Enhancing the Functionality of the Web

P. Kutschera, R. Rantzau
University of Stuttgart
Institute of Parallel and Distributed High-Performance Systems (IPVR)
Breitwiesenstr. 20-22
D-70565 Stuttgart
Germany
E-mail: {kutschera,rantzau}@hermes.informatik.uni-stuttgart.de

Abstract

This paper presents an approach to combine the World Wide
Web and database systems in a way that all of the Web
based resources are stored and managed by the database
system. Access to the information located in the database
system is based on an URL notation which will be described
in detail. Addionally, the database system is used to store
all of the necessary information that is used to overcome
the most serious limitations of the World Wide Web like
existence of the ”lost in hyperspace” syndrome, invalid links
as well as the limited search facilities.

1 Introduction

The World Wide Web (WWW) is probably the most popu-
lar information system today. Its popularity is mainly based
on the appealing graphical user interface of the browser, the
availability of the software on almost every hard- and soft-
ware platform as well as the huge framework of resources
that are accessible world wide. But, despite of its popular-
ity, the WWW comprises some well-known limitations like
the ”lost in hyperspace” syndrome, the existence of invalid
links and the limited search facilities. Another feature of
the World Wide Web which is currently missing is the abil-
ity to access information located in a database system in a
standard fashion. These shortcomings limit the use of the
World Wide Web in many different applications like on-line
information services or learning environments where most
of the relevant information is stored in a database and the
integrity of the online information is very important. How-
ever, in combining the features of the World Wide Web with
the functionality of database systems, it is possible to over-
come these limitations and ”enhance the functionality of the
Web”.

The approach presented in this paper combines the World
Wide Web and database systems in a way that all of the Web
based resources (documents, images, audio or video clips,
Java applets, etc.) as well as any additional meta data are
stored and managed by the database system. The meta data
comprise all of the information that is necessary to provide
link integrity, content-based searches and navigational aid
for online access. Access to information located in the data-
base system is based on an appropriate URL notation which
will be introduced in this paper and can be used indepen-
dent of the underlying database environment. Basically, this
paper extends and further refines the work that is presented
in [7].

2 Related Work

Today, almost every database vendor sells its own propri-
etary product that is capable of accessing its own database
system via WWW. Most of these solutions use the API of
the Web servers to provide this additional functionality and
rely on vendor-specific extensions to the HTML language to
include database queries directly into HTML pages. Based
on these so-called application pages which are either stored
in the Web server’s file system [9] or in the database sys-
tem, it is possible to enhance HTML pages with database
queries. While almost all of these products are only capable
of including relational or object-oriented queries into HTML
pages, only one of them [3] is capable of accessing audio or
video content, images, HTML documents or Java applets
residing in the database as well. Another possibility for ac-
cessing a database system is to use a CORBA based Web
environment with an integrated ORB like as it is described
in [1]. In summary, it may be said that the database vendors
provide a proprietary access to their own database product,
but do not try to solve the problem of invalid links or the
limited search capabilities for Web based resources.

The idea of storing information about hyperlinks in a
database system to provide link integrity has been used in
many hypermedia systems (see [5] for example). In [11] this
approach has been applied to the World Wide Web, but be-
cause all of the Web based resources are still located in the
Web server’s file system, only a limited form of link consis-
tency can be guaranteed in comparison with the approach
presented in this paper. The same kind of limitations like
those of the World Wide Web have already been encountered
in other hypermedia systems as well and led to the develop-
ment of the so-called second generation hypermedia systems
like Hyper-G [8]. Because of the different hypertext models
and communication protocols of these hypermedia systems,
these solutions cannot be applied to the World Wide Web.

3 Concepts

3.1 Link integrity

In the World Wide Web, a link denotes a forward refer-
ence from a HTML document (link source) to any type of
multi- or hypermedia content (link target) and is embedded
directly into its source document. Thus, the term link is
here not only used to denote hyperlinks, but for all kinds
of references within a HTML page where an URL is per-
mitted. The problem of the dangling links results from the
WWW’s hypertext model that only uses forward references

for links without maintaining the affiliated backward refer-
ences. Thus, if a link becomes invalid due to changes of the
target resource, there is no possibility to adapt the source
document of the link according to these changes. The only
possibility to detect an invalid link is to scan the HTML
pages in the local file system using tools like the Web crawler
on a regular basis and analyze the existing link structure.
By combining the World Wide Web and database systems
in a way that all of the Web based resources including doc-
uments, images, audio or video clips as well as Java applets
are stored and managed by the database system, link in-
tegrity can be guaranteed by extracting the relevant link
information during insertion of a HTML document and stor-
ing them along with the missing backward references in the
database. Afterwards, this information has to be kept up to
date by monitoring all of the changes that are applied to the
document structure. Prior to retrieving a HTML document
from the database, the validity of the links within the docu-
ment has to be checked and invalid links have to be removed
to shield the user from accessing dangling links.

3.2 Additional search facilities

Although there are many different resources available on
the World Wide Web, it is very difficult to locate resources
about a certain topic. Currently, either a directory service
such as Yahoo or one of the existing search engines such as
AltaVista, Web Crawler, etc.[12] can be used. While this
approach is feasible for searching larger parts of the Web,
these methods are rather ineffective when someone wants to
find relevant material about a certain topic at a particular
Web site. Thus, by using a database system it is possible to
extract and store additional meta data like keywords, head-
ings, table or figure captions of HTML pages in the database
prior to storing the HTML pages itself. Now, the built-in
query language of the database system cannot only be used
for full-text searches, but also to search specific parts of
HTML documents very efficiently.

3.3 Navigational aid

The World Wide Web provides the user with a navigational
interface along the existing hyperlinks. While in principle,
it is a very elegant way to link related information together,
it has been observed that users often feel disoriented after
following a few hyperlinks. This phenomenon which is often
called “lost in hyperspace” results from a missing naviga-
tional aid similar to a table of contents in a book or a guided
tour through the Web site. Based on the information about
the existing link structure, it is possible to display the entire
hypertext structure by a frontend tool in form of a map to
indicate the users’ current location while navigating through
the hyperspace.

3.4 Accessing database content

As it has been demonstrated so far, by combining the WWW
and database systems it is possible to overcome the most
serious limitations of the World Wide Web. Because a lot
of different Web applications benefit from eliminating these
shortcomings, they should be accomplished in a way that is
independent of the underlying database and Web environ-
ment. Unfortunately, references to resources located in a
database system cannot be embedded into HTML pages as
easily as references to resources located in the Web server’s
file system due to the fact that they cannot be denoted by
an URL. Thus, an appropriate URL notation is developed

to denote resources located in the database as well. The
advantage of using an URL, besides the fact that it is inde-
pendent of the underlying database environment, is that all
of the information that is accessible via World Wide Web
is treated in a uniform fashion. Thus, the administration
and development of the appropriate HTML pages is much
simplified.

4 Combining databases and the World Wide Web

This section gives an overview in which way a World Wide
‘Web based access to database systems can be accomplished
and introduces the URL notation that has been developed
for denoting information located in a database system. Fi-
nally, all of the details are revealed how link integrity, ad-
ditional search facilities and navigational aid can be accom-
plished by using additional meta data.

4.1 Architecture

‘When developing a World Wide Web based access to data-
base systems, various approaches have to be considered that
all differ in regard of the efficiency that can be achieved
and the necessary software environment which is required.
Generally, it is possible to use CGI scripts, extend the func-
tionality of the Web server or using a CORBA based ap-
proach [1] to access the database system. Although, CGI
scripts provide access to external data sources in a standard
fashion, they lack efficiency due to the overhead of start-
ing a new process, namely the CGI script, for every single
database request. An ORB based Web environment, on the
other hand, offers a lot of interesting possibilities for dis-
tributed applications, but is currently not the state of the
art. Thus, the only possibility that is left is to extend the
functionality of the Web server itself. Although, currently
every Web server offers its proprietary API for extensions,
this approach lacks portability between different platforms
as well as products. Fortunately, a new generation of exten-
sible Web servers [2, 4] already exist that can be extended
using the Java programming languages. These Java based
extensions of the Web server which are called servlets are
in fact server-side equivalents of Java applets. Compared to
the other solutions they offer an enhanced portability, effi-
cient database access as they are loaded during startup of
the Web server and the security model of Java applets. Ad-
ditionally, servlets may access the database by using the
JDBC (Java Database Connection) [6] interface which is
independent of the underlying database environment. In
summary, for portability and security reasons the servlet
approach has been chosen in favor of the other approaches
described above.

After the general framework has been introduced, the
interaction between the different components of the archi-
tecture as it is depicted in figure 1 will be described. The
retrieval of information located in the database system is
possible with any ordinary Web browser whereas insertions,
deletions, modifications and migrations of resources special
frontend tools have to be used. During the insertion of
HTML documents all of the necessary information is ex-
tracted by the link management to provide integrity of the
links as well as additional search facilities. By monitoring
all of the subsequent changes that take place within the doc-
ument structure, it is possible to keep this information up
to date. The access to resources in the database is accom-
plished by using an enhanced URL notation. A proposal
for such a notation is introduced in the following section.

Web-Browser Web-Server
Database system
standard —
capabilities || standard capabilities ——
xtendons. & database access module 18e search information
extensions -
-i -
— URL handler link information
Javavirtual .
maschine link management
| document parser |
eta dat t
gahic roniend [nee s megenen]

.

URL handler

IDBC

link management

traditional data
hyper-/multimedia data
Java applets

| document parser |

| meta data management |

—

Frontend tools

Figure 1: The general component architecture

Every time a HTML document residing in the database is
requested, the Web server’s URL handler has to transform
the URL notation into a database query, retrieve the docu-
ment from the database, use its link management to check
the validity of the existing links and remove any invalid links
during retrieval. If any server-side includes within the doc-
ument exist, they have to be handled before sending back
the document to the browser.

4.2 The URL notation for accessing information in a data-
base system

As it has been mentioned already, using an URL notation to
denote information residing in a database system has the fol-
lowing advantages over using special HTML tags to include
database queries into HTML pages:

1. The same notation is used to access all kind of Web
based resources independent of their location.

2. The notation that is used for embedding database que-
ries into HTML pages is independent of the underlying
database environment.

Thus, the proposed URL notation is capable of denoting
links to multi- and hypermedia content as well as data-
base queries including traditional data (relational or object-
oriented) or multi- and hypermedia data respectively. As a
result, an URL has a different semantical meaning based on
the context that it is used in. In the following sections the
terms link semantics and query semantics will be used to
distinguish between these two semantical meanings. Based
on the different semantical meanings, the link management
has to perform different tasks. In case of an URL with link
semantics, the link manager has to ensure the validity of
the link, i.e. the link will be accessible as long as the corre-
sponding target resource. On the other hand, an URL with

query semantics remains valid as long as all of the attributes
and entities exist that are part of the query in the query.

So, how is it possible for the link manager to distinguish
between these two semantical meanings of the URL nota-
tion? The answer to this questions is closely related to the
way Web based resources are stored in the database. Al-
though, it is possible to store any multi- and hypermedia
content as well as traditional data in the same entities, the
approach that has been used here is to store the different
types of resources in a centralized fashion in the so-called
resource entities. The motivation of using these special re-
source entities, besides the fact that access time for these
resource entities can be adapted to the particular needs by
assigning them to dedicated disks and/or partioning them
across several disks is illustrated in figure 2.

The application developer interacts with the system by
using special frontend tools to insert, delete or modify new
as well as existing entities. In the example of figure 2 it
is supposed that the application developer wants to extend
an existing database schema of a learning environment with
two new entities, namely the ’professor’ and ’lecture’ enti-
ties. The ’professor’ entity consists of the professor’s name,
his location inside of the building as well as his image. The
"lecture’ entity is used to store information about lectures as
its name, the day, time and location it takes place as well as
the script that is used during the lecture. Thus, the appli-
cation developer interacts, defines and modifies an external
schema description of the database as it is visible to the out-
side world. Because it is very difficult to store and handle
multiple interlinked resources as an attribute value as it is
needed for the script attribute of the ’lecture’ entity , the
system uses a different internal schema description to store
this type of information. The transformation between the
external and internal schema descriptions is accomplished
by the appropriate frontend tools. As a consequence, multi-
and hypermedia content is not stored as a part of the entity
itself, but in the ’content’ attribute of the appropriate re-

(Database URL)
(Database Ref)
(Entity Names)
(Entity Name)
{Choice)

(Entity Attributes)
(

(

(

(

(

Entity Attribute Name)
Bytecode Ref)
Presentation)

Query Params)

Query Param)

http://(Host)[:(Port)]/(Path Prefix)/(Database Ref)

(Database Name)/(Entity Names)[/(Choice)[?{Query Params})]]
(Entity Name) [& (Entity Names)]

(Schemay.(Entity)

(Entity Attributes) | (Bytecode Ref) | (Presentation)

(Entity Attribute Name) [& (Entity Attribute Name)]
(Schema).(Entity).(Attribute)

(Entity Attribute Name)/(Class name)

(Presentation Template)’(’(Entity Attributes)’)’

(Query Param) [& (Query Params)]

(Entity Attribute Name) (Operator) ((Entity Attribute Name) | (Value))

Table 1: The syntax of the developed URL notation in a BNF-like syntax

Professor (name, location, image)

Lecture (name, day, time, location, script)
g0 4
<[]
External schema description

O transformation

Professor (name, location,)

Image(id, mime-type, content)
Lecture (name, day, time, location,)

Document(id, mime-type, content)

A

e 1
Internal schema description

Figure 2: The notion and the usage of resource entities

source entities which are depicted in figure 2 with an italic
font. In the entity itself, the ’image’ or ’script’ attributes
contain only references to the corresponding resource en-
tries. Hypermedia content is further divided into its parts
which in turn are stored in the appropriate resource enti-
ties with the links transformed according to the locations
of their target resources as it is illustrated with the ’script’
attribute.

Therefore, all of the URLs with link semantics denoting
Web based resources contain only references to resource en-
tities whereas URLs denoting database queries only contain
entities that are part of the external schema description.
Based on this fact, the link manager is able to distinguish
between the two semantical meanings of the URL notation.
Examples which are illustrating these facts more detailed
follow after the proposed URL notation has been revealed.

As one can see in table 1, the proposed URL notation
contains a host name (Host) and an optional port number
(Port) like every other URL notation followed by a prefix
(Path Prefiz) that is used to distinguish between resources
residing in the database system and in the Web server’s file
system. Generally, the chosen path prefix should not denote
a valid filename to avoid any possible conflicts with direc-

tory names in the local file system. Examining the notation
in greater detail, it is revealed how an hierarchical naming
schema like an URL can be applied to database systems.
All the information in a database system is partitioned into
databases (Database Ref) which in turn consist of differ-
ent entities (Entity Names). Entities, on the other hand,
consist of attributes (Entity attributes). Instead of a long
theoretical discourse, the usage of the URL notation will be
illustrated with a few examples.

First of all, an URL with link semantics that denotes a
hyperlink to a HTML document which is located on host
‘www.myhost.de’ in the ‘education’ database has the form
http://www.myhost.de/db/education/Document/content?
1d=5147936. The link semantics of the URL should be ob-
vious, because only the resource entity 'Document’ is ref-
erenced in the example above. Thus, the syntax for refer-
encing Web based resources is identical for all of the dif-
ferent resource types, except for Java bytecode (Bytecode
Ref). The difference between denoting Java bytecode com-
pared to other resources results from the way the byte-
code references are handled by the Java virtual machine.
Thus, the last part of an URL denoting a bytecode refer-
ence has to be a valid class name (Class Name). Gener-
ally, URLs denoting references to Web based resources are
mostly generated automatically by the system during in-
sertion. They can be used anywhere within a HTML doc-
ument where an URL is permitted. On the other hand,
a database query like ”Display the name and script of all
lectures that take place on Thursday” can be denoted by
an URL of the form http://www.myhost.de/db/education/
lecture/namescript?day="Thursday’. This example shows
how a database query is structured. The first part of the
URL denotes the entity or entities (Entity Names) respec-
tively to which the query will be applied. If a query contains
multiple entities, they have to be concatenated with an am-
persand. The next part of the URL denotes all of the at-
tributes (Entity Attributes) that form the query’s result set.
In addition, it is possible to restrict the query result in such
a way that only instances of entities are selected that meet
specified conditions (Query Params). By the way, these
conditions have to be specified as name/value pairs with an
identical syntax as the query parameters of HTML forms.
Unlike URLs with link semantics, URLs with query seman-
tics can only be integrated into HTML pages in form of a
hyperlink or can be used in the same way as a CGI script.
Because of this rather limited form of embedding database
queries into HTML pages, the capabilities of the database
module has been enhanced to handle server-side includes of
the following form

(! — — # include Database URL ——)

as well. This feature is also found in almost all of todays
Web servers.

Sometimes it is necessary to provide a unique presenta-
tion layout for all of the information that belongs to a cer-
tain topic or to display information using a particular form
of presentation. It is possible to customize the presenta-
tion of the query results using a special presentation layout
(Presentation Template) that is stored in the database as
well. Such a presentation template is simply a HTML page
with variables of the form %% (num)%% which are substi-
tuted with the appropriate entities’ attribute values (Entity
Attributes in Presentation) during runtime. Thus, presenta-
tion templates can be used to provide a unique layout for the
same type of data as well as a means to store the information
that has to be presented independent of the presentation’s
layout. Thus, for changing a presentation’s layout only the
corresponding presentation template has to be modified in-
stead of adapting multiple HTML documents according to
these changes manually.

4.3 Link management

This section describes the link management in greater detail.
First, the fundamental issues of link management as well as
an overview of the degree of link integrity is given that the
link management is able to guarantee under certain circum-
stances. Then, the link management’s meta data structures
are introduced that are necessary to store all of the relevant
link information. Finally, the architecture and the function-
ality of the link management is presented.

4.3.1 The integrity of links

Basically, the link management provides an abstraction on
top of the storage system that is used to access all of the
Web based resources. Its interface consists of operations to
insert, modify, delete, retrieve as well as change the location
of resources. In contrast to the storage system’s interface
to access Web based resources, the link management ex-
tracts and maintains relevant link information during these
operations to guarantee the integrity of links. Thus, in an
ideal environment where all of the accesses to Web based
resources are performed by using the interface of the link
management, it is possible to ensure link integrity at any
time. In a real Web environment, on the other hand, a lot
of different tools exist that help to administrate and man-
age a Web site. Thus, it is a rather unrealistic asumption
that all of these tools use the link management’s interface
to access the Web based resources. Based on this fact, the
following section investigates the effect of the two most im-
portant factors with regard to the degree of link consistency
that the link management is able to ensure:

The storage system: It is possible to store Web based re-
sources either in the Web server’s file system or in the
database.

Location of resources: A resource can either be stored
locally on the Web server’s host or on a remote host
somewhere on the internet.

As it has already been mentioned, a link in the World
Wide Web a forward reference from a HTML document to
any type of multi- or hypermedia content. Without main-
taining the affiliated backward references, there is no possi-
bility to adapt the source documents according to changes of
the target resources. By using a database system for main-
taining link information, the missing backward references of

links can be derived. Thus, the survey in table 2 gives an
overview which degree of integrity can be ensured for HTML
documents that are stored on the local host. Generally, eight
different cases have ot be distinguished:

Case 1-4: The links of the HTML documents that are lo-
cated in the local file system cannot be automatically
adapted to changes of the target resources. Thus, the
link integrity is violated as long as the administrator of
the local Web site is informed and changes the source
documents manually. If the target resource is located
in the local file system as well (case 1), it is possible
to use tools like the Web crawler to analyse all of the
documents that are locally available on a regular basis
and identify all of the invalid links. In this case it is
not possible to ensure the integrity of links too, but
the period of time until invalid links are detected can
be reduced. Thus, the degree of integrity that can be
achieved in all of these cases is weak.

Case 5,6: Although the source documents are stored in the
local database, the target resources are still located in
the file system. Assuming that the link management is
notified every time a target resource has been changed,
the link management is able to adapt the source docu-
ments according to these changes instead of adapting
the source documents manually as in case 1-4. Thus,
only a weak form of link integrity can be achieved as
well.

Case 7: This is the interesting case where all of the source
documents as well as the target resources are located in
the database. Thus, the interface of the link manage-
ment is used to access all of the Web based resources
and the integrity of the links can be ensured. The
only problem that still may occur is due to the client
side caching of resources of the Web browser and the
stateless HT'TP protocol. It is not possible to notify
the Web browser of any changes that effect the link
integrity of documents that are currently stored in the
Web browser’s cache.

Case 8: In the case that the target resource is stored in a
remote database, it is possible to guarantee the inte-
grity of links as well, if a protocol between the dis-
tributed link management components as described in
[11] is used. The degree of link integrity that can be
achieved depends on the underlying protocol that is
used to propagate the changes of target resources. If
the protocol uses a distributed transaction mechanism,
i.e. an atomic update, to propagate these changes, it
is possible to achieve a very strong degree of link inte-
grity. On the other hand, if changes of target resources
are propagated on a regular basis, i.e. a deferred up-
date mechanism is used, only a weaker degree of link
integrity can be ensured.

In summary, one can say that the integrity of links can only
be guaranteed in an acceptable way when all of the Web
based resources are stored in the local database.

4.3.2 Meta data structures

This section gives an overview of the meta data structures
that are depicted in figure 3 and have to be maintained by
the link management to ensure the integrity of links. Al-
though the meta data structures of the link management
may only used be to store link information where the source

Location of the target resource
local remote local remote
file system | file system | database | database
Location local weak weak weak weak
of the file system (case 1) (case 2) (case 3) (case 4)
source local weak weak strong | adaptable
document | database (case 5) (case 6) (case 7) (case 8)

Table 2: Overview about the degree of link integrity that can be achieved under the different conditions.

documents as well as the target resources are located in the
database, it should be noted that they are capable of main-
taining all kind of link information independent of the re-
sources’ location. Generally, every link consists of a source
anchor that is directly embedded into the HTML document
as well as a target anchor which denotes the reference to a
target resource.

Apart from an unique identifier, namely the sourceld
that is used to identify the source anchor unambigiously,
the source anchor entity consists of an url that denotes the
source document, a reference to the affiliated target anchor
(targetId) that constitutes the actual link as well as the lo-
cation of the link within the source document, i.e. a byte
range denoted by a starting position and an end position.
If the source document is located in the database, the tar-
getld contains a reference to the appropriate resource entity,
otherwise it is undefined.

According to the definition of the source anchor entity,
the target anchor entity also consists of an unique identifica-
tion, namely the targetld, as well as its location within the
target resource that is denoted by a starting position and
an end position. If a target resource contains more than
one target anchor, the fragment part of the target resource’s
URL is used to denote the target anchor in a unique fashion.
Because a target resource may contain multiple target an-
chors, all of the link information that belongs to the target
resource itself is included in the resource description entity.
Thus, the resource description entity consists of an unique
identifier, namely the resDescld, and the base url (without
the fragment part) of the target resource. If the target re-
source is located in the local file system and its location has
been changed, the newUrl indicates its new location, oth-
erwise it is undefined. If the target resource, on the other
hand, is located in the database system, the appropriate re-
source entity consists of a reference in form of the resDescld
to the corresponding entry in the resource description entity.

So far, only URLs with reference semantics have been
covered by the meta data structures. But, as it has been
mentioned before, a hyperlink or server side include may
also contain an URL with query semantics. Because the
link management is able to check the validity of URLs with
query semantics as well, the query description entity is used
to store the database, entities and attributes that are part
of the query. Additionally, the query description entity has
been extended with a reference, namely the resDescld, to
the corresponding resource description, as well, to achieve a
standardized design for all types of URLs.

4.3.3 Architecture and functionality

Finally, this section describes the architecture of the data-
base access module (see figure 1) and especially the link
management in greater detail. Afterwards, the link man-
agement’s interface and the usage of the meta data struc-
tures that have been described in the previous section will

be revealed.

The database access module which is used to extend the
functionality of the Web server as well as for the frontend
tools to manage a Web site consists of the following two
modules:

e The URL handler is responsible for transforming the
URL notation into an intermediate form that is used
by the link manager. Addionally, its task comprise
the access to all kind of information that resides in the
database as well as formatting the query results.

e The link management counsists of a document parser
which is responsible for extracting the URLs of the
HTML documents whereas the meta data management
is responsible for the maintenance of the meta data
structures to provide link integrity. Technically, the
link management is embedded into the URL handler,
because it uses the intermediate URL representation
of the URL handler as well as the functionality of the
URL handler to access the database.

Now, that the components of the link management have
been introduced, its tasks in regard of maintaining the link
management’s data structures which are shown in figure 3
will be described in more detail. As it has already be men-
tioned in section 4.3.1, the interface of the link management
consists of operations to insert, modify, delete, retrieve as
well as change the location of resources. Thus, the following
steps have to be taken to ensure integrity of links:

e Insertion: Every time new resources are inserted a re-
source description with a unique resDescld and the
corresponding url have to be generated. Afterwards
new target anchors are created containing a reference
(resDescld) to the appropriate resource description, a
unique targetld as well as the start - and end value
initialized to zero. If a resource has to be inserted in
the database as well, the appropriate resource entity is
used to store the resource. As far as any HTML docu-
ments are inserted, the document parser has to extract
all of the URL references as well as HTML anchor tags.
For every anchor tag that is found, a new target anchor
entry containing a reference to the HTML document,
its position and the appropriate fragment id has to
be created. For every URL that denotes a database
query it has to be checked if the appropriate resource
description already exists. If not, a new resource de-
scription, query description and target anchor have to
be inserted. For every URL that denotes a reference
to a Web based resource, a new source anchor with a
unique sourceld, a reference to the HTML document
(documentld) as well as the start - and end position
of the URL has to be created, while the sourcelds of
the corresponding target anchors are stored in main
memory. After all of the resources have been inserted,

Target Anchor Resource Description Video
1~ 9| targetid /V resDescld <+ id
1
, resDescld url resDescld
1
! fragment newUrl mimeType
' Start contents
1
, end
1
1
1
! Source Anchor
1 . .
! sourceld Query Description Document
1
! documentld — database id
- targetld entity resDescld

url attribute mimeType

start resDescld —_ contents

end

Explanation:
Unique identifiers on delete set null
Referential constraints with different semantics on delete cascade
.

Figure 3: Meta data structures used to store all of the relevant link information

the link structure has to be valid. Thus, for every tar-
get anchor which is stored in main memory it has to
be tested if a corresponding target anchor entity ex-
ists. If the test is successful, the corresponding targetld
is stored in the appropriate source anchor. Otherwise,
the link structure is inconsistent and all of the changes
have to be undone.

Deletion: Before the specified Web based resources can

actually be deleted, their entries in the resource de-

scription entity with the appropriate URLs have to

be deleted. Because of the referential integrity con-

straint between the resource description entities and

the target anchor entities, the corresponding target .
anchors of these resources are removed as well. The
removal of the target anchors, on the other hand, leads
to the situation that the corresponding source anchors
have to be adapted too, because of the existing refe-
rential integrity constraint. The semantic of removing
target anchors is that the corresponding links are no
longer valid. This situation is reflected in the meta
data structures by changing the targetId of the source
anchor entity to an undefined value. Addionally, if
any of the Web based resources that are about to be
deleted are located in the database, they are removed
from the corresponding resource entities as well, be-
cause of the referential integrity constraint between
the resource description entity and the resource en-
tities. In case that any of the deleted resources is a
HTML document, all of its source anchors are removed
from the source anchor entity because of the referen-
tial integrity constraint between the resource entity
Document and the source anchor entity. Addionally,
it is possible that the deletion of a HTML document
leads to the situation that the database queries which
are part of the document may be obsolete too and

the corresponding query description entries have to be
deleted. Such a situation can be discovered by count-
ing the references from source anchor entries to tar-
get anchor entries which denote database queries. If
no such references exist, the database query has be-
come obsolete and the corresponding entry in the tar-
get anchor entity has to be removed. Because of the
reference (resDescld) from the target anchor entry to
the corresponding resource description, the resource
description is removed as well. Finally, the query de-
scription is deleted, because of the referential integrity
constraint between these two entities.

Modification: In case of any modifications of resources
which are not HTML documents nothing has to be
done, because they do not consist of any source anchors
and the target anchors are not affected by changing
their content. The modification of a HTML document,
on the other hand, is identical to applying a delete
operation to the HTML document which is followed
by an insert operation.

Changing location: First, it should be noted that this
operation can only be applied to resources located in
the local file system, because for resources located in
the database the notion of a location is not applicable.
Thus, if a resource is relocated, the resource descrip-
tion entry has to be adapted accordingly by storing
its new location as the newURL. Additionally, a new
resource description entry has to be created with the
new location as its url and an undefined newURL. The
reason for maintaining multiple resource descriptions
for a relocated resource is that the source documents
are not adapted automatically to the new location of
their target resources. Thus, a resource description
entity has to be maintained as long as it is referenced

by any target anchor entry.

e Retrieval: Because a retrieval operation does not af-
fect the integrity of links, only the validity of the re-
source’s links have to be checked. Because Web based
resources except for HTML documents do not contain
any links, no actions have to be performed when re-
trieving such a Web based resource located in the data-
base. If the Web based resource is located in the local
file system, the corresponding resource description has
to be checked if the resource has been relocated in the
past. In case of a relocation, the actual url has to be
determined by inspecting the corresponding resource
description entries. Finally, the Web based resource
has to be retrieved from the database or the local file
system, respectively. On the other hand, prior to re-
trieving a HTML document the validity of the existing
links has to be checked. Thus, all of the targetlds of
the HTML document’s source anchor entries contain-
ing an undefined value have to be retrieved. If such
source anchor entries exist, its start - and end value
have to be retrieved to remove the corresponding byte
range from the HTML document during retrieval. For
all of the database queries which are identified accord-
ing to the reference from the document’s source anchor
to the corresponding target anchor and the target an-
chor to the resource description the existence of the
corresponding database, entities and attributes have
to be checked during runtime. This check has to be
performed by retrieving the appropriate catalog infor-
mation from the system catalog of the database sys-
tem. If any invalid database queries exist, their posi-
tion within the HTML document is determined based
on the start - and end value of the corresponding target
anchor entries and they are removed during retrieval.

Finally, it has to be added that all of the operations
above are executed under transactional control. Thus, if any
of the changes have to be undone, the transaction must per-
form a rollback, whereas committing the transaction makes
all of the changes persistent.

4.4 Additional search facilities

Currently, the only possibilities to perform full-text searches
within the local HTML documents are either to use one of
the well-known search engines or to use tools that have been
developed by oneself. On the other hand, in a Web environ-
ment that consists of a database system these queries can
be performed much more efficiently using the built-in query
language of the database system. So far, it is already possi-
ble to do full-text searches of HTML documents that are lo-
cated in the database system by using a database query that
searches the contents of the Document resource entity. But,
support for efficient searches within certain relevant parts of
the document like headings, captions of figures and tables as
well any information that is included into the HTML doc-
ument header, it is necessary to extend the functionality of
the meta data management and document parser compo-
nents (see figure 1) accordingly. Thus, the document parser
has to extract the appropriate HTML tags during insertion
or modification as well and to store them in an additional
meta data structure of the following form:

Document Info (HTMLtag, content, documentld)

Using this kind of meta data, it is possible to efficiently
search the content of special HT'MLtags in a certain doc-
ument or all of the documents that are available. Just for

clarification, it has to be noted that the documentId denotes
a reference to the corresponding Document resource entity
that contains these HTML tags. Obviously, the information
in the Document Info entity has to be adapted according to
modifications or deletions of HTML documents as well.

4.5 Navigational aid

The ”lost in hyperspace” syndrome which has been observed
in a lot of hypermedia environments due to a disorientation
of the user after following a few hyperlinks results from a
missing navigational aid in form of a map that indicates the
users’ current location as well as the users’ path through
hyperspace. As it can be seen, all of the information that is
needed to generate a map of the existing document structure
is already available in the meta data structure of the link
management whereas the path information can be derived
from analyzing the Web server’s access log. By the way, the
‘Web server’s log should be stored in the database as well to
be able to use the query language of the database system to
obtain various access statistics. Thus, a frontend tool may
use this kind of information to generate a graphical output
on demand of the user to help him navigating along the
existing hypermedia information.

5 Implementation

A prototype implementation of the system as it is depicted
in figure 1 has been developed in a networked environment of
heterogeneous Unix workstations and a relational database
system. The general idea of the prototype implementation
was the creation of a testbed to show the feasibility of the
underlying design concepts and to build a basis for further
development. In the following section the prototype imple-
mentation is revealed in greater detail:

Web-Browser: Any standard Web browser with Java sup-
port can be used to access the information residing in
the database system. A number of different helper ap-
plications, like an MPEG audio and video player or
a real audio player have to be installed to be able to
playback audio and video clips.

Frontend tools: In the current state of the prototype im-
plementation none of the graphical frontend tools have
been developed yet. Thus, all of the resources hav to
be inserted into the database using command line util-
ities.

Web-Server: As it has been described in section 4.1 an ex-
tensible Web server which implements the servlet in-
terface has be chosen as the basis of the prototype im-
plementation. Thus, the Java Web Server [4] from Sun
Microsystems has been used as the software platform.
The database access module (see figure 1) has been
implemented as a servlet that is loaded by the Web
server during startup. Instead of implementing the
document parser manually, the Java Compiler Com-
piler (JavaCC) [10] has been used to be able to ex-
tend the document parser according to changes in the
HTML standard. Java based access to the database
system which is used to store all of the meta data is
accomplished by using the JDBC [6] interface.

Database system: The current implementation is based
on IBM’s object-relational database system DB2 Ver-
sion 2.1.1 on a Sun Solaris platform. All of the multi-

and hypermedia content is stored as LOB (long ob-
jects) data depending on its type either as CLOBs
(character large objects) or BLOBs (binary large ob-
jects). In a further release of DB2, which has already
be announced and is called DB2 Universal Database,
it is will be possible to store all of the Web based re-
sources in so-called relational extenders for text, im-
ages, audio or video respectively and to perform con-
tent based queries on multimedia data. Access to the
database system is provided by DB2’s native JDBC
driver.

6 Conclusion

This paper presented an approach to combine the features
of the World Wide Web with the functionality of database
systems by storing all of the Web based resources in the
database to overcome the most serious limitations of the
Web. By using an URL notation to denote all of the infor-
mation located in the database system, it has been demon-
strated how easily references to these Web based resources
as well as database queries can be embedded into HTML
documents treating all kind of information in an uniform
way independent of their location.

7 Future Work

The main goal is to use the prototype implementation during
a practical course or a lecture to make all of the course
material like scripts, programs, etc. on-line available for the
students. The students’ experiences will then be used for the
evaluation of the prototype with respect to robustness and
performance as well as missing features. Additionally, all of
the frontend tools have to be developed which enable an easy
administration of Web based resources. Another direction
of future work is to develop an authentication model that
is capable of managing Web based resources and traditional
data in a more suitable manner as the World Wide Webs
current authentication method that is based on protecting
directory sub-trees. Thus, it would be advantageous to have
a more fine-grained authentication model that is capable of
granting or restricting access to single Web based resources
or entity attributes.

References

[1] M. Anand, et. al. The Web Request Broker: A Frame-
work for Distributed Web-Based Applications. Available
at http://www.olab.com/beta/www6_1/paper.html.

[2] A. Baird-Smith. Jigsaw Overview. Available at http://
www.w3.org/pub/WWW/Jigsaw/.

[3] J. Gaffney. Illustra’s Web DataBlade Module. SIGMOD
Record, Vol. 25, No. 1, March 1996.

[4] The Java Server Product Family. Available at http://
jserv.javasoft.com/.

[6] B. J. Haan, et al. IRIS Hypermedia Services. Commu-
nications of the ACM 35(1), 1992.

[6] G. Hamilton, R. Cattell. JDBC: A Java SQL API
Available at http://splash.javasoft.com/jdbc/.

[7] P. Kutschera. Combining Database Technology with the
World Wide Web for Tele-Teaching Environments. New

[9]

[10]

[11]

[12]

Media for Education and Training in Computer Science,
infix, 99-108, 1996.

H. Maurer. Hyper Wave: The Next Generation Web So-
lution. Reading et. al.: Addison-Wesley, 1996.

IBM Net.Data Programming Guide. Available
at http://www.software.ibm.com/data/net.data/docs/
dtwdev.htm.

Java Compiler Compiler. Available at http://www.
suntest.com/JavaCC /features.html.

J. E. Pitkow, R. K. Jones. Supporting the Web: A
Distributed Hyperlink Database System. Computer Net-
works and ISDN Systems 28(7-11), 981-991, 1996.

W. R. Tuthill. Don’t Get Caught in the Web: A Field-
guide to Searching the Net. Proceedings of the COMP-
CON’96, Santa Clara, February 25-28, 1996, 77-83, Los
Alamitos, IEEE Computer Society Press, 1996.

