KGB
A Customizable Graph Browser

Hartmut Benz

University of Stuttgart, Department of Computer Science, Institute of Parallel and
Distributed High Performance Systems, Breitwiesenstr. 20-22, D-70565 Stuttgart,
email: Hartmut.Benz@informatik.uni-stuttgart.de

Overview

This paper presents the architecture of a generic, customizable graph bikK@®Beér

The KGB has been designed to handiery largeand dynamically changing graphs
which are frequently used as repository management graphs in large applications. Spe-
cial emphasis has been put on flexible presentationf the information encoded in

the graph and theeduction of the user’'s workloagthen adapting the presentation to

his or her special needs. TK&B was built as a debugging and visualization tool for
document hierarchies of the CASE td6DGGE ? currently under development at the
"Institute for Software Engineering”, University of Koblenz [3].

To automatically structure very large graphs and specifically select the subset of
visible graph elements, tH€GB implements three methods of abstraction. To achieve
flexibility in the presentation, seperate visualization techniques can be applied to the
attributes of each vertex and edge.

A View into a graphis defined by a set of applicable abstractions, presentation de-
scription and user interaction descriptions (e.g. the mapping from user generated input
events to graph browser operations). A View is described as a simple rule based lan-
guage. To handle dynamically changing graphs the View Description is interpreted by
theKGB (rather than compiled into it).

Architecture

The architecture of th&GB is object oriented. Its primary constituents arsocairce

graph interfacewhich connects th&GB with the user’'s graph implementation [4, 6].
Theabstraction componerselects the elements of the graph to be visualized at a time
and which parts of the graph can be grouped to increase readabilityaytat com-
ponentdetermines drawing positions as well as graphical representation for each vis-
ible graph element [5]. Finally, thaser interaction componemteals with the ade-
guate graphical representation on the screen and the interpretation of user actions in
the course of the dialog.

! German:Konfektionierbarer Graphen-BrowseFhe paper is a result of my diploma thesis at
the University of Koblenz, Germany (cf. [1]).

2 German:Koblenzer Generatonf” Graphische Entwurfsumgebungé€oblenz generator for
graphical software engineering systems

Abstraction

Common visualization techniques like windowing, zooming, fish-eye view or graph
folding are not suitable to render graphs larger than a few thousand vertices and edges
[7, 8, 9, 11]. Beyond this threshold either the required drawing area gets too large or
the size of the graph elements approaches the size of a pixel. In any case the amount of
the displayed information easily overloads human ability tecegsfully perceive and
utilize it, so that other techniques have to be used.

Abstraction describes a method that hides irrelevant detail and by that enhances
larger interrelations. It is therefore an adequate method to filter and structure large amounts
of information. TheKGB currently offers three variations of abstraction which are
shortly described in the next three paragraphs.

Abstraction by Global ExclusionThis method permits to selectively exclude certain
graph elements from browsing. It is based on the idea that a large and complex graph
contains several semantic structures. By globally excluding those graph elements the
user is currently not interested in, only the important structures are visualized. Global
exclusion rules are defined intaractively as follows:

Graph elements of clagsare hidden.

Abstraction by Local RestrictionThis method permits to exclude graph elements that
are irrelevant to the user’s current focus of attention. The method is based on the idea of
locality, the observation that semantically closely related graph elements are commonly
"only a few incidences apart”. Nevertheless, this abstraction method puts a high cogni-
tive load on the user to keep a mental map. Furthermore, a positionally stable layout is
necessary since moving the focus of attention introduces problems similar to those of
interactive graph editing. Local restriction rules are defined interactively as follows:

Graph elements of ...
classC have distance 1.
classt have distance 0.7.
Maximum distance is 3;

Abstraction by Subgraph Abstractioihis method permits to select (semantically con-
nected) subgraphs and represent theaoh by a single abstraction element. The ele-
ment retains the information: "there is a subgraph”. Subgraph abstraction is a common
feature in graph visualization and editing tools. Alas, the usual interactive selection
with a mouse is inefficient for very large graphs and completely useless for frequently
changing graphs.

This problem can be solved by automatic subgraph selection mechanisn&GBhe
currently provides two rule-driven selection engines. Hard-coded algorithms, although
more efficient, have been postponed due to their inflexibility. They can, of course, be
used to solve specialized selection tasks. Subgraph abstraction rules are defined intarac-
tively as follows:

Abstraction "Dir” from a DirectoryVertice with all inbound adjcencies;

The graph browser currently uses two subgraph description languages which will not
be described any further in this paper. Both languages are computable in polynomial
time (ref. [1, 2]).

Subgraph abstraction obviously introducdsierarchical structureinto the graph.
As opposed to the other methods, subgraph abstraction can be applied to a graph more
than once. This has three important consequences:

— Subgraph abstraction has to be defined on hierarchical graphs.

— Repeated application can lead to arbitrarily deep abstractions. The abstraction hi-
erarchy has the structure of a tree.

— The resulting tree depends on the sequence of abstractions.

Information visualization

Generally, a graph contains global and local informati@hobal or structural infor-
mation consists of the graph elements (their existence) and their incidence structure.
The visualization of this information is performed by placing the graph elements and is
widely researched agraph layout

Local information consists of the attributes that graph elements are quite regularly
annotated with. The visualization of this information is often crucial to the user’s ability
to understand the semantics of the graph at all.

The KGB acknowledges this importance. The user can freely and interactively de-
scribe which (subset of the) attributes of a graph element are to be visualized and which
graphical representation they shoutdeive. The&KGB supports a great variety of graph-
ical representations to choose from. For example:

edges Clasg\: use Name as text label;
edges: label color from Int2Col(Weight);

View Into a Graph

A View into a graphconsists of a set of rules defining possible abstractions and visual
representations of attributes. In addition to these definitions, there are rules to choose
one (of many) layout algorithms and to associate user actions to graph browser opera-
tions [10]. For example:

Layout Sugiyama('2,2,1");
double-click-right calls ShowDetailedInformation;
<RETURN> on Abstractionvertex calls OpenAbstraction;

Views can be named and the user can easily create, modify or switch between them
while using theKGB.

Genericity

The amount of source code required to adapt the tool to a new task has been minimized.
The complete adaptation (including source code fragments) is described using a simple
abstract language. From this descriptiograph browser compileautomatically gen-
erates a dedicate€iGB . Thus, theKGB is a generic tool.

Future Work

Primary objective of the future development is the portation from NeXTSTEP to X-
Windows. Future development will concentrate on improving the user interface and
extending the abstraction methods. A user interface supporting more direct manipu-
lative techniques is highly desirable. Additional abstraction methoddifikesye view

or concentrator vertice§l1] should be included. Furthermore, the subgraph selection
methods used in subgraph abstraction should be combined with the interactive graph
layout proposed in [7]. In addition, different approaches to visualize the hierarchies in-
troduced by the subgraph abstraction should be explored [9].

References

1. Benz, H.; KGB - Ein konfektionierbarer Graphen-Brow$gDiplomarbeit an der Uni-
versitit Koblenz-Landau, Abt. Koblenz, FB Informatik, 1993
2. Capellmann, C.; Franzke, A.GRAL—Eine Spracheaifdie graphbasierte Modellbil-
dund’; Diplomarbeit an der Universdif' Koblenz, FB Informatik, 1991
3. Carstensen, M.; Meissner, A.; Rhein, UFofschungsschwerpunkt CASE.itiar Zwis-
chenbericht; Universitat Koblenz, 1991
4. Dahm, P; Ebert, J.; Litauer, C.B&nutzerhandbuch EMS-Graphenlabor V3Koblenz
1994; (Unpublished manuscript)
ftp://ftphost.uni-koblenz.de/outgoing/GralLab/
5. Di Battista, G.; Eades, P.; Tamassia, RAlgorithms for Drawing Graphs: An Annotated
Bibliography’ ftp://wilma.cs.brown.edu
/pub/papers/compgeo/gdbiblio.*
6. Ebert, J.; A Versatile Data Structure For Edge-Oriented Graph Algorithn@mmuni-
cations of the ACM (6) 1987
7. Henry, T. R.; Hudson, S. E.jriteractive Graph Layout Proceedings of the ACM SIG-
GRAPH Symposium on User Interface Software, 1991
8. Himsolt M.; "GraphEd: An Interactive Graph EditdrProc. STACS 89, Lecture Notes in
Computer Science, vol. 349, pp. 532-533, Springer-Verlag, 1989.
ftp://ftp.forwiss.uni-passau.de/pub/local/graphed
9. Johnson, B.; TreeViz: Treemap Visualization of Hierarchically Structured Grdplis
[12], pp. 369-370
10. Paff, G. (Editor); User Interface Management Systénioc. of the Workshop on User
Interface Management Systems held in Seeheim, FRG, Nov. 1-3, 1983, Springer 1985
11. Paulisch, F. N.; Tichy, W. F.EDGE: An Extendible Graph Editdrin Software—Practice
and experience, Vol. 20(S1), June 1990; John Wiley & Sons, Ltd.
12. "Proc. of CHI 1992 (Monterey, Gifornia, May 3—7, 1992); ACM, New York, 1992

This article was processed using thBX macro package with LLNCS style

