
Veröffentlicht im Tagungsband der 8. GI-Fachtagung BTW ‘99, Freiburg, März 1999

Integrationskonzepte für heterogene Anwendungssysteme
bei DaimlerChrysler auf Basis internationaler Standards

(Kurzbeitrag)

Stefan Sarstedt1,2, Günter Sauter1, Jürgen Sellentin1,2, Bernhard Mitschang2

e-mail: mitsch@informatik.tu-muenchen.de
{Stefan.Sarstedt, Guenter.Sauter, Juergen.Sellentin}@DaimlerChrysler.com

DaimlerChrysler1 Technische Universität München2

Forschung & Technologie Fakultät für Informatik
Lab. IT für Engineering (FT3/EK) Forschungs- und Lehreinheit Informatik III

Abt. Prozeßkette Produktentwicklung - Datenbanksysteme und Wissensbasen -
Postfach 2360, D-89013 Ulm Orleansstr. 34, D-81667 München

Kurzfassung: Aufbauend auf den Anforderungen von DaimlerChrysler
und unter Verwendung der Standards STEP und CORBA wird eine
Architektur und Vorgehensweise für die Integration von Daten und
Funktionen heterogener Anwendungssysteme entwickelt. Die einge-
brachten Systemkonzepte sowie die dadurch zu erwartende Optimierung
des Entwicklungsprozesses werden am Beispiel des Bereiches PKW-
Entwicklung diskutiert.

Schlagworte: Funktionsintegration, API-Integration, Heterogenität,
STEP, CORBA.

1. Einleitung

Nach wie vor ist heute in den meisten Unternehmen eine heterogene Systemlandschaft
vorzufinden. So werden verschiedenartige Hardware-Komponenten, Netzwerksy-
steme, Betriebssysteme, Datenbanksysteme und Anwendungsprogramme eingesetzt,
um den Produktlebenszyklus vom Design über Konstruktion und Produktion bis zur
Wartung bzw. Archivierung abzudecken. Seit mehreren Jahren sind heterogene Daten-
banken und die Unterstützung von Interoperabilität Schwerpunkt zahlreicher
Forschungsarbeiten. Es wurden Konzepte und Prototypen sog. Föderierter Datenbank-
systeme oder Multidatenbanksysteme entworfen, um Datenbanken mit unterschiedli-
chen Datenmodellen und Schemastrukturierungen integrieren zu können. Auch
kommerzielle Produkte, die man den sog. Datenbank-Gateways oder Datenbank-
Middleware-Produkten zuordnen kann, sind mittlerweile verfügbar [RH98]. Wenn-
gleich noch wichtige Fragestellungen bei der Datenbank-Integration offen sind, so sind
doch mittlerweile mächtige Ansätze zur Lösung der essentiellen Probleme auf diesem
Gebiet vorhanden [SL90, BE96, Ki95, HBP94, Sa98, Da96].

Ein damit eng verbundenes Problemfeld, das in Zukunft mehr und mehr an Bedeutung
gewinnen wird, ist die Integration sog. Anwendungssysteme. Darunter sind Systeme zu
verstehen, welche das Datenbanksystem und die zugehörigen Anwendungsprogramme



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 2 von 11
Integrationskonzepte für heterogene Anwendungssysteme

zusammenfassen und nach außen hin lediglich eine Programmierschnittstelle, ein sog.
API (Application Programming Interface), bereitstellen. Eine Datenbankschnittstelle
ist durch dieses Konzept der Kapselung damit nicht mehr verfügbar. Hervorzuhebende
Stellvertreter für die Kategorie der Anwendungssysteme sind beispielsweise SAP R/3
[SAP98] oder PDM (Produktdatenmanagement)-Systeme wie Metaphase [SDRC98]
oder ENOVIAVPM [ENV98]. Aber nicht nur diese kommerziellen Produkte, die oft
unter der Bezeichnung “Standardsoftware” zusammengefaßt werden, sind ausschließ-
lich über ein API zugänglich, sondern häufig auch proprietäre, also von den Unter-
nehmen selbst implementierte Software-Lösungen. Denn sowohl die Überwachung von
Integritätsbedingungen als auch die Überwachung der Sicherheit (Autorisierung) wird
meist durch das Anwendungsprogramm und nicht durch das Datenbanksystem unter-
stützt. Ferner sind konzeptionelle Schemata und damit ausdrucksstarke Bezeichner nur
in seltenen Fällen vorhanden. Damit Schemaänderungen nicht die Konsistenz, die
Integrität und den Schutz der Daten gefährden, wird nur ein API für den Zugriff auf die
Daten (und die Funktionalität) freigegeben.

Bei DaimlerChrysler (DC), Sparte PKW, werden beispielsweise Daten zu einem Auto
u.a. in einem Geometrie-Informationssystem (GIS, Verwaltung der eigentlichen
Geometrie), in einem Stammdatenverwaltungssystem1 (SDVS) und in einem Doku-
mentverwaltungssystem (DVS, Verwaltung von 2D-Zeichnungen und sonstigen Doku-
menten) gespeichert. Als Datenbanksysteme werden IMS und DB2 auf MVS-Host und
Oracle auf UNIX eingesetzt. Alle Systeme sind jeweils nur über ein API zugänglich.
Deshalb besteht die Notwendigkeit, nicht nur die Datenbank- bzw. Schema-Integration,
sondern in Ergänzung dazu auch die Anwendungssystem- bzw. API-Integration zu
unterstützen.

In diesem Aufsatz werden wir eine Architektur zur API-Integration basierend auf Stan-
dards entwerfen. Dazu beschreiben wir in Kapitel 2 die notwendigen Grundlagen,
nämlich die Schema-Architektur von [SL90], die internationale Norm STEP [ISO94a]
und den internationalen Standard CORBA [OMG98a]. Des weiteren erfolgt dort eine
Abgrenzung zu vorhandenen Integrationsvorschlägen. Der wesentliche Beitrag ist ein
Architekturansatz zur API-Integration, den wir in Kapitel 3 beschreiben. Abschließend
fassen wir die Ergebnisse in Kapitel 4 zusammen und geben einen Ausblick auf unser
weiteres Vorgehen.

2. Grundlagen

Dieses Kapitel vermittelt einige Grundlagen für das Verständnis unseres Integrations-
ansatzes. Dabei wird zunächst auf die herkömmliche Architektur der Schemaintegra-
tion eingegangen, da die Funktionsintegration darauf basiert. Daraufhin folgt eine kurze
Beschreibung der Norm STEP, weil für einen unternehmensübergreifenden Verbund
von Systemen eine einheitliche Repräsentation der Daten durch normierte Schemata
notwendig ist. Schließlich stellen wir CORBA als einen Mechanismus zur Überwin-
dung der Plattformheterogenität vor.

1.) Die direkt einem Teil zugeordneten Daten, wie z.B. die Identifikation, Größe, Gewicht etc., werden als
Stammdaten bezeichnet.



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 3 von 11
Integrationskonzepte für heterogene Anwendungssysteme

2.1 Die Schema-Architektur nach Sheth/Larson

In [SL90] wird ein allgemein anerkanntes und verwendetes Modell für die Integration
von Daten definiert (siehe Abbildung 1). Ausgehend von Komponentenschemata, die
auf einem einheitlichen Datenmodell basieren und somit von der Heterogenität der
zugrundeliegenden Datenbanken abstrahieren, wird ein föderiertes Schema gebildet.
Dies ermöglicht globalen Anwendungen einen transparenten Zugriff auf die inte-
grierten Datenbanken.

Arbeiten zur Schemaintegration [SL90, BE96, Ki95, HBP94, Sa98, Da96] vernachläs-
sigen jedoch die Integration von Funktionen. Da aber häufig nicht direkt auf die Daten-
banken der Komponentensysteme zugegriffen werden kann, ist ein reiner Schemainte-
grationsansatz nur selten möglich. Viele Arbeiten verwenden deshalb ein (oftmals
proprietäres) objektorientiertes globales Datenmodell mit dessen Hilfe sich auch Funk-
tionen (als Objektmethoden) definieren lassen [GCO90, BNS95, HD92, RS97]. Diese
Methoden werden als sog. Wrapper eingesetzt. Das heißt, daß durch sie zur globalen
Anwendung hin die lokalen Schnittstellen gekapselt und in der Implementierung der
Methoden die vorhandenen Funktionen der Komponentensysteme (wie z.B. die
Berechnung einer Stückliste) aufgerufen werden. Bei diesen referenzierten Ansätzen
wird keine allgemeine Methodik zur API-Integration, vergleichbar etwa zu [SL90] für
die Schemaintegration, vorgegeben. Statt dessen werden in den Implementierungen der
globalen Methoden alle Plattformheterogenitäten (Programmiersprachen, Netzwerk-
protokolle etc.) proprietär überwunden. Weiterhin werden oftmals keine oder nur
wenige Sprachmittel zur Modellierung von Semantik in dem globalen Schema (Vor-
und Nachbedingungen, Abhängigkeiten zwischen Objekten, Invarianten etc.) zur
Verfügung gestellt. Eine umfangreiche Spezifikationssprache kann jedoch den Integra-
tionsprozeß erleichtern und zum Verständnis der System- und Datenabhängigkeiten
beitragen. Dies ist auch Voraussetzung für eine mögliche Automatisierung der Siche-

DBn

externes Schema

internes Schema

konzeptionelles Schema

... heterogene Datenmodelle &
Schemastrukturierungen

DB1

lokaler
Zugriff

Komponentenschema

externes Schema

...

externes Schema

internes Schema

konzeptionelles Schema
...

Komponentenschema

...
...

Datenmodell
einheitliches

globaler
Zugriff

...

Schemastrukturierung
einheitliche

föderiertes Schema
Föderierte
Ebene

Abbildung 1: Schema-Architektur Föderierter Datenbanksysteme [SL90]

ExportschemaExportschema



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 4 von 11
Integrationskonzepte für heterogene Anwendungssysteme

rung globaler Integritätsbedingungen [NW94]. Im Kontext der DC Systeme müssen die
Probleme semantischer Heterogenität (adressiert mit STEP, siehe Kapitel 2.2), und sehr
unterschiedlicher Plattformen, Kommunikationsmechanismen und Programmierumge-
bungen (siehe Kapitel 2.3 über CORBA) gelöst werden.

2.2 Die internationale Norm STEP

Ziel des ISO-Standards STEP (Standard for the Exchange of Product Model Data,
[ISO94a]) ist die eindeutige Repräsentation von Produktdaten während des gesamten
Produktlebenszyklus zur Unterstützung des Datenaustausches und der Datenintegra-
tion. Bisherige Industriestandards (IGES, VDAFS, u.a. [OII98]) beschränken sich
hauptsächlich auf den Austausch von Geometriedaten. STEP kann darüberhinaus
flexibel auf weitere Anwendungsgebiete erweitert werden. So sind beispielsweise
schon heute Stücklisten, Materialeigenschaften, Toleranzen und Arbeitsplanungsinfor-
mationen durch den Standard abgedeckt. Mit Hilfe der ebenfalls im Standard beschrie-
benen Modellierungssprache EXPRESS [ISO94b] werden sog. Anwendungsprotokolle
(AP) definiert, welche branchen- bzw. anwendungsspezifische Schemata bereitstellen.
Für den Automobilbereich ist dies das AP 214 [ISO97]. Ebenfalls in STEP festgelegt
ist das Standard Data Access Interface (SDAI) [ISO98b], eine programmiersprachen-
unabhängige Zugriffsschnittstelle für EXPRESS Daten.

Bei DC spielt STEP (insbesondere das AP 214) bereits eine große Rolle. Die unterneh-
mensübergreifenden, einheitlichen Schemata werden zur Unterstützung des Datenaus-
tausches eingesetzt, so daß sie sich auch als Grundlage zur Schemaintegration anbieten
[Sa98]. Für eine Anwendungsintegration ist STEP alleine allerdings nicht ausreichend,
da EXPRESS keine Modellierung von Funktionen zuläßt und die technischen Probleme
der Plattformheterogenität dort nicht adressiert werden. Mit SDAI steht zwar ein API
für EXPRESS-Daten zur Verfügung, diese ist jedoch eine reine Datenzugriffsschnitt-
stelle und somit für eine Funktionsintegration nicht geeignet.

2.3 Der internationale Standard CORBA

Die Common Object Request Broker Architecture der Object Management Group
(OMG), genannt CORBA [OMG98a], stellt eine Architektur zur Verfügung, die
Interoperabilität zwischen verteilten Objekten ermöglichen soll. CORBA-Objekte
kommunizieren miteinander über den sog. ORB (Object Request Broker), der im
wesentlichen für die Lokation des Serverobjektes und den Aufruf von Methoden unter
Gewährleistung von Orts-, Plattform- und Programmiersprachentransparenz zuständig
ist. Die Definition von Objektschnittstellen erfolgt mittels der Interface Definition
Language (IDL). Für die eigentliche Implementierung der Objekte definiert der Stan-
dard Abbildungen von IDL auf vorhandene Programmiersprachen (C++, Java, Cobol,
u.a.). Zusatzdienste und -schnittstellen, die für die Implementierung verteilter Objekte
von Nutzen sein können (wie z.B. Naming, Events und Transactions), werden durch die
CORBA Services [OMG98b] spezifiziert. Des weiteren gibt es höhere Dienste, die sog.
CORBA Facilities, die standardisierte Schnittstellen (z.B. für Workflow Systeme)
bereitstellen.



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 5 von 11
Integrationskonzepte für heterogene Anwendungssysteme

Eine solche Schnittstelle für PDM-Systeme ist der PDM Enabler. Dessen Verwendung
als globale API zur Anwendungsintegration scheitert aber vor allem an der mangelnden
Konformität zum AP 214. Des weiteren sind beim PDM Enabler durch die Verwendung
des CORBA Relationship Service [OMG98b] Effizienzprobleme - insbesondere im
Zusammenhang mit großen Produktstrukturen - zu erwarten. Dies resultiert aus der
unverhältnismäßig großen Anzahl von Rollen- und Beziehungsobjekten im Vergleich
zu den in Relation gesetzten Objekten.

3. Architektur zur API-Integration

Die STEP- und CORBA-Standards stellen eine notwendige Basistechnologie für die
Integration insbesondere von technischen Informationssystemen dar. Wie im vorhe-
rigen Kapitel gezeigt wurde, bieten diese Standards jeweils für sich alleine betrachtet
keine vollständige Lösung für die API-Integration an. Aus diesem Grund wird in
diesem Kapitel nun eine auf STEP- und CORBA-Konzepten aufbauende Integrations-
architektur vorgestellt.

3.1 Überblick über die Integrationsarchitektur

Ausgehend von den proprietären Altsystemen bei DC und einem einheitlichen Daten-
schema (STEP AP 214) wurde eine Architektur und ein Vorgehensmodell für die Inte-
gration von Daten und Funktionen entwickelt. Abbildung 2 zeigt die grundlegende
Integrationsarchitektur mit einigen typischen Systemen von DC, die bereits in der
Einleitung kurz vorgestellt wurden. Den Kern der Integrationsarchitektur bildet das

GIS SDVS DVS

Lokales APILokales API Lokales API

Oracle
Datenbank

IMS
Datenbank

DB2
Datenbank

MVS - Host MVS - Host UNIX

Integrationsschicht
Föderiertes APIGlobaler

Zugriff

Lokaler
Zugriff

Abbildung 2: Schematische Architektur integrierter Systeme am
Beispiel PKW-Entwicklung

Weiterleitung & Konvertierung von Funktionsaufrufen



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 6 von 11
Integrationskonzepte für heterogene Anwendungssysteme

föderierte API, welches eine vereinheitlichte Daten- und Funktionssicht auf die
Komponentensysteme ermöglicht. Dabei wird für eine einheitliche Datensicht die
Norm STEP und für die Überwindung von Plattformheterogenität der Standard
CORBA eingesetzt. Das föderierte API steht für die Programmierung von globalen
Anwendungen (z.B. zur Ansicht von Produktstrukturen/Stücklisten) zur Verfügung.
Durch Wiederverwendung der Funktionalität der Komponentensysteme ist der Umfang
und Programmieraufwand dieser Anwendungen typischerweise sehr gering ("Thin-
Client"). Dadurch ist es insbesondere möglich, relativ einfach Anpassungen der Ober-
flächen für unterschiedliche Benutzergruppen zu implementieren.

Die durch [SL90] vorgegebene Architektur zur Schemaintegration wird auf den
Bereich der API-Integration übertragen, indem wir eine einheitliche Modellierungs-
sprache der Föderation vorschlagen, die nicht mehr auf die Modellierung statischer
Aspekte beschränkt ist, sondern auch Methoden und damit ein API beschreiben kann.
Analog zu der Ebene der Komponentenschemata aus [SL90] führen wir eine zusätz-
liche Schicht und damit gleichzeitig eine Abstraktion unterschiedlicher API-Beschrei-
bungssprachen und Programmiersprachen ein. Die korrespondierenden Elemente zu
[SL90] werden im folgenden Abschnitt skizziert.

3.2 Modellierung des föderierten APIs

Für die Modellierung des föderierten APIs bietet sich die Verwendung des CORBA-
Standards an, da er bereits zur Überwindung der Plattformheterogenität eingesetzt wird.
Deshalb favorisierten wir zunächst die sog. Component Definition Language (CDL,
siehe [OMG98c]). Die CDL ist eine echte Obermenge der IDL und reichert diese um
zusätzliche Sprachmittel zur Beschreibung von Semantik an. Beispielsweise ist es mit
ihrer Hilfe möglich, Regeln (Invarianten, Zustandsübergänge, usw.), Abhängigkeiten
zwischen Objekten sowie Vor- und Nachbedingungen von Objektmethoden zu defi-
nieren. Ein wesentlicher Punkt bei der Entwicklung der CDL und der zugehörigen
Architektur (BOCA [OMG98c]) war die Entkopplung der Analysephase von der Imple-
mentierung. Durch eine mächtige und einfache Spezifikationssprache sollten die
wesentlichen Merkmale der Geschäftsobjekte (wie z.B. Teile, Personen, Dokumente,
usw.) auf einer hohen Abstraktionsstufe beschrieben werden können. Die eigentliche
Implementierung der Objekte erfolgt in IDL (hierzu wurde im OMG-Proposal eine
Abbildung von CDL auf IDL definiert), wodurch eine Abstraktion von verschiedenen
zugrundeliegenden Programmiersprachen erreicht wird. Dies entspricht der Ebene der
Komponentenschemata in [SL90].

Die CDL wurde im Rahmen eines Proposals für "Business Objects" (Geschäftsobjekte)
in der OMG eingereicht. Derzeit ist aber zu erwarten, daß die CDL zugunsten einer -
noch zu definierenden - textuellen Repräsentation der ebenfalls durch die OMG stan-
dardisierten Unified Modeling Language (UML, siehe [Oe98]) aufgegeben wird. Dies
bietet uns die Möglichkeit, die Konzepte und Techniken von CDL im praktischen
Einsatz zu evaluieren und Verbesserungsvorschläge in den Standardisierungsprozeß
der textuellen UML einzubringen. Entsprechend erwarten wir, daß der Wegfall von
CDL unserer Architektur nicht die Grundlage entzieht, sondern die Möglichkeit bietet,
mögliche Schwachstellen von CDL zu eliminieren und ein noch geeigneteres Modell



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 7 von 11
Integrationskonzepte für heterogene Anwendungssysteme

zu entwickeln. Des weiteren würde durch die Verwendung der UML gleichzeitig die
Möglichkeit einer grafischen Modellierung geboten. Der Vorteil wäre ein noch durch-
gängigerer Entwicklungsprozeß von der Analyse über das Design bis hin zur techni-
schen Umsetzung der Daten- und Funktionsintegration.

3.3 Vorgehensmodell für die Integration

Zur Unterstützung der Integration wurde ein Vorgehensmodell entwickelt
(Abbildung 3). Basierend auf dem vorhandenen - in EXPRESS definierten - Ausgangs-
datenschema (Schritt 1) wird zunächst (mittels STEP SDAI/IDL-Mapping [ISO98b])
eine Abbildung auf IDL vorgenommen (Schritt 2). Ausgehend von den lokalen APIs

werden die generierten IDL-Schnittstellen im Anschluß daran um geeignete globale
Funktionen erweitert. Weitere Sprachkonstrukte der CDL können zusätzlich zur
Beschreibung von Semantik genutzt werden - auf diese Weise erfolgt eine klare CDL-
Spezifikation der föderierten Schnittstelle (Schritt 3). Für die eigentliche Implemen-
tierung erfolgt wiederum eine (standardisierte) Abbildung von CDL nach IDL (Schritt
4). Die Übersetzung der IDL-Schnittstellen in die entsprechenden Client-Stubs und
Server-Skeletons der Zielsprache (C, COBOL, etc.) erfolgt schließlich mittels eines

.
Generierungsprozeß

standardisiert

zu definieren

Schema
und

Generierungsprozeß
standardisiert

Abbildung 3: Vorgehensmodell zur API-Integration

EXPRESS-Schema
(z.B. AP 214)

Generierung der Parameter-Typen
z.B. gemäß SDAI-IDL-Binding

IDL-Beschreibung
der EXPRESS-Entities

CDL-Beschreibung
des globalen APIs

IDL-Beschreibung der Schnittstellen

(ISO 10303-26)

Übersetzung mittels IDL-Compiler

Server-Skeletons Client-Stubs

Anwendung des CDL-IDL Mappings

Lokale APIs
Modellierung des globalen APIs

Erweiterung der IDL
um CDL Konstrukte und

1

2

3

4

5



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 8 von 11
Integrationskonzepte für heterogene Anwendungssysteme

IDL-Compilers (Schritt 5). Die Implementierungen der Server-Skeletons kapseln die
lokalen Funktionen und Datenformate der heterogenen Komponentensysteme. Durch
die Verwendung von CORBA als Middleware wird Plattform- und Programmierspra-
chenunabhängigkeit erreicht. Die Schnittstellen können auf diese Weise unabhängig
von der Implementierungsplattform (MVS, UNIX, PC) spezifiziert werden.

Muß beim Aufruf von Methoden des verwendeten föderierten APIs überwiegend eine
größere Anzahl von Objekten als Parameter übergeben werden, so ist es sinnvoll vor
dem letzten Transformationsschritt (Übersetzung durch den IDL-Compiler) die von
dem in EXPRESS definierten Datenmodell (hier AP 214) abhängigen IDL-Datenstruk-
turen in generische, vom Schema unabhängige IDL-Konstrukte zu konvertieren.
Dadurch können die in [SM97] beschriebenen Effizienz-Probleme beim “Data Ship-
ping” in CORBA-Umgebungen vermieden werden. Eine Abbildung von EXPRESS auf
generische IDL-Strukturen wird z.B. in [SM98] beschrieben.

3.4 Beispiel anhand von STEP AP 214

Zur näheren Erläuterung des Vorgehensmodells folgt ein kurzes Beispiel. Abbildung 4
zeigt einen Auszug der EXPRESS-Spezifikation des STEP AP 214, der die Grundlage
für die integrierte Sicht darstellt. Dies entspricht Schritt 1 in Abbildung 3. Der Einfach-

heit halber beschränken wir uns hier auf die beiden Entities item und item_version,
die ein Teil bzw. dessen Version repräsentieren können. Jedes Teil besteht aus einer
eindeutigen Id, einem Namen sowie einer Beschreibung. Des weiteren existiert das
Attribut associated_versions, welches die 1:n-Beziehung zu den zugehörigen
Versionen modelliert (aus Platzgründen wird item_version in den folgenden Schritten
nicht näher beschrieben). Nach Anwendung des in STEP spezifizierten EXPRESS/
IDL-Mappings (Schritt 2 im Vorgehensmodell) erhält man die in Abbildung 5 gezeigte

ENTITY item;

id : STRING;

name : STRING;

description : STRING;

associated_versions : SET [1:?] OF item_version;

END_ENTITY;

Abbildung 4: Auszug aus STEP AP 214

ENTITY item_version;

 ...

END_ENTITY;

INTERFACE item {

ATTRIBUTE STRING id; // item id

ATTRIBUTE STRING name; // item name

ATTRIBUTE STRING description; // item description

// associated item versions

ATTRIBUTE SEQUENCE<item_version> associated_versions;

}

Abbildung 5: Vorläufige IDL-Beschreibung von item



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 9 von 11
Integrationskonzepte für heterogene Anwendungssysteme

(vorläufige) IDL-Beschreibung des Entities item. Hierbei fällt insbesondere auf, daß
die in [ISO98b] vorgegebene Verwendung von IDL-Sequenzen zur Modellierung von
Beziehungen nur bedingt geeignet ist. So ist es auf diesem Wege generell nicht möglich
Kardinalitätsrestriktionen, Integritätsbedingungen oder inverse Attribute zu spezifi-
zieren. In Schritt 3 erfolgt schließlich die Transformation der IDL-Schnittstellen nach
CDL (Abbildung 6) mit entsprechender Spezifikation der globalen Funktionen (in
diesem Fall die Funktion get_latest_version, welche in gängigen PDM-Systemen
vorhanden ist und hier global zur Verfügung gestellt werden soll). Durch Anreicherung

des Entities um weitere CDL-Sprachkonstrukte kann eine genauere Beschreibung der
föderierten Schnittstelle erreicht werden. Im diesem Fall kann beispielsweise ein
Schlüssel (Id) für item angegeben und die Beziehung zu item_version direkt mittels
des CDL-Relationship-Konstruktes beschrieben werden. Da das Schlüsselwort MANY für
0:n-Beziehungen steht, wird die ursprünglich im EXPRESS-Modell definierte
Kardinalität durch eine zusätzliche Invariante (part_requires_version) zugesichert2.
Das für Schritt 4 benötigte CDL/IDL-Mapping für die letztendliche Implementierung
der föderierten API kann in [OMG98d] nachgelesen werden. Im Prinzip werden dabei
hauptsächlich CDL-Entities auf IDL-Interfaces, sowie CDL-Relationships auf einen
Satz von IDL-Methoden (add, remove, list, u.a.) abgebildet. Andere Sprachkonstrukte
der CDL, wie beispielsweise Invarianten und Conditions, werden nicht auf IDL abge-
bildet, weswegen die CDL-Spezifikation immer zur eigentlichen Implementierung der
Schnittstellen vorliegen sollte. Schritt 5 des Vorgehensmodells (Abbildung der IDL-
Konstrukte auf Elemente der jeweiligen Programmiersprache) entspricht dem Aufruf
des zum CORBA-System gehörenden IDL-Compilers [OMG98a].

2.) Es können auch explizit Kardinalitäten beim Relationship-Konstrukt angegeben werden. Darauf wurde an
dieser Stelle jedoch bewußt verzichtet um das Konzept der Invarianten vorzustellen.

[KEYS={id}] ENTITY item {

[REQUIRED] ATTRIBUTE STRING id; // item id

ATTRIBUTE STRING name; // item name

ATTRIBUTE STRING description; // item description

// associated item versions

RELATIONSHIP associated_versions MANY item_version;

// invariant

APPLY INVARIANT part_requires_version {

guard = associated_versions.count > 0;

}

// global operations

item_version get_latest_version();

...

}

Abbildung 6: CDL-Beschreibung von item



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 10 von 11
Integrationskonzepte für heterogene Anwendungssysteme

4. Zusammenfassung, Bewertung und Ausblick

In dieser Arbeit haben wir eine Architektur sowie ein Vorgehensmodell vorgestellt, um
die Integration von Daten und Funktionen zu ermöglichen. Die Konzepte wurden
primär anhand der Anforderungen innerhalb von DC entwickelt, sind aufgrund ihrer
allgemein gehaltenen und auf Standards basierenden Struktur jedoch leicht auf andere
Bereiche zu übertragen. Mit Ausnahme der Modellierung des globalen (und derzeit
proprietären), föderierten APIs stützen sich alle Eingaben und Transformationsschritte
auf internationale Standards (siehe Abbildung 3): STEP definiert das globale Datenmo-
dell (AP 214) sowie die Abbildung auf IDL- bzw. CDL-Schnittstellen, CORBA enthält
die Sprachen IDL und CDL (bzw. deren Nachfolger, siehe Kapitel 3) sowie die nötigen
Abbildungen auf konkrete Programmiersprachen. Dadurch wird es ermöglicht, Anwen-
dungssysteme zu integrieren, die auf beliebigen Rechnern und Betriebssystemen mit
Hilfe einer beliebigen Programmiersprache erstellt wurden.

Die zu erwartende Ersetzung der Sprache CDL durch eine (noch zu entwickelnde)
textuelle Version der UML bietet uns die Möglichkeit Schwachstellen der CDL aufzu-
zeigen. Diese sollen dann in den weiteren Standardisierungsprozeß der UML einge-
bracht werden, um letztendlich ein noch mächtigeres Konzept zu erhalten. Dafür soll in
einer ersten Stufe ein Prototyp entwickelt werden, der zunächst die Funktionalität der
bestehenden Anwendungssysteme global verfügbar macht. In einem zweiten Schritt
soll dieser dann die Möglichkeit zur Definition erweiterter Funktionen bieten, die nicht
direkt auf bestende APIs, sondern nur mittels eines “Mappings” abgebildet werden
können.

Von der hier beschriebenen Integrationsarchitektur erwarten wir eine enorme Produk-
tivitäts- und Qualitätssteigerung. Die API-Integration löst ein durch den Benutzer
gesteuertes Interagieren separater Anwendungssysteme ab. Dadurch wird die Fehleran-
fälligkeit hinsichtlich Funktionsaufrufen und Datenübernahmen deutlich reduziert und
durch all diese Erleichterungen insgesamt die Entwicklungszeit neuer Produkte
verkürzt.

Literatur

BE96 O.A. Bukhres, A.K. Elmagarmid (Hrsg.): Object-Oriented Multidatabase Systems - A
Solution for Advanced Applications, Prentice Hall, 1996.

BNS95 E.Bertino, M.Negri, L.Sbattella: An Overview of the Comandos Integration System,
Object-Oriented Multidatabase Systems (O.Bukhres and A.Elmagarmid, eds.),
Prentice-Hall, 1995.

Da96 P. Dadam: Verteilte Datenbanken und Client/Server-Systeme, Springer Verlag, 1996.
ENV98 Enovia Corp.: ENOVIAVPM PDM II Solutions, 1998; zu beziehen über

http://www.enovia.com/products/html/enoviavpm.html.
GCO90 R. Gagliardi, M. Caneve, G. Oldano: An Operational Approach to the Integration of

Distributed Heterogeneous Environments, Databases: Theory, Design, and
Applications, postconference publication of PARBASE-90, First International
Conference on Databases, Parallel Architectures and their Applications, 1991, ISBN
0-8186-9165-4, S. 110-124

HBP94 A.R. Hurson, M.W. Bright, S.H. Pakzad (Hrsg.): Multidatabase Systems: An
Advanced Solution for Global Information Sharing, IEEE Comp. Society Press, 1994.



St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Seite 11 von 11
Integrationskonzepte für heterogene Anwendungssysteme

HD92 M. Härtig, K. R. Dittrich: An object-oriented integration framework for building
heterogeneous database systems, Proceedings of the IFIP DS-5 Conference on
Semantics in Interoperable Database Systems, Lorne, Australia, S. 33-53, 1992

ISO94a ISO 10303-1 TC184/SC4: Product Data Representation and Exchange - Part 1:
Overview and Fundamental Principles, International Standard, 1994.

ISO94b ISO 10303-11 TC184/SC4: Product Data Representation and Exchange - Part 11:
EXPRESS language reference manual, International Standard, 1994.

ISO98a ISO 10303-22 TC184/SC4: Product Data Representation and Exchange - Part 22:
Standard Data Access Interface, Draft International Standard, 1998.

ISO98b ISO 10303 TC184/SC4/WG11/N045: Product Data Representation and Exchange -
Part 26: Interface Definition Language Binding to the Standard Data Access
Interface, Draft International Standard, Juni 1998.

ISO97 ISO 10303 TC184/SC4/WG3/N578 : Product Data Representation and Exchange -
Part 214: Core Data for Automotive Mechanical Design Processes, Working Draft,
März 1997.

Ki95 W. Kim (Hrsg.): Modern Database Systems - The Object Model, Interoperability, and
Beyond, Addison-Wesley, 1995.

NW94 M. Norrie, M. Wunderli et al.: Coordination Approaches for CIM, Proceedings
European Workshop on Integrated Manufacturing Systems Engineering (IMSE),
1994, S. 223-232.

Oe98 B. Oestereich: Objektorientierte Softwareentwicklung - Analyse und Design mit der
Unified Modeling Language, R. Oldenbourg Verlag, 1998.

OII98 Homepage des European Commission's Open Information Interchange (OII) service,
http://www2.echo.lu/oii/en/oii-home.html

OMG98a Object Management Group: The Common Object Request Broker Architecture:
Architecture and Specification, Revision 2.2, http://www.omg.org/corba/
corbiiop.htm, February 1998.

OMG98b Object Management Group: The Common Object Request Broker Architecture:
Common Object Services Specification, http://www.omg.org/corba/sectrans.htm,
Upd. July 1998.

OMG98c Object Management Group: Business Object Component Architecture (BOCA)
Proposal, Revision 1.1, OMG, 1998; zu beziehen über ftp://ftp.omg.org/pub/docs/
bom/98-01-07.pdf

OMG98d Object Management Group: Interoperability Specification Proposal, OMG, 1998; zu
beziehen über ftp://ftp.omg.org/pub/docs/bom/98-01-10.pdf

RH98 F.d.F. Rezende, K. Hergula: The Heterogeneity Problem and Middleware
Technology: Experiences with and Performance of Database Gateways, VLDB 1998,
S. 146-157.

RS97 Mary Tork Roth, Peter M. Schwarz: Don't Scrap It, Wrap It! A Wrapper Architecture
for Legacy Data Sources, VLDB 1997; S. 266-275.

Sa98 G. Sauter: Interoperabilität von Datenbanksystemen bei struktureller Heterogenität,
Dissertation, infix Verlag, 1998.

SAP98 SAP AG: Das R/3 System, 1998; zu beziehen über http://www.sap-ag.de/products/r3/.
SDRC98 SDRC Corp.: Metaphase, 1998; zu beziehen über http://www.metaphasetech.com/.
Si96 J. Siegel: CORBA: Fundamentals and Programming, Jon Wiley & Sons, 1996.
SL90 A.P. Sheth, J.A. Larson: Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases, ACM Computing Surveys 22 (3), 1990,
Seite 183-236.

SM97 J. Sellentin, B. Mitschang: Möglichkeiten und Grenzen des Einsatzes von CORBA in
DB-basierten Client/Server-Anwendungssystemen, in: K. R. Dittrich, A. Geppert:
Datenbanksysteme in Büro, Technik und Wissenschaft, GI-Fachtagung BTW 97,
Ulm, März 1997, Seite 312-321.

SM98 J. Sellentin, B. Mitschang: Design and Implementation of a CORBA Query-Service
Accessing EXPRESS-based Data, Internal Report, Subject to Further Publication,
1998.


