
Levels of Quality of Service in CINEMA

Ingo Barth, Gabriel Dermler, Walter Fiederer

University of Stuttgart
Institute of Parallel and Distributed High-Performance Systems (IPVR)

Breitwiesenstraße 20-22, D-70565 Stuttgart, Germany
{barth, dermler, fiederer}@informatik.uni-stuttgart.de

Abstract. Distributed multimedia systems require quality of service at various
abstraction levels. At the application level, QoS describes communication in terms
of application specific processing units, e.g. frames. At the transport level QoS is
used to describe the communication load for the transport system. An architecture
integrating the various levels is presented. The architecture provides the framework
for performing negotiation of QoS and resource reservation. It includes the specifi-
cation of a programmer interface and a flowspec carrying QoS information between
communication nodes.

1 Introduction

Distributed multimedia systems require resource reservation and quality of service (QoS) han-
dling because of scarce resources ([ATW+90]). In the past, substantial work has been done in
the field of QoS handling within transport systems and networks. QoS specification at this level
is derived from the need of transport systems to handle communication load in an application
independent way. Negotiation between application entities using the transport system is sup-
ported by passing higher level QoS between them. End-to-end in the context of a transport sys-
tem applies to the communication endpoints of the transport system itself.

Distributed multimedia applications expose further reaching requirements. First, distributed
application entities have to agree on communication characteristics beyond transport level com-
munication load. Application level parameters are required describing media specific QoS prop-
erties of communication streams. Such parameters are required since there is no unique cou-
pling between a specific communication load and specific value selections for media specific
parameters (e.g. small picture/high video rate and large picture/low video rate may yield the
same communication load). Also, media specific parameters allow application users to express
their QoS requirements in a more natural way.

Second, end-to-end in the context of distributed multimedia applications does not necessarily
mean a communication link connecting two end-systems. Generally, it means the interconnec-
tion of several endsystems in a possibly very application specific topology, as is the case for the
connection of several audio sources to a central mixer from which distribution takes place to a
number of networked loudspeakers. Such an application will require appropriate (negotiation)
control mechanisms considering both transport and application level parameters and spanning
the whole application topology from data sources to sinks.

CINEMA, a configurable integrated multimedia architecture, is a system attempting to identify and
solve these problems. It was conceived as a development and run-time support platform for dis-
tributed multimedia applications. It supports QoS handling at both application and transport
level and integrates these levels into an appropriate QoS architecture. The description of this
architecture is the topic of this contribution. It is to highlight the main abstractions used inCIN-

EMA for constructing and running distributed applications and the way these abstractions handle



QoS at various levels including mapping between the levels. In particular, this includes a client
QoS specification interface and a flowspec description for negotiating QoS between distributed
parts ofCINEMA.

Unlike transport level QoS, application level QoS is different depending on the type of media
employed by a distributed application.CINEMA introduces a scheme for defining application level
QoS based on the notion of stream types. This scheme is also presented in this paper and
described with respect to QoS handling.

The paper is structured as follows. First, we give a brief overview of related work. In Section 3,
we present the abstractions of theCINEMA system in which the QoS architecture is integrated.
This is followed by the QoS architecture containing the different QoS abstraction levels and
mappings between them. Section 5 describes the QoS description used for the application level.
Finally we discuss and summarize the presented QoS architecture.

2 Related Work

Substantial work has been done on multimedia transport systems and description for QoS to
negotiate the possible QoS within the transport or network system and to reserve the needed
resources. For instance HeiTS ([HHS+91]) provides an interface to specify the required QoS for
a transport connection. Within HeiTS, QoS is negotiated and resources are reserved. The QoS
specification of a transport system is mostly derived from the QoS specification which is given
by the underlying network level reservation protocols, e.g. SRP [AHS90] or ST-II [Topo90].
Another popular reservation protocol RSVP [ZDE+93] defines no QoS specification so far.

[TaHo94], [SMHW95] and [KrLi94] describe the need for application specific QoS. Their QoS
description is based on the media type of a stream. [TaHo94] uses a management information
base to map application specific QoS to transport system QoS. [SMHW95] uses a QoS manager
tool to do the mapping. The QoS manager tool is called with the selected kind of media encod-
ing and the desired QoS class and returns the transport level (XTPX-based) QoS data structure.
[KrLi94] uses a single application parameter which can be mapped onto transport level param-
eters. In this paper, we motivate a different approach for the mapping from application specific
to transport system QoS.

In IMA [IMA93], QoS is declared as format descriptions which are assigned to ports. The IMA
system selects an appropriate format for each connection. This format selection is done for each
end-system to end-system connection on its own. An end-to-end QoS handling is not possible
at application level (i.e. from data sources to sinks).

A quality of service architecture (QoS-A) for a transport service over high-performance ATM-
based networks is explained in [CCH94]. The defined architecture contains three planes, the
protocol plane, the QoS maintenance plane, and the flow management plane. The description
solely relates to the transport layer and the mechanisms to realize such a transport interface.

3 CINEMA  System

In this section, we describe the basic abstractions of theCINEMA system allowing clients to con-
struct distributed multimedia applications. For a detailed description refer to [RBH94] and
[RoHe94]. The basic abstractions are components, ports, links, clocks and sessions.

Components encapsulate processing of multimedia data, e.g. for generating, presenting or
manipulating data. To provide a uniform data access point for the components, ports are used
that provide data units to the component (input port) or take the data units from the component
(output port). A client constructs an application by specifying a topology of components inter-



connected via links. A link provides an abstraction from underlying communication mecha-
nisms which may be used to perform the transport of data units.

Components are activated by the system to handle data units of data streams taken from input
ports and produce data units at their output ports. The timing of the component is controlled by
the system using clocks. A clock maps a media time system to the real time according to the
specified clock parameters.

With each component port a set of stream types is associated indicating the media types sup-
ported by the component at that port. The stream type concept will be detailed in section 5.

Before using an application, a client has to indicate desired QoS toCINEMA. For this,CINEMA

offers the concept of a session. A session is the unit of resource reservation allowing the client
to specify the (parts of an) application to be instantiated and the QoS expected. Section 4 details
the client’s view to QoS specification.

Figure 1 shows an example topology composed of the mentioned core abstractions: two source
components generating two audio streams which are mixed by a central mixer and distributed
to two loudspeaker components.

4 QoS Architecture

This section describes the QoS abstraction levels used inCINEMA, the mappings between them
and the architectural aspects of theCINEMA QoS negotiation scheme.

4.1  Transport and application level QoS

Since multimedia streams exhibit a strong relationship with time, new transport systems have
been designed which are able to handle massive multimedia related communication load within
temporal bounds. For providing such guarantees, they need a description of the communication
load. Based on this, they can determine the amount of resources required. Deriving such load
descriptions is therefore an important task for each distributed multimedia system (see
Section 4.2).

[ATW+90] introduced such a description with the LBAP model. Other known transport systems
use similar descriptions which differ in some detail, but typically contain the size of data units,
rate of data units, and the burstiness of data units. Depending on the capabilities of the transport
system error control characteristics are included as well.

The description of QoS is independent of the type of data contained in a continuous stream. For
instance, the parameters for a video stream are the same as for an audio stream.

Figure 1 : Example ofa CINEMA multimedia application topology

Component

Link

Output Port Media-Clock

Session

Input Port



Distributed application components have to exchange data according to commonly agreed
media specific parameters. Examples of such parameters for video streams are video size and
rate, color depth and compression quality. For audio, sample size and rate are commonly used.
CINEMA uses the concept of stream types to encapsulate the parameter set implied by a specific
medium.

Application level QoS parameters are not just used to describe media specific communication
between component ports. They are also the parameters employed by the application client
when specifying desired QoS for a session. In this way,CINEMA offers a basic level of QoS spec-
ification. On top of this, more abstract QoS layers may be built, which, however, are outside the
scope ofCINEMA. For instance, aCINEMA client may specify for a stream type “video” the tuple
(video size, video rate) as required at a sink component’s port.

Initially (i.e. before a session is set up by a client), each component port is associated with one
or more stream types which can be supported by the component functionally. For instance, a
source component may be able to support two stream types JPEG video and MPEG video. Each
of these could allow the specification of values for parameters such as video size, video rate and
compression quality. For each parameter values are specified which are supported functionally
by the component, either as a list of discrete values (e.g. CIF, QCIF) or as a value range between
a minimal and maximal value.

It is the task of theCINEMA negotiation procedure to determine for each port which of possibly
several stream types have to be supported in a session and with which parameter values.

4.2  Mapping from application level QoS to transport level QoS

The mapping is required to calculate the transport level QoS from application level QoS. The
application level QoS is selected initially by the client and propagated through the topology by
the negotiation protocol.

Several approaches to perform the mapping are possible. Taking the approach from [TaHo94]
or [SMHW95] in CINEMA would have meant to define an additional mapping entity containing
entries for each stream type supported and defining corresponding mappings to transport level
QoS.

We expect that a CINEMA component consuming or producing data streams of a certain stream
type has anyway to be aware of the characteristics of the stream type in order to be able to proc-
ess it. In addition, the component must have the ability to compute its resource demands from a
given application level specification. From this we concluded that a component in most cases
has to possess the knowledge to do the mapping. Therefore we anchored the mapping function-
ality inside a component and did not assign it to a separate mapping entity.

A second reason for this approach was that in some cases the processing capabilities of the com-
ponents influence the mapping. For instance, a video sink which is able to fill gaps in a video
image will require less error prevention at the transport level than a video sink which cannot fill
gaps.

We have introduced the abstraction of a link to relieve a client building an application from the
need to be exposed to transport system specific questions. The same has to apply to component
programmers as well. When defining the mapping to transport level QoS inside a component,
the component programmer should not bother with features of a specific transport mechanism.
Therefore we introduced an application flowspec (AFS) that contains a specific part carrying the
application specific QoS parameters and a generic part carrying the communication load param-
eters which abstract from peculiarities of any employed transport mechanism. This generic part



consists of parameters commonly used in transport systems like size, rate and burst of data units,
delay, jitter and error rate.

In order to do the mapping from the communication load parameters to the QoS parameters of
a specific transport system, which are carried by the transport flowspec (TFS), each transport
system is encapsulated within a specific link. Whenever a new transport system is introduced, a
new link has to be realized inCINEMA. A link offers toCINEMA the desired uniform communication
load oriented interface while linking to the transport system through its specific transport inter-
face. We expect that several transport systems will coexist in the near future in multimedia sys-
tems, for instance for adapting to wireless or wirebound communications. On the other hand,
we do not expect this number to be too high and transport systems to appear too often. The list
of required links will therefore be rather low and static. Links are inserted by CINEMA in a trans-
parent way to the client. The selection of the link is done byCINEMA based on the type of trans-
port system.

Figure 2 shows the QoS architecture for communicating multimedia data using theCINEMA

abstractions. At the application level and at the transport level flowspecs are defined containing
the corresponding QoS information. These flowspecs are propagated during the negotiation
phase, the AFS between components and links of an application, the TFS inside links.

4.3  Negotiation of QoS

A CINEMA client wishing to initiate a session, first has to specify the QoS it desires. The client
relates this specification to perceivable quality, i.e. to the quality of the final visible presentation,
e.g. the quality of a video viewed. Usually, this quality can be described at the sinks of a topol-
ogy.1 In CINEMA the client is expected to provide a QoS description for each sink port.

Before QoS specification, the client can query the port for possible stream types the port can
support and selects an appropriate one. Since a stream type can allow various parameter settings
(see Section 5), the client has also the opportunity to exclude values (or value ranges) which are
allowed by the stream type, but not desired by the client.

1 Only these cases are considered here.

Figure 2 : QoS Architecture used inCINEMA

transport
level

application
level

Application
QoS

Transport
system QoS

Flowspecs used

AFS

TFS

AFS

TFS

component component
link

client



After having done the selections described, the client initiates a session. The client has to specify
which part of a topology has to be built up and (for each sink port separately) what end-to-end
parameters have to be applied to the session. Then, theCINEMA negotiation process is triggered.

The next step is to assemble a flowspec (application flowspec, AFS) from the QoS specification
given by the client and completed by sink components. This flowspec is propagated byCINEMA

through the interlinked topology. Whenever the AFS traverses a transport system, the generic
part of the AFS is used to calculate the corresponding transport system flowspec by the corre-
sponding link.

From a point of the component topology view, the propagation takes place at the link, i.e.CINEMA

takes the AFS from a component’s incoming port and passes it to the link connected to that port.
The link passes the (possibly adjusted) AFS back to CINEMA in the context of the outport origi-
nating that link. In turn,CINEMA passes this AFS to the component carrying the outport, such that
the component can calculate (a) the AFS of its incoming ports and (b) the resources required.
The procedure is repeated by CINEMA until all component ports were given an appropriate AFS.

From an architectural point of view, the propagation takes place - as seen in Figure 2 - at the
application level (containing components and links) and at the transport level. Whenever a link
is invoked with an AFS, it checks whether it serves local or remote communication. For the lat-
ter, the link calculates a transport system flowspec from the generic part of the AFS. TFS is
handed over to the transport system, such that it can initiate resource reservation at the transport
and network level. The AFS part is handed over as transport user data. At the other end of the
transport connection, AFS and the (possibly) adapted TFS are assembled by the destination part
of the link by adjusting the generic parts of AFS. The link passes this AFS to the CINEMA system
for further propagation at the application level.

We described here the negotiation procedure only as far as architectural issues concerning QoS
are touched. A detailed description of theCINEMA QoS negotiation and resource reservation pro-
tocol is outside the scope of this paper and will be given in [BDFR95].

5 Stream Types

Application level QoS is organized based on the notion of stream types. A stream type consists
of different parameters, which describe characteristic features of the medium. For each param-
eter the semantics is defined by the stream type. The stream type hierarchy allows the definition
of stream types that have the same parameters with the same semantics but with different sets
of possible values. A stream type can be looked at as a class definition in an object-oriented
environment. A QoS description for a media stream is then an instantiation of an element of the
given stream type. According to the object-oriented approach we can derive a new stream type
out of an existing one by specializing the values for one or more parameters. To assure that the
parent stream type can always be used together with the derived stream type we must assure,
that all parameter values from derived stream types must be part of the possible parameter val-
ues from the parent stream type. Furthermore, derived stream type must not have a parameter
that the parent stream type has not.

This leads to stream type hierarchies where a base type defines the possible parameters and all
derived stream types restrict the possible values for parameters. With these hierarchies two ports
can be connected when the stream types are equal or when one stream type is above the other
in the hierarchy. The resulting stream type is always the more specialized one.

The base stream type is defined by declaring the stream dependent parameters. A new stream
type is derived from an existing one by restricting possible values for at least one parameter. All
non restricted parameters have the same range than the parent stream type. For every parameter



there must be at least one possible value. If a parameter is restricted to only one possible value,
this parameter cannot be negotiated with this stream type.

With this stream type definition we allow the declaration of QoS parameters within the bound-
aries given by the stream type. This allows us to use one concept for stream type definition and
QoS definition and therefore it is easy to use when programming components. The type of QoS
definitions is always based on the used stream type. When two components use different but
compatible stream types for their ports they can be connected. When one stream type allows
multiple values for a parameter and the other specializes it to exact one value, this parameter is
automatically set to the right value. If we would distinguish between QoS and stream type, then
one component would have a QoS parameter that the other one would not have and therefore
the QoS descriptions would differ.

As an example, we can assume a microphone component which can produce audio streams with
different sampling rates and a speaker component which can only work with a special sampling
rate. The following example defines a base stream typeAudio  which can have different rates
for sampling and samples with different sizes. This stream type is specialized by the second def-
inition to have only different sizes for samples but only one rate. This stream type is called
Audio8kHz . Another stream type is derived fromAudio , where the sample size is specialized
to 16 Bit. This stream type is calledAudio16Bit . Figure 3 shows the stream type hierarchy
built out of these definitions.

1 STREAMTYPE Audio {
2 int SampleRate = { 8000, 11025, 22050, 44100 };
3 int SampleSize = { 8, 16 };
4 };
5 STREAMTYPE Audio8kHz : Audio {
6 SampleRate = 8000;
7 };
8 STREAMTYPE Audio16Bit : Audio {
9 SampleSize = 16;

10 };

6 Discussion and Summary

A QoS description which is applicable for a user must be based on the type of media. To nego-
tiate this QoS application specific information is needed. Within the communication subsystem
the QoS is not depending on the media type but on a generic stream description handling with
buffers, rates and bursts. To bring these different QoS descriptions together we need a QoS
architecture containing both abstractions and the mapping between them.

We presented a QoS architecture that allows the user to specify his presentation quality in a
media oriented way. An application flowspec (AFS) is introduced, that contains an application
specific and a generic part of QoS parameters. The mapping from application level QoS to the
generic part in the flowspec is performed by the stream handling components which can include
the influence of their implementation details into the mapping. This AFS can be mapped in a
transport specific link to the needed transport system flowspec, that is used for resource reser-
vation in the network.

Figure 3 : Example of a stream type hierarchy

Audio

Audio8kHz Audio16Bit



For defining the application level QoS, we introduced the concept of stream types which act like
a class definition for a QoS definition. The stream type hierarchy gives an easy way to check for
type compatibility and to provide a method to define subtypes from a stream type.

The integration of QoS handling based on this QoS architecture into theCINEMA system has just
begun. Together with resource management and a QoS negotiation protocol for application
QoS, which is in development at the moment, an easy way to build up distributed multimedia
applications with guaranteed QoS will be available with theCINEMA system.

7 Bibliography

[AHS90] David P. Anderson, Ralf Guido Herrtwich, Carl Schaefer. SRP: A Resource
Reservation Protocol for Guaranteed-Performance Communication in the Internet.
Technical Report No. UCB/CSD 90/562, Computer Science Division (EECS)
University of California, Berkeley, CA, 2 1990.

[ATW+90] D. P. Anderson, S.-Y. Tzou, R. Wahbe, R. Govindan, M. Andrews. Support for
Continous Media in the DASH System. InProc of the 10th International
Conference on Distributed Computing Systems, pages 54–61, 5 1990.

[BDFR95] Ingo Barth, Gabriel Dermler, Walter Fiederer, Kurt Rothermel. A Negotiation and
Resource Reservation Protocol (NRP) for Configurable Multimedia Applications.
to be published 1995.

[CCH94] Andrew Campbell, Geoff Coulson, David Hutchison. A Quality of Service
Architecture.ACM Computer Communication Review, 24(2):6–27, 4 1994.

[HHS+91] D. Hehmann, R. G. Herrtwich, W. Schulz, T. Schuett, R. Steinmetz. Implementing
HeiTS: Architecture and Implementation Strategy of the Heidelberg High-Speed
Transport System. In2nd Intl. Workshop on Network and Operating System
Support for Digital Audio and Video, 11 1991.

[IMA93] Hewlett-Packard Company and International Business Machines Corporation and
SunSoft Inc.Multimedia System Services, Version 1.0, available via ftp from ib
minet.awdpa.ibm.com, 7 1993.

[KrLi94] A. Krishnamurthy, T.D.C. Little. Connection-Oriented Service Renegotiation for
Scalable Video Delivery. InProc of the International Conference on Multimedia
Computing and Systems, pages 502–507, 5 1994.

[RBH94] Kurt Rothermel, Ingo Barth, Tobias Helbig.Architecture and Protocols for High-
Speed Networks, Chapter CINEMA - An Architecture for Distributed Multimedia
Applications, pages 253–271. Kluwer Academic Publishers, 1994.

[RoHe94] Kurt Rothermel, Tobias Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Streams.Technical Report 2/94, University of Stuttgart, 4
1994.

[SMHW95] A. Schill, C. Mittasch, T. Hutschenreuther, F. Wildenhain. A Quality of Service
Abstraction Tool for Advanced Distributed Applications. InProc of the
International Conference on Open Distributed Processing, 2 1995.

[TaHo94] Wassim Tawbi, Eric Horlait. Expression and Management of QoS in Multimedia
Communication Systems.Annals of telecommunications, T.49(5-6):282–296, 5-6
1994.

[Topo90] C. Topolcic. Experimental Internet Stream Protocol, Version 2 (ST-II).RFC 1190,
10 1990.

[ZDE+93] Lixia Zhang, Steve Deering, Debora Estrin, Scott Shanker, Daniel Zappala. RSVP:
A New Resource ReSerVation Protocol.IEEE Network, pages 8-18, 9 1993.


