A Multi-Tier Architecture for High-Performance Data Mining

Ralf Rantzau

Holger Schwarz

University of Stuttgart
Institute of Parallel and Distributed High-Performance Systems (IPVR)
{rantzau,schwarz } Qinformatik.uni-stuttgart.de

Abstract

Data mining has been recognised as an essential element of
decision support, which has increasingly become a focus of
the database industry. Like all computationally expensive
data analysis applications, for example Online Analytical
Processing (OLAP), performance is a key factor for use-
fulness and acceptance in business. In the course of the
CRITIKAL! project (Client-Server Rule Induction Techno-
logy for Industrial Knowledge Acquisition from Large Data-
bases), which is funded by the European Commission, sev-
eral kinds of architectures for data mining were evaluated
with a strong focus on high performance. Specifically, the
data mining techniques association rule discovery and deci-
sion tree induction were implemented into a prototype. We
present the architecture developed by the CRITIKAL con-
sortium and compare it to alternative architectures.

1 Introduction

Today, data mining is a vital research area where innovations
quickly find their way into industrial products. Many com-
panies and other organisations have already gained benefi-
cial insights into data which helped them to improve their
business. High performance is a key factor for data min-
ing systems in order to allow a sufficient exploration of data
and to cope with the huge amounts of data that an organ-
isation has accumulated over the years. High performance
of a data mining system is not only a question of choos-
ing the proper algorithms and efficient implementations of
them. The architecture has also a remarkable impact on
performance. This is particularly important for large busi-
ness environments where an expensive IT infrastructure is
installed that must be fully exploited. The architecture of
a data mining system should reflect beneficial features of
the infrastructure as much as possible, like multi-processor
machines, but it also has to consider restrictions, like low
bandwidth connections.

The remainder of this paper is organised as follows: In
section 2 we give a short introduction to association rule
discovery and decision tree induction. In the CRITIKAL
project we concentrated on these data mining techniques.
Section 3 presents a couple of architectural alternatives for a
data mining system. The architecture and basic components

! The consortium of CRITIKAL (Esprit project 22700) consists of:
Attar Software Ltd. (UK), www.attar.com; GEHE AG (D);
Lloyds TSB Group (UK); Parallel Application Centre, University
of Southampton (UK), www.pac.soton.ac.uk; BWI, University of
Stuttgart (D), www.planung.bwi.uni-stuttgart.de; IPVR, University
of Stuttgart (D), www.informatik.uni-stuttgart.de/ipvr.

of the CRITIKAL prototype are described in section 4. This
also includes the explanation how association rule discovery
and decision tree induction is performed in the CRITIKAL
three-tier architecture. Finally, we give a conclusion of this
paper in section 5.

2 Data Mining Techniques

A variety of data mining techniques have been developed by
researchers in the fields of artificial intelligence and statis-
tics. In this section we focus on two popular techniques,
which served as a basis for our development in the CRITI-
KAL project: association rule discovery and decision tree
induction.

2.1 Association Rule Discovery

Association rule discovery has received great attention in the
data mining community during the past few years because
many real world business and engineering cases have been
found where association rule discovery can successfully be
applied. Current examples are credit card fraud detection,
supermarket layout planning and medical diagnosis. An-
other reason is that association rules can serve as a basis
for other data mining techniques like clustering [HKKM98].
Most papers on association rule focus on efficient algorithms
and functional enhancements [AS94, CNFF96, SON95].

We present a short overview of the association rule model
to give an idea of the problems that can be solved with this
data mining method. Let Z be a set of attributes called
items. A subset X C 7 is called an itemset. Let the data-
base D = {T1,..., T} be a set of transactions, where each
transaction Tk, k € {1,...,n}, is an itemset. A transac-
tion T contains an itemset X if X C T. Each itemset
has a certain statistical significance called support or fre-
quency. The support s of an itemset X is the fraction of
transactions in the database D containing itemset X, i.e.
s(X)=|{T € D | X C T}|/ID|.

An association rule is an implication X = Y, where X C
Z,Y C Z,and XNY = . X is called the antecedent and Y is
called the consequent of the rule. The rule X = Y holds with
confidence c if ¢ is the fraction of transactions containing X
that also contain Y, ie. ¢(X,Y) = s(X UY)/s(X). The
confidence denotes a rule’s strength. A confidence threshold
cmin is used to exclude rules that are not strong enough
to be interesting. Accordingly, there is a support threshold
Smin that excludes all rules whose number of transactions
containing the union of the antecedent and the consequent
is below a certain amount. Itemsets with minimum support
are called frequent itemsets.

[Age | Income [Risk |
28 61k low
92 | 46k | high
46 55k low
25 | 48k | high
26 | 38k | high
34 46k low

Table 1: An example training set.

Income < 50k

| Age<30 | | low

high low

Figure 1: An example decision tree for classification.

The problem of finding association rules can be stated
as follows. Given a set Z of items, a database D of item-
sets, a support threshold s.,in, and a confidence threshold
Cmin, find all association rules X = Y in D that have sup-
port (X UY) > smin and confidence ¢(X,Y) > ¢min. This
definition of the problem is sometimes called the classic or
boolean association rule problem. More generalised prob-
lems consider item hierarchies [SA95], quantities [SA96], or
propose further parameters to describe the interestingness
of rules.

2.2 Decision Tree Induction

Classification is widely considered to be an important data
mining task. Several classification models have been pro-
posed in the past, among which decision trees are particu-
larly suited for data mining [AIS93, SAM96]. Compared to
other classification models the decision tree model is, like
the association rule model, easy to interpret and it offers a
good performance for classification.

First, we state the general classification problem. Let A
be a set of attributes. Each attribute belongs to either an
ordered (continuous attribute) or an unordered (categori-
cal attribute) domain. We are given a training set D of
records, where each record contains the same attributes to-
gether with values of their respective domains. One of the
attributes, called the classifying attribute, indicates the class
to which each record belongs. The problem of classification
is to build a model of the classifying attribute based on the
remaining attributes. Table 1 shows an example training set
where each row corresponds to a borrower of a bank. The
bank is interested in a model that helps to predict which fu-
ture credit applicants are credit-worthy and which are not.

A decision tree is a class discriminator that recursively
partitions the training set until each partition consists en-
tirely or dominantly of records from one class. Each inner
node of the tree contains a split point which is a test on one
or more attributes and determines how the data is parti-
tioned. Figure 1 shows a binary decision tree based on the
example training set that can estimate the risk for further
customers.

3 Architectures of Data Mining Systems

In this section we describe three alternative architectures
for a data mining system. We define a set of basic compo-
nents of a data mining system and explain where they are
located in the different architectures. The evaluation of the
approaches is based on several prerequisites for large scale
data mining in an enterprise environment.

3.1 Prerequisites for Large Scale Data Mining

During the CRITIKAL project the consortium identified the
following list of prerequisites for large scale data mining in
an enterprise environment. Based on this list we can derive
and evaluate architectures for highly optimised data mining
systems.

e No limits on the data set sizes:
Data mining is especially interesting for large enter-
prises which have huge datasets. Since they want to
derive patterns from all of their data, the architec-
ture should not limit the size of data sets that can be
handled, for example to main memory capacity.

e Optimised performance for large data sets:
A data mining system should incorporate optimisation
strategies especially for large data sets in order to en-
able data mining with acceptable response times. The
system architecture should enable a wide range of op-
timisation strategies like parallelism and caching.

e Flexibility for different data mining techniques:
Users in an enterprise environment have different busi-
ness goals in mind when they want to discover hid-
den knowledge in their data. Hence, the architecture
should flexibly support various data mining techniques
and algorithms like classification, clustering or associ-
ation discovery.

e Support for multiple users and concurrency:

In an enterprise environment a couple of users con-
currently start data mining sessions on overlapping
datasets. The data mining system should therefore
support specific user priorities and user groups as well
as the management of concurrent mining sessions. The
system architecture should reflect these multi-user and
multi-session capabilities.

e Full control of system resources:

A data mining system is part of an enterprise IT in-
frastructure in which a couple of different applications
run concurrently. Hence, the system needs full control
of bandwidth and CPU cycles consumed by a user.
This allows to start data mining activities in parallel
to other applications without impairing these services.
The architecture should particularly consider limited
or low bandwidth connections to clients.

e Full control of access to data:

In most enterprises data mining is based on data of a
central data warehouse. Because this incorporates all
important enterprise data, not all users should have
unrestricted access. The data mining system has to
offer the ability to restrict the access in addition to the
data warehouse security system. This provides data
mining specific access control. The architecture has
to be designed in a way that prohibits users from by-
passing this access control.

e Remote administration and maintenance:
In a distributed enterprise environment there are many
clients of the data mining system at different locations.
Depending on the architecture the system might also
incorporate several servers. Remote administration
and maintenance is vital and should include installa-
tion and updating of software components.

This collection of requirements is a base for objective
evaluation of system architectures that support large scale
data mining.

3.2 Basic Components of a Data Mining System

The basic components of a data mining system are the user
interface, data mining services, data access services and the
data itself. The user interface allows the user to select and
prepare data sets and apply data mining techniques to them.
Formatting and presenting the results of a data mining ses-
sion is also an important task of the user interface. Data
mining services consist of all components of the system that
process a special data mining algorithm, for example associ-
ation rule discovery. These components access data through
data access services. Access services can be optimised for
special database management systems or can offer a stan-
dard interface like ODBC. The data itself constitute the
fourth component of a data mining system. Since data min-
ing is particularly interesting in large scale enterprise envi-
ronments we assume the data to reside in a data warehouse.

These four basic components are present in all data min-
ing systems. In the following we describe three different
architectures where these components are appropriately dis-
tributed over the various tiers. For each approach we check
with which of the prerequisites of section 3.1 it complies.
Figure 2 outlines the architectures discussed below.

3.3 One-tier Architecture

The classical architecture of data mining systems is a one-
tier architecture. Such a system is completely client based.
Basically all data mining systems of the first generation are
based on this architecture. The user has to select a small
subset of data warehouse data and load it on the client in or-
der to make it accessible to the data mining tool. This tool
may offer several data mining techniques. The most obvi-
ous drawback of the one-tier approach is the size of the data
set that can be mined and the speed of the mining process.
This is often overcome by selecting a random sample from
the data. A truly random (unbiased) sample is needed to en-
sure the accuracy of mined patterns, and even then patterns
relating to small segments of the data can be lost. The data
resides in raw files of the client’s file system. Another dis-
advantage is the absence of a multi-user functionality. Each
user has to define his own subset of the data warehouse and
load it separately onto the client machine. Since each user
runs his own client-based data mining software, there is no
way for data mining specific access control and control of
system resources. Optimisation of the data mining process
is restricted to choosing more efficient implementations of
the data mining techniques.

3.4 Two-tier Architecture

In a two-tier architecture the data mining tool completely
resides on the client but there is no need to copy data to
it in advance. The data mining application may choose to

load parts of the data during different stages of the min-
ing computation. There are several alternatives for running
data mining algorithms in this architecture.

Download Approach

The connection to the data warehouse can be used to load
data to the client and make it accessible for data mining.
This can be done dynamically, therefore avoiding the prob-
lems with storing huge data sets on the client. Even if data
is loaded in advance, this approach is superior compared to
the one-tier architecture. The automatic loading of data by
the client enables it to store pre-processed data depending
on the user’s needs. Pre-processed data may be of reduced
size and stored in a way that supports the data mining algo-
rithm. Hence, better performance of the discovery process
and less space consumption is achieved.

Query Approach

For some data mining techniques it is possible to formu-
late parts of the algorithm in a query language like SQL.
The client sends SQL statements to the data warehouse and
uses the results for the data mining process. One advan-
tage compared to the download approach is that only data
which is really needed is sent to the client because filter-
ing and aggregation is already carried out by the database
system. Since parts of the application logic are formulated
in SQL, query processing capabilities of the data warehouse
system can be exploited [Att98].

Database Approach

In this approach the complete data mining algorithm is pro-
cessed by the database system. This can be realized by
stored procedures and user defined functions. Only the data
mining results have to be sent to the client which is respon-
sible for displaying them. The data mining process is able
to exploit the efficient processing capabilities offered by the
data warehouse.

The two-tier architecture has evident advantages over
purely client-based data mining. It enables direct access to
the data warehouse. No data extraction is necessary as a
prerequisite for data mining. The two-tier architecture does
not limit the size of a database that can be mined. New in-
formation can be discovered in the masses of data stored in
the data warehouse. Additionally, the data mining process
can take advantage of the query processing capabilities pro-
vided by special data warehousing hardware and software.

Besides the advantages of this approach some problems
still remain. One problem is the limited access to the data
warehouse system. Data warehouse systems are often in a
“dark” site with restricted access. It is not allowed to in-
stall and configure applications on this system. Only the
download approach and the query approach are applicable.
Additionally, there is limited control over system resources.
When all users directly access the data warehouse it is not
possible to control the bandwidth and the CPU cycles each
user needs for its data mining application. Many users con-
currently access the data warehouse for data mining pur-
poses. In the two-tier environment there is no way to con-
trol this access by data mining specific user priorities and
user groups. The last drawback we want to mention here
is the limited scope for optimisations. There are only two
strategies to make the data mining process more efficient:
the exploitation of the query processing capabilities of the

One-tier Architecture

Two-tier Architecture

Three-tier Architecture

| Graphical User Interface |

| Graphical User Interface |

| Graphical User Interface |

| Data Mining Services || Client | Data Mining Services || Client |

Data Mining Services || Client

| Data Access Services | | Data Access Services |

Client Data [Data Mining Services || widdle
Data Mining Services Ware- - .
Data Access Services | house | Data Access Services || Tier

— ¥
~— | pata

Ware-
house

\¥/

Figure 2: Architectures for data mining systems.

data warehouse and the enhancement of the data mining al-
gorithm. There is limited scope for parallel algorithms and
reuse of results by different clients.

3.5 Three-tier Architecture

A three-tier architecture addresses the problems remaining
with a two-tier architecture. This is achieved by an addi-
tional layer holding the data access services and parts of
the data mining services. Data mining services may also be
present on the client. Which part of the data mining services
should be client based depends on data mining techniques
and algorithms.

The data mining process works as follows in this architec-
ture. First, the user defines the parameters for data mining
by the graphical user interface. The data mining services
on the client perform some pre-processing prior to calling
the data mining services on the middle tier. The first task
on the middle-tier is authentication and authorisation of the
users. Then the data mining services queue and execute the
tasks of several clients and send back the results. These are
used in the post-processing of the client, which computes
the final outcome and presents it to the user. A client may
start several data mining tasks in one session. Each of them
includes a number of calls to the middle tier. Data mining
services use the data access services on the middle tier in
order to read from different types of data sources.

This three-tier approach has several advantages com-
pared to the two-tier architecture. First, the data mining
services can fully control bandwidth and CPU cycles for
each user because there is a centralised service that man-
ages users’ tasks and resources. This enables the system to
guarantee a maximum usage of system resources for data
mining purposes. Second, the system can service users ac-
cording to their priority and to their membership in user
groups. This includes restricted access to data mining ta-
bles as well as user specific response behaviour. Third, a
wide range of optimisation strategies can be realised. The
tasks of the data mining services can be distributed over the
client and the middle tier. The middle tier can exploit paral-
lelism by parallel processing on the middle tier hardware and
parallel connections to the database layer. Additionally, the
data mining services can reuse the outcome of data mining
sessions and pre-compute common intermediate results.

4 The CRITIKAL Prototype

This section describes the prototype that was developed
within the CRITIKAL project as successive enhancements
to a commercial two-tier decision tree induction package
[Att98]. The prototype is based on a three-tier architecture
as illustrated in figure 3. Data mining services are part of
the client and of the middle tier. In section 4.2 and section
4.3 we describe how association rule discovery and decision
tree induction are integrated in the CRITIKAL architecture.
The data mining services also include algorithm independent
general services which are summarised in the section below.
Data access services in the CRITIKAL prototype offer ac-
cess to data in files and in several relational DBMS. This
access is provided by proprietary access modules with spe-
cific RDBMS optimisations as well as by a generic ODBC
module. Further implementation details are given in section
4.4.

4.1 General Services

General services in the CRITIKAL prototype include all
tasks that are independent of specific data mining techniques
and algorithms used for their implementation. These tasks
fall into three groups: connection and access services, re-
mote administration services and the work management.

The connection and access services enables clients to con-
nect to the middle tier. In this process a listener is involved
that starts dedicated connection servers. Each connection
server handles the communication with one client. There
may be several connections with different clients at the same
time. The connection servers are also responsible for access
control. They check that a client is entitled to be logged
on to the middle tier. Additionally, they check with the
security mechanism of the data source which tables a user
may access. Connection servers enable the user to interrupt
and resume sessions in order to support long running mining
activities.

The remote administration services are accessed by a re-
mote administration client. This allows the middle tier soft-
ware to be configured and controlled from a computer that
is physically separated from the middle tier. This includes
a system to monitor and shut down the middle tier. The re-
mote administration client allows error messages and other

Graphical User Interface
. Client/
Pre- and Postprocessing Front End
Association Rule Rule Induction
Module Module
Data Mining Services Y
Frequent Contingency
ltemset General Table
Data Access Services Middle Tier
Database Access
File Access
| ODBC || Proprietary
——
Data Ware-
. house/
File System DBMS Back End

Figure 3: The three-tier architecture of the CRITIKAL pro-
totype.

information to be displayed remotely. It also enables the ad-
ministrators to control access to the middle tier for clients
and to define the data sources.

The work manager is responsible for the execution of
data mining tasks. It receives a work specification from the
client which contains information on the data mining task
and the required data sources. Based on this information it
determines the engine that is able to perform the specified
data mining task. The work specification then becomes part
of a work package. A work package describes in detail what
the client wants, how this information can be generated and
where the raw data can be found. This work package is
brought to a queueing system. Each work package is taken
off the queue by the work manager and executed by one of
several threads of execution. The results are packaged up
and sent to the client.

The work management adds flexibility to the CRITIKAL
prototype. The middle tier may be configured with multi-
ple engines that allow different implementations of the same
data mining task. For example, one engine could be opti-
mised for SQL whereas another is optimised for in-memory
execution. The work management also enables the control
of resource consumption of the middle tier software. There-
fore, the number of execution threads is controlled and the
rate at which jobs are processed is limited. Parallel exe-
cution threads enable multiple parallel connections to the
database.

4.2 Association Rule Discovery in a Three-tier Architec-
ture

Mining for association rules involves two activities. The first
one finds all frequent itemsets whose support is greater than
a given minimum support threshold. The second one gen-

erates the desired rules from the frequent itemsets found in
the first step. They are required to have a confidence that
is greater than a given minimum confidence threshold.

The first step is computationally more expensive than
the second one. This is because in all but the most trivial
cases the amount of data to be processed is much larger in
the first step (a database of transactions) than in the sec-
ond one (frequent subsets of transactions). Furthermore, the
first step often involves multiple passes over the database.
This is the reason why most of the algorithms in the lit-
erature for mining association rules deal with the first step
only. Our prototype reflects this functionality split. The
middle tier is responsible for generating frequent itemsets
which are sent to the client. The association rules are com-
puted on the client based on the frequent itemsets and a
minimum confidence parameter. If the user varies the min-
imum confidence the rules have to be recomputed, but no
communication with the middle tier is necessary. Of course,
a variation of the minimum support or surprise parameters
requires the middle tier to run a new frequent itemset dis-
covery. Frequent itemset discovery is very well located on
the middle tier for several reasons. First, the middle tier is
likely to be based on a more powerful machine compared to
the client. Second, the middle tier is designed for high per-
formance, incorporating parallelism. Third, it can exploit
the query processing capabilities of the data warehouse.

Based on an extensive analysis of the most promising al-
gorithms [Sch97], we decided to design and implement an
algorithm using the ideas established in the Dynamic Item-
set Counting algorithm [BMUT97]. This algorithm reduces
the number of passes for frequent itemset discovery. Hence,
the amount of data transferred to the middle tier is much
smaller than for other algorithms. The data transfer can
further be reduced by tokenisation and filtering. The idea
of tokenisation is to map long multi-attribute identifiers on
short integer values. This reduces the number of bytes that
are sent to the middle tier for each identifier. Filters can be
applied in two ways. First, items are selected according to
the work specification. Second, all items that already turned
out not to be frequent are discarded. In our implementa-
tion, the data partitions are processed by parallel threads
that insert new frequent itemsets into a shared hash-tree
data structure.

The association rule discovery facility integrated into the
prototype has several features which are considered impor-
tant by the end user project partners of CRITIKAL. Among
them are the ability to include and exclude certain items
prior to the association rule discovery. Another feature in
the CRITIKAL prototype design is the support of item hier-
archies. For example, many organisations maintain a hierar-
chy of product groups in their data warehouse. This allows
for more general rules like “beverages” = “baby care” in
addition to specific rules like “beer” = “nappies”. Both
features not only help the user to concentrate on interesting
aspects of the data, but they also reduce the amount of data
to be processed, yielding faster response times.

4.3 Decision Tree Induction in a Three-tier Architecture

The technique for building decision trees uses statistical in-
formation on data held in a single data mining table. The
user specifies one field of the table to be the outcome. The
data of the table is then classified with respect to this out-
come by applying binary splits to the decision tree.

The algorithm for decision tree induction implemented
in the CRITIKAL prototype [Att98] requires information
on the data in the form of contingency tables (sometimes

called cross tabulations or pivot tables). A contingency ta-
ble is a two-dimensional matrix. One axis represents the
values of an attribute and the other axis represents the val-
ues of the outcome. The cells of the matrix contain counters
for the occurrences of attribute/outcome combinations. For
example, an outcome attribute could be a text field with the
three values “yes”, “no” and “maybe”.

Once the user has specified the table to be used for de-
cision tree induction, the client requests statistical informa-
tion to describe the attributes within that table. This in-
formation allows users to decide which attributes they will
use for building decision trees. Decision tree construction
involves repeated requests for contingency tables. A contin-
gency table is requested per attribute per node of a tree.

Decision tree induction can also be decomposed into two
steps. In the first step contingency tables are computed
based on raw data. This task is performed on the middle
tier. The contingency tables are created from the subset of
data that is represented by the node to be split. In a sec-
ond step the client applies statistics based on a high level
algorithm to these contingency tables in order to induce a
split of the node. The result of the split are two child nodes
which represent two disjoint subsets of the parent node. For
each of them a filter can be defined. The high level infor-
mation travelling between the client and the middle tier is
designed to satisfy any bandwidth constraints between these
two tiers.

It can be seen that determining a split point in a decision
tree consists of two parts. One is defining a subset of the raw
data using a filter. The other part is aggregation in order
to create contingency tables. It should be noted that the
order of these two operations is an implementation decision.
It is possible to build suitably indexed contingency tables
for the full data set and then extract subsets for a given
node as defined by a filter. The CRITIKAL prototype uses
SQL for aggregation but constructs the contingency tables
on the middle tier as the data is streamed across from the
database.

4.4 Implementation Details

Part of the CRITIKAL prototype software was implemented
in Java because of its well-known merits like readability and
portability, thereby facilitating code development and test-
ing. Other parts of the CRITIKAL software required special
optimisations and are implemented in C/C++. These pro-
gramming languages were also necessary to access interfaces
like ODBC and other database specific APIs.

The client is able to run on any of Microsoft’s Windows
operating systems, while the middle tier software is currently
restricted to Windows NT. The database access services in-
corporate optimised code for several database systems like
Oracle8 or NCR’s Teradata. Any database system imple-
menting ODBC can be accessed.

5 Conclusion

This paper presented a powerful and flexible three-tier ar-
chitecture for data mining that was developed as part of
the CRITIKAL project. The focus of this architecture is
to allow a high-performance implementation of data mining
techniques like association rule discovery and decision tree
induction. The prototype is able to mine patterns in very
large datasets that may reside in databases or files.

Some of the ongoing work in CRITIKAL is an optimised
multi-tier support of data preparation prior to the data min-
ing tasks. This reflects today’s need for data mining systems

that offer high performance across every phase of the entire
knowledge discovery process.

References
[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami. Database Mining: A Performance Per-
spective. IEEE Transactions on Knowledge
and Data Engineering, 5(6):914-925, December
1993.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant.
Fast Algorithms for Mining Association Rules.
In Proceedings of the 20th International Confer-
ence on Very Large Databases, Santiago, Chile,

pages 487-499, September 1994.

[Att98] Attar Software. XpertRule Profiler Reference

Manual, 1996-1998.

[BMUT97] Sergey Brin, Rajeev Motwani, Jeffrey D. Ull-
man, and Shalom Tsur. Dynamic Itemset
Counting and Implication Rules for Market Bas-
ket Data. In Proceedings of the ACM SIG-
MOD International Conference, Tucson, Ari-
zona, USA, pages 255264, May 1997.

[CNFF96] David Wai-Lok Cheung, Vincent T. Ng, Ada W.
Fu, and Yongjian Fu. Efficient Mining of Asso-
ciation Rules in Distributed Databases. IEEE
Transactions on Knowledge and Data Engineer-
ing, 8(6):911-922, December 1996.

[HKKM98] Eui-Hong (Sam) Han, George Karypis, Vipin
Kumar, and Bamshad Mobasher. Hypergraph
Based Clustering in High-Dimensional Data
Sets: A summary of Results. Bulletin of
the Technical Committee on Data Engineering,
21(1):15-22, March 1998.

[SA95] Ramakrishnan Srikant and Rakesh Agrawal.
Mining Generalized Association Rules. In Pro-
ceedings of the 21st International Conference
on Very Large Databases, Ziirich, Switzerland,

pages 407-419, September 1995.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal.
Mining Quantitative Association Rules in Large
Relational Tables. In Proceedings of the ACM
SIGMOD International Conference, Montreal,

Canada, pages 1-12, June 1996.

John Shafer, Rakesh Agrawal, and Manish
Mehta. SPRINT: A Scalable Parallel Clas-
sifier for Data Mining. In Proceedings of
the 22nd International Conference on Very
Large Databases, Bombay, India, pages 544—
555, September 1996.

[SAMO6]

[Sch97] Holger Schwarz. Survey of State-of-Art Associ-
ation Rules Discovery. Deliverable No. D4.1,
European Commission, ESPRIT Project No.

22700, Brussels, Belgium, May 1997.

[SON95] Ashok Savasere, Edward Omiencinski, and
Shamkant Navathe. An Efficient Algorithm for
Mining Association Rules in Large Databases.
In Proceedings of the 21st International Confer-
ence on Very Large Databases, Zirich, Switzer-

land, pages 432—-444, September 1995.

