
1 Introduction 1

Agents: A Triptychon of Problems

A short note for the ECOOP ‘95 Workshop
“Objects and Agents: Love at First Sight or a Shotgun-Wedding?”

Joachim Baumann
Joachim.Baumann@informatik.uni-stuttgart.de

Department for Distributed Systems
IPVR (Institute for Parallel and Distributed Computer Systems)

Breitwiesenstraße 20-22
D-70565 Stuttgart

1 Introduction
In this note I’d like to concentrate on three problems on different levels. The first is the concep-
tual problem of security in agent systems. The second, well, let’s call it marketing problem, is
the speed of the system, and where it is important. The third, following from it, is an implemen-
tation problem: how can the transfer size of agents be minimized?

2 Agent related security
Security in agent systems consists of two parts, the security of the system against a possibly ma-
licious and dangerous agent (something akin to the “classical” worm), and the security of an
agent against a system that tries to spy it out, to steal certified information or an equivalent of
electronic cash, or to change the agent’s code to something that works on the behalf of this sys-
tem, but bills the agent’s original user.

System security is not that much of a conceptual problem, but a design decision. With enough
effort, interpreters checking each statement to be executed, either statically and in advance, as
Java [Java95a] does, or at runtime, as it is done e.g. in Safe-Tcl [Wayn95], authentication to en-
sure the correctness of the origin and owner given, encryption and/or signatures for communi-
cations, a system can be made effectively secure for all normal purposes. The quality of the se-
curity reached can be seen as proportional to the effort made.

A totally different (and much more complex) problem is the security of an agent against the sys-
tem or other agents. While other agents can be held in check by using relatively simple measures
(e.g. different address spaces), to guarantee that the system on which the agent is to be executed
doesn’t try to tamper with it is a real problem, which has to be solved.

3 Speed
The first question here is, which parts of an agent system are time critical (at least from the view-
point of a potential user)?

Normally, it isn’t very important, if an agent needs a second more or less to do its work. It works
asynchronously, and simply comes back with the results (or sends them back) when finished. So
it execution time won’t be a problem, which means an interpreted language could be used as an
agent language. This brings, indeed, many advantages concerning security problems (for the un-
derlying system). But if many agents, written in possibly different languages, have to be inter-
preted by different interpreters, communicate with one another over interpreter borders, then the

4 Minimizing the transfer size of agents 2

slowdown could be considerable. We have, on one hand, these interpreted languages, slow but
secure, and on the other hand, compiled languages, fast but insecure. We believe, that the solu-
tion lies in between, in the use of a virtual machine, to which all of the languages compile. This
is definitely possible for Smalltalk (used in some dialects), in Prolog (e.g. the Warren Abstract
Machine), Python, and Java [Java95b]. Imagine, being able to write programs in any of those
languages (with comparable extensions for communication and migration), compiling them into
the same Virtual Machine code, and executing them in the same environment. The speed in-
crease would be definitely worth the additional work.

A crucial point is the duration (i.e. cost) of the migration of an agent. One major argument for
the mobility of agents is to replace the cost-intensive networkwide communication of Client-/
Server connections by local communications. But this argument holds only true, if the time
needed to transfer the agent doesn’t exceed the time needed for the communication.

This divides our stock of agents into two classes: one, relatively small, roaming the net and col-
lecting information for the other class, comparatively big, seldom migrating, with a lot of
knowledge and decision-making powers. What follows is that it is necessary to optimize the mi-
gration of the first class, the small agents, and here the “local state information” (stack, local
variables, PC etc.) transmitted can be a considerable part of the overall information (object
classes, instance information). Which leads us to the next problem.

4 Minimizing the transfer size of agents
Principally, there exist enough algorithms for object migration, be it autonomous, or by the un-
derlying system, for e.g. load balancing purposes in the field of distributed systems. But they
have at least to be adapted to the different situation found in agent systems. But how much of
the state information is really needed at the target end? It seems, that a migration step is a major
break in the life of an agent. With a relatively high probability, the agent will do something dif-
ferent at the new place. An example (the flower buying agent again):
• Migrate to place that houses the first flower shop
• Find out how to connect to flower shop (local information service)
• Connect to flower shop and ask for offers
• Accept offer or migrate to next place
• Find out how to connect to flower shop ...

So the first thing this agent does at every site he migrates to, has nothing to do with its last action
at the place before. This suggests, that most of the “local state information” will be useless at
the target site (in most of the cases, anyway). Why transport it then? The solution is, not to trans-
fer it, but have an entry point which is statically defined. Are there any limitations to this ap-
proach?

5 References
[Java95a] The Java Language Specification. http://java.sun.com/documentation.html, 4 1995.

[Java95b] The Java Virtual Machine. Specification. http://java.sun.com/documentation.html,
4 1995.

[Wayn95] Peter Wayner. Agents Unleashed: A Public Domain Look at Agent Technology. AP
Professional, 1300 Boylston St., Chestnut Hill, MA 02167, 1995.

