1

SM-Agent
Knoten S2

SM-Agent
Knoten D1

SM-Agent
Knoten D2

Abstraktionsebene liegt, sind diese Parameter für eine direkte Übernahme nicht geeignet. Viel-
mehr orientieren sich die mit Sessions assoziierten Parameter an den Eigenschaften und Typen
der zu übertragenden und verarbeitenden Datenströme. So sind beispielsweise bei einem Video-
strom Bildrate, Bildgröße oder Farbtiefe geeignete Parameter. Zusätzlich ist die Aushandlung
von Ende-zu-Ende-Eigenschaften (wie z.B. der Gesamtverzögerung) in komplexen Verarbei-
tungstopologien mit mehreren Quellen und Senken bei beliebiger interner Vernetzung notwen-
dig.

In CINEMA ergeben sich somit zwei Ebenen von Dienstgüte-Parametern. Die höhere Abstrak-
tionsebene enthält die vom Typ des Datenstromes (wie Audio, Video) abhängigen Parameter,
die zur Gestaltung der Dienstschnittstelle der Multimedia-Plattform benötigt werden. Die tie-
fere Abstraktionsebene enthält Parameter, die von den Eigenschaften der Ressourcen (wie bsw.
dem Netzwerk) bestimmt sind und nicht vom Typ des Stromes abhängen. Mit ihnen arbeiten die
individuellen Ressourcenverwalter und nutzen sie u.a. zur Ermittlung der freier Kapazitäten.
Zwischen beiden Abstraktionsebenen ist eine Abbildung der Dienstgüte-Parameter notwendig.
Diese Abbildung findet neben der Aushandlung von Dienstgüte-Parametern im Ressourcen-
Reservierungsprotokoll vonCINEMA (vgl. [BaFi94]) statt. Sie ist von der Verarbeitungsfunktio-
nalität der Komponenten abhängig. Der Abbildungsschritt kann folglich nur von Komponenten
selbst durchgeführt werden. Hierzu bieten sie eine Methode an, die aus stromtypabhängigen
Dienstgüte-Parametern der Eingabeports stromtypabhängige und -unabhängige Parameter für
die jeweiligen Ausgabeports und den Ressourcenbedarf für die Bearbeitung bestimmt.

Dies soll an dem in Abb. 7 dargestellten Ablauf der Ressourcenreservierung näher erläutert wer-
den. Es wird exemplarisch die Abbildung der Bildgröße, als Vertreter eines stromtypabhängigen
Parameters, auf die Paketgröße als Vertreter für einen stromtypunabhängigen Parameter
betrachtet. Das Delay als Ende-zu-Ende-Parameter wird dabei ebenfalls akkumuliert. Auf den
Ressourcenbedarf wird nicht näher eingegangen.

Die Quellenkomponente erhält als Parametervorgabe den Dienstgütewunsch des Klienten (1.).
Daraus wählt sie, z.B. auf Grund der von der Komponente tatsächlich unterstützten Bildgrößen,
geeignete Parameterwerte aus den vorgegebenen Intervallen aus. Für diese Parameterwerte
berechnet sie nun die Paketgröße, z.B. indem sie die Breite mit der Höhe multipliziert (8 Bit
Farbtiefe). Zusätzlich berechnet die Komponente die Zeit, die sie für die Bearbeitung benötigt.
Die ausgewählten Parameter, die Paketgröße und die Bearbeitungszeit sind das Ergebnis des
Aufrufs (2.).

Abb.: 8 Beispiel des Ablaufs einer Ressourcenreservierung

Comp1 Comp2

1. 2. 3. 4. 5. 6.

1. QoS-Wunsch: 400-200x300-150
2. QoS-Ausgabe: 300x225, 67500 Bytes, 20 ms
3. QoS-Eingabe: 67500 Bytes, 200 ms
4. QoS-Ausgabe: 67500 Bytes, 100 ms
5. QoS-Eingabe: 300x225
6. QoS-Ausgabe: 20 ms

Als Parameter werden betrachtet: stromorientiert: Bildgröße
stromunabhängig: Paketgröße und Delay

Link

Ressourcenmanagement

Zur Bearbeitungszeit wird der Scheduling-Overhead (hier: 30 ms) addiert und dann von der
max. Verzögerungsvorgabe (z.B. 250 ms) des Klienten abgezogen, was die neue Verzögerungs-
vorgabe ergibt. Diese wird als Grenzwertvorgabe für die Kommunikationsverbindung im Link-
objekt zusammen mit der Paketgröße an das Linkobjekt übergeben (3.). Das Ergebnis der Ver-
handlung über die Kommunikationsverbindung wird in Form der max. möglichen Paketgröße
und dem für die Übertragung festgestellten Verzögerungswert zurückgegeben (4.). Dieser Ver-
zögerungswert wird wiederum von der Verzögerungsvorgabe abgezogen und somit eine neue
Vorgabe ermittelt. Der Senkenkomponente wird die Bildgröße als Eingabeparameter übergeben
(5.). Sie berechnet daraus die Zeit, die sie für die Bearbeitung benötigt (6.). Diese Bearbeitung-
szeit wird zusammen mit dem Scheduling-Overhead von der Verzögerungsvorgabe abgezogen.
Bleibt die Verzögerungsvorgabe positiv, so war die Reservierung erfolgreich und es kann in
einem zweiten Durchlauf die minimale Verzögerung durch Freigabe von Ressourcen bzw. Ein-
führung zusätzlicher Puffer eingestellt werden.

Die Reservierung und Zuteilung von Ressourcen setzt Verwalter für die einzelnen Betriebsmit-
tel voraus. In der Literatur sind hier beispielsweise das Bandbreitenmanagement in [VHN92],
Speicher-Verwalter [McRo93] und Scheduler der CPU [6] beschrieben. InCINEMA gibt es derzeit
Implementierungen für die Verwaltung der Ressourcen Speicher und CPU. Für letzteres wurde
das Rate-Monotonic-Schedulingverfahren erweitert [Bart94]. Es werden Scheduling-Klassen
mit unterschiedlichen Garantie-Stufen eingeführt. Die oberste Klasse bekommt eine Verzöge-
rungsgarantie des Schedulings, die kürzer als beim normalen Rate-Monotonic-Verfahren ist. In
der anderen gelten die normalen Werte des Rate-Monotonic-Verfahrens, jedoch sind im ungün-
stigen Fall Fristverletzungen möglich.

5 Zusammenfassung

In diesem Papier wurde dieCINEMA-Architektur vorgestellt, welche eine Entwicklungsplattform
für die Erstellung und Steuerung komplexer, verteilter Multimedia-Anwendungen bereitstellt.
CINEMA bietet als Dienstschnittstelle eine Menge von Abstraktionen an, über die transparent die
darunterliegenden multimedialen Systemdienste angesprochen werden. Mit den Systemdien-
sten wird die Funktionalität bereitgestellt, um Konfigurationen von Komponenten und Links,
die zu Fluß-Graphen verknüpft wurden, in verteilten Systemen zu installieren, um die über Ses-
sions ausgehandelte Dienstgüte durch die Reservierung von Ressourcen zu erbringen und um
den Fluß von Dateneinheiten unter Einhaltung von Synchronisationsbeziehungen zu steuern. In
der Summe zielen die bereitgestellten Funktionen darauf ab, die Lücke zwischen der von
Betriebs- und Transportsystemen bereitgestellten Menge an Diensten und den Anforderungen
bei Aufbau und Betrieb verteilter Multimedia-Anwendungen zu verringern. Immer wiederkeh-
rende, automatisierbare Aufgaben, sollen dabei durch die System-Plattform erbracht werden,
um einen Großteil der Schwierigkeiten, der Details und der Komplexität beim Entwurf von
Multimedia-Anwendungen vor Anwendungsprogrammierern zu verbergen.

Derzeit ist ein erster Prototyp desCINEMA-Systems lauffähig. Er erlaubt den Aufbau einfacher,
verteilter Anwendungsszenarien unter Verwendung der beschriebenen Abstraktionen innerhalb
unseres lokalen Rechnernetzes. Datenströme innerhalb der Anwendungsszenarien können
gesteuert und synchronisiert übertragen werden. Die Implementierung zunehmend erweiterter
Funktionalität ist derzeit in vollem Gange. Parallel dazu wird weitere Forschungsarbeit gelei-
stet, um beispielsweise den Entwurf von Protokollen zur Ressourcen-Aushandlung und Strom-
Synchronisation voranzutreiben, um Multicasting von Daten durch Teilstrombildung zu opti-
mieren oder die Auflösung geschachtelter Komponenten zu ermöglichen.

6 Literatur

[AHS90] David P. Anderson, Ralf Guido Herrtwich, Carl Schaefer. SRP: A Resource
Reservation Protocol for Guaranteed-Performance Communication in the Internet.
Technischer Bericht No. UCB/CSD 90/562, Computer Science Division (EECS)
University of California, Berkeley, CA, 2 1990.

[AnHo91] David P. Anderson, George Homsy. Synchronization Policies and Mechanisms in a
Continuous Media I/O Server.Report No. UCB/CSD 91/617, Computer Science Division
(EECS), University of California, Berkeley, CA, 2 1991.

[Appl91] Apple Computer Inc., Cupertino, CA, USA.QuickTime Developer’s Guide, 1991.
[BaFi94] Ingo Barth, Walter Fiederer. Session Reservation inCINEMA. in Vorbereitung, 1994.
[Bart94] Ingo Barth. Extending the Rate Monotonic Scheduling Algorithm to Get Shorter

Delays. In 2nd International Workshop on Advanced Teleservices and High-Speed
Communication Architectures, IWACA ‘94, Heidelberg, S. 104-114, 9 1994.

[BCA+92] G.Blair, G. Coulson, P. Auzimour, L.Hazard, F. Horn, J.B. Stefani. An Integrated
Platform and Computational Model for Open Distributed Multimedia Applications. In3rd
International Workshop on Network and Operating Systems Support for Digital Audio and
Video, S. 209-222, 11, 1992.

[BCG+92] Gordon Blair, Geoff Coulson, Francisco Garcia, David Hutchison, Doug Shepherd.
Towards new Transport Services to Support Distributed Multimedia Applications. In4th
IEEE ComSoc International Workshop on Multimedia Communications, 4 1992.

[BuLi91] Dick C. Bulterman, Robert van Liere. Multimedia Synchronisation and UNIX. In
2nd International Workshop on Network and Operating System Support for Digital Audio
and Video, 11 1991.

[CBRS93] Geoff Coulson, Gordon S. Blair, Philippe Robin, Doug Shepherd. Extending the
Chorus Micro-Kernel to Support Continuous Media Applications. InProceedings of the 4th
International Workshop on Network and Operating Systems Support for Digital Audio and
Video, S. 49–60, 11 1993.

[CCGH92] Andrew Campell, Geoff Coulson, Francisco Garcia, David Hutchison. A
Continuous Media Transport and Orchestration Service. InSIGCOMM’92 Conference
Proceedings Communications Architectures and Protocols, S. 99–110, 8 1992.

[DNNR92] Roger B. Dannenberg, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine.
Tactus: Toolkit-Level Support for Synchronized Interactive Multimedia. In3nd
International Workshop on Network and Operating System Support for Digital Audio and
Video, 11 1992.

[EDP92] Julio Escobar, Debra Deutsch, Craig Partridge. Flow Synchronization Protocol. In
IEEE Global Communications Conference, 12 1992.

[Herr91] Ralf Guido Herrtwich. Time Capsules: An Abstraction for Access to Continuous-
Media Data.The Journal of Real-Time Systems, Kluwer Academic Publishers, S. 355–376,
3 1991.

[Hewl93] Hewlett-Packard Company, International Business Machines Corporation, SunSoft
Inc.Multimedia System Services, Version 1.0, verfügbar über ftp: ibminet.awdpa.ibm.com,
7 1993.

[HGA90] George Homsy, Ramesh Govindan, David P. Anderson. Implementation Issues for
a Network Continuous–Media I/O Server.Report No. UCB/CSD 90/597, Computer
Science Division (EECS), University of California, Berkeley, CA, 9 1990.

[HHS+91] D. Hehmann, R. G. Herrtwich, W. Schulz, T. Schuett, R . Steinmetz. Implementing
HeiTS: Architecture and Implementation Strategy of the Heidelberg High-Speed Transport
System. In2nd Intl. Workshop on Network and Operating System Support for Digital Audio
and Video, 11 1991.

[IBM92] IBM Corporation.Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00 and S41G-2920-00, 3 1992.

[IMA92] Interactive Multimedia Association, Compatibility Project, Annapolis, MD, USA.
Request for Technology: Multimedia System Services, Version 2.0, verfügbar über ftp:
ibminet.awdpa.ibm.com, 11 1992.

[KrMa85] Jeff Kramer, Jeff Magee. Dynamic Configuration for Distributed Systems.IEEE
Transaction on Software Engineering, SE-11(4):424–436, 4 1985.

[LiLa73] C.L. Liu, James W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment.Journal of the ACM, 20(1):46–61, 1 1973.

[McRo93] Brian Craig McKellar, Jan Roos. Buffer Management in Communication Systems.
Technical Report 43.9312, IBM ENC, Heidelberg, Germany, 1993.

[Mill90] David L. Mills. On the Accuracy and Stability of Clocks Synchronized by the
Network Time Protocol in the Internet System.Computer Communications Review, S. 65–
75, 1990.

[MKSD90] Jeff Magee, Jeff Kramer, Morris Sloman, Naranker Dulay. An Overview of the REX
Software Architecture. In2nd IEEE Computer Society Workshop on Future Trends of
Distributed Computing Systems, 10 1990.

[NaSm92] Klara Nahrstedt, Jonathan M. Smith. The Integrated Media Approach to Networked
Multimedia Systems. 2 1992.

[RAA+90] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, W. Neuhauser. Overview of the Chorus
Distributed Operating System.Chorus Systémes CS/TR-90-25, 4 1990.

[RBH94] Kurt Rothermel, Ingo Barth, Tobias Helbig. CINEMA - An Architecture for
Configurable Distributed Multimedia Applications. InArchitecture and Protocols for
High-Speed Networks, O. Spaniol, A. Danthine, W. Effelsberg. Kluwer Academic
Publishers 1994, S. 253-271.

[RoHe94a] Kurt Rothermel, Tobias Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Streams.Technical Report 2/94, University of Stuttgart, 4 1994,
(zur Veröffentlichung eingereicht).

[RoHe94b] Kurt Rothermel, Tobias Helbig. ASP: Adaptive Synchronization Protocol for
Continuous Data Streams. Technical Report 14/94, University of Stuttgart,12 1994.

[RRVK92] P. Venkat Rangan, Srinivas Ramanathan, Harrick M. Vin, Thomas Kaeppner.
Media Synchronization in Distributed Multimedia File Systems. InProceedings of the 4th
IEEE ComSoc Int. Workshop on Multimedia Communications, Monterey (CA), USA, S.
315–324, 4 1992.

[Shap86] Marc Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy
Principle. Proceedings of the 6th International Conference on Distributed Computer
Systems, 5 1986.

[Sche94] Volker Scheel. Ausgabesynchronisation und Skalierung gespeicherter
multimedialer DatenströmeCINEMA. Diplomarbeit, University of Stuttgart/IPVR, 3 1994.

[Topo90] C. Topolcic. Experimental Internet Stream Protocol, Version 2 (ST-II).RFC 1190,
10 1990.

[VHN92] Carsten Vogt, Ralph G. Herrtwich, Ramesh Nagarajan. HeiRAT: The Heidelberg
Resource and Administration Technique - Design Philosophy and Goals.IBM ENC
Technical Report No. 43.9213, 1992.

[ZDE+93] Lixia Zhang, Steve Deering, Debora Estrin, Scott Shanker, Daniel Zappala. RSVP:
A New Resource ReSerVation Protocol.IEEE Network, 9 1993.

