
1

A Performance Model for Mobile Agent Systems

Markus Straßer Markus Schwehm
University of Stuttgart - IPVR Tandem Computers Inc. - Loc 1

Breitwiesenstr. 20-22 19333 Vallco Parkway
70565 Stuttgart, Germany Cupertino, CA 96014

Markus.Strasser@informatik.uni-stuttgart.de Schwehm_Markus@tandem.com

Abstract A performance model for the interaction of
agents in mobile agent systems is presented. Two inter-
action models, namely the remote procedure call and
the agent migration are considered. Performance mod-
els for a single interaction are introduced, which are
then used to derive a performance model for a sequence
of interactions. This performance model can be used to
evaluate the performance of any possible behaviour of
an agent in a given scenario. The application of the per-
formance model for a typical scenario in mobile com-
puting shows that the optimal behaviour of an agent is
achieved by a mixed sequence of remote procedure calls
and agent migrations. The performance model is vali-
dated by measurements of interactions of real agents in
the mobile agent system Mole.

Keywords:mobile agents, performance model, remote
procedure call, agent migration

1 Introduction

Mobile Agent Systems have received great atten-
tion in the last years as a new programming para-
digm for widely distributed and heterogeneous
systems. The basic concepts of agent systems are
locations andagents. An agent system consists of
a number of locations where computation can take
place and where various services are provided.
Agents are active entities which may move from
location to location to meet other agents or to ac-
cess services provided there. The mobility of the
agents - i.e. their ability to migrate from one loca-
tion to another - is the basic difference from other
approaches for distributed systems.

It is often argued that the advantage of agent mi-
gration lies in the reduction of (expensive) global

communication costs by moving the computation
to the data ([5][6]). Although this argument is un-
derstandable from an intuitive point of view, not
much work has yet been done to evaluate the per-
formance of migration on a quantitative basis. A
simple performance model was investigated in [3].
The evaluation of three scenarios was done in [4].

In this paper a performance model regarding
network load and execution time is developed,
which can help to identify situations for which
agent migration is advantageous compared to re-
mote procedure calls. This performance model is
intended to help to decide which interaction model
to be used in different scenarios of a mobile com-
putation environment.

The paper is organized as follows: In Section 2
we describe two interaction models for mobile
computation, namely remote procedure calls and
agent migration. In Section 3, performance models
for network load and execution time are derived
for single interactions. In Section 4 the perform-
ance model is extended to include a sequence of
interactions. In Section 5, the results are compared
with those measured by our prototype implemen-
tation of a mobile agent system, Mole.

2 Interaction Models

Interaction between entities (objects, agents) in
distributed systems which are located at different
sites can take place in many different ways ([1]). In
this paper we will confine on the remote procedure
call as a global communication mechanism on one
side and on agent migration via the network to the

2

communication partner followed by local commu-
nication on the other side.

2.1 Remote Procedure Calls (RPC)

Remote Procedure Calls are a widely used interac-
tion mechanism in distributed systems. Basically a
procedure is executed on a remote server, transfer-
ring the control flow (including some arguments)
from the client to the server until the request is ex-
ecuted and the result is returned ([2]). Extensions
to this synchronous concept include, among oth-
ers, asynchronous RPC.

2.2 Agent Migration

Agent migration is a mechanism to continue the
execution of an agent on another location ([5]). It
includes the transport of agent code, execution
state and data of the agent. In an agent system, the
migration is initiated on behalf of the agent and not
by the system (e.g. for load balancing purposes).
The basic motivation for migration is to move the
computation to a data server or a communication
partner in order to reduce network load by access-
ing a data server or communication partner by lo-
cal communication.

2.3 Remote Execution

Remote execution in the context of mobile agents
is a mechanism to start (rather than to continue) the
execution of an agent on another location. It in-
cludes only the transport of agent code and some
parameters. Due to the similarity of remote execu-
tion and agent migration regarding their communi-
cation needs, remote execution is not further con-
sidered in this paper.

3 A Single Interaction

In this section a single client/server-style interac-
tion is considered. The following simplifying as-
sumptions are made: The interaction partners and
the amount of communication for request and re-
ply in each interaction is known in advance. Aver-
age values for delay and throughput are consid-
ered. The time for marshalling and unmarshalling
(i.e. transformation of entities in a transport format
and back) increases linear with the size of the data
to be sent. All locations execute jobs with the same
speed.

3.1 Interaction by RPC

In the context of agent interaction, the RPC is used
to call procedures (methods) that are provided by
the communication partner (e.g. a service agent).
A (classical) RPC includes binding to the server,
marshalling, transfer, unmarshalling of the request
parameters, execution of the request, and marshal-
ling, transfer and unmarshalling of the reply. With
the above mentioned simplifying assumptions, the
time for binding can be omitted since communica-
tion partners are known in advance and the time for
execution of the request can be omitted since not
influenced by the interaction model. Marshalling
is dependent of the size of the request parameters
only. The performance model therefore concen-
trates on the communication dependent part of the
RPC.

The network loadBRPC (in bytes) for a simple
remote procedure call from locationL1 to location
L2 consists of the size of the requestBreq and the
size of the replyBrep:

The execution timeTRPC for a simple remote
procedure call from locationL1 to locationL2 con-
sists of the time for marshalling and unmarshalling
of request and reply (factorµ) plus the time for the
transfer of the data on a network with throughput
τ(L1,L2) and delayδ(L1,L2)

3.2 Interaction by Agent Migration

In this section, an interaction is performed by the
migration of the agent to the communication part-
ner, a local or remote procedure call, the process-
ing of the data received and the transfer of the
processed data back to the source location. A (clas-
sical) migration includes marshalling, transport
and unmarshalling of code, data and execution
state of the agent to the server. With the same sim-
plifying assumptions as above, the time for the ex-
ecution of the procedure call can be omitted. Mar-

BRPC L1 L2 Breq Brep, , ,()
0 if L1 L2=

Breq Brep+ else






=

TRPC L1 L2 Breq Brep,, ,() =

2δ L1 L2,() 1
τ L1 L2,()
---------------------- 2µ+ 

 BRPC L1 L2 Breq Brep, , ,()+

3

shalling increases linear with the size of data and
execution status of the agent, while the code of the
agent is already stored in transport format and is
only transferred on demand (i.e. if the code is not
yet available at the server).The agent consists of
Bcode bytes of code,Bdata bytes of data andBstate
bytes of execution state and is described by the tri-
ple BA=(Bcode, Bdata, Bstate). The size of the re-
quest to the procedureBreq is yet contained inBda-

ta. The size of the reply from the procedureBrep is
reduced by remote processing to(1-σ)Brep with
(0≤σ≤1) by the agent whereσ models the selectiv-
ity of the agent.

The network load for the migration of an agent
A from locationL1 to locationL2 is calculated by

whereP denotes the probability that the code is not
yet available at locationL2 andBcr is the size of the
request fromL2 to L1 to transfer the code. If the
agent additionally sends back a reply message to
locationL1, the network load amounts

whereBrep is the size of the reply andσ denotes
the selectivity of the agent.

The corresponding execution time including
delayδ, throughputτ and marshalling overheadµ
for a single agent migration from locationL1 to lo-
cationL2 is described by

and including the reply message back to location
L1, the execution time amounts

3.3 Evaluation of a Single Interaction

To evaluate a single remote procedure call and a
single agent migration based on these simple mod-
els, we consider the following scenario: The agent
consists of Bcode=39kBytes of code,Bdata=
5kBytes of data andBstate=5kBytes of execution
state. With a probability ofP=10% the code of the
agent is not yet available at the remote location, in
this case the transmission of the code has to be in-
itiated by a code request message of size
Bcr=1kByte. The request size of the interaction is
Breq=1kByte. Figure 1 compares the network load
of the remote procedure call (BRPC) to agent mi-
gration with reply (BMR) for a fixed reply size of
Brep=25kBytes while varying the selectivityσ be-
tween 0% and 100%.

Figure 2 compares the network load of remote pro-
cedure call (BRPC) and agent migration with reply
(BMR) for a fixed selectivity ofσ=0.9 while the re-
ply sizeBrep is varied between 0 and 30kBytes.

The diagrams in Figures 1 and 2 show that the
usage of agent migration rather than the usage of
remote procedure calls reduces network load only
if the size of the reply is large and/or the agent has
a large selectivity.

BMig L1 L2 BA, ,() =

0 if L1 L2=

P Bcr Bcode+() Bdata Bstate+ + else






BMR L1 L2 BA σ Brep,,, ,() =

BMig L1 L2 BA, ,()
0 if L1 L2=

1 σ–()Brep else






+

TMig L1 L2 BA, ,() 1 2P+()δ L1 L2,()=

BMig L1 L2 BA, ,()
τ L1 L2,()

--
0 if L1 L2=

2µ Bdata Bstate+() else






+ +

TMR L1 L2 BA σ Brep,,, ,() TMig L1 L2 BA, ,() δ L1 L2,()+=

0 if L1 L2=

1
τ L1 L2,()
---------------------- 2µ+ 

  1 σ–()Brep else






+

Figure 1: Network load versus selectivity

10

15

20

25

30

35

40

0 20 40 60 80 100

RPC

migration

σ [%]

N
et

w
or

k
Lo

ad
 [k

B
yt

es
]

BRPC

BMR

4

Figures 3 and 4 show the corresponding dia-
grams for the execution time with assumed net-
work characteristics delayδ=30ms, throughput
τ=400kBytes/s and no marshalling overhead
(µ=0s/kByte).

While the overall behaviour of these graphs im-
ply the same conclusions, it should be noted that

the break-even point between remote procedure
call and agent migration for network load differs
from the break-even point for execution time. For
example, the break-even point for network load in
Figure 1 is reached atσ=52%, while the break-
even point for execution time in Figure 3 is
reached atσ=62%.

4 A Sequence of Interactions

In this section a sequence of several interactions
with different interaction partners on different lo-
cations is considered. The following simplifying
assumptions are made: The sequence of interac-
tion partners and their locations, as well as each re-
quest size, reply size, selectivity and number of
communications per location is known in advance.
Furthermore it is assumed that average delays and
average throughput in a possibly inhomogeneous
network are known for every possible interconnec-
tion.

Let S=(I1,...,In) be a sequence of interactions.
The i-th interaction is described by

where Ri is the remote location with which the
communication should take place. Each communi-
cation consists ofmi (local or remote) procedure
calls with request size , reply size and
selectivityσi. The size of the agent after interac-
tion i is modelled for i=0,...,n by

where and remain fixed while

The mobility behaviour of the agent is described
by a destination vectorD=(D0,...,Dn). For thei-th
interaction the agent moves to destination location
Di. Thus migration takes place between(i-1)-th
and i-th interaction only ifDi≠Di-1. Please note
that the agent need not migrate to locationRi
where the next interaction takes place.

Figure 2: Network load versus reply size

0

5

10

15

20

25

30

0 5 10 15 20 25 30

RPC

migration

Brep [kBytes]

N
et

w
or

k
Lo

ad
 [k

B
yt

es
]

BMR

BRPC

0.1

0.15

0 20 40 60 80 100

RPC

migration

σ [%]

E
xe

cu
tio

n
T

im
e

[s
]

Figure 3: Execution time versus selectivity

BRPC

BMR

0.05

0.1

0.15

0 5 10 15 20 25 30

RPC
migration

Figure 4: Execution time versus reply size

Brep [kBytes]

E
xe

cu
tio

n
T

im
e

[s
]

BMR

BRPC

I i Ri mi Breqi
Brepi

σi, , , ,{ }=

Breqi
Brepi

BAi
Bcodei

Bdatai
Bstatei

, ,()=

Bcodei
Bstatei

Bdatai
Bdatai 1–

mi 1 σi–()Brepi
+=

5

The network load and execution time for a
mixed sequence of remote procedure calls and
agent migrations are calculated as follows:

4.1 Evaluation of Scenario 1

To evaluate a sequence of interactions based on
this performance model, we considered a typical
situation in mobile computing, namely the usage
of a laptop or personal digital assistant (PDA) at
locationL0 that only has wireless low bandwidth
access to the Internet. The characteristics of this
rather inhomogeneous network are assumed as fol-
lows: Each interaction between locations x and y
inside the Internet has a delay ofδ(x,y)=10ms and
a throughput ofτ(x,y)= 400kBytes/s. Each interac-
tion between the PDA and the Internet has a delay
of δ(x,y)=120ms and a throughput of
τ(x,y)=50kBytes/s.
The mobile agent starts on the PDA at locationL0
and has to interact with four locationsL1...L4 be-
fore returning the result toL0 (as illustrated by thin
arrows in Figure 5).

The amount of communication with locationsL2
andL4 is much larger than with the other locations.
In particular, in scenario 1 a mobile agent with
Bcode=10kBytes, Bdata=5kBytes, Bstate=5kBytes

is considered. It is assumed that the code of the
agent is not available at the remote locations
(P=100%) and that the size of the agent’s data does
not increase (σ=1). The mission of the agent is to
process the sequence of interactionsS1 listed in
Table 1.

The performance model for interaction se-
quences was now used to evaluate the execution
time for all possible agents regarding their mobili-
ty behaviour. The diagram in Figure 6 shows the
execution time for all possible destination vectors
D sorted on the horizontal axis according to the
number of migrations involved.

Three of the execution times are marked in the
diagram and the corresponding values of the desti-
nation vectorD, the execution timeTSeq and the
network loadBSeq are listed in Table 2 for further
inspection. Evaluation 1 indicates the execution
time of an agent that only uses RPC and no migra-
tion at all. Evaluation 2 on the other hand uses mi-
gration to the location of the next interaction part-
ner for each of the five interactions. The execution

BSeq S D BA0
, ,()

BMig Di 1– Di BAi 1–
, ,() miBRPC Di Ri Breqi

Brepi
, , ,()+()

i 1=

n

∑

=

TSeq S D BA0
, ,()

TMig Di q– Di BAi 1–
, ,() miTRPC Di Ri Breqi

Brepi
, , ,()+()

i 1=

n

∑

=

L0

L4L3L2L1

Internet

PDA

Figure 5: Mobile computing scenario

Table 1: Sequence on interactionsS1

i Ri mi Breqi
Brepi

σi

1 L1 1 50 2000 1

2 L2 1 500 4000 1

3 L3 1 50 2000 1

4 L4 1 500 4000 1

5 L0 1 500 10 1

1

2

3

4

5

0 1 2 3 4 5
Number of Migrations

E
xe

cu
tio

n
T

im
e

[s
]

Figure 6: Execution times for scenario 1

1 3

2

6

time is much larger than for the RPC-only evalua-
tion 1 due to the much larger network load in-
volved. Figure 6 furthermore shows that evalua-
tion 2 is not the fastest solution with five
migrations. Due to the low throughput of the wire-
less link to the PDA, it is still better to make a (use-
less) fifth migration to any other internet location
(L1 - L4) before interactionI5 and then to use an
RPC to transmit the results back to locationL0. In-
terestingly, the shortest execution time is achieved
with evaluation 3 by an agent that uses migration
exactly once. The destination vector for evaluation
3 shows that the corresponding agent migrates to
locationL2 before interactionI1 (i.e. not to the in-
teraction partner ofI1 but to the first location with
a large amount of communication) as indicated by
the dotted arrow in Figure 5 and remains there un-
til to the end of the sequence. Again the network
load is larger than for evaluation number 1, but the
intelligent usage of a single migration reduces ex-
ecution time compared to the RPC-only evaluation
1.

4.2 Evaluation of Scenario 2

In the second scenario the same values for the
agent (BA, P andσ) are used, but the sequence of
interactions changes slightly according to Table 3.
In particular only interactions 2 and 4 are modified

by replacing one communication and large re-
quest/reply size with ten communications and
small request/reply size, so that the total amount of
data transferred is not changed.

The diagram in Figure 7 shows the evaluation
of the execution time for all possible destination
vectors, again sorted according to the number of
migrations involved. The smallest execution time
(evaluation number 4) is achieved by an agent that
uses migration twice. Table 4 lists the correspond-
ing values of the destination vector, execution time
and network load.

Evaluation 1 shows the values for the agent using
RPC only. Although the amount of data transmit-
ted is the same as in scenario 1, the execution time
increased heavily due to the larger number of com-
munications in scenario 2 because each additional
RPC increases the execution time by two delays.
Evaluation 2 for the agent using migration to the
next interaction partner for each interaction does
not change compared to scenario 1 because all
communications are realized by local procedure
calls. Nevertheless in scenario 2 the execution time
of the always migrating agent has become better

Table 2: Performance values for scenario 1

Destin. VectorD TSeq BSeq

1 L0,L0,L0,L0,L0,L0 1.2220 13100

2 L0,L1,L2,L3,L4,L0 1.8075 105000

3 L0,L2,L2,L2,L2,L2 1.1117 30110

Table 3: Sequence of interactionsS2

i Ri mi Breqi
Brepi

σi

1 L1 1 50 2000 1

2 L2 10 50 400 1

3 L3 1 50 2000 1

4 L4 10 50 400 1

5 L0 1 500 10 1

Table 4: Performance values for scenario 2

Destin. VectorD TSeq BSeq

1 L0,L0,L0,L0,L0,L0 5.5420 13100

2 L0,L1,L2,L3,L4,L0 1.8075 105000

3 L0,L2,L2,L2,L2,L2 1.2917 30110

4 L0,L2,L2,L2,L4,L4 1.1629 46610

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5
Number of Migrations

E
xe

cu
tio

n
T

im
e

[s
]

Figure 7: Execution times for scenario 2

1

43
2

7

than the execution time for the RPC-only agent.
The execution time for the agent in evaluation 3
with one single migration to locationL2 is in sce-
nario 2 not optimal any more. The additional exe-
cution time for the increased number of remote
procedure calls to locationL4 supersedes the
amount of time needed for a second migration to
locationL4 before interactionI4 in order to realize
these communications by local procedure calls, as
it is done in evaluation 4.

5 Experimental Validation

To validate the introduced performance model, we
have performed measurements of the execution
time of mobile agents running on Mole, an imple-
mentation of a mobile agent system.

5.1 The Mobile Agent System Mole

Mole is a mobile agent system implemented in
Java ([7][8]). It provides (Java-)agents the ability
to migrate to other locations and to communicate
with other mobile agents or to static service agents
via local or remote procedure calls or by messag-
ing. In Mole, only a “restricted migration” is im-
plemented, which transfers only the code and the
data of the agent, but not the execution state of the
agent to the destination location. The code is trans-
ported to the destination location only if not yet
available there.

5.2 Experimental Setup

Since we did not have access to a mobile device
with a running mobile agent system, the mobile
computing scenario from Section 4 was imitated
by placing locationL0 on a host in the US (ICSI,
Berkeley) and a cluster of four locationsL1 to L4
on hosts on a local area network in Germany
(IPVR, University of Stuttgart). This setup pro-
vides a slow and low-bandwidth connection from
locationL0 to the cluster compared to the fast and
high-bandwidth connection inside the cluster. The
values for delayδ(x,y), throughputτ(x,y) and the
marshalling overheadµ for previous interactions
are measured by the mobile agent system and are
accessible by the agents for further usage.

Two interaction sequences were defined with
similar characteristics as the interaction sequences

in Section 4. Table 5 lists interaction sequenceS3

which is characterized by a larger amount of com-
munication with service agents on locationL2 and
L4 than with those on locationsL1 andL3. The re-
sulting scenario corresponds to scenario 1 of Sec-
tion 4.1. Table 6 lists interaction sequenceS4

where the single large communication with agents
on locationL2 andL4 is replaced by five smaller
communications such that the total amount of
bytes transmitted is not changed. This scenario
corresponds to scenario 2 of Section 4.2.

To undertake the measurements, a static agent
is started on locationL0. The static agent starts oth-
er mobile agents which have to interact with serv-
ice agents on locationsL1 to L4 according to the
mobile computing scenario in Figure 5. The static
agent measures the time from the initialization of
a mobile agent until to the delivery of the corre-
sponding reply message by RPC. The characteris-
tics of the mobile agents areBcode=10kBytes,Bda-

ta=32kBytes,Bstate=0Bytes (due to the restricted
migration used in the Mole system). The agent
code does never need to be transmitted (P=0%)

Table 5: Sequence of interactionsS3

i Ri mi Breqi
Brepi

σi

1 L1 1 700 3000 1

2 L2 1 3500 15000 1

3 L3 1 700 3000 1

4 L4 1 3500 15000 1

5 L0 1 3000 700 1

Table 6: Sequence of interactionsS4

i Ri mi Breqi
Brepi

σi

1 L1 1 700 3000 1

2 L2 5 700 3000 1

3 L3 1 700 3000 1

4 L4 5 700 3000 1

5 L0 1 3000 700 1

8

and the size of the agent data does not change
(σ=1).

To carry out their mission, the mobile agents
followed one of three mobility strategies: The
‘RPC-only’-agent remained on locationL0 and
used remote procedure calls for each interaction.
The ‘always-migrate’-agent always migrates to the
next interaction partner and then uses local proce-
dure calls. The ‘optimized’-agent uses the per-
formance model for the execution timeTSeq to de-
cide when and to which location it should migrate.

5.3 Experimental Results

The execution times for interaction sequenceS3
are shown in Table 7. The measurements are aver-
aged over 50 runs of the mobile agent for each of
the three mobility strategies. Similar to the results
obtained forS1, the ‘RPC-only’ strategy is faster
than the ‘always-migrate’ strategy and the ‘optimi-
zed’ strategy offers only a small improvement. Us-
ing the ‘optimized’ strategy the mobile agent mi-
grated exactly once in 49 of the 50 runs. 47 times
it migrated to locationL2 and 2 times to location
L4, an observation which reflects the dynamically
changing network load measured by the mobile
agent system and used by the ‘optimized’ strategy.

The execution times for the three mobility strat-
egies applied to interaction sequenceS4 and aver-
aged over 50 runs of the mobile agent are listed in
Table 8. As expected, here the ‘always-migrate’
strategy performs better than the ‘RPC-only’ strat-
egy and the ‘optimized’ strategy offers another im-
provement. Using the ‘optimized’ strategy, the
mobile agent migrated exactly once in 30 cases (11
times toL2, 6 times toL3 and 13 times toL4) and
in 20 cases the mobile agent migrated exactly two
times (14 times toL2 andL4; 6 times toL3 andL4).

Again, the dynamically changing measured values
for delay and throughput explain this observation.

6 Conclusion

We have introduced a performance model for mo-
bile agent systems where agents can alternatively
use remote procedure calls or agent migration for
the interaction with partners on different locations.
The model was first used to identify situations
where a single agent migration has advantages
compared to a single remote procedure call. This is
basically the case when the amount of data to be
processed is large compared to the size of the agent
and if the selectivity of the agent, i.e. the ability of
the agent to reduce the size of the reply by remote
processing, is high. Then the model was extended
to describe a sequence of interactions. From this
model the conclusion can be drawn that an alter-
nating sequence of remote procedure calls and
agent migrations performs better than a pure se-
quence of remote procedure calls or a sequence of
agent migrations. This result was confirmed by
measurements on a prototype implementation of a
mobile agent system, Mole. The performance
model for the execution time was also used to op-
timize the mobility behaviour of the mobile agent
in a given interaction scenario. The optimization
was successful although dynamic fluctuations of
measured model parameters like network delay
and throughput have weaken this result. The per-
formance model could thus be a building block for
the optimization of the mobility behaviour of mo-
bile agents.

Table 7: Measurements f. interaction sequenceS3

mobility
strategy

average
time [ms]

standard
deviation [ms]

‘RPC-only’ 7501 748

‘always-migrate’ 9793 1140

‘optimized’ 7462 1341

Table 8: Measurements f. interaction sequenceS4

mobility
strategy

average
time [ms]

standard
deviation [ms]

‘RPC-only’ 19127 1516

‘always-migrate’ 11394 1414

‘optimized’ 10953 1341

9

7 References

[1] J. Baumann, F. Hohl, N. Radouniklis, K. Ro-
thermel and M. Straßer. Communication Con-
cepts for Mobile Agent Systems. In:Mobile
Agents, Proc. 1st Int. Workshop, MA ‘97.
Springer, 1997.

[2] A.D. Birrell and B.J. Nelson. Implementing
Remote Procedure Calls, InACM Trans Com-
puter Systems, Vol. 2, pp. 39-59. 1984

[3] A. Carzaniga, G.P. Picco and G. Vigna. De-
signing Distributed Applications with Mobile
Code Paradigms. To appear in:Proc. 19th Int.
Conf. on Software Engineering, Boston. 1997

[4] T.-H. Chia and S. Kannapan. Strategically
Mobile Agents. In:Mobile Agents, Proc. 1st
Int. Workshop, MA ‘97. Springer, 1997.

[5] General Magic, Inc. The Telescript Language
Reference.
http://www.genmagic.com-Telescript/TDE/
TDEDOCS_HTML/telescript.html, 1996

[6] C.G. Harrison, D.M. Chess and A. Kershen-
baum. Mobile Agents: Are they a good idea?
IBM Research Report, 1995

[7] Project Mole, http://www.informatik.uni-
stuttgart.de/ipvr/vs/projekte/mole.html

[8] M. Straßer, J. Baumann and F. Hohl. Mole - A
Java Based Mobile Agent System. In: J. Bau-
mannet al (Eds.) Proc. 2nd ECOOP Work-
shop on Mobile Object Systems, dpunkt-Ver-
lag 1996

