Design and I mplementation of a CORBA
Query Service Accessing EXPRESS-based Data

Jirgen Sellentin2, Bernhard Mitschang?
e-mail: Juergen.Sdlentin@Daimler Chrysler. COM, mitsch@infor matik.uni-stuttgart.de

DaimlerChrysler AG!
Research & Technology
Dept. CAE-Research (FT3/EK)
P.O. Box 2360, D-89013 UIm

Abstract

In this paper we describe the design and implementation
of a CORBA Query Service targeted to access data that is
defined by the EXPRESS data modeling language.
EXPRESS is used primarily in engineering domains (like
CAD/CAM and GI S) to describe mostly product model data
(like parts explosion or product geometry).

In order to bring query facilities for EXPRESS-based
data to CORBA a number of design decisions have to be
taken, although the CORBA Query Service is standardized
by the OMG. Among the most important and performance-
indicating decisions are the definition of an appropriate
query language and the description of the query result data
structures. In this paper we discuss solutions to these topics
and report on the experiences gained in designing and
implementing our first CORBA Query Service for
EXPRESS-based Data.

1. Introduction

Many advanced applications require solutions to
important problems like data and system heterogeneity,
system distribution, extensibility, and performance. Thisis
especially true for the engineering domainslike CAD/CAM
and GIS, where mostly product model data are managed by
means of separate design tools and management
components. In order to conquer the overwhelming
complexity of this interoperability scenario certain
standardizations have been devised and applied in the
systems overall architecture. One is the definition of the
international Standard for the Exchange of Product Data
(STEP, 1SO 10303 [6]). It defines adata definition language
caled EXPRESS, standardized EXPRESS schemata for
specific business domains, and an interface for accessing
data (STEP Data Access Interface - SDAI [8]). The other

University of Suttgart?
Department of Computer Science
IPVR, Breitwiesenstr. 20-22
D-70565 Suttgart

standardization isthe OMG'’s (Object Management Group)
CORBA (Common Object Request Broker Architecture
[12]) approach to distributed, portable, and fault tolerant
object computing in heterogeneous environments.

During the last years several efforts have been started to
combine both standards in order to achieve interoperable
product data management (PDM). Presumably, the most
important one is the official SO mapping of the SDAI to
CORBA [9]. But its (native) usage turned out as being
inefficient due to too many fine grained objects that lead to
Operation Shipping instead of Data Shipping [17]. Some
projects have designed additional protocols (see e.g. [1],
[2], or [11]), but those are not 100% standard compliant any
more. Next is CORBA's PDM Enabler Facility [14] which
can be seen as an approach to realize PDM within CORBA
environments. It is not explicitly related to STEP or
EXPRESS and does therefore not provide access to data
modeled by arbitrary EXPRESS schemata. Even the STEP
schema for the automotive industry (STEP AP 214 - which
is most important for us) is not supported in an appropriate
way. In addition, the underlying data model is redly fine-
grained, too, leading once again to reduced performance.

Thus we can see that the great challenge to redlize
advanced Data Shipping capabilities using CORBA and
STEP/EXPRESS 4till remains open. In this paper we have
therefore developed a new approach that combines both
standards by offering efficient Data Shipping and additional
query processing capabilities (which are neither covered by
[24], nor by [9], [1], [2] or [11]). It is based on the CORBA
Query Service. Theinterface of this serviceis standardized
by OMG, but we have to define data structures and queries
that will be used by the service. This step has to be done
carefully since CORBA is not primarily designed for
efficient data shipping [17]. In addition, implementation
effort had to start from scratch: Currently only IBM’s
Component Broker provides such a service [4], but it is
restricted to Windows NT and ad-hoc queries, yet.

Copyright 1999 |EEE. Published in the Proceedings of DASFAA’ 99, April 1999 in Hsinchu, Taiwan. Personal use of
thismaterial is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective worksfor resale or redistribution to serversor lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / |IEEE
Service Center / 445 Hoes Lane/ P.O. Box 1331/ Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

The remaining paper is structured as follows: Section 2
contains a brief introduction to CORBA and its data
shipping capabilities, as well as a description of the
CORBA Query Service. Section 3 contains an outline of
STEP. The design of our Query Service, including data
structures and queries, is presented in Section 4, whereas
implementation issues and experiences are discussed in
Section 5. Finally, some conclusions and an outlook to
future work is given in Section 6.

2. CORBA

In order to cope with the growing need for distributed,
portable, fault tolerant and reusable components in
heterogeneous environments, the Object Management
Group (OMG) has defined the Common Object Request
Broker Architecture (CORBA, see [12]) for distributed
object computing. The core components of the standard are
the Interface Definition Language (IDL), used for the
declaration of interfaces as well as data structures, and the
basic architecture itself. Mappings to the most commonly
used programming languages yield to a flexible design of
widely available modules with well defined interfaces. In
addition, the OM G has defined basic services and facilities.
Detailed information is contained in [19], [12] and [13].

21 IDL

Any interface or data structure has to be declared using
CORBA's object-oriented Interface Definition Language
(IDL). The system’s IDL compiler will then translate these
clauses into fragments of the desired programming
language, e.g. C, C++ or Java. IDL containsthe well known
base types like |1 ong, char, bool ean and fl oat,
aggregates like ar r ays and sequences as well as the
struct and i nterface clause for modeling objects.
The latter oneis - as already obvious by its name - intended
to be used for modeling interfaces of so called CORBA
Services. These Services, simply called objects, will be
managed by the Object Request Broker (ORB, Section 2.2).

enum Category { Compartment, Open_plan};
struct ResData {
short day, month, year;
short from_station, to_station; // coded
Category cat_wish;
boolean smoker;
b
struct Seat {

short coach_no, seat_no;
b
interface Reservation_Service {
Seat ReserveTrain (inlong train_no,
in ResData data);

Figure 1: IDL definitions of areservation service

Data objects may be modeled either by thei nt er f ace
orstruct clause. Struct s arerestricted to a collection
of attributes with no support for inheritance or methods,
whereas i nt er f aces may contain methods and support
even multiple inheritance. Both clauses yield to different
runtime processing which is discussed in detail in [17]. A
simple example declaring data objects as structs is
shown in Figure 1. It also contains one CORBA Service
called Reservati on_Ser vi ce whichisdeclared using
thei nt er f ace clause.

2.2 Architecture of CORBA

The basic component of any CORBA system is the
Object Request Broker Core (ORB Core). It is responsible
for any communication, conversion of data depending on
the host architecture (e.g. Little Endian -> Big Endian),
registration of CORBA objects declared asi nt er f aces,
and the location of these requested CORBA Services.

The ORB Core (or just ORB) is often compared to a
generic system bus where additional modules may be
plugged in. A morefunctional view ispresented in Figure 2.
Several components which support the client and/or server
are located on top of the core layer.

T

Client

Dynamic IDL
Invocation Stubs

Interface
Repository

ORB
Interface

ORB Core

Object Implementation

IDL .
Skeleton Object
Adapter

Implementation
Repository

[sameinterface for all ORB implementations

[different Stubs and Skeletons per interface definition

KXXN different (but only a few) Object Adapters
I dependent on the actual ORB implementation

Figure 2: Architecture of CORBA

J. Sdlentin, B. Mitschang:

Page 2 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

Clientsmay call amethod of a CORBA Service either by
using the IDL Stubs (built by the system’s IDL compiler) or
by creating a dynamic request using the Dynamic
Invocation Interface (DII) that in turn queries the Interface
Repository in order to forward the method call to the
respective Service. Last but not least, the Implementation
Repository is used by the ORB Core to store runtime
information about available objects. Some of its data is
accessible through the ORB Interface.

Any server object has to be declared by the IDL
interface clause. It is embedded into the system
through a general Object Adapter and a more specific IDL
Skeleton. Both layersare responsible for object instantiation
and initialization (called object activation) and the correct
propagation of method calls.

Though CORBA is basically designed to support
operation shipping and hence objects declared by the
interface clause are often described as CORBA
Services, thei nt er f ace clause may (in principal) also be
used to declare data objects. Nevertheless, [17] shows that
real data shipping and caching at the client site can
(currently) berealized with the st r uct clause only.

2.3 CORBA Common Object Services (COSS)

Beyond IDL and the basic architecture of CORBA, the
OMG has specified some basic Common Object Services
(COSS). These services should be available in any CORBA
environment to ease the development of higher level
functionality. E.g., the Naming Service can be used to obtain
a reference to a component with a well known name, the
Trader Service to search for a component offering specific
operations (similar to yellow pages). The Transaction and
Synchronization Service enable transactional processing;
components can register to become part of arunning or new
transaction. All COSS are defined in [13].

Application

Query (as string)

(Object Request Broker (ORB) ()
Result (as any)

Figure 3: General architecture of a
CORBA Query Service

J. Sdlentin, B. Mitschang:

CORBA Query Service. For this paper, the CORBA Query
Service (QS) is most interesting. It specifies generic
interfaces for querying all kind of data sources (not only
those managed by database management systems) aswell as
some rudimentary collections. Its general usage scenario is
illustrated in Figure 3: The client sends aquery to the server
which returns the requested result.

With regard to Relationa Database Management
Systems (RDBMS), the QS is a CORBA-suited interface
similar to the X/Open Call Level Interface (CLI), ODBC, or
JDBC. Thus RDBMS could be integrated by a simple
wrapper (see Figure 4): The client transmits a string
containing the SQL query to the QS server and the wrapper
accesses e.g. DB/2 through its CLI interface. Afterwards it
sends back the resulting (relational) tuples as a sequence of
IDL base types (wrapped and shipped by an instance of the
IDL any type). Multiple RDBMS could be integrated in a
similar way by using DB middleware like IBM Data Joiner
[3]. In principal, the same architecture might be deployed
for OODBMS (substituting SQL by OQL), but one has to
take care of result types (see below).

Application

(Object Request Broker (ORB) O

CLI Wrapper DJ Wrapper

X/Open CLI

- IMS mcle

[Generated Code
[Third-Party Code

OQL Wrapper
OQL Interface

Data Joiner

Figure 4: A CORBA Query Service accessing
multiple databases

The hierarchy of interfaces of the Query Service is
presented in Figure 5. The Quer yEval uat or interface
declares methods to execute ad-hoc queries and to obtain
associated (that means supported and default) Query-
LanguageTypes (see below). The QueryManager
interface declares an additional method for obtaining a
Query object for a particular query. The query has to be
specified as a parameter and cannot be changed afterwards.
The resulting query object is associated with its
QueryManager in order to determine supported
QueryLanguageTypes. The Query interface itself

Page 3 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

declares methods to prepare, execute and retrieve the result
of a query as well as a status flag. The Col | ecti on
interface declares a simple collection type which is
meanwhile substituted by the newer CORBA Objects
Collections Service. The Queryabl e-Col | ecti on
interface declares no additional methods.

The QS specification defines two levels of query
processing. The first one consists of Quer yEval uat or
and Queryabl eColl ection. It redizes query
functionality for ad-hoc queries. Its execut e operation
implicitly combines compiling, optimization and execution
of the specified query. The second level comprises
Quer yEval uat or, QueryManager and Query. It
offers performance benefits by declaring explicit query
objects with pr epar e and execut e methods. It will be
used in the remaining paper. In both levels, the result of a
query is returned as an instance of the IDL any type. That
means any kind of data structure or object can be returned.

QueryEvaluator Collection

QueryLanguageType
QueryableCollection

QueryManager

. uer
—P Inheritance Query

- Association

Figure 5: IDL interface hierarchy of the
CORBA Query Service

The Quer yLanguageType actually denotes another
hierarchy of (empty) IDL interfacesthat is shown in Figure
6. It is used to model the query language type that is
supported by a particular QS. The query language type
determines syntax and semantics of supported query
strings. Currently, an implementation of the QS has to
support either SQL_92Query, OQL_93, OQL_93Basic, or a
combination of them. In order to declare support of a
concrete query language, one has to define a new (empty)
IDL interface that inherits from the predefined ones (see
Figure 6 and chapter 11 of [13]). Once OQL and SQL have
a suitable intersection, this is expected to become the only
supported query language. A discussion of our prototype's
query language typeis contained in Section 4.2. Please note
that access to metadata (except for theretrieval of the query
language type) is also (and only) available through this
query interface.

The Query Service can be used in conjunction with other
COSS, e.g. the Transaction and Synchronization Service to
ensure transactional behavior. Therefore the

J. Sdlentin, B. Mitschang:

QueryLanguageType

SQLQuery OoQL
OQL_Basic
SQL_92Query oQL_93

t

— Inheritance

Figure 6: Query language type hierarchy
of the CORBA Query Service

Quer yManager might be registered by the Transaction
Service as atransactional resource.

Though the QS specification is really technical, one
should remember that the QS defines just a generic query
facility (see Figure 3): An IDL stri ng represents the
guery, an IDL any containing the result is returned. The
actual query language type and the underlying result type
are not fixed. Thus any implementation of a QS has to
decide on this.

3.STEP

The Sandard for the Exchange of Product Data (STER,
I SO 10303, see[6]) has been devel oped by the International
Organization for Sandardization (1SO) in order to define a
common data model and procedures for the exchange of
information. It consists of approximately 100 documents
(so called parts) that can be partitioned into 4 major
categories: description methods, implementation methods,
conformance testing methodology and framework, and
standardized application data models / schemata (so called
Integrated Resources and Application Protocols). Though
the latter topics represent basic concepts of the standard,
they are out of scope for this paper and will therefore not be
discussed in the remaining sections. The interested reader
may refer to [1], [6], [7], [8], and [10].

3.1 Description methods

The description methodsinclude the obj ect-oriented data
definition language of STEP, caled EXPRESS. All
information to be processed or to be exchanged has to be
modeled using this language. EXPRESS provides a rich
collection of base types (INTEGER, REAL, NUMBER,
BOOLEAN, LOGICAL, STRING, BINARY), supports
enumerations and different types of aggregates (ARRAY,
BAG, LIST, SET), and enables the definition of objects that
use single, multiple or even AND/OR inheritance (the latter

Page 4 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

caseisused to model objectsthat areinstances of more than
one subclass at atime). In addition, SELECT types can be
defined for objects that change their base class during
runtime, eg. NUMBER = SELECT (REAL, INTEGER).
EXPRESS can be used to define algorithms that are part of
integrity constraints, but it does not support the definition of
methods or behavior of objects.

Concluding al aspects, EXPRESS can be seen as a
modeling language for data structures and corresponding
constraints, but it is not a programming language for
accessing or creating data.

3.2 Implementation methods

The implementation methods of STEP comprise an
ASCII-based file format for data exchange (so called STEP
Physical Files), and the SDAI for online data access. The
SDAI is an object-oriented, navigational interface which is
defined in part 22 of 1SO 10303 (see [8]). Using the SDAI,
data sets may be partitioned into several Repositories
holding multiple Models. This structure is somehow
comparabl e to databases and contained segments/partitions.
Each object is part of exactly one Model in exactly one
Repository. Relationships between objects in different
Repositories or Models are supported. Any data processing
has to be started by opening a Session and Transaction as
well as the desired Repositories and Models before the
objects can be navigated upon.

Beyond the formal specification in part 22, language
mappingsto C, C++, Javaand the IDL of CORBA are under
development for some years now. As we have already
mentioned, the binding to CORBA showed to beinefficient.
We conclude therefore that the SDAI can not be (directly)
mapped to a CORBA component in an appropriate way, but
we will show in the remaining paper that a CORBA Query
Service can be built to access EXPRESS-based data in a
similar way.

4. Design of the EXPRESS-based CORBA
Query Service

In the previous two sections we have discussed the
capabilities and features of the two international standards
that form the basis for this paper: CORBA and STEP. Now
we will discuss the combination of the two in order to
realize an EXPRESS-based Query Service.

Considering the CORBA world, we have seenin Section
2.3 that the interface of the serviceis aready fixed, but data
structures that will be returned by a query and the query
language type itself have to be specified. These issues are
addressed in Section 4.1 and Section 4.2.

J. Sdlentin, B. Mitschang:

Asfar as STEP is concerned, we have to ensure that all
EXPRESS-based data can be processed. This is also done
by the definition of corresponding data structuresin Section
4.1. Though the Query Service is not an access interface
standardized by STEP, we want to enable interoperability
with the SDAI as well as with components reading and
writing STEP Physical Files (see Section 3.2). Section 4.1
thereforeintroduces object identifiersthat take care of SDAI
Models (SDAI Repositories need no specific mapping since
they are treated as regular data sources processed by the
Query Service). In addition, queries defined in Section 4.2
can aso contain the ID of an SDAI Model.

4.1 Datastructuresfor EXPRESS-based data

Designing our architecture, we decided to use generic
data structures that do not rely on a particular EXPRESS
schema. Thisisbased on two requirements: First, the Query
Service should be able to process al kind of data modeled
by an arbitrary EXPRESS schema, without changing or
adding any IDL definition (that would lead to code
maodification within the server). Second, theimplementation
should be as efficient as possible.

Considering the results of [17], generic data structures
appear to be most suitable for shipping the result of aquery
within CORBA (so called Data Shipping). Therefore
several issues haveto be considered: First of al, we have to
verify which kind of data can bereferenced by other data (or
directly by the user) and therefore needs an identifier. The
EXPRESS ENTITY type corresponds more or less to an
object. Instances can be retrieved (e.g. by using methods of
the SDALI) and they can be referenced by other instances of
an ENTITY type. Thus data structures for ENTITY types
have to comprise an OID. Taking a closer look at
EXPRESS, one can see that values of al other types are
associated with asingle instance of an ENTITY type. That
means that their existence relies on the existence of the
“owning” entity; so thereisno need for an OID in principal.
Nevertheless, considering huge aggregates, it might be
more efficient to separate the transmission of aggregates
from the transmission of their “owning” entity. Instead, the
OID of the aggregate should be sent. If the client needs the
aggregate, too, it can use this OID to obtain it afterwards.
Therefore aggregates will comprise an OID, too. Nested
aggregates belong to the top-level aggregate and have no
OID.

Next, we have to map this decision and al EXPRESS
types to IDL definitions (see Figure 7). The enumeration
ExpressType lists al possible EXPRESS types
(NUMBER is mapped to REAL). Entities and aggregates
(that means all types that have an associated OID) are
represented by EQbj Or Aggr. EUnset and EUnknown
are generic tags to indicate uninitialized or unknown

Page 5 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

(currently not accessible/computable) values. The union
ExpVal ue can be used to represent any kind of EXPRESS
data.

An OID is represented by a structure that contains a
sequence number (nsl /I sl), a flag indicating the
EXPRESStype (“O" for an entity, “A”, “B", “L" or “S" for
arrays, bags, lists or sets), and the model ID. If SDAI-like
processing of modelsis not supported, the latter one should
be set to zero. The concatenation of sl /I sl /nodel | D
has to be unique.

Entities and aggregates themselves are represented by
the Ohj ect Or Aggr struct. It contains the OID, the type
ID, and the list of attributes (in case of an entity) or the
aggregate’s components. In case of an aggregate, the type
ID of the underlying base type is specified. Of course, the
type ID is schema specific. Thus client and server have to
make sure that they use the same set of schema information
(see discussion of Met aDat a below). Each select query
should return an instance of seqCbj ect Or Aggr
(wrapped by an instance of any).

In case of an entity, the order of attributesis specified as
follows: Attributes appear in the same order than in the
EXPRESS schema, attributes of supertypes are contained
first, and supertypes are ordered in the same way than in the
supertype clause. If an attribute is inherited through
different supertypes, only itsfirst occurrence is considered.

The EXPRESS SELECT type is mapped to
Sel ect Type and Final Sel ect Val ue. Since
SELECT types might be nested, the Sel ect Type
contains the hierarchy of SELECT types (represented as a
list of type IDs) and the actual underlying (final) value. In
principal, the attributes of the ExpVal ue type are already
sufficient to represent final SELECT values, but we had to
define the Fi nal Sel ect Val ue type in order to avoid
cyclic dependencies within the IDL definitions of
ExpVal ue and Sel ect Type. Such dependencies are not
allowed by the IDL specification (see Figure 7).

Values of an EXPRESS TY PE data type (which is more
or less an alias) are tagged by the underlying type, e.g. if
MY _INTEGER is defined as INTEGER, then values of
MY _INTEGER are tagged like values of INTEGER.

The structure Met aDat a is used to exchange schema-
specific and runtime-specific information. t ypel Ds and
t ypeNanes describe all known EXPRESS types (base
types, user-defined ENTITY types, etc); typel Ds[i]
corresponds to t ypeNanes[i]. nmsl and | sl can be
used by the client to create new OIDs. The nsl value is
unique for each client, for each new OID thel sI should be
incremented by one (the | s| value received denotes the
currently highest used value). If SDAI-like processing is
supported, nodl Ds and nodNanes contain IDs and
names of known models.

J. Sdlentin, B. Mitschang:

module ExpressQuery {

interface Express_SQL_Query : CosQuery::SQL92Query {};

typedef short TypelD;
typedef sequence<Typel D> seqTypel D;

struct OID {

long Isl;

short msl, modID;
char flag;

b

enum ExpressType {

Elnteger, EReal, EBoolean, ELogical, EString, EBinary,
EObjOrAggr, ENestedArray, ENestedBag, ENestedList,
ENestedSet, ESelect, EUnset, EUnknown

b
union FinalSelectValue switch (ExpressType) {
case Elnteger: long intVal;
case EReal: double realVa;
case EBoolean: char boolVal;
case ELogical: char logval;
case EString: string stringVal;
case EObjOrAggr: OID oidval;
b
struct SelectType {
seqTypelD type;
Final SelectVaue value;
b
union ExpValue switch (ExpressType) {

case EUnset: char unsetVal;
case EUnknown: char unknownval;
case Elnteger: long intval;

case EReal: double reaVal;

case EBoolean: char boolVal;
case ELogical: char logVal;
case EString: string stringval;
case EBinary sequence<octet> binval;

case EObjOrAggr: OID oidva;

case ESelect: SelectType selval;

case ENestedArray: sequence<ExpVaue> nestArrayVal;
case ENestedBag: sequence<ExpVaue> nestBagVal;
case ENestedList: sequence<ExpVaue> nestListVal;
case ENestedSet: sequence<ExpVaue> nestSetVal;
b
struct ObjectOrAggr {
oID oid;
TypelD type;
sequence<ExpValue> values;

¥
typedef sequence<ObjectOrAggr> seqObjectOrAggr;

struct MetaData {
short msl;
long Il;
sequence<short> modiDs;
sequence<string> modNames;
sequence<typel D> typelDs;
sequence<string> typeNames;

b

}; 1l end of module ExpressQuery

Figure 7: IDL data structures for shipping of
EXPRESS-based data

Page 6 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

4.2 Supported query language type

Whereas the gspecification of IDL definitions for
EXPRESS-based data could be done without any
workaround, finding an appropriate query language type
turns out as a hard problem. Though there exist severa
mappings from EXPRESS to relationa or object-oriented
database management systems (see e.g. [10]), all mappings
lead to complex queries. In addition, queries rely on a
specific mapping for aspecific schema/system combination.
Thus we assume that pure OQL or SQL 92 is not sufficient.

A mapping of EXPRESS to SQL3 is currently
investigated as part of another project. First results are quite
promising. We therefore expect that SQL 3 will be asuitable
query language. In addition, the current Query Service
specification states already the goal of having asingle query
language that reflects both OQL and SQL. Thus we assume
that SQL3 will be the solution and next generation Query
Services have to support SQ._3 instead of

SQL_92Query, OQL_ 93, or OQL_93Basi c.

In the meantime we have defined some rudimentary
queries to achieve access capabilities similar to the SDAI
(see Table 1). They do not offer value-specific query
functionality, but they are sufficient for the prototype
described in Section 5. Since all queries have an SQL-like
syntax, we declared a new query language type
Express_SQL_Query that inherits from
SQL_92CQuery (see Section 2.3).

Category Supported Queries

Data Retrieval

SELECT * FROM Repository

SELECT * FROM Repository WHERE typelD=#1

SELECT * FROM Repository WHERE typelD=#1 OR
SUBTYPE

SELECT * FROM Repository WHERE oid=#1

SELECT * FROM Repository WHERE modID=#1

SELECT * FROM Repository WHERE modID=#1 AND
typelD=#2

SELECT * FROM Repository WHERE modID=#1 AND
(typelD=#2 OR SUBTYPE)

Metadata Retrieval
SELECT * FROM MetaData
Data Modification
INSERT #1 INTO Repository
UPDATE #1 IN Repository

DELETE FROM Repository WHERE oid=#1
DELETE Model FROM Repository WHERE modellD=#1

Metadata Modification

CREATE Model #1
RENAME Model TO #1 WHERE modellD=#2

Table 1: Supported queries

J. Sdlentin, B. Mitschang:

5. Prototype implementation

Theimplementation of our prototype hasto fulfill severa
requirements. First, the client should be written in Java and
serve as anew Data Module for our Java-SDAI architecture
(see [18]). That means SDAI-like processing including
SDAI Models has to be supported. This is ensured by the
queries defined in Section 4.2. Second, the server should be
written in C++ to guarantee sufficient performance. Third,
al components should be independent of the used CORBA
system. More precisely, they should run with (at least)
IONA’sOrbix 2.3 [5] and OOC’'s ORBacus 3.0 [15]. Fourth,
we want to implement two Query Services, one reading
STEP Physical Files, and another one that stores data in
GDBM (GNU Database Manager) files. Processing at the
client site should be the same in both cases due to the
transparency provided by CORBA and the QS. Fifth, al
components should run on different platforms/operating
systems, at least Solaris/Sparc, HP-UX and Linux/X86 (the
latter one is unfortunately not supported by Orbix). The
resulting architecture isillustrated in Figure 8. Grey boxes
symbolize code generated by an IDL compiler.

\
Application
Java-SDAI Socket Bar Java
S R Java-SDAI = (Client)
Query Service
Data Module
OrbixWeb / ORBacus
Client Stub V.
lIOP™~~_
(either or) S~
Orbix / ORBacus Orbix / ORBacus
Server Skeleton Server Skeleton C++
Query Service Query Service (Server)
(STEP Phys. Files) (GDBM)

STeP ——
Physical GDBM
File Repository

Figure 8: Architecture of the prototype

Since this paper focuses on the Query Service,
development issues of the client-site Socket Bar and the new
Java SDAI Data Module are out of scope for this paper (see
e.g. [18]). The application is a simple test and proof-of-
concept routine that accesses scalable binary trees. It isthe
same as already presented in [17]. Whereas the architecture
presented there is based upon a proprietary interface, the
architecture discussed in this paper utilizes the standardized
interface of the QS that in addition enables the integration
of database management systems and query capabilities.

Page 7 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

5.1 Server development

Due to a missing query language and query engine for
EXPRESS-based data (see Section 4.2), each server has
either to contain its own proprietary query engine or specific
query objects for each query listed in Table 1. We decided
to use the latter solution in order to reduce unnecessary
implementation effort. Thus both server contain registered
CORBA objects implementing the IDL interface Quer y-
Manager (one per GDBM Repository and one per STEP
Physical File) and corresponding Quer y objects. Each of
those Quer y objects provides a C++ method that realizes
the corresponding query’s functionality; it is similar to a
given query execution plan that evaluates the query.

The GDBM-based server stores serialized versions of the
data structures defined in Figure 7. It uses one GDBM file
per SDAlI Model and separate directories per SDAI
Repository. In order to support extent queries (all objects of
a particular type), it keeps additional lists per typelD that
contain the OIDs of all stored objects of that type. The
server contains no caching or prefetching mechanisms
except for the internal GDBM cache.

The server of the Query Service for STEP Physical File
processes the complete file a once and creates
corresponding main memory objects. All queries are
executed on these abjects. Partial file processing is expected
to be inefficient since the complete file has to be read for
almost each query execution (a STEP Physical File holds a
number of related data objects, as e.g. an SDAI Repository
or Model).

5.2 Implementation experiences

Implementing both services, the development of code
that will run with different CORBA systemsturns out asthe
hardest problem. Some issues are system-specific, others
are based on missing standardization:

e« CORBA 2.0 and its Basic Object Adapter (BOA) do
neither standardize names of skeleton classes, nor the
complete signature of skeleton methods generated for IDL
declarations. Some systems (like Orbix) use an additional
context parameter, others (like ORBacus) not. All systems
use different class names. We hope that this problem will
vanish by the availability of CORBA 2.2 compliant systems
which contain a Portable Object Adapter (POA), which will
in addition standardize initialization of server processes.

» How to throw system exceptionsisalso not standardized.
» Some C++ compiler support namespaces/inner classes,
others not. In the latter case, one has to use concatenated
class names as a workaround, e.g. CORBA_Any instead of
CORBA: : Any.

e User manuals do often not illustrate how to implement
CORBA compliant code. Instead, they put special emphasis

J. Sdlentin, B. Mitschang:

on proprietary features or use a proprietary syntax for
generated code. E.g., Orbix uses the C++ type any for
generated stubs and skeletons. The CORBA compliant
syntax would be CORBA: : Any. Compliant syntax will run
with Orbix dueto atypedef, but the application programmer
never gets a hint that the generated codeis not compliant. If
he uses the Orbix syntax for his own code, the applicationis
not portable among different CORBA systems.

A more general problem with CORBA's IDL occurred
regarding to the definition of uni on ExpVal ue (see
Figure 7). In case of nested aggregates, it contains a
recursive definition: The underlying type s
sequence<ExpVal ue>, which is a so-called unnamed
sequence type. Unfortunately language mappings do not
standardize namesfor these types, and, in addition, anamed
sequence can not be used here since ExpVal ue is not
known before its own definition (forward declarations of
union types are not supported by IDL). Beyond non-
standard names, another problem occurs:
sequence<ExpVal ue> is used once again in the
definition of Cbj ect Or Aggr, but, due to scoping rules
(see clause 3.13 of [12]), both types are not equivalent. The
first one resolves to ExpressQuery: : ExpVal ue: :
sequence<ExpVal ue>, the second to Express-
Query:: Obj ect Or Aggr: : sequence<ExpVal ue>.
In principal, this could be solved by the definition of a
named sequence that is used within Cbj ect Or Aggr :
t ypedef ExpVal ue: : sequence<ExpVal ue>
segExpVal ue. In practice, none of our CORBA systems
accept this statement: Orbix generates the correct
namespaces (resp. inner classes) as part of Subs and
Skeletons, but doesn’t allow the typedef within the IDL
definitions, ORBacus considers no nested namespaces for
unnamed sequences at all.

5.3 Sample application and perfor mance issues

The prototype has been tested with the sample
application aready used in[17]. It comprisesthe generation
and retrieval of scalable binary trees that are comparable to
partsexplosionsin bill-of-material processing, thus offering
a somehow realistic test scenario. Each node of atree also
references an array of integer values in order to test
aggregates, too. To simplify measurements, the array
contains asingle element only.

All datais stored in exactly one SDAI Repository which
contains one SDAIl Model for each binary tree. Since the
creation of datais not mission critical, we will only present
measurements regarding to data retrieval. In order to test
prefetching capabilities of the Data Modul€'s buffer, we
have defined four different access strategies (see Table 2).
The search operation touches appr. 5 to 10 nodes, depending

Page 8 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

on the size of the tree. For each strategy separate test series
have been performed that access a separate binary treeinits
own SDAI Model. In afirst phase (cold run) needed objects
are requested from the server. If prefetching is used in this
phase, all objects of the SDAI Model aretransferred at once,
but aggregates are still shipped separately on demand. After
the cold run the same operation is performed once again, but
all objects are aready located in the client site buffer. This
phase is therefore called hot run. It is repeated 5 times to
avoid undesired runtime effects.

Access Operation Pre_fetching of the
Strategy Entire SDAI Model
1 full scan no
2 full scan yes
3 search for a single node no
4 search for a single node yes

Table 2: Access strategies of the test application

All measurements have been performed using the
GDBM-based server. Both, client and server, have been run
on a PC with a Pentium 133 processor and 64 MBytes of
main memory. The operating system is Su.S.E. Linux 5.2
(kernel 2.0.33, gcc 2.7.2.1 and ORBacus 3.0). Additional
analysis comprising multiple platforms, CORBA systems
and different Data Modules will be published in [18].

A comparison of cold runs illustrating the different
access strategies is contained in Figure 9. The upper two
curves refer to a scan operation that requires all objects and
aggregates at the client site. As expected, prefetching and
bulk transfer (of objects) yield to some performance
benefits since ORB to ORB communication isreduced alot.
The lower two curves (one is almost hidden by the x axis)
refer to a search operation. Strategy 4 isworse since alot of
unnecessary objects have been transferred and cached, but
only 1% of them are needed. A more interesting aspect is
given by the huge runtime clash between strategy 2 and 4.
Strategy 4 accesses only a few objects, but it initialy

S

90

80

70

60

50

40

30

20
10

QONN
SS=55
VYL
=
QOO
LI
WBNF

1500 2000

500 1000
Nodes per Tree

Figure 9: Cold runs using JDK 1.1.6 with JIT

J. Sdlentin, B. Mitschang:

requests bulk transfer of all objects. Strategy 2 will
additionally load all aggregates on demand (using separate
requests). That means the difference between both curves
directly illustrates the time needed for aggregate transfer.
Therefore we conclude that prefetching by bulk transfer
should be configured (for objects and aggregates) as soon as
access to a lot of objects can be expected. The concrete
percentage indicating which strategy performs better will be
determined by further measurements. Please note that our
design enables changes of the prefetching policy on the fly!

s
70

60

50

40

30

500 1000 1500 2000
Nodes per Tree

Figure 10: Hot runs

The results of several hot runs are illustrated in Figure
10. Since prefetching does not influence hot runs, we can
only distinguish between scan operations (strategy 1 and 2)
and search operations (strategy 3 and 4). In addition, the
performance gain between different JDK versions and the
usage of a Just-In-Time Compiler (JIT) can be determined.
Asone can see, time needed for the search operation is quite
constant for all sizes of trees. Most of the timeis needed for
initial transaction processing and time actually needed for
object access is too short to be measured. Time needed for
scans scales linear and shows acceptable performance.

On the other hand, performance of cold runsis somehow
difficult to evaluate. Strategy 3 is fast whereas strategy 1is
definitely too slow. That means one has to decide on an
appropriate prefetching strategy. Nevertheless, we have also
to consider the optimization of general design decisions.
Taking a closer look at the implementation, we already
figured out two aspects that have a negative impact: First,
IDL enumeration types are mapped to the C++ i nt type.
That means each union discriminator needs 4 bytes of
memory (and communication bandwidth), though e.g. the
enumeration ExpressType has only 14 enumerators.
Second, using CORBA 2.0 as the basis, insertion into an
instance of any leads to a deep copy of the data to be
inserted. Thus all query results are unnecessarily copied.

Thefirst issue could be resolved by using achar asthe
union discriminator. But this is somehow dirty since the

Page 9 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

association of char values with EXPRESS types can not
be specified in IDL (only as a comment). In principal, the
second problem has aready vanished by the introduction of
CORBA 2.1. The specification defines two insertion
operators for any types. One for deep copies, one for
references. But there are no explicitly CORBA 2.1 or 2.2
compliant products available. Though some features are
aready realized by some CORBA system, one can not rely
on this: ORBacus generates both operators, Orbix only the
one for deep copies.

6. Conclusions and outlook

In this paper we have presented the design and
implementation of a standardized component for accessing
STEP-based dataz A CORBA Query Service (QS). In
general, The QS offers query facilities to CORBA clients,
comparable to X/Open CLI, ODBC or JDBC. Considering
the concrete design presented here, it readlizes a new
approach to integrate the CORBA and STEP standards that
outperforms the current binding (see[9]). Once the work of
our colleagues to harmonize data representations between
EXPRESS and SQL3 is done, and the OMG has adopted
SQL3 as the standard query language type for its Query
Service specification, our architectureis capable to combine
even the three standards CORBA, STEP, and SQL3 (see
Section 4). Furthermore, a commercial (SQL3) database
engine could be used to realize the query functionality of the
QS (asindicated by Figure 4).

Implementing the Query Service, it turned out that the
development of server code that is portable among different
CORBA systemsis till a hard problem. The reason for this
is not only based on specific product features, but also on
still missing standardization (see Section 5.1).

Datastructuresfor EXPRESS-based data as defined here
(see Section 4.1) can also be used in a broader setting, i.e.,
to guarantee interoperability between existing legacy
systems, data sources and new applications. Our data
structure approach will therefore be used to model a new
integration architecture within DaimlerChryder that
comprises well-established PDM and CAD components as
well as new Java applications written on top of an integrated
API (see[16]).

Last but not least, we should stressthat the Query Service
presented here is not limited to access of data which is
modeled by a schema standardized by STEP. It can process
all kind of data described by an EXPRESS schema. Please
note that EXPRESS is a generally available modeling
language that is especially often used in engineering
domains and technical standardization like e.g. Geographic
Information Systems (GIS).

J. Sdlentin, B. Mitschang:

Acknowledgements

We would like to thank our colleagues Roland Nagel and
Ulrich Schéfer for their help and the implementation of the
Query Service for STEP Physical Files. We are also greatly
in debt to Toni Maurer for performing the measurements
and to Glnter Sauter for fruitful discussions.

References

[1] M. Hardwick, D. Spooner, T. Rando, K.C. Morris. Sharing
Manufacturing Information in Virtual Enterprises,
Communications of the ACM, February 1996.

[2] M. Hardwick, D.L. Spooner, T. Rando, K.C. Morris. Data
Protocols for the Industrial Virtual Enterprise, IEEE Journal for
Internet Computing, Vol. 1, No. 1, http://computer.org/internet/
ic1997/w1ltoc.htm, 1997.

[3] IBM Co.: Data Joiner: Administrator Guide and Application
Programming, IBM Co., San Jose, 1997.

[4] IBM Co.: IBM Component Broker — Advanced Programming
Guide, Release 1.3, Third Edition, July 1998.

[5] IONA Technologies Ltd.: Orbix Programming Guide /
Reference Guide, Release 2.3, Dublin, Ireland, 1998.

[6] 1SO 1S10303-1 TC184/SC4: Product Data Representation and
Exchange — Part 1. Overview and Fundamental Principles,
International Standard, 1994.

[7] 1SO IS 10303-11 TC184/SC4: Product Data Representation
and Exchange — Part 11: The EXPRESS Language Reference
Manual, International Standard, 1994.

[8] 1SO FDIS 10303-22 TC184/SC4: Product Data
Representation and Exchange — Part 22: Sandard Data Access
Interface, Final Draft International Standard, July 1998.

[9] 1SO DIS 10303-26 TC184/SC4: Product Data Representation
and Exchange — Part 26: Interface Definition Language Binding
to the Sandard Data Access Interface, Draft International
Standard, July 1998.

[10] D. Loffredo: Efficient Database I mplementation of EXPRESS
Information Models, Ph.D. Thesis, Rensselaer Polytechnic
Institute, Troy, New York, May 1998.

[11] NIIP Consortium: National Industrial
Infrastructure Protocols, http://www.niiip.org/, 1998.
[12] Object Management Group: The Common Object Request
Broker Architecture: Architecture and Specification, Revision 2.2,
http://www.omg.org/corbalcorbiiop.htm, Upd. February 1998.
[13] Object Management Group: The Common Object Request
Broker Architecture: Common Object Services Specification, http:
Ilwww.omg.org/corba/sectrans.htm, Upd. July 1998.

[14] Object Management Group: PDM Enabler Specification,
OMG document mfg/98-01-01, http://www.omg.org/library/
schedule/Technology Adoptions.htm, Adopted July 1998.

[15] Object-Oriented Concepts, Inc.: ORBacus Documentation,
Release 3.0, MA, USA, http://www.ooc.com/, 1998.

[16] St. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Integration
Concepts for Heterogeneous Application Systems at Daimler-
Chr}f]sler based on International Standards (in German), in: Proc.
of 8" Gl-Fachtagung BTW 99, Freiburg (Germany), March 1999.
[17] J. Sellentin, B. Mitschang: Data-Intensive Intra- & Internet
Applications — Experiences Using Java and CORBA in the World
Wide Web, in: Proceedings of the 14th IEEE International
Conference on Data Engineering (ICDE), Orlando, Florida, 1998.
[18] J. Sellentin, B. Mitschang: Using the SDAI Socket Bar for the
Evaluation of Different Data Shipping Srategies, Internal Report,
Subject to Further Publication, 1999.

[19] J. Siegel: CORBA: Fundamentals and Programming, Jon
Wiley & Sons, 1996.

Information

Page 10 of 10

Design and Implementation of a CORBA Query Service Accessing EXPRESS-based Data

