Communication Conceptsfor Mobile Agent Systemsl

Joachim Baumann, fitz Hohl, Nikolaos Radouniklis,
Kurt Rothermel, Markus SiRer

Institute of Rrallel and Distribted High-Performance Systems (IPVR),
University of Stuttgrt, German

{baumann,hohlfz,strassesradoun,rothermel}@informatik.uni-studig.de

Abstract. Driven by the question cto identify potential communication partners and th
need for well-suited communication schemes in agent-based systems, we disoasa-tw
munication concepts: sessions and glokehemanagement.

Sessions establish either a&ety or passiely a contgt for interagent interactions. Com-

munication partners are addressed by globally unique agent identifiers or via badges.
munication in sessions is based on RPC or message mechanisms.

Global eent management addresses the need foryamaus communication. Ent man-
agers are empjed as a synchronization means within agent groups. Based on this
proach, we introduce synchronization objects, vaatomponents thatfef various syn-
chronization services. The presented model is finally mapped onto @dtGservices.

1 Introduction

Mobile agents are often described as a promising technology, moving towards the
vision of usable distributed systems in widely distributed heterogeneous open net-
works. Particularly, its promise to offer an appropriate framework for a unified and
scalable electronic market has led in the past years to a great deal of attention. Since
the deployment of mobile agent systems in a large scale is crucial for the success of
this technology, the emerging problems and needs have to be well understood.

Though first prototype systems (e.g, see [IBM96]) and even products (e.g., see
[GM96]) exist, the architecture of mobile agent systems is not well understood today
and hence needs more investigation. In our paper, we will address two issues, commu-
nication and synchronization in agent-based systems.

A fundamental question tightly related to communication is how mobile agents are
identified. On the one hand, there is certainly a need for globally unique agentlds.
Identifier schemes that provide for migration transparency are well-understood today.
However, such a scheme might be too inflexible in agent-based systems. Assume for
example, that a group of agents cooperatively perform a user-defined task. Assume
further that one group member wants to meet another member of this group at a partic-
ular place for the purpose of cooperation. In this case, the member should be identified
by a (placeld, groupld) pair. If the agent to be met additionally is expected to play a

mmvbimsilan wAla lia dHlalA AavA A dlan A AmtfiAn iiiAadddAd lhAadiA dHa A fnvian fAlaaalAd »--;)upld'

1. This work was funded by @hdem Cupertino and the German Research Community
(DFG)

roleld). For supporting those application-specific naming schemes we propose the
concept of badges.

For the purpose of cooperation mobile agents must'meet’ and establish communica-
tion relationships from time to time. For this purpose, we propose the concept of a ses-
sion, which is an extension of Telescript's meeting metaphor. Numerous existing agent
systems are purely based on an RPC-style communication. While this type of commu-
nication is mainly appropriate for interactions with service agents, i.e. those agents that
represent services in the agents’ world, it has its limitations if agents interact like
peers. Therefore, we propose to support both message passing and remote method
invocations.

In the general case, a group of agents performing a common task may be arbitrarily
structured and highly dynamic. In those environments, one can not assume that an
agent that wants to synchronize on an event (e.g., some subtask this agent depends
upon is finished) knows a prior which agent or agent subgroup is responsible for gen-
erating this event. Therefore, we suggest to use the concept of anonymous communica-
tion, allowing agents to generate events and register for the events they are interested
in, as a foundation for agent synchronization.

The remainder of the paper is structured as follows. In SeZtime present an over-

view of the employed agent model. Various agent communication types and their need
for well-suited communication schemes are then discussed in Sect®ectiord
examines one of these schemes, the session-oriented communication and its benefit for
mobile agent systems. Sectidriocuses on global event management as a vital infra-
structural component. A brief overview of Mole, our current agent system is presented
then. The paper concludes with a list of related work and a summary of the article’'s
key issues and future work.

2 An Agent System: A Collection of Agentsand Places

Our model of an agent-based system
various other models - is mainly bas
on the concepts of agents and places|An
agent system consists of a number o6
(abstract) places, being the home af-v (= migration
ious services. Agents are aetientities, | place A
which may mee from place to place tp
meet other agents and access the places
services.In our model, agents may |
multi-threaded entities, whose state
code is transferred to themglace when agent migration gkplace. Places pide
the enironment for safelyxecuting local as well as visiting agents.

as
; place B
edmOblle agent sonice agent

e
9. 1. Model

Our model distinguishes between mobile agents and so-called service agents. Service
agents are stationary and ingaré the servicesvailable at places. Those services may
include system services, such as a file or directory access, as well as application-le
services, such as a hotel resgion or flaver delvery service. Service agents encapsu-

late arbitrary services and represent them in the agaid.viFrom a technical point of

view, service agents map the service requestessed in the ,agent language” to the
individual service integce. This mechanism alls legacy systems to be incorporated.
Moreover, service agents will be the place, where access control mechanisms are locat-
ed. In contrast to service agents, mobile agents may migrate from node to node.

Each agent, whether mobile or station#@ydentified by a globally unique agent iden-
tifier. An agents identifier is generated by the system at agent creation time. It is inde-
pendent of the agest{current) location, i.e. it does not change when the agergsno

to a nev location. In other wrds, the applied identifier schemeades location trans-
pareng.

A place is entirely located at a single node of the underlyingankiwe. all service
agents associated with a place reside on the same noder&ahypmultiple places may
be implemented on a\gin node. Br example, a node may pride a number of places,
each one assigned to a certain agent commuaiitwing access to a certain set of ser-
vices, implementing a certain prizing pgli@end so on.

The requirement of lwing places being realized on a single node does not mean that all
service implementations ato be located at the plaseiode also. It is well coneei

able that the place’service agents primle access not only to localitbalso to remote
services, typically accessible via a LAN. Single node places lead to well defined prop-
erties in terms of communication: Intra-place communication between an agent and a
service agent isahys local an hence is (in general) cheaper thantdee commu-
nication. Moreeer, single node places are much simpler to implement than disttib
places.

3 Typesof Agent Communication

In this section, we will address tharious types of communication. Considering inter
agent interaction, we lia to distinguish between follong types of communication:

1. Agent/service agent interaction
Since service agents are the represesmbf services in the agenbrid, the style
of interaction is typically client/seev. Consequentlyservices are requested by is-
suing requests, results are reported by responsesiniplify the deelopment of
agent softwre, an RPC-lik communication mechanism should bevpted.

2. Mobile Agent/Mobile Agent Interaction
This type of interaction significantly @&fs from the préous one. The role of the
communication partners are paerpeer rather than client/servEach mobile
agent has itswin agenda and hence initiates and controls its interactions according
to its needs and goals. The communication patterns that may occur in this type of
interaction might not be limited to request/response. drig required dgee of
flexibility is provided by a message passing schemenkhighefayer coopera-
tion protocols, such as KQML/KIF [FMM94], are based on message passing.

3. Anonymous agent group interaction
In the preious two types, we hae assumed that the communication partners/kno
each otheri.e. the sender of a message or RPC is able to identify the recipient(s).
However, there are situations, where a sender does net #midentities of the

agents that are interested in the sent message. Assumeargle, a gien task

is performed by a group of agents, each agent takiagasubtask. In order to
perform their subtasks, agents itself may dynamically create subgroups of agents.
In other words, the member set of the agent group responsible for performing the
original task is highly dynamic. Of course, the same holds for each of the sub-
groups involved in this task. N@ assume that some agerdans to terminate the
entire group or some subgroup. In general, the agent that has to send out the ter-
minate request does not kmthe indvidual members of the group to be terminat-

ed. Therefore, communication has to be gnuous, i.e., the sender does not iden-

tify the recipients. This type of communication is supported by group
communication protocols (e.g., see [BvR94]), the concept of tupel spaces [CG89],
as well as sophisticatedant managers. In the latter approach, senders send out
event messages angnously and receiers eplicitly register for those vents

they are interested in.

4. User/Agent Interaction
Although a \ery interesting area of research, the interaction between human users
and softvare agents is jend the scope of this pap€or a discussion of this type
of communication the reader is referred to e.g. [Mae94].

Let us briefly summarize our findings. f@ifent types of communication schemes are
needed in agent-based systems. Besidesyammrs communication for group interac-
tions, message passing and an RPC-style of communication is suggested. In our model,
message passing and RPC is session-oriented, which means that agerasttbat w
communicate hze to establish a session beforeytban send and reeei data. In the
remainder of the papewe discuss the concept of session-oriented communication in
the cont&t of agent-based systems angeisticate @ent managers for angmous com-
munication.

4 Session-Oriented Communication

As will be seen belg, a session between agents can be established only if the agents
can identify each othem our model, there are basicallyaways hev agents can be
identified, the agent_Ids introduced in Sectloend so-called badges.

In the case of mobile agents the concept of agent_Ids iswagsabuficient. Assume

for example, that an agentants to meet some other agent participating in the same task
at a gven place. If only agent_lds wergadlable, both agentsauld have to knav each
others ids. Actuallyfor identification it vould be suicient to say ,/At place XYZ |
would like to meet an agent participating in task ABC". This type of identification is
supported by the concept of badges. A badge is an application-generated idgidHier

as ,task ABC*, which agents can ,pin on* and ,pirf‘ofAn agent may hee seeral
badges pinned on at the same time. Badges may be copied and passed on from agent to
agent, and hence multiple agents can wear the same badegearfple, all agents par-
ticipating in a subtask may wear a badge for the subtask and another one Yerdle o
task. The agent that carries the result of the subtask mayhadditional badge saying
~carryResult".

Using badges, an agent is identified bplade_|d badg predicatg-pair, which iden-
tifies all agents fulfilling thébadge predicateat the place identified bglace_Id. A
badge predicate is a logicadpgession, such as (,task ABC" AND (,CarryResult* OR
~Coordinator")). Olwiously, this is a ery flexible naming scheme, which als to as-
sign ary number of application-specific names to agertsciHange the name assign-
ments tvo functions are praded, PinOnbadge(badge) and Pifiafige(badge).

Now let us tak a closer look to sessions. A session defines a communication relation-
ship between a pair of agents. Agents thahtto communicate with each othemst
establish a session before the actual communication can be started. After session setup,
the agents can interact by remote meth@ddation or by message passing. When all
information has been communicated, the session is terminated. Sessmitisehfol-
lowing characteristics:

» Sessions may be intra-place as well as 4place communication relationships,
i.e., two agents participating in a session are not required to reside at the same
place. Limiting sessions to intra-place relationships seems to be too mestricti
There are mansituations, where it is morefigient to communicate from place to
place (i.e., generallyver the netwrk) than migrating the caller to the place where
the callee lres. Consequentlyve feel that the mobility of agents cannot replace
the remote communication in all cases.

* In order to presery the autonomy of agents, each session peer mpBtity
agree to participate in the session. Furtharagent may unilaterally terminate the
sessions it is Wwolved in at ag point in time. Consequenthagents cannot be
“trapped” in sessions.

» While an agent is wolved in a session, it is not supposed tovenm another place.
However, if it decides to mee aryway, the session is terminated implicitiyhe
main reason for this property is to simplify the underlying communication mecha-
nism, e.g., toxaid the need for message faming.

The question may arise, wkessions are needed at all. There are basicallye@sons:
First, the concept of a session used to synchronize agentsathtabwmeet’ for coop-
eration. Note that the first property statedveballonvs agents to ‘meetven if they stay

at different places. The concept of a session is introduced to @jjents to specify des-
ignated agents tlyeare interested to meet at designated places. Furthermorewi allo
agents to wit until the desired cooperation partnenassiat the place and indicates its
willingness to participate.

Secondlywe intend to support both “stateless” and “stateful” interactions. In contrast
to the first, the latter maintain state information for a sequence of requestsusdp

if they encapsulate “stateful” sexxs, service agentsv&to be “stateful” also. A pre-
requisite for bilding “stateful” entities arexlicit communication relationships, such

as sessions.

Session Establishment

In order to set up sessionsatwperations are fered, PassiveSetUandActiveSetUp
(see Fig. 3). The first operation is non-blocking and is used by agensrés® that
they are willing to participate in a session. In contrastiveSetUps used to issue a

synchronous setup request, i.e., the caller is klbciatil either the session is success-
fully established or a timeout occurs.

PassveSetUp({PeerQualifier}, {Placeld})-> nil
ActiveSetUp(PeerQualifiePlaceld, Tmeout) -> SessionObject
Terminate(SessionObject) -> nil
SetUp(SessionObject)

Fig. 3. session methods

In the casé\ctiveSetUsucceeds, it returns the reference of thelynereated session
object to the calleinput parametdplaceldidentifies the place, where the desired ses-
sion peer is xpected, andPeerQualifier qualifies the peer at the specified place. A
PeerQualifieris either an agent_Id or a badge predicate. Note that at most one agent
qualifies in the case of a single agent_Id, whilesd agents may qualify if a single
badge predicate is specifiea. &0id infinite blocking, parametdimeQOutcan be used

to specify a timeout inteal. The operation blocks until the session is established or a
timeout occurs, whater happens first.

Parameter®eerQualifierandPlaceldof operatiorPassiveSetUgre optional. If neither

of both parameters is specified, the callgaresses its willingness to establish a session
with ary agent residing at gplace. By specifying Placeld and/or PeerQualifier the
calling agent may limit the group of potential peeis:. &le, this group may be
limited to all agents wearing the badge “StattdJniversity” and/or that are located at
the callers place.

As pointed out abee, before a session is established both participants must agree e
plicitly. An agreement for session setup is agrddf both agents issue matching setup
requests. Wo setup requests, say, Rnd R of agents A respestly B, match if

* Placeldin Ry and Ry identifies the current location of B and A, respetyi and

+ PeerQualifierin Ry and Ry qualifies B and A, respewsly.

If a setup request issued by an agent matches more than one setup request, one request
is chosen randomly and a session is established with the corresponding agent.

PassiveSetUp
PassveSetUp when it is ready to reeeirequests o6

When an agent playing the client rolevokes Ac- !
tiveSetup, this causes the SetUp method of theserv [SetUp()
side to be imoked implicitly. SetUp implicitly estab-
lishes a session with the caller and assigns a thread ftlr

handling this session. Therefore, once theeseagent Fig. 4. C-S interaction
has called BssveSetup, ayp number of sessions can be established in parallel, where
session establishment is purely clientveni.

A combination of BssveSetUp and ActeSetup al-
lows a client/serer style of communication (see Fig.

4). The agent playing the servrole once issue Fimiﬁam?
©

®

If both agents issue (matching) AeBetUp requests this cor
responds to a rendeavs, both requestors are bledkuntil
the session is established or timeout occurs (see Fig. 5)
type of session establishment is suited for agents tuait o
establish peeto-peer communication relationships with o h—I —————]

er agents. Communication between agents is-tpegeer if
both hae their avn “agenda” in terms of communication, i.
both decide - depending on their midual goals - when tlye
want to interact with whom in whichay.

“Fig. 5. P-P interaction

Communication

As pointed out abe, Remote Method Wtocation (RMI), the object-oriented egalent

to RPC, seems to be the most appropriate communication paradigm for a client/serv
style of interaction, while message passing is required to suppoitopeeer commu-
nication patterns. Thevailable communication mechanisms are realized by so-called
comobjects. Currenththere are ta types of com objects, RMI objects and Messaging
objects.

Com objects are associated with sessions. Each sessionvaantiaMI object, a Mes-
saging object, or both. Each session objefersfa method for creating com objects as-
sociated with this session. itV the RMI object the methods»gorted by the session
peer can be iroked. It can be compared with a proxy objectwndrom distrituted
object-oriented systems.itlV the Messa@ing object, messages can be veped asyn-
chronously between the participants of a session. Messages are sent by calling the send
method. Ier receving messages the regeiand subscribe methods arevided. The
receive method blocks until a message is reegior timeout occurs, whatr happens

first. If thesubscribeamethod is imoked instead, the incoming messages are hanagd o

by calling themessge method of the recipient and passing the message as method pa-
rameter

The adantage of hang the concept of com objects isdfeld. First, only those com-
munication mechanisms Vv to be initiated that are actually needed during a session,
and secondlyadditional mechanisms, such as streams, can be added to the system. The
latter adantage enhances thetensibility of the system.

Session Ter mination

At any time, a session can be terminated unilaterally by each of the both session partic-
ipants, eitherxlicitly or implicitly. A session is terminatecg@icitly by calling Ter-
minate(see Fig. 3), and implicitly when a session participanteado another place.
When a session is terminated, this is indicated by calling the Sessitin@ited method
exported by agents. Moreer, all resources associated with the terminated session are
released.

5 Anonymous Communication at the example of agent synchroni-
zation

Two widely deplged concepts for angmous communication are tuple spaces and so-
phisticated went managers. In contrast to the blackboard concept, tuple spadés pro

additional access control mechanisms. Agents griplole spaces to lea messages
without haring ary knowledge who will actually read them. In the remainder of this
section we will concentrate owvent mechanisms as a well-suited concept for-inter
agent synchronization.

Applications can be modeled as a sequence of reactiomsritsethat in turn generate
new events. Eents may be usefe.g. reaction to a message), application-, or system-
initiated (e.g. signal sent by a process). Aang-based vig maps quite closely onto
real life, and ay programming primities that supportvent-based concepts tend to be
more flible in modeling a gien problem.

The event model is particularly well-suited for distnifed communication since it ab-
stracts from the recer’'s identity As a consequence, it enables the specification of
comple interactions without the need to kmthe communication partners in ahce.
With regard to agent systems, theeat model simplifies application- as well as system-
level communication. On the applicatiovéd, events are empied as a general com-
munication means. On the systemele events can be used to design and implement
protocols that encompass agent synchronization, termination, and orphan detection.

5.1 Events

In our notion, gents are objects of a specific type, containing some informatient&yv
are generated by so-called producers and are transferred to the consumewéntthe e
service. Consumers (and, depending on the concrete implementation wériheez-
vice, also producers) hato rajister at thewent service for the type o¥ents thg want

to receve or send.

As consumers and producers may only interact if bothvkmbich e/ents to produce

or to consume, tlyenecessarily hae to share common kntedge of the usedvent

types in an interaction groupofthis, therexdst two alternaties: either thewent types

are ngotiated at startup time, then this information configures the agents before a mi-
gration, or the eent types hee to be communicated to the members of the interaction

group.
5.2 Synchronization objects

Synchronization objects are defined asvaatiomponents responsible for the synchro-
nization of an entire application or only parts of it. Synchronization objects monitor spe-
cific input events. Depending on theseeats, internal rules, state information and time-
out intenals, output eents are generated, that in turn may be the input for other
synchronization objects.

Rules are arbitrarily comptesxpressions triggered through inpweats. Thg consist

of a condition and an action part. The condition part is a logkpmession composed

of event types and state information of the synchronization object. If the logical condi-
tion becomes true, the action part is triggered. The action part itself consists of simple
commands (e.g. send outpwueats, change internal state, stop the synchronization ob-
ject to processvents). The state consists of a setariables. Tmers are special rules

with no input @ents that trigger actions after a specified amount of time.

synchronization object

Rule 12: if ((@ent98 and&ent51) or

T rules / (event3 and ariable1==true)) then
T . .
input state output send(gent90);
events - avents variablel=8lse;
timer
—> Q variablel: boolean
/' timer1 = after 10 seconds { sendént51) }

Fig. 6. sync. object

An agent group comprises logically related agents. Synchronization objects are well-
suited to model dependencies within agent groups. Relationships between agents are
expressed by the synchronization objedtiternal rules and can be defined in terms of
success (i.e. a group is only successful if a well defined set of the group members ha
succeeded). Agents participating in such groups send suveess after thg have ac-
complished their task. The synchronization object wesesuccesssents and process-

es this input through its internal rules. As a result, outpents are generated. In case

a generatedvent is an successent it can be used to nest groups (i.e. an outmrite

of one group is used as an inpuéet of another group).

Example: OR and AND groups

Two agent group types of particular interest are the OR-group and the AND-group.
AND-groups succeed only if all agentsvhaaccomplished their taskoiFthe OR-
group’s success it is didient if at least one group agent accomplishes its task. OR-
groups are eligible for parallel searching in a set of information sources. As soon as one
agent has found the required information the group has succeeded in its task.

A simple OR group (Fig. 7) includes only thraeet types. The inputventagentsuc-

- ful if (agentsuccess) then{
agentsuccess—p-| _ Simple B SUCcessiU send(successful); stop;}
OR-Group—pe not_successful timer1 = after (30min){

send(not_successful); stop;

Fig. 7. Simple OR group

cess signaling the success of an agent, and the outpemt®successfuland
not_successfusignaling the group’success. The OR group enyd@nly one rule and
one timer The rule causes the synchronization object to sendart signaling the
group’s successs@iccessfiland to disable itself afteexds. If the timer fires first (e.g.
caused by application specific timeouts or processiihgrés like deadlocks or crash-
es), the synchronization object signatd_successfudnd stops the processing.

The presented model is noery eficient: if one group member succeeds, all other
group members are obsolete and, if all group members detect thar¢haot able to
complete their task, the grougl. The definition of the OR-group illustrated by Fg.
takes these cases into account.Agents detecting thatdmmot succeed, generate the
giveupevent. If all group members signabaveup the groupdils.

For this, the group has td
know its members - either by
keeping them in mind at the
groups creation time or hy
registering group agents
through theregister event. In

the latter case the number @
members potentially being
able to succeed is counte
and stored in the staten-

ablemembes (more sophis-

i if (register) then {

—® successful

agentsuccess 9
register —p= OR-Group [not_successf
giveup —p»| — terminate

members: intger; if (giveup) then{
members=members-1;
if (members=0) then{
send(not_successful);
send(terminate);
stop}}
timerl = after (30min){
send(not_successful);
send(terminate); stop}

if (agentsuccess) then{
f send(successful);
send(terminate); stop;}

members = members+1;}

Fig. 8. OR group

ticated approaches could
maintain an agentld list, transmitted via tivergs and ensuring that onlyests from
subscribed agents are acceptedindimbes becomes zero, theentnot_successfls
instantly generated. Therminateevent (to terminate the group members) is generated
if the group either succeeds ail$.

5.3 The OMG event model

The Object Management Groupeat services specification ([OMG94]) defines the
Event Service in terms of suppliers and consumers. Suppliers are objects that produce
event data and puide them via thevent service, consumers process thenédata pro-

vided by the eent service. If a consumer is interested in K8ogispecific gents, it has

to register for them. This means a supplier vérs knavs who the recipients are (this

does not xactly conform to the original definition o¥ent mechanisms)wio commu-
nication models are supported between suppliers and consumgrastimodel and

thepull model. In both models all communication is synchronous. In the push model, a
supplier pushesvent data to the consumeending to each of thegistered objects the

event. In the pull model, consumers puleat data by requesting it from the supplier

What males this gent service fleible and paverful, is Q
\ull /

the notion of the \ent channel. @ a supplieran eent
channel looks lik a consumeffo a consumer on the othi- Evert
ﬁ)ush
Consumer:

er hand, thevent channel seems to be a suppherther-
more, the communication model between théediht
participants can be chosen fredy using aneent chan-
nel, suppliers and consumers are decoupled and can
municate without knwing each othes identity Suppli-
ers and consumers communicate synchronously with ¥eat echannel it the
semantics of the detkery are up to the designer of the speciiers channel. Wo types
of channels are defined, typed and untyped channelsiiiése eent channels are im-
plemented is not defined in the OMG specification. By not imposiyngestrictions on
the semantics, the specification alfoimplementations to pvale additional function-
ality in the @ent channel implementation. Persisterdras (&ents that are logged) or
reliable @ent delvery mechanisms come to mind. Because tieatechannel inteaice
complies to the definition of the consunseriterfice and to the definition of the sup-

Suppllers
com
F|g 9. Event Channels

plier's interfaice, thg can be chained without problems. ThiswabBao luild arbitrarily
comple event channel hierarchies with a broad functionality

Products follaving the OMG specification are commerciallyadable (e.g. lona
OrbixTalk[ION96], or Sunsofts NEO [Sun96]).

5.4 Synchronization using the OM G model

This section tries to map the presented group model onto Q#l@ services. Hereby
it is assumed that, in contrast to current implementationst services support mobile
participants. Support of mobile participants will be subject of futumkw

With the emplgment of an untypedvent - m—m————=———=

channel for group communication, O | Event Channel | \

and AND-groups can be implemented. A A | Other
The channel is untyped becausdednt | ! ! | aents
event types are transmitted through it. As v -7

the information about success is of forg-Agent @ ggnc.t - Succes
most importance to the synchronizati Group 1€t " Event
object, agents and synchronization object — _AEerFGTouE -7 Fig. 10.

implement the push model. The synchre
nization object contains a reference to thené channel. The agent that creates the
group has access to its synchronization object and thus the ability arddive gent

channel reference to other agents, e.g. at creation time. The group members subscribe
to the @ent channel as suppliers (e.g.dgentsuccesevent) as well as consumers (e.g.

for terminationevent). The communication to non group entities is handled by the syn-
chronization object, either by sending themts directly to an agent (e.g. the parent
agent creating the group) or by using anotenechannel (e.g. avent channel of a
higherlevel group).

6 Mole

In order to allav research in the field of mobile agent systems, Mole [SBH@6]de-
veloped at the Umersity of Stutt@rt. Mole is a platform for mobile agents which uses
Java as the agent programming and as the implementation language. Therefore, Mole is
a pure Jea application and can be started\atrg computer platform for which aia
Development Kit is gailable. Agents in Mole may use multiple threadsehglobally

unigue names and can gige or request services, which can be &mbkip locally A

service is currently the implementation of one or more methods with specified names
and parameters (which are called irdeds in Jea), services are requested by calling
those methods by using a kind of remote metheaddation (a Jea object RPC). When

it comes to communication, Mole currently supports the (gloBahange of messages

and the mentioned RMI. Both are addressed by using a direct addressing scheme. The
only way to obtain the needed referencing addresses is the use of the local service look-
up mechanism which associates a list of agent names to service names. A mechanism
which is able to associate current location to agent names is in the implementation
stage. Mole will be used, among other things, as the infrastructure for an electronic doc-
uments system [KMV96] and in a distited \ariant of a Multi-User Dungeon (MUD),

in which players can use mobile agents as artificial team-mates.

Mole is available as source code; the first pubkesion vas released in June 1996. Fur-
ther informations about the Mole project can be founttigt//wwwinformatik.uni-
stuttgart.de/ipvr/vs/mjekte/molehtml.

7 Reated Work

Current mobile agent systems empinary communication mechanisms such as mes-
sages, local and remote procedure calls oretschut, at our knwledge, no system
uses a globalvent management for communication and synchronization. There are
“events” in AgentTcl [GCK96], bt they are simply (local) messages plus a numerical
tag.

Although the use of sessiondeark certain adantages as shm abwe, «isting agent
systems barely puide session supportelescript [GM96], for gample, which intro-
duced a kind of sessions by using the term meeting for mobile agent proces$sisg, of
only local meetings, that allothe agents only taxehange local agent references. The
meet command is asymmetric, i.e. there is avaatieeting requestehe “petitioner”

and a passe meeting acceptethe “petitionee”. The petitionee can accept or reject a
meeting, ot only the petitioner gets a reference to the petitionee. Agents communicate
after opening a meeting by calling procedures of each other (i.e. the petitioner can call
procedures of the petitionee). As there is no possibility during<gwuion of a proce-

dure to obtain information about an enclosing meeting, agents cannot access session
contet data. Thus, according to our definition thedeBcript meeting is not a session.

There are also “meetings” in ARA[Pei96] and in AgentTcl. Meetings in ARillup
communication relations betweenawagents wer which (string) messages can e e
changed, meetings are local and the only supported “specification method”ys anon
mous addressing via meeting names. Meetings in AgentTcl are just a mechanism that
opens a soek between tw agents.

8 Summary and Future Work

Driven by the question koto identify potential communication partners and the need
for well-suited communication schemes witlgard to diferent types of agent interac-
tion, we discussed twvcommunication concepts in the codtef Mobile Agent sys-
tems: sessions and the use of a globeahemanagement for infrastructural purposes.

After presenting a brief description of our agent model, we identifiéetelit types of
communication schemes that please the requirements of agent based systems. Sessions
establish either asely or passiely a contgt for interactions. The communication
partners are addressed either by globally unique agent identifiers or via badges. Agents
can huild several sessions simultaneouslyea with the same communication partner
Communication in sessions is based on RPC or message mechanisms.

To bypass the problems arising from the need to communicate to potentiallywmnkno
group members performing the same task, we proposed the use of a \gobahan-
agement. The emplment of @ents for the realization of a general synchronizatias w
shavn. Therefore, we introduced the notion of synchronization objectee axtmpo-
nents that dér different synchronization services. Using timers and state information,
synchronization objects consumed, processed and produests @s input for other

synchronization objects or other components. After a shervimv of the OMG gent
model, the presented group model is mapped onto the Gl services.

Existing implementations ofvent services already pride persistenc (NEO and

IONA OrbixTalk). But none of thexsting implementations can cope with mobile par-
ticipants. In order to support particular requirements imposed by mobile agents, appro-
priate &ent channel designs are required. While digted eent services with station-

ary participants are well understood, additional questions are raised by the mobility
issue. The furthengploration of this promising research field comprises the design and
implementation of such distiited e&ent services that support apart fromfefiént
channel semantics also mobility of participants. The proposed mechanisms are not im-
plemented yet in our Mole system (see Sedipri-uture vark will encompass the in-
tegration of the session concept and a disted eent service into Mole.

9 Literature

[BvR94] Birman, K.P, van Renesse, R.: Reliable Distribd Computing with the
ISIS Toolkit, IEEE Computer Society Press, 1994

[CG89] Carriero, N.; GelernteD.: Linda in Contet, CACM 32(4), April 1989
[FMM94] Finin, T.; McKay, D.; McEntire, R.: KQML as an Agent Communication
Language, in: Proc. Third Int. Conf. On Information and Kisdlge Management,
ACM Press, Neember 1994

[GCK96] Gray Robert; Cybent, Geoge; Kotz, David; Rus, Daniela: Agent Tcl.or
appear in: Itinerant Agents: Explanations and Examples with OBDKRIanning Pub-
lishing, 1996.

[GM96] General Magic, Inc: The€lescript Language Reference, 1996.
http://www.genmagic.com/@lescript/ TDE/TDEDOCS_HTML/telescript.html
[IBM96] IBM Tokyo Research Labs: Aglets dfkbench: Programming Mobile
Agents in Jaa, 1996. http://wwwirl.ibm.co.jp/aglets

[TON96] IONA Technologies Ltd: Orbixdlik Programming Guide, April 1996
[KMV96] Konstantas, Dimitri; Morin, Jean-Henrijtsk, Jan: MEDIA: A Platform
for The Commercialization of Electronic Documents, in: Object Applications, ed. Den-
nis Tsichritzis, Uniersity of Genea, 1996

[Maed4] Maes, P Agents that Reduce &k and Information Oerload, in: CAM
37(7), July 1994

[OMG94] Common Object Services Specificationjuwne 1, OMG Document Num-
ber 94-1-1, March 1994

[Peiog] Peine, H: Ara: Agents for Remote Actioro @ippear in: ltinerant Agents:
Explanations and Examples with COBRI, Manning Publishing, 1996.

[SBH96] StrasserMarkus; Baumann, Joachim; Hohl, Fritz: Mole: Ad&ased mo-
bile agent system, in: Baumann;Tschuditek(editors): Proceedings of the 2nd
ECOOP Vérkshop on Mobile Object Systems, dpunkt, 1996

[Sun96] Sun Microsystems: Solaris NEO: OperatingviEmnment Product Car-
view, March 1996.

http://www sun.com/solaris/neo/whitepapers/SolarisNEO.front1.html

