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Abstract

To avoid the well-known implosion problem, the majority of reliable multicast protocols
use hierarchical structures to pass acknowledgment messages back to the sender. In most
cases, atechnique called expanding ring search (ERS) is used to construct the acknowl-
edgment tree. In this paper we analyse ERS by simulation studies. ERS is a ssimple and
fault tolerant approach, but our simulation results show that it has disadvantageslike great
reliance on the multicast routing protocol and poor scalability. If the background load ex-
ceeds a critical level, the message overhead rises exponentially. In this paper, we will
present an alternative approach based on a so-called token repository service. The token
repository service stores atoken for each successor, anodein an ACK tree can accept. To
find a node to connect to, the searching node just retrieves a token from the token repos-
itory. We describe how such a service can be implemented in away that it can handle a
large number of multicast groups. Our simulation results show that the token repository
service is scalable, independent of the multicast routing protocol and builds well-shaped
ACK trees, causing message delays that are comparable to ERS or even lower.



1 Introduction

Efficient one-to-many communication is a prerequisite for many new applications, e.g.
news and software distribution, distributed computing and computer supported coopera-
tive work. IP multicast [DC85, Dee89] is aready available in the Internet but only with
best effort semantics. Severa papers have addressed the issue of developing ascalablere-
liable multicast protocol. All solutions are based on the idea that the successful delivery
iscontrolled by some kind of ACK message returned from the receiversto the sender. The
class of sender-based and receiver-based protocols [PTK94, LG96], where all control
messages must be processed by the sender node can cause the well known implosion prob-
lem. A receiver of amulticast group sends all control messages (positive or negative ac-
knowledgments) to the sender of the message. If the multicast group is large, i.e. has a
huge amount of receivers, the network near to the sender and the sender itself becomes
congested.

To guarantee scalability only tree-based approacheslike TMTP[Y GS95], RMTP [LP96],
RMTP-II [WEA98] or LGMP [Hof96] are applicable. To avoid the implosion problem,
all receivers are organized in a so-called acknowledgment tree (ACK tree). Instead of
sending all control messages (positive or negative acknowledgments) to the sender, each
receiver contacts only its direct predecessor in the tree. Leaf nodes send a positive ac-
knowledgment to their predecessor to indicate that they have received a message correct-
ly, respectively a negative acknowledgment if they have recognized an incorrect or lost
message. The behavior of an inner node in the ACK tree strongly depends on the under-
lying transport protocol. In any case, an inner node is responsible for retransmitting lost
messages to its successors. Inner nodes also send control messages to its predecessor
when all of their successors in the ACK tree have received the message. When the root
node eventually receives the aggregated acknowledgments from al direct successor

nodes, the message has been reliably delivered to all receivers.

But how issuch an ACK tree established?In most cases atechnique called expanding ring
search (ERS) is used to construct the ACK tree. In this paper we present simulations that
examine the behavior of ERS. Our results show that ERS has a poor scalability, its per-
formance heavily relies on the multicast routing protocol and that the generated ACK

trees are not well-shaped. To overcome these deficiencies, we sketch a new approach to



build ACK trees. Our ideaisto combine ERS with a so-called token repository service.
The repository service stores tokens, which indicate at which ACK tree node a new mul-
ticast group member can join the tree. When a new member wantsto join the tree, it sSim-
ply asksthe token repository servicefor atoken of that group. Our approach providesfault
tolerance, scalability due to decreased network traffic, and message delays that are com-
parable to ERS or even lower. Furthermore the performance of the token repository ser-

vice isindependent of the applied multicast routing protocol.

The remainder of this paper is organized as follows. In the next section, the principle of
ERS and related work is discussed. Section 3 gives an overview of the proposed token re-
pository service and describes the group management operations. In Section 4, we present
simulation results for ERS and the token repository service. Finally, we conclude with a

brief summary.

2 Background and Related Work

ERS is acommon technique that was first used with broadcasting to search for resources
in a network without the knowledge, where such a resource can be [Bog83]. With basic
ERS the joining node looks for a predecessor nodein the ACK tree by sending multicast
search messages with increasing time-to-live (TTL). Thefirst search messageis sent with
aTTL of one, i.e. the search message is limited to the LAN of the sender. If an on-tree
node, i.e. anodethat isalready inthe ACK tree, receivesthis request and is ableto accept
further successor nodes it replies with an acknowledgment. The searching node is then
able to join the tree with the replying node as the predecessor. If no node answers within
acertain amount of time, the TTL isincreased by one and a new search message is sent.
The joining node repeats this process until it receives an answer or the maximum TTL of
255 isreached. Increasing the TTL step by step is done in order to decrease the network
load and to find a predecessor node that is close to the searching node. As aresult, acon-
tinuously increasing region is covered (see Figure 1). This basic method is described by
[YGS95]. We refer to this approach as off-tree initiated method because off-tree nodes,
I.e. nodes that are not already in the ACK tree, are responsible for finding a predecessor
node in the ACK tree.



There is one major variation to this off-tree initiated method that we will call the on-tree
initiated method. With the on-tree initiated approach, nodes that are already in the ACK
tree and that are able to accept further successors periodically send a multicast invitation
message. To reduce network load and to ensurelocality these invitation messages can a so
be sent with an increasing time-to-live value. [Hof96] uses such an on-tree initiated ap-
proach with aspecial TTL distribution that ensures that with increasing scope the frequen-
cy of invitation messages decreases. If a joining node receives more than one invitation
message it can choose the best predecessor based on quality metrics [Hof96]. Some pro-
tocolslike Lorax [LLG96] or TRAM [CEA98] combine on-tree and off-tree initiated ap-

proaches.

Figure 1: Increasing search radius of ERS

Our simulation studies consider only the off-tree initiated approach. One disadvantage of
this approach compared to the on-tree initiated approach is that the underlying network
must provide bidirectional multicast, this means all joining nodes must be able to send
multicast messages. The advantage of this approach is that the network is not congested
due to periodically sent multicast invitation messages. Note that these messages are sent

even if no new node wants to join the tree.

To give acomplete overview it must be mentioned that some protocols extend the routers’
functionality [LC98, LGT98, PPV98]. With support on the network level it is possible
that no separate ACK tree must be established. Instead the multicast routing tree must be
used for both tasks, routing and reliable message delivery. However, this approach re-

quires changes in routers, and even in some of these protocols the routers itself are respon-



sible for layer 4 error recovery, which does not conform with the layered architecture of
the Internet.

3 TheToken Repository Service Approach for Building
ACK Trees

3.1 Overview of the Token Repository Service

In this section we describe a new method to build ACK trees. We assume that there exists
aglobal token repository service, which isresponsible for all multicast groups. When a k-
bounded node, i.e. anode that is able to accept up to k successors, joins a group, k tokens
are created and stored in the repository, where the joining node is called the tokens’ own-
er. Each of these tokens contains at least the information about their multicast group and
owner. Besides this necessary information, a token may contain further information, such
as the height of the owner in the ACK tree, which is used to create well-shaped ACK trees.
If a node wants to join the tree, it simply asks the token repository service for a token. If

there is more than one token available, the “best” token with regard to the height is chosen.

The token repository depicted in Figure 2 contains tokens due to former join group oper-
ations. Node N wants to join the ACK tree and therefore asks the repository for a token.
The token repository service delivers one token to N and removes it out of the repository.
The token gives the right to connect to node N, in the ACK tree. If N wants to accept k

successor nodes itself, k tokens of N are created in the repository service.

Due to scalability reasons, token information is distributed in a hierarchical manner. In
other words, the token repository service is implemented by a hierarchy of servers. Each
token repository server, repServer in short, is responsible for a particular domain, consist-
ing of a set of nodes (see Figure 3 and Figure 4). The domains of leaf repServers consists
of distinct nodes. The domain of an inner repServer is the union of its successors’ do-
mains. Typically all nodes within a domain are closer to each other than to nodes in an-
other domain, where closer can mean lower delay, less hops or lower message loss prob-

ability, for example.
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Tokens are stored at leaf repServers only. Each leaf repServer provides the group man-
agement service, i.e. create group, join group, leave group and del ete group operations, to
all clientsin its domain. The inner servers are necessary to process a token search if no
token is available locally. Inner servers keep track for which groups tokens are available
in each of its subhierarchies. To search for atoken of a particular group, the predecessor
server in the repServer hierarchy must be asked recursively until one is found that has a
token of this group in its subhierarchy. In the second phase of the search, the search re-
guest is forwarded along the path from the inner server to the leaf server that storestokens
of thisgroup, and finally the token is handed over to the searching node. Dueto this hier-
archical structure, it is possibleto model locality and to ensure that joining nodes get near
predecessor nodes in the ACK tree. In the following section we will explain the group

management operations in more detail.



3.2 Group Management Operations

For creating and maintaining multicast groups, the four operations to create a group, de-
lete a group, join agroup and leave a group are necessary. As already mentioned above,

all operations are issued at leaf repServers.

When a new group is created, the leaf repServer must create tokens and establish the
search structure in the repServer hierarchy. The number of tokens to be created depends
on the processing power and reliability of the ACK tree node, the more reliable and more
powerful anodeisthe moretokens are created. Whilethe created tokens are stored locally
on the leaf repServer, the establishment of the search structure involves all repServers on
the path from the leaf repServer to theroot repServer. The leaf repServer forwardsthe cre-
ate group operation to its predecessor, which itself forwardsit to its predecessor. Thiscon-
tinues until the root repServer isreached. Every involved repServer creates a search struc-

ture to allow subsequent join operations to search for tokens.

The search structure associated with agroup is a bit vector, consisting of k entries, where
k is the number of successor repServers. Each bit in the vector represents one successor
repServer where the bit is set to one if there is a token of this group in the successor’s do-

main.

When the search structures are created due to a create group operation, each search struc-
ture contains exactly one bit set to one, corresponding to the successor repServer that for-
wards the create group operation. All other bits in the vector are set to zero. Since the to-
ken repository service is responsible for all existing reliable multicast groups, each inner

server has in general several search structures, one for each known group in this domain.

When a new node wants to join the ACK tree, it asks its leaf repServer for delivering a
token. If the requested token is locally available, the leaf repServer returns this token to
the joining node, deletes this token and creates a new set of tokens for the joining node.
Otherwise, the tree structure of the token repository service is used to search for a token.
The token search is forwarded in a leaf-to-root-direction until a repServer is found that
has a search structure for this group with at least one bit set to one. Then the second search
phase in root-to-leaf-direction is started. The search request is forwarded according to the
information in the search structures until a leaf repServer is reached. This leaf repServer

hands over a token to the searching leaf repServer, which itself hands over the token to



the joining node and creates new tokens for this node. In general, if atoken must be de-
livered either to a new multicast group member or asearching leaf node and thereis more
than one token for this group available, always the “best” token is taken. The best token
can be the token which leads to the least height in the ACK tree or the least error proba-

bility for example.

A join operation may require the search structures to be updated. On the one hand, it is
possible that the token delivering leaf repServer hands over its last token and therefore
cannot deliver further tokens. On the other hand, the searching leaf repServer now has to-
kens itself and hence is able to deliver tokens to other leaf repServers. In both cases, an
update operation is sent to the predecessor indicating that the search structure is to be up-
dated accordingly. If this affects the token availability in the domain of the predecessor

node, the update operation if forwarded again to the next predecessor.

When a node leaves a group, its tokens at the leaf repServer are deleted and if necessary,
an update operation to the predecessor initiated. Furthermore, a new token must be created
for the leaving node's owner at the corresponding leaf repServer and again if necessary,

an update operation to the predecessor repServer initiated.

A group is deleted in the token repository service by removing all tokens and search struc-
tures of this group. This is achieved by forwarding the delete group operation to the pre-
decessor until the root node is reached and to every successor repServer that has a token

for this group in its domain.

3.3 Fault Tolerance

In the previous section, we have described the token repository service approach without
taking into account possible error conditions like repServer crashes or network partition-
ing. Our protocol is able to handle such errors as we will see in this section. We do not

consider message loss here since we assume a reliable unicast transport protocol like TCP.

Due to performance reasons tokens and search structures are stored in volatile memory.
The only information stored in stable memory is the tree structure of the token repository

service, i.e. every repServer stores its predecessor and successor servers.

If a repServer fails, its search structures and tokens are lost and will not be explicitly re-

covered after restarting. To cope with this information loss we assume, that the update op-



erations are sent periodically which leads to arecovering of the search structures. If aleaf
repServer haslost its token and cannot process ajoin operation, atoken search is started.
If the search does not succeed, i.e. no token isfound at all, ERSis used. After a predeces-
sor node in the ACK treeisfound with ERS, the new created tokens are handed over to
the token repository service. Consequently, subsequent join operations can be handled by
the token repository service again. The effects of a network partition are similar to arep-
Server failure. A partition may lead to inconsi stent search structure and token information
but at least with ERS it is always possible to join agroup and to deliver new tokensto the
repository service.

Due to these mechanisms the token repository service is able to tolerate any number of

node failures and network partitions. Even if no repServer at all is available, it isalways

ensured that a new node can join the ACK tree.

4 Simulations

We have run simulations with the NS2 Network Simulator [NS2] to compare ERS with
the token repository servicewith regardsto the quality of the created ACK tree, scalability
and round trip delay between leaf nodes and the ACK tree root node.

4.1 Simulation Scenario

Our scenarios consist of different networks with 100 to amost 2000 nodes connected by
duplex links. The networks are generated with Tiers [Tiers]. The bandwidths are in gen-
eral 10Mbps for LANs, 100Mbps for MANs and 1000Mbps for WANSs. The link delays
are chosen randomly from Imsto 3msfor LANS, Imsto 8msfor MANs and from 5msto
19ms for WANSs. Although all results presented in this paper are based on networks gen-
erated with Tiers we have aso used GT-ITM [GT-ITM] to generate flat, stub and hierar-
chical networks. The results between this two network generators differ only dlightly.

We use the distance vector multicast routing protocol (DVMRP) [WPD88] and core based
tree (CBT) [Bal97]. All routers in the network use drop tail queues. Our simulation sce-
nario does not consider error situations, i.e. messages are delivered reliably, nodes do not

fail and the network is not partitioned.



The used token repository service is a complete two bounded tree, i.e. every inner repS-
erver in the tree has two successor repServers. It consists of 8 leaf repServers which re-
aultsin atotal amount of 15 repServers for the whole tree. For minimizing the round trip
delay inthe created ACK treeitiscrucial to form domains consisting of nodes with small
delays between them. Therefore, the simulations to measure the round trip delay are run
with arepository service tree configured by hand, while all other simulations use a non

optimized repository service tree.

We have run simulations with different background traffic conditions. The background
traffic consists of randomly placed senders and receivers of TCP traffic. The traffic of a
sender is exponentially distributed. Although our simulations were run on a Sun Ultra 2
with 296MHz and 1,4GB main memory it was unfortunately not possible to simulate
highly background load with the given network bandwidth. Therefore, we had to decrease
the bandwidths to 100K bps for LANs, 1Mbps for MANs and 10Mbps for WANS to run

the simulations with background traffic.

In the simulations, between 50 and 200 randomly chosen nodes join the ACK tree. All
presented results are based on join operationsthat are evenly distributed in time and space.
We have aso run further simulations with exponential and normal distributions, which

|eads to the same results.

4.2 Simulation Results

In the first experiment, we have examined if the ACK trees built are well-shaped. We as-
sume that the ACK tree is k-bounded by a constant k that is the same for all nodesin the
tree. This means every on-tree node can accept up to k successors. We say an ACK treeis
well-shaped if its height isamost the minimum height of a k-bounded tree with the same
amount of nodes. Well-shaped ACK trees are advantageous because in general the round
trip delay between the root node and the leaf nodesislower dueto lessintermediate nodes.
Also it is more critical if inner nodes fail or leave the tree than if leaf nodes do. Thisis
another advantage of well-shaped ACK trees because they have lessinner nodesand more

leaf nodes and thus the probability that the tree must be reorganized islower.

Our first result is that ERS does not produce well-shaped ACK trees. While varying k in
the range from 2 to 40, the average branching varies only between 2 and 3 with DVMRP



routing and between 2 and 10 with CBT routing. In a simulation with 50 join operations
ina251 nodes network the height of the treesis about 62% to 200% greater with DVMRP
and 100% to 325% with CBT than the minimum height of a k-bounded tree. The token
repository service produces better shaped ACK trees. The average branching varies be-
tween 2 and 7 and the height of the treesis only about 33% to 100% greater than the op-

timum.

In Figure 5, we present the amount of messages sent to build the ACK tree for the two
routing protocols depending on different number of nodes in the network. Note that the
messages sent by ERS are multicast messages, while the token repository service sends
unicast messages.
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Figure 5: Messages sent depending on the network size

The token repository service sends the smallest number of messages and is independent
of the network size. ERS scales not very well since more messages must be sent and the
amount depends heavily on the network size. ERS in combination with CBT routing pro-
duces the worst results. This behavior can be explained with the message dissemination
starting always from the same core node in the network. The ACK tree nodesthat are near
this core node will soon be satisfied with successor nodes and therefore the ERS search
must cover alarge network areato discover ACK tree nodes that are able to accept further
successor nodes. The bends in the curve are aso the effects of the core node since the
amount of messages depends heavily on the place, where the core node is located in the
network and the distribution of the join operations. Our result shows that only the token

repository service scales well with the network size.



Theresultsin Figure 6 show that the amount of messages received from on-tree nodes de-
pends heavily on the timeout parameter of the ERS search algorithm and the background
load of the network. The simulation scenario consists of a network with 251 nodes and

DVMRP routing protocol.
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Figure 6: Messages received depending on the background traffic

The background load is measured as the average link load in the whole network. 10%
background load can mean that each link has aload of 10% of its maximum or that 10%

of the links are at their maximum load level and the remaining 90% have no load at all.

The timeout parameter determines after which time a new search with an increased TTL
Isstarted. We vary the timeout between 0.1 and 2sper TTL hop. Thismeansif the timeout
isset to 1sand the multicast search message hasa TTL of 10 then the searching node waits

10s until anew search is started.

If ERS is used and the background load is high, the amount of received messages rises
exponentially. Thiseffect isthe worsethe smaller the timeout parameter is set. On the oth-
er hand, increasing the timeout parameter is only practical in a small range because this
would increase the time necessary to join the ACK tree. Furthermore, it could be seen in
the chart, that with an increased timeout more messages must be received in the case of
low background traffic. The increased time necessary to join the ACK treeis the reason
for thiseffect. If it takeslonger tojointhe ACK tree, it also takeslonger beforethe joining
node itself is able to accept successor nodes and therefore other joining nodes must pos-
sibly search in alarger scope to find a predecessor node. The use of the token repository

service resultsin the least number of messages that must be processed by the network and



ACK tree nodes. Our result shows that in contrast to ERS, the token repository service

scales very well with background traffic.

We have compared the ACK tree round trip delay between ERS and the token repository
service. Theround trip delay isthe time period between sending a multicast message and
receiving the last aggregated acknowledgment at the ACK tree root node. Our simulation
results show that the token repository service leads to only slightly increased round trip
times compared to ERS with DVMRP. In our simulation runs with different background
loads and different randomly chosen join operations the difference is only about 6%. If
ERS with CBT routing is used, the token repository service achieves even better results
than ERS. The round trip delays with the token repository service are about 10% better
than with ERS.

Our results indicate that ERS depends greatly on the multicast routing protocol, the net-
work size and the background traffic. The scalability of ERS in networks with higher
background load isvery poor. Furthermore, we have shown that ERS leadsto a higher net-
work load and processing power reguirements of the ACK tree nodes the more nodes the
network contain. Although ERS always searches for the closest predecessor our simula-
tions show that the token repository service leadsto round trip delaysinthe ACK treethat
are almost identical to ERS or even lower if a core based multicast routing mechanismis
used.

5 Conclusions

We have presented anew fault tolerant and efficient approach for building multicast ACK
trees called token repository service. The token repository service has been simulated and
its behavior compared to expanding ring search in different situations and with different
parameters. It has been shown that the token repository service scales better than expand-

Ing ring search and that it results in better shaped ACK trees.

We are currently working on improvements for the token repository service. The metrics
we consider so far when choosing a predecessor node is the height of the ACK tree, the
distance from the joining node to the predecessor node and the processing power of the
predecessor. It is possible to extend the token repository service with further metrics such

as the error probability of the predecessor node. To react on changing conditions it may



be reasonable to allow dynamically changes in these values. For example, the processing

power is modeled by the amount of created tokens. If the processing power changes, itis

possible to add more tokens or to delete some tokens if not all of them are aready used.

If we use the error probability as afurther metric, the ACK tree node can report changes

of its error probability, measured by the amount of lost packets for example, to its leaf

repServer, too. With these mechanisms we are confident that the quality of the created

ACK trees can be further improved.
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