
Copyright 1999 IEEE. Published in the Proceedings of DASFAA’99, April 1999 in Hsinchu, Taiwan. Personal use of
this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE
Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Abstract

In this paper we describe the design and implementation
of a CORBA Query Service targeted to access data that is
defined by the EXPRESS data modeling language.
EXPRESS is used primarily in engineering domains (like
CAD/CAM and GIS) to describe mostly product model data
(like parts explosion or product geometry).

In order to bring query facilities for EXPRESS-based
data to CORBA a number of design decisions have to be
taken, although the CORBA Query Service is standardized
by the OMG. Among the most important and performance-
indicating decisions are the definition of an appropriate
query language and the description of the query result data
structures. In this paper we discuss solutions to these topics
and report on the experiences gained in designing and
implementing our first CORBA Query Service for
EXPRESS-based Data.

1. Introduction

Many advanced applications require solutions to
important problems like data and system heterogeneity,
system distribution, extensibility, and performance. This is
especially true for the engineering domains like CAD/CAM
and GIS, where mostly product model data are managed by
means of separate design tools and management
components. In order to conquer the overwhelming
complexity of this interoperability scenario certain
standardizations have been devised and applied in the
systems’ overall architecture. One is the definition of the
international Standard for the Exchange of Product Data
(STEP, ISO 10303 [6]). It defines a data definition language
called EXPRESS, standardized EXPRESS schemata for
specific business domains, and an interface for accessing
data (STEP Data Access Interface - SDAI [8]). The other

standardization is the OMG’s (Object Management Group)
CORBA (Common Object Request Broker Architecture
[12]) approach to distributed, portable, and fault tolerant
object computing in heterogeneous environments.

During the last years several efforts have been started to
combine both standards in order to achieve interoperable
product data management (PDM). Presumably, the most
important one is the official ISO mapping of the SDAI to
CORBA [9]. But its (native) usage turned out as being
inefficient due to too many fine grained objects that lead to
Operation Shipping instead of Data Shipping [17]. Some
projects have designed additional protocols (see e.g. [1],
[2], or [11]), but those are not 100% standard compliant any
more. Next is CORBA’s PDM Enabler Facility [14] which
can be seen as an approach to realize PDM within CORBA
environments. It is not explicitly related to STEP or
EXPRESS and does therefore not provide access to data
modeled by arbitrary EXPRESS schemata. Even the STEP
schema for the automotive industry (STEP AP 214 - which
is most important for us) is not supported in an appropriate
way. In addition, the underlying data model is really fine-
grained, too, leading once again to reduced performance.

Thus we can see that the great challenge to realize
advanced Data Shipping capabilities using CORBA and
STEP/EXPRESS still remains open. In this paper we have
therefore developed a new approach that combines both
standards by offering efficient Data Shipping and additional
query processing capabilities (which are neither covered by
[14], nor by [9], [1], [2] or [11]). It is based on the CORBA
Query Service. The interface of this service is standardized
by OMG, but we have to define data structures and queries
that will be used by the service. This step has to be done
carefully since CORBA is not primarily designed for
efficient data shipping [17]. In addition, implementation
effort had to start from scratch: Currently only IBM’s
Component Broker provides such a service [4], but it is
restricted to Windows NT and ad-hoc queries, yet.

Design and Implementation of a CORBA
Query Service Accessing EXPRESS-based Data

Jürgen Sellentin1,2, Bernhard Mitschang2

e-mail: Juergen.Sellentin@DaimlerChrysler.COM, mitsch@informatik.uni-stuttgart.de

DaimlerChrysler AG1 University of Stuttgart2

Research & Technology Department of Computer Science
Dept. CAE-Research (FT3/EK) IPVR, Breitwiesenstr. 20-22
P.O. Box 2360, D-89013 Ulm D-70565 Stuttgart

J. Sellentin, B. Mitschang: Page 2 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

The remaining paper is structured as follows: Section 2
contains a brief introduction to CORBA and its data
shipping capabilities, as well as a description of the
CORBA Query Service. Section 3 contains an outline of
STEP. The design of our Query Service, including data
structures and queries, is presented in Section 4, whereas
implementation issues and experiences are discussed in
Section 5. Finally, some conclusions and an outlook to
future work is given in Section 6.

2. CORBA

In order to cope with the growing need for distributed,
portable, fault tolerant and reusable components in
heterogeneous environments, the Object Management
Group (OMG) has defined the Common Object Request
Broker Architecture (CORBA, see [12]) for distributed
object computing. The core components of the standard are
the Interface Definition Language (IDL), used for the
declaration of interfaces as well as data structures, and the
basic architecture itself. Mappings to the most commonly
used programming languages yield to a flexible design of
widely available modules with well defined interfaces. In
addition, the OMG has defined basic services and facilities.
Detailed information is contained in [19], [12] and [13].

2.1 IDL

Any interface or data structure has to be declared using
CORBA’s object-oriented Interface Definition Language
(IDL). The system’s IDL compiler will then translate these
clauses into fragments of the desired programming
language, e.g. C, C++ or Java. IDL contains the well known
base types like long, char, boolean and float,
aggregates like arrays and sequences as well as the
struct and interface clause for modeling objects.
The latter one is - as already obvious by its name - intended
to be used for modeling interfaces of so called CORBA
Services. These Services, simply called objects, will be
managed by the Object Request Broker (ORB, Section 2.2).

Data objects may be modeled either by the interface
or struct clause. Structs are restricted to a collection
of attributes with no support for inheritance or methods,
whereas interfaces may contain methods and support
even multiple inheritance. Both clauses yield to different
runtime processing which is discussed in detail in [17]. A
simple example declaring data objects as structs is
shown in Figure 1. It also contains one CORBA Service
called Reservation_Service which is declared using
the interface clause.

2.2 Architecture of CORBA

The basic component of any CORBA system is the
Object Request Broker Core (ORB Core). It is responsible
for any communication, conversion of data depending on
the host architecture (e.g. Little Endian -> Big Endian),
registration of CORBA objects declared as interfaces,
and the location of these requested CORBA Services.

The ORB Core (or just ORB) is often compared to a
generic system bus where additional modules may be
plugged in. A more functional view is presented in Figure 2.
Several components which support the client and/or server
are located on top of the core layer.

Figure 1: IDL definitions of a reservation service

enum Category {Compartment, Open_plan};

struct ResData {
short day, month, year;
short from_station, to_station; // coded
Category cat_wish;
boolean smoker;

};

struct Seat {
short coach_no, seat_no;

};

interface Reservation_Service {

Seat ReserveTrain (in long train_no,
in ResData data);

};

Figure 2: Architecture of CORBA

same interface for all ORB implementations
different Stubs and Skeletons per interface definition

different (but only a few) Object Adapters
dependent on the actual ORB implementation

ORB Core

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Object ImplementationClient

IDL
Skeleton Object

Adapter
Implementation

Repository
Interface

Repository

J. Sellentin, B. Mitschang: Page 3 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

Clients may call a method of a CORBA Service either by
using the IDL Stubs (built by the system’s IDL compiler) or
by creating a dynamic request using the Dynamic
Invocation Interface (DII) that in turn queries the Interface
Repository in order to forward the method call to the
respective Service. Last but not least, the Implementation
Repository is used by the ORB Core to store runtime
information about available objects. Some of its data is
accessible through the ORB Interface.

Any server object has to be declared by the IDL
interface clause. It is embedded into the system
through a general Object Adapter and a more specific IDL
Skeleton. Both layers are responsible for object instantiation
and initialization (called object activation) and the correct
propagation of method calls.

Though CORBA is basically designed to support
operation shipping and hence objects declared by the
interface clause are often described as CORBA
Services, the interface clause may (in principal) also be
used to declare data objects. Nevertheless, [17] shows that
real data shipping and caching at the client site can
(currently) be realized with the struct clause only.

2.3 CORBA Common Object Services (COSS)

Beyond IDL and the basic architecture of CORBA, the
OMG has specified some basic Common Object Services
(COSS). These services should be available in any CORBA
environment to ease the development of higher level
functionality. E.g., the Naming Service can be used to obtain
a reference to a component with a well known name, the
Trader Service to search for a component offering specific
operations (similar to yellow pages). The Transaction and
Synchronization Service enable transactional processing;
components can register to become part of a running or new
transaction. All COSS are defined in [13].

CORBA Query Service. For this paper, the CORBA Query
Service (QS) is most interesting. It specifies generic
interfaces for querying all kind of data sources (not only
those managed by database management systems) as well as
some rudimentary collections. Its general usage scenario is
illustrated in Figure 3: The client sends a query to the server
which returns the requested result.

With regard to Relational Database Management
Systems (RDBMS), the QS is a CORBA-suited interface
similar to the X/Open Call Level Interface (CLI), ODBC, or
JDBC. Thus RDBMS could be integrated by a simple
wrapper (see Figure 4): The client transmits a string
containing the SQL query to the QS server and the wrapper
accesses e.g. DB/2 through its CLI interface. Afterwards it
sends back the resulting (relational) tuples as a sequence of
IDL base types (wrapped and shipped by an instance of the
IDL any type). Multiple RDBMS could be integrated in a
similar way by using DB middleware like IBM Data Joiner
[3]. In principal, the same architecture might be deployed
for OODBMS (substituting SQL by OQL), but one has to
take care of result types (see below).

The hierarchy of interfaces of the Query Service is
presented in Figure 5. The QueryEvaluator interface
declares methods to execute ad-hoc queries and to obtain
associated (that means supported and default) Query-
LanguageTypes (see below). The QueryManager
interface declares an additional method for obtaining a
Query object for a particular query. The query has to be
specified as a parameter and cannot be changed afterwards.
The resulting query object is associated with its
QueryManager in order to determine supported
QueryLanguageTypes. The Query interface itself

Figure 3: General architecture of a
CORBA Query Service

Query Engine

QS Server Skeleton

Data Source

Application

QS Client Stub

Object Request Broker (ORB)

Query (as string)

Result (as any)

Figure 4: A CORBA Query Service accessing
multiple databases

DB/2

CLI Wrapper

QS Server Skeleton

X/Open CLI

QS Server Skeleton

O2

OQL Wrapper

QS Server Skeleton

OQL Interface

Application

QS Client Stub

Object Request Broker (ORB)

Generated Code

Third-Party Code

DJ Wrapper

Data Joiner

DB/2

IMS Oracle

J. Sellentin, B. Mitschang: Page 4 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

declares methods to prepare, execute and retrieve the result
of a query as well as a status flag. The Collection
interface declares a simple collection type which is
meanwhile substituted by the newer CORBA Objects
Collections Service. The Queryable-Collection
interface declares no additional methods.

The QS specification defines two levels of query
processing. The first one consists of QueryEvaluator
and QueryableCollection. It realizes query
functionality for ad-hoc queries. Its execute operation
implicitly combines compiling, optimization and execution
of the specified query. The second level comprises
QueryEvaluator, QueryManager and Query. It
offers performance benefits by declaring explicit query
objects with prepare and execute methods. It will be
used in the remaining paper. In both levels, the result of a
query is returned as an instance of the IDL any type. That
means any kind of data structure or object can be returned.

The QueryLanguageType actually denotes another
hierarchy of (empty) IDL interfaces that is shown in Figure
6. It is used to model the query language type that is
supported by a particular QS. The query language type
determines syntax and semantics of supported query
strings. Currently, an implementation of the QS has to
support either SQL_92Query, OQL_93, OQL_93Basic, or a
combination of them. In order to declare support of a
concrete query language, one has to define a new (empty)
IDL interface that inherits from the predefined ones (see
Figure 6 and chapter 11 of [13]). Once OQL and SQL have
a suitable intersection, this is expected to become the only
supported query language. A discussion of our prototype’s
query language type is contained in Section 4.2. Please note
that access to metadata (except for the retrieval of the query
language type) is also (and only) available through this
query interface.

The Query Service can be used in conjunction with other
COSS, e.g. the Transaction and Synchronization Service to
ensure transactional behavior. Therefore the

QueryManager might be registered by the Transaction
Service as a transactional resource.

Though the QS specification is really technical, one
should remember that the QS defines just a generic query
facility (see Figure 3): An IDL string represents the
query, an IDL any containing the result is returned. The
actual query language type and the underlying result type
are not fixed. Thus any implementation of a QS has to
decide on this.

3. STEP

The Standard for the Exchange of Product Data (STEP,
ISO 10303, see [6]) has been developed by the International
Organization for Standardization (ISO) in order to define a
common data model and procedures for the exchange of
information. It consists of approximately 100 documents
(so called parts) that can be partitioned into 4 major
categories: description methods, implementation methods,
conformance testing methodology and framework, and
standardized application data models / schemata (so called
Integrated Resources and Application Protocols). Though
the latter topics represent basic concepts of the standard,
they are out of scope for this paper and will therefore not be
discussed in the remaining sections. The interested reader
may refer to [1], [6], [7], [8], and [10].

3.1 Description methods

The description methods include the object-oriented data
definition language of STEP, called EXPRESS. All
information to be processed or to be exchanged has to be
modeled using this language. EXPRESS provides a rich
collection of base types (INTEGER, REAL, NUMBER,
BOOLEAN, LOGICAL, STRING, BINARY), supports
enumerations and different types of aggregates (ARRAY,
BAG, LIST, SET), and enables the definition of objects that
use single, multiple or even AND/OR inheritance (the latter

Figure 5: IDL interface hierarchy of the
CORBA Query Service

Collection

QueryableCollection

Query

QueryManager

QueryEvaluator

QueryLanguageType

Inheritance
Association

Figure 6: Query language type hierarchy
of the CORBA Query Service

Inheritance

QueryLanguageType

SQLQuery OQL

SQL_92Query

OQL_Basic

OQL_93

OQL_93Basic
... ...

...

J. Sellentin, B. Mitschang: Page 5 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

case is used to model objects that are instances of more than
one subclass at a time). In addition, SELECT types can be
defined for objects that change their base class during
runtime, e.g. NUMBER = SELECT (REAL, INTEGER).
EXPRESS can be used to define algorithms that are part of
integrity constraints, but it does not support the definition of
methods or behavior of objects.

Concluding all aspects, EXPRESS can be seen as a
modeling language for data structures and corresponding
constraints, but it is not a programming language for
accessing or creating data.

3.2 Implementation methods

The implementation methods of STEP comprise an
ASCII-based file format for data exchange (so called STEP
Physical Files), and the SDAI for online data access. The
SDAI is an object-oriented, navigational interface which is
defined in part 22 of ISO 10303 (see [8]). Using the SDAI,
data sets may be partitioned into several Repositories
holding multiple Models. This structure is somehow
comparable to databases and contained segments/partitions.
Each object is part of exactly one Model in exactly one
Repository. Relationships between objects in different
Repositories or Models are supported. Any data processing
has to be started by opening a Session and Transaction as
well as the desired Repositories and Models before the
objects can be navigated upon.

Beyond the formal specification in part 22, language
mappings to C, C++, Java and the IDL of CORBA are under
development for some years now. As we have already
mentioned, the binding to CORBA showed to be inefficient.
We conclude therefore that the SDAI can not be (directly)
mapped to a CORBA component in an appropriate way, but
we will show in the remaining paper that a CORBA Query
Service can be built to access EXPRESS-based data in a
similar way.

4. Design of the EXPRESS-based CORBA

Query Service

In the previous two sections we have discussed the
capabilities and features of the two international standards
that form the basis for this paper: CORBA and STEP. Now
we will discuss the combination of the two in order to
realize an EXPRESS-based Query Service.

Considering the CORBA world, we have seen in Section
2.3 that the interface of the service is already fixed, but data
structures that will be returned by a query and the query
language type itself have to be specified. These issues are
addressed in Section 4.1 and Section 4.2.

As far as STEP is concerned, we have to ensure that all
EXPRESS-based data can be processed. This is also done
by the definition of corresponding data structures in Section
4.1. Though the Query Service is not an access interface
standardized by STEP, we want to enable interoperability
with the SDAI as well as with components reading and
writing STEP Physical Files (see Section 3.2). Section 4.1
therefore introduces object identifiers that take care of SDAI
Models (SDAI Repositories need no specific mapping since
they are treated as regular data sources processed by the
Query Service). In addition, queries defined in Section 4.2
can also contain the ID of an SDAI Model.

4.1 Data structures for EXPRESS-based data

Designing our architecture, we decided to use generic
data structures that do not rely on a particular EXPRESS
schema. This is based on two requirements: First, the Query
Service should be able to process all kind of data modeled
by an arbitrary EXPRESS schema, without changing or
adding any IDL definition (that would lead to code
modification within the server). Second, the implementation
should be as efficient as possible.

Considering the results of [17], generic data structures
appear to be most suitable for shipping the result of a query
within CORBA (so called Data Shipping). Therefore
several issues have to be considered: First of all, we have to
verify which kind of data can be referenced by other data (or
directly by the user) and therefore needs an identifier. The
EXPRESS ENTITY type corresponds more or less to an
object. Instances can be retrieved (e.g. by using methods of
the SDAI) and they can be referenced by other instances of
an ENTITY type. Thus data structures for ENTITY types
have to comprise an OID. Taking a closer look at
EXPRESS, one can see that values of all other types are
associated with a single instance of an ENTITY type. That
means that their existence relies on the existence of the
“owning” entity; so there is no need for an OID in principal.
Nevertheless, considering huge aggregates, it might be
more efficient to separate the transmission of aggregates
from the transmission of their “owning” entity. Instead, the
OID of the aggregate should be sent. If the client needs the
aggregate, too, it can use this OID to obtain it afterwards.
Therefore aggregates will comprise an OID, too. Nested
aggregates belong to the top-level aggregate and have no
OID.

Next, we have to map this decision and all EXPRESS
types to IDL definitions (see Figure 7). The enumeration
ExpressType lists all possible EXPRESS types
(NUMBER is mapped to REAL). Entities and aggregates
(that means all types that have an associated OID) are
represented by EObjOrAggr. EUnset and EUnknown
are generic tags to indicate uninitialized or unknown

J. Sellentin, B. Mitschang: Page 6 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

(currently not accessible/computable) values. The union
ExpValue can be used to represent any kind of EXPRESS
data.

An OID is represented by a structure that contains a
sequence number (msl/lsl), a flag indicating the
EXPRESS type (“O” for an entity, “A”, “B”, “L” or “S” for
arrays, bags, lists or sets), and the model ID. If SDAI-like
processing of models is not supported, the latter one should
be set to zero. The concatenation of msl/lsl/modelID
has to be unique.

Entities and aggregates themselves are represented by
the ObjectOrAggr struct. It contains the OID, the type
ID, and the list of attributes (in case of an entity) or the
aggregate’s components. In case of an aggregate, the type
ID of the underlying base type is specified. Of course, the
type ID is schema specific. Thus client and server have to
make sure that they use the same set of schema information
(see discussion of MetaData below). Each select query
should return an instance of seqObjectOrAggr
(wrapped by an instance of any).

In case of an entity, the order of attributes is specified as
follows: Attributes appear in the same order than in the
EXPRESS schema, attributes of supertypes are contained
first, and supertypes are ordered in the same way than in the
supertype clause. If an attribute is inherited through
different supertypes, only its first occurrence is considered.

The EXPRESS SELECT type is mapped to
SelectType and FinalSelectValue. Since
SELECT types might be nested, the SelectType
contains the hierarchy of SELECT types (represented as a
list of type IDs) and the actual underlying (final) value. In
principal, the attributes of the ExpValue type are already
sufficient to represent final SELECT values, but we had to
define the FinalSelectValue type in order to avoid
cyclic dependencies within the IDL definitions of
ExpValue and SelectType. Such dependencies are not
allowed by the IDL specification (see Figure 7).

Values of an EXPRESS TYPE data type (which is more
or less an alias) are tagged by the underlying type, e.g. if
MY_INTEGER is defined as INTEGER, then values of
MY_INTEGER are tagged like values of INTEGER.

The structure MetaData is used to exchange schema-
specific and runtime-specific information. typeIDs and
typeNames describe all known EXPRESS types (base
types, user-defined ENTITY types, etc); typeIDs[i]
corresponds to typeNames[i]. msl and lsl can be
used by the client to create new OIDs: The msl value is
unique for each client, for each new OID the lsl should be
incremented by one (the lsl value received denotes the
currently highest used value). If SDAI-like processing is
supported, modIDs and modNames contain IDs and
names of known models.

module ExpressQuery {

interface Express_SQL_Query : CosQuery::SQL92Query {};

typedef short TypeID;

typedef sequence<TypeID> seqTypeID;

struct OID {

long lsl;

short msl, modID;

char flag;

};

enum ExpressType {

EInteger, EReal, EBoolean, ELogical, EString, EBinary,
EObjOrAggr, ENestedArray, ENestedBag, ENestedList,
ENestedSet, ESelect, EUnset, EUnknown

 };

 union FinalSelectValue switch (ExpressType) {

 case EInteger: long intVal;

 case EReal: double realVal;

 case EBoolean: char boolVal;

 case ELogical: char logVal;

 case EString: string stringVal;

 case EObjOrAggr: OID oidVal;

 };

struct SelectType {

seqTypeID type;

FinalSelectValue value;

};

union ExpValue switch (ExpressType) {

case EUnset: char unsetVal;

case EUnknown: char unknownVal;

case EInteger: long intVal;

case EReal: double realVal;

case EBoolean: char boolVal;

case ELogical: char logVal;

case EString: string stringVal;

case EBinary sequence<octet> binVal;

case EObjOrAggr: OID oidVal;

case ESelect: SelectType selVal;

case ENestedArray: sequence<ExpValue> nestArrayVal;

case ENestedBag: sequence<ExpValue> nestBagVal;

case ENestedList: sequence<ExpValue> nestListVal;

case ENestedSet: sequence<ExpValue> nestSetVal;

};

struct ObjectOrAggr {

OID oid;

TypeID type;

sequence<ExpValue> values;

};

typedef sequence<ObjectOrAggr> seqObjectOrAggr;

struct MetaData {

short msl;

long lsl;

sequence<short> modIDs;

sequence<string> modNames;

sequence<typeID> typeIDs;

sequence<string> typeNames;

};

}; // end of module ExpressQuery

Figure 7: IDL data structures for shipping of
EXPRESS-based data

J. Sellentin, B. Mitschang: Page 7 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

4.2 Supported query language type

Whereas the specification of IDL definitions for
EXPRESS-based data could be done without any
workaround, finding an appropriate query language type
turns out as a hard problem. Though there exist several
mappings from EXPRESS to relational or object-oriented
database management systems (see e.g. [10]), all mappings
lead to complex queries. In addition, queries rely on a
specific mapping for a specific schema/system combination.
Thus we assume that pure OQL or SQL92 is not sufficient.

A mapping of EXPRESS to SQL3 is currently
investigated as part of another project. First results are quite
promising. We therefore expect that SQL3 will be a suitable
query language. In addition, the current Query Service
specification states already the goal of having a single query
language that reflects both OQL and SQL. Thus we assume
that SQL3 will be the solution and next generation Query
Services have to support SQL_3 instead of
SQL_92Query, OQL_93, or OQL_93Basic.

In the meantime we have defined some rudimentary
queries to achieve access capabilities similar to the SDAI
(see Table 1). They do not offer value-specific query
functionality, but they are sufficient for the prototype
described in Section 5. Since all queries have an SQL-like
syntax, we declared a new query language type
Express_SQL_Query that inherits from
SQL_92Query (see Section 2.3).

5. Prototype implementation

The implementation of our prototype has to fulfill several
requirements. First, the client should be written in Java and
serve as a new Data Module for our Java-SDAI architecture
(see [18]). That means SDAI-like processing including
SDAI Models has to be supported. This is ensured by the
queries defined in Section 4.2. Second, the server should be
written in C++ to guarantee sufficient performance. Third,
all components should be independent of the used CORBA
system. More precisely, they should run with (at least)
IONA’s Orbix 2.3 [5] and OOC’s ORBacus 3.0 [15]. Fourth,
we want to implement two Query Services, one reading
STEP Physical Files, and another one that stores data in
GDBM (GNU Database Manager) files. Processing at the
client site should be the same in both cases due to the
transparency provided by CORBA and the QS. Fifth, all
components should run on different platforms/operating
systems, at least Solaris/Sparc, HP-UX and Linux/X86 (the
latter one is unfortunately not supported by Orbix). The
resulting architecture is illustrated in Figure 8. Grey boxes
symbolize code generated by an IDL compiler.

Since this paper focuses on the Query Service,
development issues of the client-site Socket Bar and the new
Java SDAI Data Module are out of scope for this paper (see
e.g. [18]). The application is a simple test and proof-of-
concept routine that accesses scalable binary trees. It is the
same as already presented in [17]. Whereas the architecture
presented there is based upon a proprietary interface, the
architecture discussed in this paper utilizes the standardized
interface of the QS that in addition enables the integration
of database management systems and query capabilities.

Category Supported Queries

Data Retrieval

SELECT * FROM Repository
SELECT * FROM Repository WHERE typeID=#1
SELECT * FROM Repository WHERE typeID=#1 OR

SUBTYPE
SELECT * FROM Repository WHERE oid=#1
SELECT * FROM Repository WHERE modID=#1
SELECT * FROM Repository WHERE modID=#1 AND

typeID=#2
SELECT * FROM Repository WHERE modID=#1 AND

(typeID=#2 OR SUBTYPE)

Metadata Retrieval

SELECT * FROM MetaData

Data Modification

INSERT #1 INTO Repository
UPDATE #1 IN Repository
DELETE FROM Repository WHERE oid=#1
DELETE Model FROM Repository WHERE modelID=#1

Metadata Modification

CREATE Model #1
RENAME Model TO #1 WHERE modelID=#2

Table 1: Supported queries

Figure 8: Architecture of the prototype

Orbix / ORBacus
Server Skeleton

Query Service
(STEP Phys. Files)

Query Service
(GDBM)

GDBM
Repository

STEP
Physical

File

OrbixWeb / ORBacus

Orbix / ORBacus
Server Skeleton

Client Stub

Java-SDAI
Query Service
Data Module

Java-SDAI Socket Bar
... ...

Application

IIOP
(either or)

Java

C++

(Client)

(Server)

J. Sellentin, B. Mitschang: Page 8 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

5.1 Server development

Due to a missing query language and query engine for
EXPRESS-based data (see Section 4.2), each server has
either to contain its own proprietary query engine or specific
query objects for each query listed in Table 1. We decided
to use the latter solution in order to reduce unnecessary
implementation effort. Thus both server contain registered
CORBA objects implementing the IDL interface Query-
Manager (one per GDBM Repository and one per STEP
Physical File) and corresponding Query objects. Each of
those Query objects provides a C++ method that realizes
the corresponding query’s functionality; it is similar to a
given query execution plan that evaluates the query.

The GDBM-based server stores serialized versions of the
data structures defined in Figure 7. It uses one GDBM file
per SDAI Model and separate directories per SDAI
Repository. In order to support extent queries (all objects of
a particular type), it keeps additional lists per typeID that
contain the OIDs of all stored objects of that type. The
server contains no caching or prefetching mechanisms
except for the internal GDBM cache.

The server of the Query Service for STEP Physical File
processes the complete file at once and creates
corresponding main memory objects. All queries are
executed on these objects. Partial file processing is expected
to be inefficient since the complete file has to be read for
almost each query execution (a STEP Physical File holds a
number of related data objects, as e.g. an SDAI Repository
or Model).

5.2 Implementation experiences

Implementing both services, the development of code
that will run with different CORBA systems turns out as the
hardest problem. Some issues are system-specific, others
are based on missing standardization:
• CORBA 2.0 and its Basic Object Adapter (BOA) do

neither standardize names of skeleton classes, nor the
complete signature of skeleton methods generated for IDL
declarations. Some systems (like Orbix) use an additional
context parameter, others (like ORBacus) not. All systems
use different class names. We hope that this problem will
vanish by the availability of CORBA 2.2 compliant systems
which contain a Portable Object Adapter (POA), which will
in addition standardize initialization of server processes.
• How to throw system exceptions is also not standardized.
• Some C++ compiler support namespaces/inner classes,

others not. In the latter case, one has to use concatenated
class names as a workaround, e.g. CORBA_Any instead of
CORBA::Any.
• User manuals do often not illustrate how to implement

CORBA compliant code. Instead, they put special emphasis

on proprietary features or use a proprietary syntax for
generated code. E.g., Orbix uses the C++ type any for
generated stubs and skeletons. The CORBA compliant
syntax would be CORBA::Any. Compliant syntax will run
with Orbix due to a typedef, but the application programmer
never gets a hint that the generated code is not compliant. If
he uses the Orbix syntax for his own code, the application is
not portable among different CORBA systems.

A more general problem with CORBA’s IDL occurred
regarding to the definition of union ExpValue (see
Figure 7). In case of nested aggregates, it contains a
recursive definition: The underlying type is
sequence<ExpValue>, which is a so-called unnamed
sequence type. Unfortunately language mappings do not
standardize names for these types, and, in addition, a named
sequence can not be used here since ExpValue is not
known before its own definition (forward declarations of
union types are not supported by IDL). Beyond non-
standard names, another problem occurs:
sequence<ExpValue> is used once again in the
definition of ObjectOrAggr, but, due to scoping rules
(see clause 3.13 of [12]), both types are not equivalent. The
first one resolves to ExpressQuery::ExpValue::
sequence<ExpValue>, the second to Express-
Query::ObjectOrAggr::sequence<ExpValue>.
In principal, this could be solved by the definition of a
named sequence that is used within ObjectOrAggr:
typedef ExpValue::sequence<ExpValue>
seqExpValue. In practice, none of our CORBA systems
accept this statement: Orbix generates the correct
namespaces (resp. inner classes) as part of Stubs and
Skeletons, but doesn’t allow the typedef within the IDL
definitions, ORBacus considers no nested namespaces for
unnamed sequences at all.

5.3 Sample application and performance issues

The prototype has been tested with the sample
application already used in [17]. It comprises the generation
and retrieval of scalable binary trees that are comparable to
parts explosions in bill-of-material processing, thus offering
a somehow realistic test scenario. Each node of a tree also
references an array of integer values in order to test
aggregates, too. To simplify measurements, the array
contains a single element only.

All data is stored in exactly one SDAI Repository which
contains one SDAI Model for each binary tree. Since the
creation of data is not mission critical, we will only present
measurements regarding to data retrieval. In order to test
prefetching capabilities of the Data Module’s buffer, we
have defined four different access strategies (see Table 2).
The search operation touches appr. 5 to 10 nodes, depending

J. Sellentin, B. Mitschang: Page 9 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

on the size of the tree. For each strategy separate test series
have been performed that access a separate binary tree in its
own SDAI Model. In a first phase (cold run) needed objects
are requested from the server. If prefetching is used in this
phase, all objects of the SDAI Model are transferred at once,
but aggregates are still shipped separately on demand. After
the cold run the same operation is performed once again, but
all objects are already located in the client site buffer. This
phase is therefore called hot run. It is repeated 5 times to
avoid undesired runtime effects.

All measurements have been performed using the
GDBM-based server. Both, client and server, have been run
on a PC with a Pentium 133 processor and 64 MBytes of
main memory. The operating system is S.u.S.E. Linux 5.2
(kernel 2.0.33, gcc 2.7.2.1 and ORBacus 3.0). Additional
analysis comprising multiple platforms, CORBA systems
and different Data Modules will be published in [18].

A comparison of cold runs illustrating the different
access strategies is contained in Figure 9. The upper two
curves refer to a scan operation that requires all objects and
aggregates at the client site. As expected, prefetching and
bulk transfer (of objects) yield to some performance
benefits since ORB to ORB communication is reduced a lot.
The lower two curves (one is almost hidden by the x axis)
refer to a search operation. Strategy 4 is worse since a lot of
unnecessary objects have been transferred and cached, but
only 1% of them are needed. A more interesting aspect is
given by the huge runtime clash between strategy 2 and 4.
Strategy 4 accesses only a few objects, but it initially

requests bulk transfer of all objects. Strategy 2 will
additionally load all aggregates on demand (using separate
requests). That means the difference between both curves
directly illustrates the time needed for aggregate transfer.
Therefore we conclude that prefetching by bulk transfer
should be configured (for objects and aggregates) as soon as
access to a lot of objects can be expected. The concrete
percentage indicating which strategy performs better will be
determined by further measurements. Please note that our
design enables changes of the prefetching policy on the fly!

The results of several hot runs are illustrated in Figure
10. Since prefetching does not influence hot runs, we can
only distinguish between scan operations (strategy 1 and 2)
and search operations (strategy 3 and 4). In addition, the
performance gain between different JDK versions and the
usage of a Just-In-Time Compiler (JIT) can be determined.
As one can see, time needed for the search operation is quite
constant for all sizes of trees. Most of the time is needed for
initial transaction processing and time actually needed for
object access is too short to be measured. Time needed for
scans scales linear and shows acceptable performance.

On the other hand, performance of cold runs is somehow
difficult to evaluate. Strategy 3 is fast whereas strategy 1 is
definitely too slow. That means one has to decide on an
appropriate prefetching strategy. Nevertheless, we have also
to consider the optimization of general design decisions.
Taking a closer look at the implementation, we already
figured out two aspects that have a negative impact: First,
IDL enumeration types are mapped to the C++ int type.
That means each union discriminator needs 4 bytes of
memory (and communication bandwidth), though e.g. the
enumeration ExpressType has only 14 enumerators.
Second, using CORBA 2.0 as the basis, insertion into an
instance of any leads to a deep copy of the data to be
inserted. Thus all query results are unnecessarily copied.

The first issue could be resolved by using a char as the
union discriminator. But this is somehow dirty since the

Access
Strategy

Operation
Prefetching of the
Entire SDAI Model

1 full scan no

2 full scan yes

3 search for a single node no

4 search for a single node yes

Table 2: Access strategies of the test application

Figure 9: Cold runs using JDK 1.1.6 with JIT

10

20

30

40

50

60

70

80

90

500 1000 1500 2000
Nodes per Tree

s

Strategy 1
Strategy 2
Strategy 4
Strategy 3

Figure 10: Hot runs

20

Strat. 1&2, JDK 1.1.5
Strat. 1&2, JDK 1.1.6

Strat. 1&2, JDK 1.1.6 - JIT
Strat. 3&4, JDK 1.1.5
Strat. 3&4, JDK 1.1.6

Strat. 3&4, JDK 1.1.6 - JIT

30

40

50

60

70

ms

500 1000 1500 2000
Nodes per Tree

J. Sellentin, B. Mitschang: Page 10 of 10
Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

association of char values with EXPRESS types can not
be specified in IDL (only as a comment). In principal, the
second problem has already vanished by the introduction of
CORBA 2.1. The specification defines two insertion
operators for any types: One for deep copies, one for
references. But there are no explicitly CORBA 2.1 or 2.2
compliant products available. Though some features are
already realized by some CORBA system, one can not rely
on this: ORBacus generates both operators, Orbix only the
one for deep copies.

6. Conclusions and outlook

In this paper we have presented the design and
implementation of a standardized component for accessing
STEP-based data: A CORBA Query Service (QS). In
general, The QS offers query facilities to CORBA clients,
comparable to X/Open CLI, ODBC or JDBC. Considering
the concrete design presented here, it realizes a new
approach to integrate the CORBA and STEP standards that
outperforms the current binding (see [9]). Once the work of
our colleagues to harmonize data representations between
EXPRESS and SQL3 is done, and the OMG has adopted
SQL3 as the standard query language type for its Query
Service specification, our architecture is capable to combine
even the three standards CORBA, STEP, and SQL3 (see
Section 4). Furthermore, a commercial (SQL3) database
engine could be used to realize the query functionality of the
QS (as indicated by Figure 4).

Implementing the Query Service, it turned out that the
development of server code that is portable among different
CORBA systems is still a hard problem. The reason for this
is not only based on specific product features, but also on
still missing standardization (see Section 5.1).

Data structures for EXPRESS-based data as defined here
(see Section 4.1) can also be used in a broader setting, i.e.,
to guarantee interoperability between existing legacy
systems, data sources and new applications. Our data
structure approach will therefore be used to model a new
integration architecture within DaimlerChrysler that
comprises well-established PDM and CAD components as
well as new Java applications written on top of an integrated
API (see [16]).

Last but not least, we should stress that the Query Service
presented here is not limited to access of data which is
modeled by a schema standardized by STEP. It can process
all kind of data described by an EXPRESS schema. Please
note that EXPRESS is a generally available modeling
language that is especially often used in engineering
domains and technical standardization like e.g. Geographic
Information Systems (GIS).

Acknowledgements

We would like to thank our colleagues Roland Nagel and
Ulrich Schäfer for their help and the implementation of the
Query Service for STEP Physical Files. We are also greatly
in debt to Toni Maurer for performing the measurements
and to Günter Sauter for fruitful discussions.

References

[1] M. Hardwick, D. Spooner, T. Rando, K.C. Morris: Sharing
Manufacturing Information in Virtual Enterprises,
Communications of the ACM, February 1996.
[2] M. Hardwick, D.L. Spooner, T. Rando, K.C. Morris: Data
Protocols for the Industrial Virtual Enterprise, IEEE Journal for
Internet Computing, Vol. 1, No. 1, http://computer.org/internet/
ic1997/w1toc.htm, 1997.
[3] IBM Co.: Data Joiner: Administrator Guide and Application
Programming, IBM Co., San Jose, 1997.
[4] IBM Co.: IBM Component Broker — Advanced Programming
Guide, Release 1.3, Third Edition, July 1998.
[5] IONA Technologies Ltd.: Orbix Programming Guide /
Reference Guide, Release 2.3, Dublin, Ireland, 1998.
[6] ISO IS 10303-1 TC184/SC4: Product Data Representation and
Exchange — Part 1: Overview and Fundamental Principles,
International Standard, 1994.
[7] ISO IS 10303-11 TC184/SC4: Product Data Representation
and Exchange — Part 11: The EXPRESS Language Reference
Manual, International Standard, 1994.
[8] ISO FDIS 10303-22 TC184/SC4: Product Data
Representation and Exchange — Part 22: Standard Data Access
Interface, Final Draft International Standard, July 1998.
[9] ISO DIS 10303-26 TC184/SC4: Product Data Representation
and Exchange — Part 26: Interface Definition Language Binding
to the Standard Data Access Interface, Draft International
Standard, July 1998.
[10] D. Loffredo: Efficient Database Implementation of EXPRESS
Information Models, Ph.D. Thesis, Rensselaer Polytechnic
Institute, Troy, New York, May 1998.
[11] NIIIP Consortium: National Industrial Information
Infrastructure Protocols, http://www.niiip.org/, 1998.
[12] Object Management Group: The Common Object Request
Broker Architecture: Architecture and Specification, Revision 2.2,
http://www.omg.org/corba/corbiiop.htm, Upd. February 1998.
[13] Object Management Group: The Common Object Request
Broker Architecture: Common Object Services Specification, http:
//www.omg.org/corba/sectrans.htm, Upd. July 1998.
[14] Object Management Group: PDM Enabler Specification,
OMG document mfg/98-01-01, http://www.omg.org/library/
schedule/Technology_Adoptions.htm, Adopted July 1998.
[15] Object-Oriented Concepts, Inc.: ORBacus Documentation,
Release 3.0, MA, USA, http://www.ooc.com/, 1998.
[16] St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Integration
Concepts for Heterogeneous Application Systems at Daimler-
Chrysler based on International Standards (in German), in: Proc.
of 8th GI-Fachtagung BTW 99, Freiburg (Germany), March 1999.
[17] J. Sellentin, B. Mitschang: Data-Intensive Intra- & Internet
Applications — Experiences Using Java and CORBA in the World
Wide Web, in: Proceedings of the 14th IEEE International
Conference on Data Engineering (ICDE), Orlando, Florida, 1998.
[18] J. Sellentin, B. Mitschang: Using the SDAI Socket Bar for the
Evaluation of Different Data Shipping Strategies, Internal Report,
Subject to Further Publication, 1999.
[19] J. Siegel: CORBA: Fundamentals and Programming, Jon
Wiley & Sons, 1996.

