
Communication Concepts for Mobile Agent Systems1

Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis,
Kurt Rothermel, Markus Straßer

Institute of Parallel and Distributed High-Performance Systems (IPVR),
University of Stuttgart, Germany

{baumann,hohlfz,strasser,nsradoun,rothermel}@informatik.uni-stuttgart.de

1 Introduction
Mobile agents are often described as a promising technology, moving towards the
vision of usable distributed systems in widely distributed heterogeneous open net-
works. Particularly, its promise to offer an appropriate framework for a unified and
scalable electronic market has led in the past years to a great deal of attention. Since
the deployment of mobile agent systems in a large scale is crucial for the success of
this technology, the emerging problems and needs have to be well understood.

Though first prototype systems (e.g, see [IBM96]) and even products (e.g., see
[GM96]) exist, the architecture of mobile agent systems is not well understood today
and hence needs more investigation. In our paper, we will address two issues, commu-
nication and synchronization in agent-based systems.

A fundamental question tightly related to communication is how mobile agents are
identified. On the one hand, there is certainly a need for globally unique agentIds.
Identifier schemes that provide for migration transparency are well-understood today.
However, such a scheme might be too inflexible in agent-based systems. Assume for
example, that a group of agents cooperatively perform a user-defined task. Assume
further that one group member wants to meet another member of this group at a partic-
ular place for the purpose of cooperation. In this case, the member should be identified
by a (placeId, groupId) pair. If the agent to be met additionally is expected to play a
particular role in this group, the identifier would have the form (placeId, groupId,

1. This work was funded by Tandem Cupertino and the German Research Community
(DFG)

Abstract. Driven by the question how to identify potential communication partners and the
need for well-suited communication schemes in agent-based systems, we discuss two com-
munication concepts: sessions and global event management.

Sessions establish either actively or passively a context for inter-agent interactions. Com-
munication partners are addressed by globally unique agent identifiers or via badges. Com-
munication in sessions is based on RPC or message mechanisms.

Global event management addresses the need for anonymous communication. Event man-
agers are employed as a synchronization means within agent groups. Based on this ap-
proach, we introduce synchronization objects, - active components that offer various syn-
chronization services. The presented model is finally mapped onto OMG event services.

roleId). For supporting those application-specific naming schemes we propose the
concept of badges.

For the purpose of cooperation mobile agents must’meet’ and establish communica-
tion relationships from time to time. For this purpose, we propose the concept of a ses-
sion, which is an extension of Telescript’s meeting metaphor. Numerous existing agent
systems are purely based on an RPC-style communication. While this type of commu-
nication is mainly appropriate for interactions with service agents, i.e. those agents that
represent services in the agents’ world, it has its limitations if agents interact like
peers. Therefore, we propose to support both message passing and remote method
invocations.

In the general case, a group of agents performing a common task may be arbitrarily
structured and highly dynamic. In those environments, one can not assume that an
agent that wants to synchronize on an event (e.g., some subtask this agent depends
upon is finished) knows a prior which agent or agent subgroup is responsible for gen-
erating this event. Therefore, we suggest to use the concept of anonymous communica-
tion, allowing agents to generate events and register for the events they are interested
in, as a foundation for agent synchronization.

The remainder of the paper is structured as follows. In Section2, we present an over-
view of the employed agent model. Various agent communication types and their need
for well-suited communication schemes are then discussed in Section3. Section4
examines one of these schemes, the session-oriented communication and its benefit for
mobile agent systems. Section5 focuses on global event management as a vital infra-
structural component. A brief overview of Mole, our current agent system is presented
then. The paper concludes with a list of related work and a summary of the article’s
key issues and future work.

2 An Agent System: A Collection of Agents and Places
Our model of an agent-based system - as
various other models - is mainly based
on the concepts of agents and places. An
agent system consists of a number of
(abstract) places, being the home of var-
ious services. Agents are active entities,
which may move from place to place to
meet other agents and access the places’
services. In our model, agents may be
multi-threaded entities, whose state and
code is transferred to the new place when agent migration takes place. Places provide
the environment for safely executing local as well as visiting agents.

Our model distinguishes between mobile agents and so-called service agents. Service
agents are stationary and interface the services available at places. Those services may
include system services, such as a file or directory access, as well as application-level
services, such as a hotel reservation or flower delivery service. Service agents encapsu-
late arbitrary services and represent them in the agent world. From a technical point of

migration

place B

place C
application

service agent

H

mobile agent

place A

Fig. 1. Model

view, service agents map the service request expressed in the „agent language“ to the
individual service interface. This mechanism allows legacy systems to be incorporated.
Moreover, service agents will be the place, where access control mechanisms are locat-
ed. In contrast to service agents, mobile agents may migrate from node to node.

Each agent, whether mobile or stationary, is identified by a globally unique agent iden-
tifier. An agent’s identifier is generated by the system at agent creation time. It is inde-
pendent of the agent’s (current) location, i.e. it does not change when the agent moves
to a new location. In other words, the applied identifier scheme provides location trans-
parency.

A place is entirely located at a single node of the underlying network, i.e. all service
agents associated with a place reside on the same node. Conversely, multiple places may
be implemented on a given node. For example, a node may provide a number of places,
each one assigned to a certain agent community, allowing access to a certain set of ser-
vices, implementing a certain prizing policy, and so on.

The requirement of having places being realized on a single node does not mean that all
service implementations have to be located at the place’s node also. It is well conceiv-
able that the place’s service agents provide access not only to local but also to remote
services, typically accessible via a LAN. Single node places lead to well defined prop-
erties in terms of communication: Intra-place communication between an agent and a
service agent is always local an hence is (in general) cheaper than inter-place commu-
nication. Moreover, single node places are much simpler to implement than distributed
places.

3 Types of Agent Communication
In this section, we will address the various types of communication. Considering inter-
agent interaction, we have to distinguish between following types of communication:

1. Agent/service agent interaction
Since service agents are the representatives of services in the agent world, the style
of interaction is typically client/server. Consequently, services are requested by is-
suing requests, results are reported by responses. To simplify the development of
agent software, an RPC-like communication mechanism should be provided.

2. Mobile Agent/Mobile Agent Interaction
This type of interaction significantly differs from the previous one. The role of the
communication partners are peer-to-peer rather than client/server. Each mobile
agent has its own agenda and hence initiates and controls its interactions according
to its needs and goals. The communication patterns that may occur in this type of
interaction might not be limited to request/response only. The required degree of
flexibility is provided by a message passing scheme. Even higher-layer coopera-
tion protocols, such as KQML/KIF [FMM94], are based on message passing.

3. Anonymous agent group interaction
In the previous two types, we have assumed that the communication partners know
each other, i.e. the sender of a message or RPC is able to identify the recipient(s).
However, there are situations, where a sender does not know the identities of the

agents that are interested in the sent message. Assume, for example, a given task
is performed by a group of agents, each agent taking over a subtask. In order to
perform their subtasks, agents itself may dynamically create subgroups of agents.
In other words, the member set of the agent group responsible for performing the
original task is highly dynamic. Of course, the same holds for each of the sub-
groups involved in this task. Now assume that some agent wants to terminate the
entire group or some subgroup. In general, the agent that has to send out the ter-
minate request does not know the individual members of the group to be terminat-
ed. Therefore, communication has to be anonymous, i.e., the sender does not iden-
tify the recipients. This type of communication is supported by group
communication protocols (e.g., see [BvR94]), the concept of tupel spaces [CG89],
as well as sophisticated event managers. In the latter approach, senders send out
event messages anonymously, and receivers explicitly register for those events
they are interested in.

4. User/Agent Interaction
Although a very interesting area of research, the interaction between human users
and software agents is beyond the scope of this paper. For a discussion of this type
of communication the reader is referred to e.g. [Mae94].

Let us briefly summarize our findings. Different types of communication schemes are
needed in agent-based systems. Besides anonymous communication for group interac-
tions, message passing and an RPC-style of communication is suggested. In our model,
message passing and RPC is session-oriented, which means that agents that want to
communicate have to establish a session before they can send and receive data. In the
remainder of the paper, we discuss the concept of session-oriented communication in
the context of agent-based systems and investigate event managers for anonymous com-
munication.

4 Session-Oriented Communication
As will be seen below, a session between agents can be established only if the agents
can identify each other. In our model, there are basically two ways how agents can be
identified, the agent_Ids introduced in Section1 and so-called badges.

In the case of mobile agents the concept of agent_Ids is not always sufficient. Assume
for example, that an agent wants to meet some other agent participating in the same task
at a given place. If only agent_Ids were available, both agents would have to know each
others ids. Actually, for identification it would be sufficient to say „At place XYZ I
would like to meet an agent participating in task ABC“. This type of identification is
supported by the concept of badges. A badge is an application-generated identifier, such
as „task ABC“, which agents can „pin on“ and „pin off“. An agent may have several
badges pinned on at the same time. Badges may be copied and passed on from agent to
agent, and hence multiple agents can wear the same badge. For example, all agents par-
ticipating in a subtask may wear a badge for the subtask and another one for the overall
task. The agent that carries the result of the subtask may have an additional badge saying
„CarryResult“.

Using badges, an agent is identified by a (place_Id, badge predicate)-pair, which iden-
tifies all agents fulfilling thebadge predicateat the place identified byplace_Id). A
badge predicate is a logical expression, such as („task ABC“ AND („CarryResult“ OR
„Coordinator“)). Obviously, this is a very flexible naming scheme, which allows to as-
sign any number of application-specific names to agents. To change the name assign-
ments two functions are provided, PinOnbadge(badge) and PinOffbadge(badge).

Now let us take a closer look to sessions. A session defines a communication relation-
ship between a pair of agents. Agents that want to communicate with each other, must
establish a session before the actual communication can be started. After session setup,
the agents can interact by remote method invocation or by message passing. When all
information has been communicated, the session is terminated. Sessions have the fol-
lowing characteristics:
• Sessions may be intra-place as well as inter-place communication relationships,

i.e., two agents participating in a session are not required to reside at the same
place. Limiting sessions to intra-place relationships seems to be too restrictive.
There are many situations, where it is more efficient to communicate from place to
place (i.e., generally over the network) than migrating the caller to the place where
the callee lives. Consequently, we feel that the mobility of agents cannot replace
the remote communication in all cases.

• In order to preserve the autonomy of agents, each session peer must explicitly
agree to participate in the session. Further, an agent may unilaterally terminate the
sessions it is involved in at any point in time. Consequently, agents cannot be
“trapped” in sessions.

• While an agent is involved in a session, it is not supposed to move to another place.
However, if it decides to move anyway, the session is terminated implicitly. The
main reason for this property is to simplify the underlying communication mecha-
nism, e.g., to avoid the need for message forwarding.

The question may arise, why sessions are needed at all. There are basically two reasons:
First, the concept of a session used to synchronize agents that want to ‘meet’ for coop-
eration. Note that the first property stated above allows agents to ‘meet’ even if they stay
at different places. The concept of a session is introduced to allow agents to specify des-
ignated agents they are interested to meet at designated places. Furthermore, it allows
agents to wait until the desired cooperation partner arrives at the place and indicates its
willingness to participate.

Secondly, we intend to support both “stateless” and “stateful” interactions. In contrast
to the first, the latter maintain state information for a sequence of requests. Obviously,
if they encapsulate “stateful” servers, service agents have to be “stateful” also. A pre-
requisite for building “stateful” entities are explicit communication relationships, such
as sessions.

Session Establishment

In order to set up sessions two operations are offered,PassiveSetUp andActiveSetUp.
(see Fig. 3). The first operation is non-blocking and is used by agents to express that
they are willing to participate in a session. In contrast,ActiveSetUp is used to issue a

synchronous setup request, i.e., the caller is blocked until either the session is success-
fully established or a timeout occurs.

In the caseActiveSetUp succeeds, it returns the reference of the newly created session
object to the caller. Input parameterPlaceId identifies the place, where the desired ses-
sion peer is expected, andPeerQualifier qualifies the peer at the specified place. A
PeerQualifier is either an agent_Id or a badge predicate. Note that at most one agent
qualifies in the case of a single agent_Id, while several agents may qualify if a single
badge predicate is specified. To avoid infinite blocking, parameterTimeOut can be used
to specify a timeout interval. The operation blocks until the session is established or a
timeout occurs, whatever happens first.

ParametersPeerQualifier andPlaceId of operationPassiveSetUp are optional. If neither
of both parameters is specified, the caller expresses its willingness to establish a session
with any agent residing at any place. By specifying PlaceId and/or PeerQualifier the
calling agent may limit the group of potential peers. For example, this group may be
limited to all agents wearing the badge “Stuttgart University” and/or that are located at
the caller’s place.

As pointed out above, before a session is established both participants must agree ex-
plicitly. An agreement for session setup is achieved if both agents issue matching setup
requests. Two setup requests, say RA and RB of agents A respectively B, match if
• PlaceId in RA and RB identifies the current location of B and A, respectively, and
• PeerQualifier in RA and RB qualifies B and A, respectively.

If a setup request issued by an agent matches more than one setup request, one request
is chosen randomly and a session is established with the corresponding agent.

A combination of PassiveSetUp and ActiveSetup al-
lows a client/server style of communication (see Fig.
4). The agent playing the server role once issues
PassiveSetUp when it is ready to receive requests.
When an agent playing the client role invokes Ac-
tiveSetup, this causes the SetUp method of the server
side to be invoked implicitly. SetUp implicitly estab-
lishes a session with the caller and assigns a thread for
handling this session. Therefore, once the server agent
has called PassiveSetup, any number of sessions can be established in parallel, where
session establishment is purely client driven.

PassiveSetUp({PeerQualifier}, {PlaceId})-> nil
ActiveSetUp(PeerQualifier, PlaceId, Timeout) -> SessionObject
Terminate(SessionObject) -> nil
SetUp(SessionObject) Fig. 3. session methods

PassiveSetUp

ActiveSetUp

SetUp()

Fig. 4. C-S interaction

If both agents issue (matching) ActiveSetUp requests this cor-
responds to a rendezvous, both requestors are blocked until
the session is established or timeout occurs (see Fig. 5). This
type of session establishment is suited for agents that want to
establish peer-to-peer communication relationships with oth-
er agents. Communication between agents is peer-to-peer if
both have their own “agenda” in terms of communication, i.e.,
both decide - depending on their individual goals - when they
want to interact with whom in which way.

Communication

As pointed out above, Remote Method Invocation (RMI), the object-oriented equivalent
to RPC, seems to be the most appropriate communication paradigm for a client/server
style of interaction, while message passing is required to support peer-to-peer commu-
nication patterns. The available communication mechanisms are realized by so-called
com objects. Currently, there are two types of com objects, RMI objects and Messaging
objects.

Com objects are associated with sessions. Each session may have an RMI object, a Mes-
saging object, or both. Each session object offers a method for creating com objects as-
sociated with this session. With theRMI object the methods exported by the session
peer can be invoked. It can be compared with a proxy object known from distributed
object-oriented systems. With theMessaging object, messages can be conveyed asyn-
chronously between the participants of a session. Messages are sent by calling the send
method. For receiving messages the receive and subscribe methods are provided. The
receive method blocks until a message is received or timeout occurs, whatever happens
first. If thesubscribe method is invoked instead, the incoming messages are handed over
by calling themessage method of the recipient and passing the message as method pa-
rameter.

The advantage of having the concept of com objects is twofold. First, only those com-
munication mechanisms have to be initiated that are actually needed during a session,
and secondly, additional mechanisms, such as streams, can be added to the system. The
latter advantage enhances the extensibility of the system.

Session Termination

At any time, a session can be terminated unilaterally by each of the both session partic-
ipants, either explicitly or implicitly. A session is terminated explicitly by calling Ter-
minate (see Fig. 3), and implicitly when a session participant moves to another place.
When a session is terminated, this is indicated by calling the SessionTerminated method
exported by agents. Moreover, all resources associated with the terminated session are
released.

5 Anonymous Communication at the example of agent synchroni-
zation

Two widely deployed concepts for anonymous communication are tuple spaces and so-
phisticated event managers. In contrast to the blackboard concept, tuple spaces provide

ActiveSetUp

ActiveSetUp

Fig. 5. P-P interaction

additional access control mechanisms. Agents employ tuple spaces to leave messages
without having any knowledge who will actually read them. In the remainder of this
section we will concentrate on event mechanisms as a well-suited concept for inter-
agent synchronization.

Applications can be modeled as a sequence of reactions to events, that in turn generate
new events. Events may be user- (e.g. reaction to a message), application-, or system-
initiated (e.g. signal sent by a process). An event-based view maps quite closely onto
real life, and any programming primitives that support event-based concepts tend to be
more flexible in modeling a given problem.

The event model is particularly well-suited for distributed communication since it ab-
stracts from the receiver’s identity. As a consequence, it enables the specification of
complex interactions without the need to know the communication partners in advance.
With regard to agent systems, the event model simplifies application- as well as system-
level communication. On the application level, events are employed as a general com-
munication means. On the system level, events can be used to design and implement
protocols that encompass agent synchronization, termination, and orphan detection.

5.1 Events

In our notion, events are objects of a specific type, containing some information. Events
are generated by so-called producers and are transferred to the consumer by the event
service. Consumers (and, depending on the concrete implementation of the event ser-
vice, also producers) have to register at the event service for the type of events they want
to receive or send.

As consumers and producers may only interact if both know which events to produce
or to consume, they necessarily have to share common knowledge of the used event
types in an interaction group. For this, there exist two alternatives: either the event types
are negotiated at startup time, then this information configures the agents before a mi-
gration, or the event types have to be communicated to the members of the interaction
group.

5.2 Synchronization objects

Synchronization objects are defined as active components responsible for the synchro-
nization of an entire application or only parts of it. Synchronization objects monitor spe-
cific input events. Depending on these events, internal rules, state information and time-
out intervals, output events are generated, that in turn may be the input for other
synchronization objects.

Rules are arbitrarily complex expressions triggered through input events. They consist
of a condition and an action part. The condition part is a logical expression composed
of event types and state information of the synchronization object. If the logical condi-
tion becomes true, the action part is triggered. The action part itself consists of simple
commands (e.g. send output events, change internal state, stop the synchronization ob-
ject to process events). The state consists of a set of variables. Timers are special rules
with no input events that trigger actions after a specified amount of time.

An agent group comprises logically related agents. Synchronization objects are well-
suited to model dependencies within agent groups. Relationships between agents are
expressed by the synchronization object’s internal rules and can be defined in terms of
success (i.e. a group is only successful if a well defined set of the group members have
succeeded). Agents participating in such groups send success events after they have ac-
complished their task. The synchronization object receives success events and process-
es this input through its internal rules. As a result, output events are generated. In case
a generated event is an success event it can be used to nest groups (i.e. an output event
of one group is used as an input event of another group).

Example: OR and AND groups

Two agent group types of particular interest are the OR-group and the AND-group.
AND-groups succeed only if all agents have accomplished their task. For the OR-
group’s success it is sufficient if at least one group agent accomplishes its task. OR-
groups are eligible for parallel searching in a set of information sources. As soon as one
agent has found the required information the group has succeeded in its task.

A simple OR group (Fig. 7) includes only three event types. The input eventagentsuc-

cess, signaling the success of an agent, and the output events successful and
not_successful, signaling the group’s success. The OR group employs only one rule and
one timer. The rule causes the synchronization object to send an event signaling the
group’s success (successful) and to disable itself afterwards. If the timer fires first (e.g.
caused by application specific timeouts or processing failures like deadlocks or crash-
es), the synchronization object signalsnot_successful and stops the processing.

The presented model is not very efficient: if one group member succeeds, all other
group members are obsolete and, if all group members detect that they are not able to
complete their task, the group fails. The definition of the OR-group illustrated by Fig.8
takes these cases into account.Agents detecting that they cannot succeed, generate the
giveup event. If all group members signal agiveup, the group fails.

synchronization object

outputinput

rules

state

timer

Rule 12: if ((event98 and event51) or
(event3 and variable1==true)) then

{
send(event90);
variable1=false;
}

variable1: boolean
timer1 = after 10 seconds { send(event51) }

Fig. 6. sync. object

events events

successful

not_successful
agentsuccess simple

if (agentsuccess) then{
send(successful); stop;}

timer1 = after (30min){
send(not_successful); stop;}

OR-Group

Fig. 7. Simple OR group

For this, the group has to
know its members - either by
keeping them in mind at the
group’s creation time or by
registering group agents
through theregister event. In
the latter case the number of
members potentially being
able to succeed is counted
and stored in the state vari-
ablemembers (more sophis-
ticated approaches could
maintain an agentId list, transmitted via the events and ensuring that only events from
subscribed agents are accepted). Ifmembers becomes zero, the eventnot_successful is
instantly generated. Theterminate event (to terminate the group members) is generated
if the group either succeeds or fails.

5.3 The OMG event model

The Object Management Group event services specification ([OMG94]) defines the
Event Service in terms of suppliers and consumers. Suppliers are objects that produce
event data and provide them via the event service, consumers process the event data pro-
vided by the event service. If a consumer is interested in receiving specific events, it has
to register for them. This means a supplier of events knows who the recipients are (this
does not exactly conform to the original definition of event mechanisms). Two commu-
nication models are supported between suppliers and consumers, thepush model and
thepull model. In both models all communication is synchronous. In the push model, a
supplier pushes event data to the consumer, sending to each of the registered objects the
event. In the pull model, consumers pull event data by requesting it from the supplier.

What makes this event service flexible and powerful, is
the notion of the event channel. To a supplier, an event
channel looks like a consumer. To a consumer on the oth-
er hand, the event channel seems to be a supplier. Further-
more, the communication model between the different
participants can be chosen freely. By using an event chan-
nel, suppliers and consumers are decoupled and can com-
municate without knowing each other’s identity. Suppli-
ers and consumers communicate synchronously with the event channel but the
semantics of the delivery are up to the designer of the specific event channel. Two types
of channels are defined, typed and untyped channels. How these event channels are im-
plemented is not defined in the OMG specification. By not imposing any restrictions on
the semantics, the specification allows implementations to provide additional function-
ality in the event channel implementation. Persistent events (events that are logged) or
reliable event delivery mechanisms come to mind. Because the event channel interface
complies to the definition of the consumer’s interface and to the definition of the sup-

successful

not_successful

terminate

agentsuccess

giveup

register OR-Group

if (giveup) then{
members=members-1;
if (members=0) then{
send(not_successful);
send(terminate);
stop}}

timer1 = after (30min){
send(not_successful);
send(terminate); stop}

members: integer;

if (agentsuccess) then{
send(successful);
send(terminate); stop;}

if (register) then {
members = members+1;}

Fig. 8. OR group

Event

Suppliers Consumers

pullpull

push push

Fig. 9. Event Channels

Channel

plier’s interface, they can be chained without problems. This allows to build arbitrarily
complex event channel hierarchies with a broad functionality.

Products following the OMG specification are commercially available (e.g. Iona
OrbixTalk[ION96], or Sunsofts NEO [Sun96]).

5.4 Synchronization using the OMG model

This section tries to map the presented group model onto OMG event services. Hereby,
it is assumed that, in contrast to current implementations, event services support mobile
participants. Support of mobile participants will be subject of future work.

With the employment of an untyped event
channel for group communication, OR
and AND-groups can be implemented.
The channel is untyped because different
event types are transmitted through it. As
the information about success is of fore-
most importance to the synchronization
object, agents and synchronization object
implement the push model. The synchro-
nization object contains a reference to the event channel. The agent that creates the
group has access to its synchronization object and thus the ability to forward the event
channel reference to other agents, e.g. at creation time. The group members subscribe
to the event channel as suppliers (e.g. foragentsuccess event) as well as consumers (e.g.
for termination event). The communication to non group entities is handled by the syn-
chronization object, either by sending the events directly to an agent (e.g. the parent
agent creating the group) or by using another event channel (e.g. an event channel of a
higher-level group).

6 Mole
In order to allow research in the field of mobile agent systems, Mole [SBH96] was de-
veloped at the University of Stuttgart. Mole is a platform for mobile agents which uses
Java as the agent programming and as the implementation language. Therefore, Mole is
a pure Java application and can be started at every computer platform for which a Java
Development Kit is available. Agents in Mole may use multiple threads, have globally
unique names and can provide or request services, which can be looked up locally. A
service is currently the implementation of one or more methods with specified names
and parameters (which are called interfaces in Java), services are requested by calling
those methods by using a kind of remote method invocation (a Java object RPC). When
it comes to communication, Mole currently supports the (global) exchange of messages
and the mentioned RMI. Both are addressed by using a direct addressing scheme. The
only way to obtain the needed referencing addresses is the use of the local service look-
up mechanism which associates a list of agent names to service names. A mechanism
which is able to associate current location to agent names is in the implementation
stage. Mole will be used, among other things, as the infrastructure for an electronic doc-
uments system [KMV96] and in a distributed variant of a Multi-User Dungeon (MUD),
in which players can use mobile agents as artificial team-mates.

Success
Event

Sync.
Object

Event Channel

AgentAgent
Group

Agent Group

Other
Events

Fig. 10.

Mole is available as source code; the first public version was released in June 1996. Fur-
ther informations about the Mole project can be found at http://www.informatik.uni-
stuttgart.de/ipvr/vs/projekte/mole.html.

7 Related Work
Current mobile agent systems employ many communication mechanisms such as mes-
sages, local and remote procedure calls or sockets, but, at our knowledge, no system
uses a global event management for communication and synchronization. There are
“events” in AgentTcl [GCK96], but they are simply (local) messages plus a numerical
tag.

Although the use of sessions offers certain advantages as shown above, existing agent
systems barely provide session support. Telescript [GM96], for example, which intro-
duced a kind of sessions by using the term meeting for mobile agent processing, offers
only local meetings, that allow the agents only to exchange local agent references. The
meet command is asymmetric, i.e. there is an active meeting requester, the “petitioner”
and a passive meeting accepter, the “petitionee”. The petitionee can accept or reject a
meeting, but only the petitioner gets a reference to the petitionee. Agents communicate
after opening a meeting by calling procedures of each other (i.e. the petitioner can call
procedures of the petitionee). As there is no possibility during the execution of a proce-
dure to obtain information about an enclosing meeting, agents cannot access session
context data. Thus, according to our definition the Telescript meeting is not a session.

There are also “meetings” in ARA[Pei96] and in AgentTcl. Meetings in ARA build up
communication relations between two agents over which (string) messages can be ex-
changed, meetings are local and the only supported “specification method” is anony-
mous addressing via meeting names. Meetings in AgentTcl are just a mechanism that
opens a socket between two agents.

8 Summary and Future Work
Driven by the question how to identify potential communication partners and the need
for well-suited communication schemes with regard to different types of agent interac-
tion, we discussed two communication concepts in the context of Mobile Agent sys-
tems: sessions and the use of a global event management for infrastructural purposes.

After presenting a brief description of our agent model, we identified different types of
communication schemes that please the requirements of agent based systems. Sessions
establish either actively or passively a context for interactions. The communication
partners are addressed either by globally unique agent identifiers or via badges. Agents
can build several sessions simultaneously - even with the same communication partner.
Communication in sessions is based on RPC or message mechanisms.

To bypass the problems arising from the need to communicate to potentially unknown
group members performing the same task, we proposed the use of a global event man-
agement. The employment of events for the realization of a general synchronization was
shown. Therefore, we introduced the notion of synchronization objects, active compo-
nents that offer different synchronization services. Using timers and state information,
synchronization objects consumed, processed and produced events as input for other

synchronization objects or other components. After a short overview of the OMG event
model, the presented group model is mapped onto the OMG event services.

Existing implementations of event services already provide persistency (NEO and
IONA OrbixTalk). But none of the existing implementations can cope with mobile par-
ticipants. In order to support particular requirements imposed by mobile agents, appro-
priate event channel designs are required. While distributed event services with station-
ary participants are well understood, additional questions are raised by the mobility
issue. The further exploration of this promising research field comprises the design and
implementation of such distributed event services that support apart from different
channel semantics also mobility of participants. The proposed mechanisms are not im-
plemented yet in our Mole system (see Section6). Future work will encompass the in-
tegration of the session concept and a distributed event service into Mole.

9 Literature
[BvR94] Birman, K.P.; van Renesse, R.: Reliable Distributed Computing with the
ISIS Toolkit, IEEE Computer Society Press, 1994

[CG89] Carriero, N.; Gelernter, D.: Linda in Context, CACM 32(4), April 1989

[FMM94] Finin, T.; McKay, D.; McEntire, R.: KQML as an Agent Communication
Language, in: Proc. Third Int. Conf. On Information and Knowledge Management,
ACM Press, November 1994

[GCK96] Gray, Robert; Cybenko, George; Kotz, David; Rus, Daniela: Agent Tcl. To
appear in: Itinerant Agents: Explanations and Examples with CD-ROM,Manning Pub-
lishing, 1996.

[GM96] General Magic, Inc: The Telescript Language Reference, 1996.
http://www.genmagic.com/Telescript/TDE/TDEDOCS_HTML/telescript.html

[IBM96] IBM Tokyo Research Labs: Aglets Workbench: Programming Mobile
Agents in Java, 1996. http://www.trl.ibm.co.jp/aglets

[ION96] IONA Technologies Ltd: OrbixTalk Programming Guide, April 1996

[KMV96] Konstantas, Dimitri; Morin, Jean-Henri; Vitek, Jan: MEDIA: A Platform
for The Commercialization of Electronic Documents, in: Object Applications, ed. Den-
nis Tsichritzis, University of Geneva, 1996

[Mae94] Maes, P.: Agents that Reduce Work and Information Overload, in: CACM
37(7), July 1994

[OMG94] Common Object Services Specification, Volume 1, OMG Document Num-
ber 94-1-1, March 1994

[Pei96] Peine, H: Ara: Agents for Remote Action. To appear in: Itinerant Agents:
Explanations and Examples with CD-ROM, Manning Publishing, 1996.

[SBH96] Strasser, Markus; Baumann, Joachim; Hohl, Fritz: Mole: A Java based mo-
bile agent system, in: Baumann;Tschudin;Vitek(editors): Proceedings of the 2nd
ECOOP Workshop on Mobile Object Systems, dpunkt, 1996

[Sun96] Sun Microsystems: Solaris NEO: Operating Environment Product Over-
view, March 1996.
http://www.sun.com/solaris/neo/whitepapers/SolarisNEO.front1.html

