I ntegrationskonzepte flir heterogene Anwendungssysteme
bei Daimler Chryder auf Basisinternationaler Standards
(Kurzbeitrag)

Stefan Sarstedt!?, Guinter Sauter?, Jirgen Sellentin'2, Bernhard Mitschang?
e-mail: mitsch@informatik.tu-muenchen.de
{ Stefan.Sarstedt, Guenter.Sauter, Juergen.Sellentin} @DaimlerChrysler.com

DaimlerChrysler! Technische Universitat M tinchen?
Forschung & Technologie Fakultét fir Informatik
Lab. IT fur Engineering (FT3/EK) Forschungs- und Lehreinheit Informatik 111
Abt. Prozef3kette Produktentwicklung - Datenbanksysteme und Wissensbasen -
Postfach 2360, D-89013 UIm Orleansstr. 34, D-81667 Minchen

Kurzfassung: Aufbauend auf den Anforderungen von DaimlerChrysler
und unter Verwendung der Standards STEP und CORBA wird eine
Architektur und Vorgehensweise fur die Integration von Daten und
Funktionen heterogener Anwendungssysteme entwickelt. Die einge-
brachten Systemkonzepte sowie die dadurch zu erwartende Optimierung
des Entwicklungsprozesses werden am Beispiel des Bereiches PKW-
Entwicklung diskutiert.

Schlagworte: Funktionsintegration, API-Integration, Heterogenitét,
STEP, CORBA.

1. Einleitung

Nach wie vor ist heute in den meisten Unternehmen eine heterogene Systemlandschaft
vorzufinden. So werden verschiedenartige Hardware-Komponenten, Netzwerksy-
steme, Betriebssysteme, Datenbanksysteme und Anwendungsprogramme eingesetzt,
um den Produktlebenszyklus vom Design Uiber Konstruktion und Produktion bis zur
Wartung bzw. Archivierung abzudecken. Seit mehreren Jahren sind heterogene Daten-
banken und die Unterstitzung von Interoperabilitdét Schwerpunkt zahlreicher
Forschungsarbeiten. Es wurden Konzepte und Prototypen sog. Foderierter Datenbank-
systeme oder Multidatenbanksysteme entworfen, um Datenbanken mit unterschiedli-
chen Datenmodellen und Schemastrukturierungen integrieren zu kénnen. Auch
kommerzielle Produkte, die man den sog. Datenbank-Gateways oder Datenbank-
Middleware-Produkten zuordnen kann, sind mittlerweile verfigbar [RH98]. Wenn-
gleich noch wichtige Fragestellungen bei der Datenbank-1ntegration offen sind, so sind
doch mittlerweile méachtige Ansétze zur L ésung der essentiellen Probleme auf diesem
Gebiet vorhanden [SL90, BE96, Ki95, HBP94, Sa98, Dad6)].

Ein damit eng verbundenes Problemfeld, das in Zukunft mehr und mehr an Bedeutung
gewinnen wird, ist die Integration sog. Anwendungssysteme. Darunter sind Systeme zu
verstehen, welche das Datenbanksystem und die zugehtrigen Anwendungsprogramme

Ver dffentlicht im Tagungsband der 8. GI-Fachtagung BTW ‘99, Freiburg, Marz 1999

zusammenfassen und nach aulRen hin lediglich eine Programmierschnittstelle, ein sog.
APl (Application Programming Interface), bereitstellen. Eine Datenbankschnittstelle
ist durch dieses Konzept der Kapselung damit nicht mehr verfigbar. Hervorzuhebende
Stellvertreter fir die Kategorie der Anwendungssysteme sind beispielsweise SAP R/3
[SAPO8] oder PDM (Produktdatenmanagement)-Systeme wie Metaphase [SDRCO8]
oder ENOVIAvVPM [ENV98]. Aber nicht nur diese kommerziellen Produkte, die oft
unter der Bezeichnung “ Standardsoftware” zusammengefaldt werden, sind ausschlief3-
lich Uber ein APl zuganglich, sondern haufig auch proprietére, also von den Unter-
nehmen selbst implementi erte Software-L ésungen. Denn sowohl die Uberwachung von
I ntegritétsbedingungen al's auch die Uberwachung der Sicherheit (Autorisierung) wird
meist durch das Anwendungsprogramm und nicht durch das Datenbanksystem unter-
stitzt. Ferner sind konzeptionelle Schemata und damit ausdrucksstarke Bezeichner nur
in seltenen Falen vorhanden. Damit Schemaénderungen nicht die Konsistenz, die
Integritdt und den Schutz der Daten geféhrden, wird nur ein API fir den Zugriff auf die
Daten (und die Funktionalitét) freigegeben.

Bei DaimlerChrysler (DC), Sparte PKW, werden beispiel sweise Daten zu einem Auto
ua in einem Geometrie-Informationssystem (GIS, Verwatung der eigentlichen
Geometrie), in einem Stammdatenverwaltung%ysteml (SDVS) und in einem Doku-
mentverwaltungssystem (DV'S, Verwaltung von 2D-Zei chnungen und sonstigen Doku-
menten) gespeichert. Als Datenbanksysteme werden IMS und DB2 auf MV S-Host und
Oracle auf UNIX eingesetzt. Alle Systeme sind jeweils nur Uber ein API zuganglich.
Deshalb besteht die Notwendigkeit, nicht nur die Datenbank- bzw. Schema-I ntegration,
sondern in Ergénzung dazu auch die Anwendungssystem- bzw. API-Integration zu
unterstutzen.

In diesem Aufsatz werden wir eine Architektur zur API-Integration basierend auf Stan-
dards entwerfen. Dazu beschreiben wir in Kapitel 2 die notwendigen Grundlagen,
namlich die Schema-Architektur von [SL90], die internationale Norm STEP [1S0944]
und den internationalen Standard CORBA [OMG984]. Des weiteren erfolgt dort eine
Abgrenzung zu vorhandenen Integrationsvorschlégen. Der wesentliche Beitrag ist ein
Architekturansatz zur API-Integration, den wir in Kapitel 3 beschreiben. Abschlief3end
fassen wir die Ergebnisse in Kapitel 4 zusammen und geben einen Ausblick auf unser
weiteres VV orgehen.

2. Grundlagen

Dieses Kapitel vermittelt einige Grundlagen fir das Versténdnis unseres I ntegrations-
ansatzes. Dabei wird zunéchst auf die herkbmmliche Architektur der Schemaintegra-
tion eingegangen, dadie Funktionsintegration darauf basiert. Daraufhin folgt eine kurze
Beschreibung der Norm STEP, weil fir einen unternehmensiibergreifenden Verbund
von Systemen eine einheitliche Reprasentation der Daten durch normierte Schemata
notwendig ist. Schliefdlich stellen wir CORBA als einen Mechanismus zur Uberwin-
dung der Plattformheterogenitét vor.

1.) Die direkt einem Teil zugeordneten Daten, wie z.B. die Identifikation, GroRRe, Gewicht etc., werden als
Stammdaten bezeichnet.

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite2von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

2.1 Die Schema-Architektur nach Sheth/Larson

In [SL90] wird ein allgemein anerkanntes und verwendetes Modell fur die Integration
von Daten definiert (siehe Abbildung 1). Ausgehend von Komponentenschemata, die
auf einem einheitlichen Datenmodell basieren und somit von der Heterogenitét der
zugrundeliegenden Datenbanken abstrahieren, wird ein foderiertes Schema gebildet.
Dies ermdglicht globalen Anwendungen einen transparenten Zugriff auf die inte-
grierten Datenbanken.

= \

lobaler
ugriff

einheitliche
Schemastrukturierung

féderiertes Schema

Foderierte
Ebene =
Exportschema] , ., Exportschema | ... %é‘t%%'ﬂ{gggﬁ
J_
R heterogene Datenmodelle &
lokaler [externes Schemal... externes Schemal.. Schemastrukturierungen
Zugriff konzeptionelles Schema konzeptionelles Schemal
internes Schema internes Schema

Abbildung 1: Schema-Architektur Foderierter Datenbanksysteme [SL90]

Arbeiten zur Schemaintegration [SL90, BE96, Ki95, HBP94, Sa98, Dagd6] vernachlés-
sigen jedoch die Integration von Funktionen. Daaber haufig nicht direkt auf die Daten-
banken der Komponentensysteme zugegriffen werden kann, ist ein reiner Schemainte-
grationsansatz nur selten moglich. Viele Arbeiten verwenden deshalb ein (oftmals
proprietéres) objektorientiertes globales Datenmodell mit dessen Hilfe sich auch Funk-
tionen (als Objektmethoden) definieren lassen [GCO90, BNS95, HD92, RS97]. Diese
Methoden werden als sog. Wrapper eingesetzt. Das heil3t, dal3 durch sie zur globalen
Anwendung hin die lokalen Schnittstellen gekapselt und in der Implementierung der
Methoden die vorhandenen Funktionen der Komponentensysteme (wie z.B. die
Berechnung einer Stiickliste) aufgerufen werden. Bei diesen referenzierten Ansétzen
wird keine allgemeine Methodik zur API-Integration, vergleichbar etwa zu [SL90] fur
die Schemaintegration, vorgegeben. Statt dessen werden in den |mplementierungen der
globalen Methoden alle Plattformheterogenitéten (Programmiersprachen, Netzwerk-
protokolle etc.) proprietdr Uberwunden. Weiterhin werden oftmals keine oder nur
wenige Sprachmittel zur Modellierung von Semantik in dem globalen Schema (Vor-
und Nachbedingungen, Abhéngigkeiten zwischen Objekten, Invarianten etc.) zur
Verfuigung gestellt. Eine umfangreiche Spezifikationssprache kann jedoch den Integra-
tionsprozefd erleichtern und zum Versténdnis der System- und Datenabhéngigkeiten
beitragen. Dies ist auch Voraussetzung fir eine mogliche Automatisierung der Siche-

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 3von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

rung globaler Integritatsbedingungen [NW94]. Im Kontext der DC Systeme missen die
Probleme semantischer Heterogenitét (adressiert mit STEP, siehe Kapitel 2.2), und sehr
unterschiedlicher Plattformen, Kommunikationsmechanismen und Programmierumge-
bungen (siehe Kapitel 2.3 lber CORBA) gel 6st werden.

2.2 Dieinternationale Norm STEP

Ziel des 1SO-Standards STEP (Standard for the Exchange of Product Model Data,
[1SO944)) ist die eindeutige Représentation von Produktdaten wahrend des gesamten
Produktlebenszyklus zur Unterstiitzung des Datenaustausches und der Datenintegra-
tion. Bisherige Industriestandards (IGES, VDAFS, u.a. [O1198]) beschrénken sich
hauptséchlich auf den Austausch von Geometriedaten. STEP kann dariberhinaus
flexibel auf weitere Anwendungsgebiete erweitert werden. So sind beispielsweise
schon heute Stiicklisten, Materialeigenschaften, Toleranzen und Arbeitsplanungsinfor-
mationen durch den Standard abgedeckt. Mit Hilfe der ebenfallsim Standard beschrie-
benen Modellierungssprache EXPRESS [1S094b] werden sog. Anwendungsprotokolle
(AP) definiert, welche branchen- bzw. anwendungsspezifische Schemata bereitstellen.
Fir den Automobilbereich ist dies das AP 214 [ISO97]. Ebenfalls in STEP festgelegt
ist das Sandard Data Access Interface (SDAI) [1SO98b], eine programmiersprachen-
unabhangige Zugriffsschnittstelle fir EXPRESS Daten.

Bei DC spielt STEP (insbesondere das AP 214) bereits eine grofe Rolle. Die unterneh-
mensUbergreifenden, einheitlichen Schemata werden zur Unterstiitzung des Datenaus-
tausches eingesetzt, so dal3 sie sich auch als Grundlage zur Schemaintegration anbieten
[Sa98]. Fir eine Anwendungsintegration ist STEP alleine allerdings nicht ausreichend,
daEXPRESS keine M odellierung von Funktionen zul &3t und die technischen Probleme
der Plattformheterogenitét dort nicht adressiert werden. Mit SDAI steht zwar ein API
fur EXPRESS-Daten zur Verfugung, diese ist jedoch eine reine Datenzugriffsschnitt-
stelle und somit fur eine Funktionsintegration nicht geeignet.

2.3 Der internationale Standard CORBA

Die Common Object Request Broker Architecture der Object Management Group
(OMG), genannt CORBA [OMG984d], stellt eine Architektur zur Verfigung, die
Interoperabilitét zwischen verteilten Objekten ermdglichen soll. CORBA-Objekte
kommunizieren miteinander Uber den sog. ORB (Object Request Broker), der im
wesentlichen fUr die Lokation des Serverobjektes und den Aufruf von Methoden unter
Gewdhrleistung von Orts-, Plattform- und Programmiersprachentransparenz zusténdig
ist. Die Definition von Objektschnittstellen erfolgt mittels der Interface Definition
Language (IDL). Fir die eigentliche Implementierung der Objekte definiert der Stan-
dard Abbildungen von IDL auf vorhandene Programmiersprachen (C++, Java, Cobol,
u.a.). Zusatzdienste und -schnittstellen, die fir die Implementierung verteilter Objekte
von Nutzen sein kénnen (wie z.B. Naming, Events und Transactions), werden durch die
CORBA Services [OMG98b] spezifiziert. Des weiteren gibt es hohere Dienste, die sog.
CORBA Facilities, die standardisierte Schnittstellen (z.B. fur Workflow Systeme)
bereitstellen.

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite4 von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

Eine solche Schnittstelle fur PDM-Systemeist der PDM Enabler. Dessen Verwendung
asglobale APl zur Anwendungsintegration scheitert aber vor allem an der mangelnden
Konformitét zum AP 214. Desweiteren sind beim PDM Enabler durch die Verwendung
des CORBA Relationship Service [OMG98b] Effizienzprobleme - insbesondere im
Zusammenhang mit grof3en Produktstrukturen - zu erwarten. Dies resultiert aus der
unverhdltnismaliig grofRen Anzahl von Rollen- und Beziehungsobjekten im Vergleich
zu den in Relation gesetzten Objekten.

3. Architektur zur API-Integration

Die STEP- und CORBA-Standards stellen eine notwendige Basistechnologie fir die
Integration insbesondere von technischen Informationssystemen dar. Wie im vorhe-
rigen Kapitel gezeigt wurde, bieten diese Standards jeweils fiir sich alleine betrachtet
keine vollsténdige Losung fir die API-Integration an. Aus diesem Grund wird in
diesem Kapitel nun eine auf STEP- und CORBA-K onzepten aufbauende Integrations-
architektur vorgestellt.

—_—
=17

_ \
Globaler Foderiertes API =
Zugriff Integrationsschicht Iill!
Lo)) =/
Weiterleitung & Konvertierung von Funktionsaufrufen @ 3
Lokaler
Zugriff
Lokales API Lokales API Lokales API
GIS SDVS DVS
IM DB2 Oracl
MVS - Host MVS - Host UNIX

Abbildung 2: Schematische Architektur integrierter Systeme am
Beispiel PKW-Entwicklung

3.1 Uberblick tiber die Integrationsar chitektur

Ausgehend von den proprietéren Altsystemen bel DC und einem einheitlichen Daten-
schema (STEP AP 214) wurde eine Architektur und ein VVorgehensmodell fur die Inte-
gration von Daten und Funktionen entwickelt. Abbildung 2 zeigt die grundlegende
Integrationsarchitektur mit einigen typischen Systemen von DC, die bereits in der
Einleitung kurz vorgestellt wurden. Den Kern der Integrationsarchitektur bildet das

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 5von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

foderierte API, welches eine vereinheitlichte Daten- und Funktionssicht auf die
Komponentensysteme ermdglicht. Dabei wird fur eine einheitliche Datensicht die
Norm STEP und fir die Uberwindung von Plattformheterogenitét der Standard
CORBA eingesetzt. Das foderierte API steht fir die Programmierung von globalen
Anwendungen (z.B. zur Ansicht von Produktstrukturen/Stiicklisten) zur Verfligung.
Durch Wiederverwendung der Funktionalitét der Komponentensystemeist der Umfang
und Programmieraufwand dieser Anwendungen typischerweise sehr gering (“Thin-
Client"). Dadurch ist es insbesondere moglich, relativ einfach Anpassungen der Ober-
flachen flr unterschiedliche Benutzergruppen zu implementieren.

Die durch [SL90] vorgegebene Architektur zur Schemaintegration wird auf den
Bereich der API-Integration tibertragen, indem wir eine einheitliche Modellierungs-
sprache der Foderation vorschlagen, die nicht mehr auf die Modellierung statischer
Aspekte beschrankt ist, sondern auch Methoden und damit ein API beschreiben kann.
Analog zu der Ebene der Komponentenschemata aus [SL90] fuhren wir eine zusétz-
liche Schicht und damit gleichzeitig eine Abstraktion unterschiedlicher API-Beschrei-
bungssprachen und Programmiersprachen ein. Die korrespondierenden Elemente zu
[SL90] werden im folgenden Abschnitt skizziert.

3.2 Modellierung desfoderierten APIs

Fur die Modellierung des foderierten APIs bietet sich die Verwendung des CORBA-
Standards an, daer bereits zur Uberwindung der Plattformheterogenitét eingesetzt wird.
Deshalb favorisierten wir zunéchst die sog. Component Definition Language (CDL,
siche [OMG98c]). Die CDL ist eine echte Obermenge der IDL und reichert diese um
zusétzliche Sprachmittel zur Beschreibung von Semantik an. Beispielsweise ist es mit
ihrer Hilfe moglich, Regeln (Invarianten, Zustandsiibergange, usw.), Abhangigkeiten
zwischen Objekten sowie Vor- und Nachbedingungen von Objektmethoden zu defi-
nieren. Ein wesentlicher Punkt bei der Entwicklung der CDL und der zugehdrigen
Architektur (BOCA [OMG98c]) war die Entkopplung der Analysephase von der Imple-
mentierung. Durch eine méchtige und einfache Spezifikationssprache sollten die
wesentlichen Merkmale der Geschéftsobjekte (wie z.B. Teile, Personen, Dokumente,
usw.) auf einer hohen Abstraktionsstufe beschrieben werden konnen. Die eigentliche
Implementierung der Objekte erfolgt in IDL (hierzu wurde im OMG-Proposal eine
Abbildung von CDL auf IDL definiert), wodurch eine Abstraktion von verschiedenen
zugrundeliegenden Programmiersprachen erreicht wird. Dies entspricht der Ebene der
Komponentenschematain [SL90].

Die CDL wurde im Rahmen eines Proposals fur "Business Objects’ (Geschéftsobjekte)
in der OMG eingereicht. Derzeit ist aber zu erwarten, dal? die CDL zugunsten einer -
noch zu definierenden - textuellen Reprasentation der ebenfalls durch die OMG stan-
dardisierten Unified Modeling Language (UML, siehe [Oe98]) aufgegeben wird. Dies
bietet uns die Moglichkeit, die Konzepte und Techniken von CDL im praktischen
Einsatz zu evaluieren und Verbesserungsvorschlage in den Standardisierungsprozef3
der textuellen UML einzubringen. Entsprechend erwarten wir, dafd der Wegfall von
CDL unserer Architektur nicht die Grundlage entzieht, sondern die Méglichkeit bietet,
mogliche Schwachstellen von CDL zu eliminieren und ein noch geeigneteres Modell

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 6 von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

zu entwickeln. Des weiteren wirde durch die Verwendung der UML gleichzeitig die
Mdglichkeit einer grafischen Modellierung geboten. Der Vorteil wére ein noch durch-
gangigerer Entwicklungsprozel3 von der Analyse Uber das Design bis hin zur techni-
schen Umsetzung der Daten- und Funktionsintegration.

3.3 Vorgehensmodell fur die Integration

Zur Unterstitzung der Integration wurde ein Vorgehensmodell entwickelt
(Abbildung 3). Basierend auf dem vorhandenen - in EXPRESS definierten - Ausgangs-
datenschema (Schritt 1) wird zunéchst (mittels STEP SDAI/IDL-Mapping [1SO98b])
eine Abbildung auf IDL vorgenommen (Schritt 2). Ausgehend von den lokalen APIs

@

EXPRESS-Schema
(z.B. AP 214)

Generierung der Parameter-Typen
z.B. gemaf SDAI-IDL-Binding
(ISO 10303-26)

Schema
und
Generierungsprozef}
standardisiert

IDL-Beschreibung @
der EXPRESS-Entities

Erweiterung der IDL
um CDL Konstrukte und

Modellierung des globalen APIs

CDL-Beschreibung
des globalen APIs @

Anwendung des CDL-IDL Mappings @
Generierungsprozel}

| IDL-Beschreibung der Schnittstellen | standardisiert

Ubersetzung mittels IDL-Compiler

Lokale APIs St

zu definieren

Abbildung 3: Vorgehensmodell zur API-Integration

werden die generierten IDL-Schnittstellen im Anschlul3 daran um geeignete globale
Funktionen erweitert. Weitere Sprachkonstrukte der CDL kénnen zusétzlich zur
Beschreibung von Semantik genutzt werden - auf diese Weise erfolgt eine klare CDL-
Spezifikation der foderierten Schnittstelle (Schritt 3). Fir die eigentliche Implemen-
tierung erfolgt wiederum eine (standardisierte) Abbildung von CDL nach IDL (Schritt
4). Die Ubersetzung der IDL-Schnittstellen in die entsprechenden Client-Stubs und
Server-Skeletons der Zielsprache (C, COBOL, etc.) erfolgt schliefdlich mittels eines

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 7 von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

IDL-Compilers (Schritt 5). Die Implementierungen der Server-Skeletons kapseln die
lokalen Funktionen und Datenformate der heterogenen Komponentensysteme. Durch
die Verwendung von CORBA as Middleware wird Plattform- und Programmierspra-
chenunabhangigkeit erreicht. Die Schnittstellen kdnnen auf diese Weise unabhéngig
von der Implementierungsplattform (MV'S, UNIX, PC) spezifiziert werden.

Muf3 beim Aufruf von Methoden des verwendeten foderierten APIs Uberwiegend eine
grolRere Anzahl von Objekten als Parameter Ulbergeben werden, so ist es sinnvoll vor
dem letzten Transformationsschritt (Ubersetzung durch den IDL-Compiler) die von
dem in EXPRESS definierten Datenmodell (hier AP 214) abhéangigen IDL-Datenstruk-
turen in generische, vom Schema unabhdngige IDL-Konstrukte zu konvertieren.
Dadurch kénnen die in [SM97] beschriebenen Effizienz-Probleme beim “Data Ship-
ping” in CORBA-Umgebungen vermieden werden. Eine Abbildung von EXPRESS auf
generische IDL-Strukturen wird z.B. in [SM 98] beschrieben.

3.4 Beispiel anhand von STEP AP 214

Zur ndheren Erlauterung des Vorgehensmodells folgt ein kurzes Beispiel. Abbildung 4
zeigt einen Auszug der EXPRESS-Spezifikation des STEP AP 214, der die Grundlage
fUr dieintegrierte Sicht darstellt. Dies entspricht Schritt 1in Abbildung 3. Der Einfach-

ENTITY item ENTITY item version;
id . STRING s
name : STRING END_ENTI TY;
description . STRI NG
associ ated_versions : SET [1:?] OF itemversion;

END_ENTI TY;

Abbildung 4: Auszug aus STEP AP 214

heit halber beschréanken wir uns hier auf die beiden Entitiesitemund i tem versi on,
die ein Tell bzw. dessen Version reprasentieren kdnnen. Jedes Teil besteht aus einer
eindeutigen 1d, einem Namen sowie einer Beschreibung. Des weiteren existiert das
Attribut associ at ed_versi ons, welches die 1l:n-Beziehung zu den zugehérigen
Versionen modelliert (aus Platzgriinden wirdi t em ver si on in den folgenden Schritten
nicht ndher beschrieben). Nach Anwendung des in STEP spezifizierten EXPRESSY
IDL-Mappings (Schritt 2 im Vorgehensmodell) erhdlt man diein Abbildung 5 gezeigte

| NTERFACE i tem {

ATTRI BUTE STRING i d; Il itemid
ATTRI BUTE STRI NG nane; /1 item name
ATTRI BUTE STRI NG descri pti on; /1 itemdescription

/| associated item versions
ATTRI BUTE SEQUENCE<i t em ver si on> associ at ed_ver si ons;

Abbildung 5: Vorlaufige IDL-Beschreibung voni t em

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 8von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

(vorléufige) IDL-Beschreibung des Entities i t em Hierbel félt inshesondere auf, dald
diein [1SO98b] vorgegebene Verwendung von | DL-Sequenzen zur Modellierung von
Beziehungen nur bedingt geeignet ist. Soist esauf diesem Wege generell nicht méglich
Kardinalitatsrestriktionen, Integritatsbedingungen oder inverse Attribute zu spezifi-
Zieren. In Schritt 3 erfolgt schliefdich die Transformation der IDL-Schnittstellen nach
CDL (Abbildung 6) mit entsprechender Spezifikation der globalen Funktionen (in
diesem Fall die Funktion get _I at est _ver si on, welche in gdngigen PDM-Systemen
vorhanden ist und hier global zur Verfiigung gestellt werden soll). Durch Anreicherung

[KEYS={id}] ENTITY item {

[REQUI RED] ATTRI BUTE STRING i d; Il itemid
ATTRI BUTE STRI NG nane; /1 item nane
ATTRI BUTE STRI NG descri pti on; /1 item description

// associated item versions
RELATI ONSHI P associ at ed_versi ons MANY item version;
/1 invariant
APPLY | NVARI ANT part _requires_version {
guard = associ at ed_versions.count > 0;

}
/'l gl obal operations
itemversion get_|atest_version();

Abbildung 6: CDL-Beschreibung vonitem

des Entities um weitere CDL-Sprachkonstrukte kann eine genauere Beschreibung der
foderierten Schnittstelle erreicht werden. Im diesem Fall kann beispielsweise ein
Schlussel (1d) fur i t emangegeben und die Beziehung zu i t em ver si on direkt mittels
des CDL-Relationship-K onstruktes beschrieben werden. Dadas Schl iisselwort MaNy fir
0:n-Beziehungen steht, wird die urspringlich im EXPRESS-Modell definierte
Kardinaitét durch eine zusétzliche Invariante (par t _r equi r es_ver si on) ZUges chert?.
Das flr Schritt 4 benétigte CDL/IDL-Mapping fur die letztendliche Implementierung
der foderierten APl kann in [OMG98d] nachgelesen werden. Im Prinzip werden dabei
hauptsachlich CDL-Entities auf IDL-Interfaces, sowie CDL-Relationships auf einen
Satz von IDL-Methoden (add, r enove, | i st , u.a.) abgebildet. Andere Sprachkonstrukte
der CDL, wie beispielsweise Invarianten und Conditions, werden nicht auf IDL abge-
bildet, weswegen die CDL-Spezifikation immer zur eigentlichen Implementierung der
Schnittstellen vorliegen sollte. Schritt 5 des VVorgehensmodells (Abbildung der IDL-
Konstrukte auf Elemente der jeweiligen Programmiersprache) entspricht dem Aufruf
des zum CORBA-System gehdrenden IDL-Compilers [OMG984].

2.) Eskonnen auch explizit Kardinalitaten beim Rel ationship-Konstrukt angegeben werden. Darauf wurde an
dieser Stelle jedoch bewuf3t verzichtet um das Konzept der Invarianten vorzustellen.

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite9von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

4. Zusammenfassung, Bewertung und Ausblick

In dieser Arbeit haben wir eine Architektur sowie ein VVorgehensmodell vorgestellt, um
die Integration von Daten und Funktionen zu ermoglichen. Die Konzepte wurden
primér anhand der Anforderungen innerhalb von DC entwickelt, sind aufgrund ihrer
allgemein gehaltenen und auf Standards basierenden Struktur jedoch leicht auf andere
Bereiche zu Ubertragen. Mit Ausnahme der Modellierung des globalen (und derzeit
proprietéren), foderierten APIs stiitzen sich alle Eingaben und Transformationsschritte
auf international e Standards (siehe Abbildung 3): STEP definiert das globale Datenmo-
dell (AP 214) sowie die Abbildung auf IDL- bzw. CDL-Schnittstellen, CORBA enthélt
die Sprachen IDL und CDL (bzw. deren Nachfolger, siehe Kapitel 3) sowie die nétigen
Abbildungen auf konkrete Programmiersprachen. Dadurch wird es ermdglicht, Anwen-
dungssysteme zu integrieren, die auf beliebigen Rechnern und Betriebssystemen mit
Hilfe einer beliebigen Programmiersprache erstellt wurden.

Die zu erwartende Ersetzung der Sprache CDL durch eine (noch zu entwickelnde)
textuelle Version der UML bietet uns die Moglichkeit Schwachstellen der CDL aufzu-
zeigen. Diese sollen dann in den weiteren Standardisierungsprozefd der UML einge-
bracht werden, um letztendlich ein noch méchtigeres Konzept zu erhalten. Dafur soll in
einer ersten Stufe ein Prototyp entwickelt werden, der zunéchst die Funktionalitét der
bestehenden Anwendungssysteme global verfiigbar macht. In einem zweiten Schritt
soll dieser dann die Mdglichkeit zur Definition erweiterter Funktionen bieten, die nicht
direkt auf bestende APIs, sondern nur mittels eines “Mappings’ abgebildet werden
konnen.

Von der hier beschriebenen Integrationsarchitektur erwarten wir eine enorme Produk-
tivitdts- und Qualitétssteigerung. Die API-Integration 16st ein durch den Benutzer
gesteuertes Interagieren separater Anwendungssysteme ab. Dadurch wird die Fehleran-
faligkeit hinsichtlich Funktionsaufrufen und Datentibernahmen deutlich reduziert und
durch @l diese Erleichterungen insgesamt die Entwicklungszeit neuer Produkte
verkurzt.

Literatur

BE96 O.A. Bukhres, A K. Elmagarmid (Hrsg.): Object-Oriented Multidatabase Systems - A
Solution for Advanced Applications, Prentice Hall, 1996.

BNS95 E.Bertino, M.Negri, L.Sbattella: An Overview of the Comandos Integration System,
Object-Oriented Multidatabase Systems (O.Bukhres and A.Elmagarmid, eds.),
Prentice-Hall, 1995.

Da%6 P. Dadam: Verteilte Datenbanken und Client/Server-Systeme, Springer Verlag, 1996.

ENV98 Enovia Corp.: ENOVIAVPM PDM Il Solutions, 1998; zu beziehen Uber
http://www.enovia.com/products/html/enoviavpm.html.

GCO90 R. Gagliardi, M. Caneve, G. Oldano: An Operational Approach to the Integration of
Distributed Heterogeneous Environments, Databases: Theory, Design, and
Applications, postconference publication of PARBASE-90, First International
Conference on Databases, Parallel Architectures and their Applications, 1991, ISBN
0-8186-9165-4, S. 110-124

HBP94 A.R. Hurson, M.W. Bright, SH. Pekzad (Hrsg.): Multidatabase Systems. An
Advanced Solution for Global Information Sharing, |EEE Comp. Society Press, 1994.

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 10 von 11
Integrationskonzepte fiir heterogene Anwendungssysteme

HD92 M. Hértig, K. R. Dittrich: An object-oriented integration framework for building
heterogeneous database systems, Proceedings of the IFIP DS-5 Conference on
Semantics in Interoperable Database Systems, Lorne, Australia, S. 33-53, 1992

1SO94a 1SO 10303-1 TC184/SC4: Product Data Representation and Exchange - Part 1:
Overview and Fundamental Principles, International Standard, 1994.

1SO94b 1SO 10303-11 TC184/SC4: Product Data Representation and Exchange - Part 11:
EXPRESS language reference manual, International Standard, 1994.

1ISO98a 1SO 10303-22 TC184/SC4: Product Data Representation and Exchange - Part 22:
Sandard Data Access | nterface, Draft International Standard, 1998.

1SO98b 1SO 10303 TC184/SC4/WG11/N045: Product Data Representation and Exchange -
Part 26: Interface Definition Language Binding to the Standard Data Access
Interface, Draft International Standard, Juni 1998.

1S097 SO 10303 TC184/SC4/WG3/N578 : Product Data Representation and Exchange -
Part 214: Core Data for Automotive Mechanical Design Processes, Working Draft,
Mérz 1997.

Ki95 W. Kim (Hrsg.): Modern Database Systems - The Object Model, Interoperability, and
Beyond, Addison-Wesley, 1995.

NW94 M. Norrie, M. Wunderli et a.: Coordination Approaches for CIM, Proceedings
European Workshop on Integrated Manufacturing Systems Engineering (IMSE),
1994, S. 223-232.

0Oe98 B. Oestereich: Objektorientierte Softwareentwicklung - Analyse und Design mit der
Unified Modeling Language, R. Oldenbourg Verlag, 1998.

Ol1198 Homepage des European Commission's Open Information Interchange (Ol1) service,
http://www?2.echo.lu/oii/en/oii-home.html

OMG98a Object Management Group: The Common Object Request Broker Architecture:
Architecture and Specification, Revision 2.2, http://www.omg.org/corbal
corbiiop.htm, February 1998.

OMG98b Object Management Group: The Common Object Request Broker Architecture:
Common Object Services Specification, http://www.omg.org/corbal/sectrans.htm,
Upd. July 1998.

OMG98c Object Management Group: Business Object Component Architecture (BOCA)
Proposal, Revision 1.1, OMG, 1998; zu beziehen Uber ftp://ftp.omg.org/pub/docs/
bom/98-01-07.pdf

OMG98d Object Management Group: Interoperability Specification Proposal, OMG, 1998; zu
beziehen Uber ftp://ftp.omg.org/pub/docs/bom/98-01-10.pdf

RH98 F.d.F. Rezende, K. Hergulaa The Heterogeneity Problem and Middleware
Technology: Experienceswith and Performance of Database Gateways, VLDB 1998,
S. 146-157.

RS97 Mary Tork Roth, Peter M. Schwarz: Don't Scrap It, Wrap It! A Wrapper Architecture
for Legacy Data Sources, VLDB 1997; S. 266-275.

Sa98 G. Sauter: Interoperabilitét von Datenbanksystemen bei struktureller Heterogenitét,
Dissertation, infix Verlag, 1998.

SAP98 SAPAG: DasR/3 System, 1998; zu beziehen Uiber http://www.sap-ag.de/products/r3/.

SDRC98 SDRC Corp.: Metaphase, 1998; zu beziehen tber http://www.metaphasetech.com/.

Si96 J. Siegel: CORBA: Fundamentals and Programming, Jon Wiley & Sons, 1996.

SL90 A.P. Sheth, JA. Larson: Federated Database Systems for Managing Distributed,
Heter ogeneous, and Autonomous Databases, ACM Computing Surveys 22 (3), 1990,
Seite 183-236.

SM97 J. Sellentin, B. Mitschang: Méglichkeiten und Grenzen des Einsatzes von CORBA in
DB-basierten Client/Server-Anwendungssystemen, in: K. R. Dittrich, A. Geppert:
Datenbanksysteme in Biro, Technik und Wissenschaft, Gl-Fachtagung BTW 97,
Ulm, Mérz 1997, Seite 312-321.

SM98 J. Sellentin, B. Mitschang: Design and Implementation of a CORBA Query-Service
Accessing EXPRESS-based Data, Internal Report, Subject to Further Publication,
1998.

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 11 von 11

Integrationskonzepte fiir heterogene Anwendungssysteme

