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Abstract 
Today many applications routinely generate large 

quantities of data. The data often takes the form of (time) 
series, or more generally streams, i.e. an ordered se-
quence of records. Analysis of this data requires stream 
processing techniques which differ in significant ways 
from what current database analysis and query tech-
niques have been optimized for. In this paper we present 
a new operator, called StreamJoin, that can efficiently be 
used to solve stream-related problems of various 
applications, such as universal quantification, pattern 
recognition and data mining. Contrary to other 
approaches, StreamJoin processing provides rapid 
response times, a non-blocking execution as well as 
economical resource utilization. Adaptability to different 
application scenarios is realized by means of parameters. 
In addition, the StreamJoin operator can be efficiently 
embedded into the database engine, thus implicitly using 
the optimization and parallelization capabilities for the 
benefit of the application. The paper focuses on the 
applicability of StreamJoin to integrate application 
semantics into the DBMS. 

 
 

1. Introduction 

All-quantification can be seen as a primitive in a 
number of upcoming data analysis scenarios as e.g. time 
series analysis in finance, genomic sequence matching in 
biochemistry, and frequent itemset discovery in data-
bases. Since these application areas show a tremendous 
growth in data volume and because the data analysis 
problems are getting more complex, an efficient process-
ing of the all-quantification close to the data is getting 
vital to the success of these applications. 

Our approach is twofold: Firstly, we define a new op-
erator, called StreamJoin that directly evaluates all-
quantification in an efficient manner. Secondly, we show 

how this operator can efficiently be integrated into a 
state-of-the-art DBMS. 

Please note that the implementation strategy as well 
as a detailed description of the StreamJoin algorithm are 
covered in another paper [17]. In this paper we concen-
trate on identifying the usage of the StreamJoin primitive 
within the applications mentioned below: 
• Universal Quantification: Forthcoming applications 

stress the need for an efficient implementation of uni-
versal quantification concepts. Given e.g. a decision 
support system (DSS), a frequently formulated query 
type is the following: “Find the custom-
ers/suppliers/stores that buy/supply/sell all items that 
satisfy a particular condition.”  

• Sequences: Recently, there is a growing interest in 
periodicity search [10] in time-related databases. For 
instance, databases for stock analysis often process 
queries like: “Find all stocks that monotonically 
fall/rise in a given period of time.”  

• Pattern Recognition: In the domain of molecular biol-
ogy, scientists frequently attempt to match functionally 
unknown proteins against a protein coding database of 
known proteins. If a match is found, it is likely that the 
proteins are functionally related. Thus, given a se-
quence and a protein coding database, the problem can 
be formulated as follows: “Find the item sequences in 
the database that contain all items of the pattern se-
quence in the given order.”  

• Data Mining: One of the core mechanisms of many 
data mining algorithms [1] is a phase that evaluates 
patterns called frequent itemsets. A frequent itemset is 
a set of items appearing together in a number of data-
base records meeting a user-defined threshold, called 
minimum support. The final itemsets are usually de-
rived using a set of candidate itemsets. That means, a 
candidate itemset is established as being a frequent 
itemset if the number of transactions containing all 
items in the candidate itemset exceeds the predefined 
support. 
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Figure 1: StreamJoin processing for an input 

stream of candidate itemsets. 

• Digital Libraries: Modern digital l ibraries offer a 
profiling service to keep track of their users’  individual 
reading interests. A profile usually consists of a set of 
keywords. One task of the profiling service is to find 
the documents that contain all keywords. In some 
cases, the words in the documents have to fulfil l cer-
tain additional position requirements like a specific or-
der [15]. 

If we analyze in more detail the data involved in these 
query types, we recognize that it often takes the form of 
streams, i.e. a variable number of (intermediate result) 
tuples that share a common feature. A stream corresponds 
for instance to the set of transactions that contain a spe-
cific item or the set of documents that contain a specific 
keyword. The subsequent processing within an applica-
tion domain refers to certain relationships in-between the 
streams. For instance, the final result of the universal 
quantification is given by those tuples that are included in 
all streams. In the case of profile evaluation, the tuples in 
subsequent streams have to fulfi ll the required position-
ing requirements.  

Given the above, we conclude that there is an impor-
tant class of applications where there is a need to perform 
stream analysis instead of traditional data analysis, 
achieved for instance through aggregations. A further 
common feature of all these applications is the fact that 
the number of streams is also variable and not known a 
priori, as it corresponds e.g. to the number of items in an 
itemset, or the number of search terms in a profile. 

In this paper, we introduce a new database operator, 
called StreamJoin, that can efficiently solve the problems 
mentioned above. Thereby, we concentrate on the appli-
cability of this strategy for various scenarios covering 
universal quantification, sequences, and pattern recogni-
tion. In our previous work, we have already employed the 
StreamJoin operator to data mining tasks [18] and profile 
evaluation [15]. 

Consequently, the paper is organized as follows. In 
Section 2 we describe the basic functionality of the 
StreamJoin operator. Section 3 demonstrates the applica-
bility of this technique for universal quantification. Sec-
tion 4 and 5 exemplify the usage of StreamJoin for se-
quence analysis, respectively pattern recognition in ge-
nomic databases. A performance evaluation is given in 
Section 6. Finally, Section 7 presents some concluding 
remarks. 

2. The StreamJoin Operator 

The arity of the StreamJoin operator is 1, contrary to 
traditional join operators. Thus, it can also be regarded as 
a specific aggregation or restriction operator. Two distin-
guished attributes divide the entire input into groups that 
in turn are subdivided into streams. These attributes are 
handed over to the StreamJoin operator as parameters, 
called GroupId and StreamId. From the StreamJoin’s 

point of view any of the input attributes can act as 
GroupId or StreamId, provided that the input is grouped 
on these attributes.  

The main functionality of this operator is to join sub-
sequent streams of a given group. Thereby, both the join 
attributes as well as the corresponding join conditions are 
given as parameters. Obviously, the join attributes, or 
JoinIds, are different from the GroupId or StreamId at-
tributes.  

Hence, we define the following signature for the 
StreamJoin operator: StreamJoin (GroupId, StreamId, 
predicate(JoinId1, JoinId2, ...))  

The first two parameters specify the attributes that de-
fine a group and the streams within a group. The subse-
quent parameter defines the join predicate as a boolean 
expression over the join condition. This join predicate 
defines condition(s) between attribute values of the cur-
rent stream and those of the previous stream. This is ex-
pressed by the suffixes new and old. Thus, JoinId.new 
represents the value of the attribute JoinId in the current 
stream and JoinId.old represents the value of the same 
attribute in the previous stream. 

For a better understanding, we il lustrate this function-
ality by using the following example. Consider the data 
mining problem of finding frequent itemsets. Assume 
that some kind of pre-processing has delivered a set of 
candidate itemsets organized in a table CANDIDATE 
(itemset, item, transaction) as depicted in Fig. 1. We are 
interested in those transactions that contain all items of 
any given itemset.  

In order to provide this result, we simply join subse-
quent streams on the transaction attribute. Thereby, an 
instance of the StreamJoin operator that performs this 
functionality has the signature StreamJoin (itemset, item, 
transaction.new = transaction.old). We assume that the 
tuples of CANDIDATE are grouped on itemset and item. 
We call this input of the StreamJoin operator an interme-
diate result (IR) since it is usually the output of a more 
complex query execution plan (QEP) and not a base table 
as in this example.  

The processing is illustrated in Fig. 1 for two example 
groups, 100 and 200. The group, i.e. candidate itemset, 



 

100 is constituted of two streams, called S100,10 and S100,43. 
These streams define the transactions that contain item 10 
and 43, respectively. The StreamJoin operator joins all 
streams of each group on the attribute transaction. This 
yields one tuple (100, 1) for the group 100 indicating that 
the transaction 1 contains all items of the candidate item-
set 100, namely 10 an 43. The same join processing for 
the group 200 results in two tuples, namely (200,1) and 
(200, 2). Here, both transaction 1 and transaction 2 con-
tain all items of the candidate itemset 200. Hence, the 
final result FR contains three tuples. 

The implementation of StreamJoin is based on sepa-
rate iterations, corresponding to the streams within a 
group. Thereby, hash-based data structures are used to 
memorize those tuples of the input that are candidates for 
the final result. In the first iteration, the number of candi-
dates is equal to the number of tuples in the first stream. 
However, this number decreases in each iteration, since 
only those tuples are retained that satisfy the join condi-
tion. This process continues until the next group is 
reached. The tuples that survive all iterations satisfy the 
join condition for every stream of a group and are added 
to the output stream, e.g. the final result FR in Fig. 1. 
Please note that the number of tuples to be kept in mem-
ory at a given time is at most the size of a single stream. 
In addition, the intermediate result sizes decrease with 
each iteration. Thus, this strategy yields an economical 
memory consumption.  

As already mentioned, the input of the StreamJoin 
operator has to be grouped on the GroupId and StreamId 
attributes. Obviously, this requirement can always be 
fulfi lled by adequate sorting techniques. However, as 
shown later on in this paper, sorting can mostly be 
avoided. This results from the fact that often the neces-
sary grouping for the StreamJoin operator implicitly 
comes via pre-processing steps performed earlier in the 
query execution plan. 

Please note that this description of StreamJoin shows 
certain similarities to the evaluation of recursive queries 
in database systems [5]. Indeed, though the two areas 
seem radically different because of the approach and for-
malism used, they have some common features. First, the 
presented hash-based implementation of StreamJoin is 
similar to the transitive closure algorithm described in 
[11]. Second, both approaches apply a variable number of 
consecutive iterations and a stop condition to obtain the 
final result. Moreover, in both cases the number of itera-
tions is not known a priori, being dependent on the value 
distribution of the input. However, the difference be-
tween the two approaches lies in the characteristics of the 
iterations. As already mentioned, StreamJoin processes 
its input stream-wise or linearly, i.e. a given input tuple is 
generally considered only once. In contrast, the evalua-
tion of transitive closure, or recursion in general, requires 
a repeated processing of the input. This cyclic method 
may consider the same input tuple several times in order 

to produce the complete result. Another important differ-
ence between the two approaches lies in the fact that the 
StreamJoin processing reduces the intermediate result 
with each iteration, as the tuples which do not match the 
join predicate are eliminated. In contrast, transitive clo-
sure produces in each iteration new tuples that are added 
to the final result. Finally, there is also a major difference 
between the two stop conditions applied. The transitive 
closure algorithm stops when no new tuples are pro-
duced, i.e. the (intermediate) result set of a given iteration 
is identical to the one of the previous iteration. In con-
trast, the StreamJoin algorithm joins streams of the same 
group until the subsequent group is reached. Thus, the 
stop condition for joining is the fact that the value of the 
current tuple’s GroupId attribute is different from that of 
the previous input tuple. 

A thorough discussion of frequent itemset discovery 
involving StreamJoin and a more detailed description of 
the algorithm and implementation can be found in [17]. 
We introduced the StreamJoin operator only as far as is 
necessary for the understanding of this paper. 

3. Universal Quantification 

Complex queries containing quantifiers, also called 
quantified queries, become increasingly important in 
forthcoming applications, such as OLAP systems. How-
ever, relational database systems do not adequately sup-
port such queries. Effective support is needed both at the 
language level and in the underlying query processing 
system. As far as the first issue is concerned, quantified 
queries are usually expressed in SQL by various clauses 
like GROUP BY and counting, as well as predicates like 
ALL, ANY/SOME, (NOT) EXISTS, and (NOT) IN.  

We first consider the example given in [8], a univer-
sity database with two relations, COURSE (courseNo, 
title) and TRANSCRIPT (studentId, courseNo, ...). The 
goal is to find the students who have taken all courses 
offered by the university. Two examples of expressing 
this query in SQL are presented below. 

SELECT DISTINCT t1.studentId 
FROM TRANSCRIPT t1 
WHERE NOT EXISTS ( 
  SELECT * FROM COURSE c 
  WHERE NOT EXISTS ( 
    SELECT * FROM TRANSCRIPT t2 
    WHERE t2.studentId = t1.studentId 
    AND t2.courseNo = c.courseNo)) 

SELECT t.studentId 
FROM TRANSCRIPT t 
GROUP BY t.studentId 
HAVING COUNT(t.courseNo) = ( 
  SELECT COUNT(courseNo) 
  FROM COURSE) 

Obviously, these formulations are not intuitive and in 
addition difficult to optimize. Language extensions have 
already been proposed in the literature [12] [19] and 



 

meanwhile considered as additional predicates in the 
SQL:1999 standardization [9]. In this paper, we concen-
trate on the support provided by relational query proces-
sors. 

Since all-quantification can be seen as a division op-
eration, there is a direct relationship from StreamJoin to a 
division operation. In fact, StreamJoin can mimic a divi-
sion operation by simply using an equi-join predicate 
involving the division column. 

3.1. Related Work 

[6] presents a comprehensive treatment of universal 
quantification from the query level to evaluation. Accord-
ing to this analysis, plans implementing the all-
quantification with an anti-semijoin are superior to all 
other alternatives. However, this approach is best sup-
ported in object-oriented and object-relational models. 
Thus, it is still an open problem how to deal with univer-
sal quantifiers in data warehouse applications, that are 
mostly based on a relational star or snowflake schema. 
Because of high data volumes, especially in these envi-
ronments effective support is needed, and data reorgani-
zation has to be avoided. 

Universal quantification is evaluated in [8] by a hash-
based division algorithm. However, this approach applies 
only for a special class of queries, namely those for 
which the quantifier’s range constitutes a closed formula 
[6]. In [7] generalized join and aggregation operators are 
presented. However, the scope of the paper is restricted 
only to traditional aggregation operations over groups, 
such as average, max, count etc., and is not applicable for 
all-quantification. [19] proposes a generalized quantifier 
framework that defines a completely new query subsys-
tem. Thus, it requires significant changes within the 
query execution system, since special indexes and multi-
dimensional structures have to be built for all relations. 
Moreover, the results are not directly applicable for large-
scale applications, such as e.g. OLAP. In addition, web 
technology can benefit from universal quantification as 
expressed for example in the web join approach like in 
[3]. 
In the following, in order to assess the applicability of the 
different implementation approaches, namely hash-join, 
anti-semijoin and StreamJoin, we will consider two ex-
ample scenarios employing universal quantification. 

3.2. Example Scenario 1: The University Data-
base 

We first consider the university database example 
mentioned above. Again, the request is to find the stu-
dents who have taken all courses offered by the univer-
sity. As already mentioned, this database contains two 
relations, COURSE (courseno, title) and TRANSCRIPT 
(studentid, courseno, ...). 

 
The Hash-Division Algorithm. In [8] the TRANSCRIPT 
relation is called the dividend, the COURSE table the 
divisor and the division result is called quotient. The 
hash-division algorithm uses two hash tables, one for the 
divisor and one for the quotient. For each tuple in the 
quotient table a bitmap is kept with one bit for each divi-
sor tuple. First, all divisor tuples are inserted into the di-
visor table. Next, the algorithm consumes the dividend 
relation. If a matching tuple is found in the divisor table, 
the dividend tuple is newly inserted as a candidate into 
the quotient table and its bitmap is initialized with zeros 
except for the bit corresponding to the matching divisor 
tuple. However, if it is already present, the only thing to 
be done is to modify the associated bitmap by turning the 
bit corresponding to the matching divisor tuple to 1. 
When all tuples of the dividend relation are consumed, 
the quotient consists of those tuples in the quotient table 
for which the corresponding bitmap contains no zeros. 
 
The Anti-Semijoin Approach. As described in [6], in an 
object-oriented model the N:M relationship enrolled be-
tween students and courses is typically modeled by a set-
valued attribute enrolledCourses for each student. Thus 
the all-quantification can be resolved by an anti-semijoin 
on the two tables TRANSCRIPT and COURSE using the 
condition courseNo ∉ enrolledCourses. The anti-
semijoin adds to the output stream only those tuples, i.e. 
students, for which no join partner has been found. This 
is equivalent to the fact that all courses are included in 
the enrolledCourses attribute of the given student item, 
hence the student has attended all courses. 
However, in a relational schema this approach cannot be 
applied. Obviously, the anti-semijoin on TRANSCRIPT 
and COURSE, using the condition courseNo ≠ courseNo, 
yields as a result an empty set if referential integrity is 
guaranteed. Thus, the anti-semijoin strategy cannot be 
applied for the evaluation of universal quantification in 
e.g. data warehouses that adopt a relational star or snow-
flake schema. 
 
The StreamJoin Approach. Fig. 2 presents the QEP for 
the evaluation of the all-quantification via the StreamJoin 
operator. By joining the two tables TRANSCRIPT and 
COURSE using e.g. an index on courseNo for the TRAN-
SCRIPT table, the intermediate result IR consists of sepa-
rate streams for each course, containing the students that 
have taken that course. These streams are called SDatabases, 
SCompilers and SGraphics in our example. In order to obtain 
the students that have participated in all courses, a join of 
these streams on the studentId attribute is necessary. This 
operation is performed by the StreamJoin operator, yield-
ing in the example from Fig. 2 one tuple for the final re-
sult FR. Please note that the parameter corresponding to 
the GroupId is set to 0 (or any arbitrary constant value), 
as there is only one divisor set to be tested.  
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Figure 2: Evaluation of universal quantification 
with the Streamjoin approach. 

As compared to the hash-division algorithm, this ap-
proach needs less buffer space, as the maximum memory 
consumption corresponds to the size of the first stream 
(in this example the two tuples of the stream SDatabases). 
As shown in Section 2, the intermediate result sizes de-
crease with each iteration because the tuples which do not 
match the join condition are eliminated. In contrast, the 
hash-division algorithm has to keep the whole divisor, i.e. 
the COURSE table (3 tuples), in memory, together with 
all quotient candidates and their corresponding bitmaps 
(3 tuples + 3 bitmaps). For this small example, this sums 
up to 6 tuples + 3 bitmaps that have to be kept perma-
nently in memory for the hash-division algorithm, com-
pared to at most 2 tuples, i.e. the number of distinct items 
in the first stream, that are kept in memory for the 
StreamJoin approach. 

3.3. Example Scenario 2: Data Warehouse 

Consider a data warehouse with a central FACT table, 
describing the sales in a given time period, and several 
dimension tables, e.g. NATION being one of them: 

FACT (partkey, suppkey, nationkey, ...) 
NATION (regionkey, nationkey, nationname, ...) 
... 

Assume that for marketing purposes, a user is interested 
in the query: “Find the suppliers who supply a part that is 
being sold in all nations of a region.”  
In the following, we analyze how this query can be 
solved by the various approaches. 
 
The Hash-Division Algorithm. In this case, the divisor 
table is NATION, or, more precisely, it is constituted of 
several parts of this table, each part corresponding to a 
region. It results already from this aspect that the hash-
division algorithm cannot be applied in a straightforward 
way, as it has to be extended to keep separate bitmaps for 
every divisor, i.e. every region. In addition, each <part-
key, suppkey> combination has to be considered as a pos-
sible quotient candidate. Thus, the quotient table is con-
stituted of all such combinations, each having in addition 

several bitmaps corresponding to the different regions. 
These memory requirements also show that the algorithm 
is not competitive for this type of query. 
 
The Anti-Semijoin Approach. Similar to Section 3.2.2, 
the approach is not applicable for this relational schema, 
since the anti-semijoin between the two tables on the 
nationkey attributes yields an empty set. 
 
The StreamJoin Approach. Since nationkey is one of 
the dimensions of the central FACT table, suppose for 
simplicity purposes that there exists an index on this at-
tribute. We further assume that the NATION table is 
sorted on the regionkey attribute. Please note that if this 
condition is not fulfi lled by the physical databases design, 
it can be accomplished e.g. by a corresponding sort op-
erator. By joining the NATION and FACT table, each 
region defines a group, containing the parts that have 
been sold in that region. In the example in Fig. 3 the 
groups are defined by the values Africa and America. 
Each group contains several streams, corresponding to 
the different countries of that region. For instance, the 
group Africa is constituted of the streams Algeria and 
Kenya. This intermediate result constitutes the input for 
the StreamJoin operator. Thus, the GroupId parameter of 
the StreamJoin operator as defined in Section 2 corre-
sponds to the regionkey attribute, while the StreamId is 
set to nationkey. If we had joined the streams on the 
suppkey attribute alone, we would have obtained the sup-
pliers whose different parts are sold in all countries of a 
region. However, the query contains as an additional con-
straint that it must be the same part that is sold in all 
countries. Thus, the join is defined on two attributes, 
namely suppkey and partkey. For both attributes, the join 
condition is equality, expressed by suppkey.old = 
suppkey.new, respectively partkey.old = partkey.new. 

4. Sequences 

Recently, patterns and sequences, especially time se-
quences, appear in various application domains. Typical 
examples are scientific experiments such as temperature 
records generated by sensors, business applications such 
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Figure 3: Simplified QEP for an OLAP query 

involving a StreamJoin operator. 



 

as stock price indexes or bank account histories and 
medical applications such as cardiology data. Sequence 
processing is a challenging task for data mining purposes 
as well [24]. The corresponding (temporal) databases 
tend to be voluminous, thus forcing efficient algorithms 
to reduce processing overhead, such as communication 
costs etc. However, related work treats sequence analysis 
mostly on top of a database. In contrast, the StreamJoin 
operator processes sequences in an integrated fashion 
internal to the DBMS. This will be demonstrated in the 
following using as an example an application operating 
on financial data. 

One interesting scenario in finance is to identify pairs 
of stocks whose prices track one another, i.e. show simi-
lar pricing over a specified period of time [14]. Suppose a 
database for stock analysis that contains the table 
STOCKINFO (week, day, stockkey, price). Without loss 
of generality, we assume that this table is sorted on the 
week and day attributes. Hence, the query “Which stocks 
have had continuously rising prices during an entire 
week?”  can be simply evaluated by a scan of the STOCK-
INFO table followed by the StreamJoin operator. The 
corresponding signature is expressed as follows:  

StreamJoin (week, day, stockkey.new = stockkey.old; 
price.new > price.old).  
Hence, the GroupId parameter is set to week, StreamId is 
set to day, and the join is performed on the stockkey and 
price attributes. In this way only those tuples of a new 
stream, i.e. a new day, qualify, that satisfy the condition 
that for the same stockkey (stockkey.new = stockkey.old) 
the price is rising (price.new > price.old). Subsequent 
projection on attributes stockkey and week finally yields 
the stocks that have had continuously increasing prices 
for all successive days of a week.  

Assume that the user is further interested in stocks 
that are chasing one another. In a simplified model, this 
can be defined by the fact that every time the price of the 
first stock is going up during an entire week, the price of 
the second stock is also rising during the subsequent 
week. Thus, the query can be answered by a self-join 
followed by the StreamJoin operator as shown by the 
QEP depicted in Fig. 4. The self-join is on condition that 
the attribute value week2 is subsequent to week1, given 
by the expression week2 = week1 + 1. The intermediate 
result (stockkey1, week1, stockkey2) expresses pairs of 
stocks that chase one another in two subsequent weeks. 
However, the condition for chasing stock prices is that 
every time the first stock is rising, the second is also ris-
ing in the subsequent week. This condition is evaluated 
by the StreamJoin operator. The input is delivered by the 
intermediate result described above, by setting the pa-
rameters GroupId to stockkey1, StreamId to week1 and by 
defining the join predicate on stockkey2.  

In Fig. 4, we have depicted the group defined by the 
stock IBM. This group is constituted of two streams, cor-
responding to the weeks with rising prices for this stock. 

By joining the streams on stockkey2, we obtain the stocks 
that chase IBM in all subsequent weeks. In this example, 
the price of CPQ is rising every time when the price of 
IBM is rising, while MSF is chasing IBM only in the 
fourth week. Thus, MSF is eliminated by StreamJoin for 
the final result. 

5. Pattern Discovery in Genomic Databases 

Genomic databases assist molecular biologists in un-
derstanding the biochemical function, chemical structure, 
and evolutionary history of organisms. Popular systems 
for searching genomic databases perform a type of pat-
tern matching over data sets called sequences. Efficiency 
in such exhaustive systems is crucial, since some servers 
process over 40,000 queries per day [2], and several que-
ries require comparison to over one gigabyte of genomic 
sequence data. A genomic database contains sequence 
records that are continuous strings drawn from a specific 
alphabet, varying from a few characters to several hun-
dred thousand characters in length. During each query 
task, a new string called pattern has to be matched 
against the old strings. Thereby, the strategy must be able 
to find statistically significant similarities in the presence 
of not only varying sequence lengths, but also repetitive 
subsequences. Contrary to most related work [23] [22], 
our approach to discovering patterns in a database of ge-
netic sequences is realized within the database engine.  

We consider the patterns as being regular expressions 
of the form *X1*X2*..., where X1, X2 are segments of a 
sequence made up of consecutive letters, and * represents 
a variable length of intermediate letters. We treat this 
variable length as a parameter, called int_length. The user 
is interested in the locations (positions) where a pattern is 
contained in a given sequence. Suppose that the informa-
tion corresponding to sequences is stored in a table SE-
QUENCE (pos, letter) and the pattern is stored in a table 
PATTERN (letter). Please note that this is only a simpli-
fied representation. Thus, if e.g. there are several patterns 
to be analyzed, the PATTERN table has to be extended by 
a patternkey attribute. Similarly, in such a general case, 
the SEQUENCE table contains a sequencekey attribute as 
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Figure 4: QEP for the usage of the StreamJoin 
operator in financial time series. 



 

well. In the example that follows we assume that the pat-
tern has the form A*B*C, with int_length being 1, i.e. one 
intermediate letter is allowed for matching subsequences. 

This query can be evaluated in an integrated fashion 
by using the StreamJoin operator as shown in Fig. 5. 
Here, each element of the pattern defines a stream, con-
taining all positions of the sequence where this element 
occurs. We are interested in the portions of the sequence 
that contain all elements of the pattern in the given order 
with the imposed position requirements. Hence, for a 
variable length of intermediate letters the join condition 
for the StreamJoin operator is on the pos attribute, ex-
pressed by the following parameter:  

pos.new <= pos.old + int_length + 1.  
In the example from Fig. 5, by substituting int_length 

with 1, we obtain:  
pos.new <= pos.old + 2.  

The GroupId parameter of the StreamJoin operator is set 
to 1 (or any constant value), since a group is defined by a 
pattern and in this simple example there is only one pat-
tern involved. In the generalized case the GroupId is set 
to the patternkey attribute and StreamId is set to the letter 
attribute. In our example we have three streams corre-
sponding to the letters A, B, and C of the pattern. As men-
tioned, only the sequences satisfying the imposed posi-
tion requirements qualify. For instance, the tuples (A, 5) 
and (B, 8) of the intermediate result IR do not survive, 
since the distance between the letters is greater than 1. 
The result contains the end positions of the matching 
sequences found. In this example, the pattern is included 
in the SEQUENCE table from position 1 to 4, hence the 
result contains the position 4. 

6. Performance Evaluation 

In the following, we present our preliminary meas-
urement results and first performance assessments for the 
universal quantification problem. 

6.1. Measurements 

For the performance evaluation, we have integrated 
the StreamJoin operator into the MIDAS system. MIDAS 
[4] is a prototype of a parallel object-relational database 
system running on a hybrid architecture comprising sev-
eral SMP nodes combined in a shared-disk manner. We 
used a 100 MB TPC-D database [21], running on a clus-
ter of 4 SUN-ULTRA1 workstations with 143 MHz Ultra 
SPARC processors, connected via a Fast Ethernet net-
work. For this database, we have evaluated different pos-
sibilities of evaluating the query presented in Section 3.3, 
namely “Find the suppliers who supply a part that is be-
ing sold in all nations of a region.”  

We first compared the memory requirements of the 
StreamJoin and hash-division approaches, on condition 
that the latter is extended to handle also complex divi-
sors, e.g. by keeping several bitmaps for each quotient 
candidate in memory. In our database the number of dis-
tinct <partkey, suppkey> combinations is 79.947. Each 
such combination has to keep a separate bitmap corre-
sponding to each region. In the TPC-D database, the 
number of regions is 5, each region being constituted of 5 
nations. Thus, the memory requirement for the quotient 
table of the hash-division algorithm is as follows: 79,947 
(tuples) × 16 bits (partkey, suppkey attributes) × 5 (bit-
maps corresponding to each region) × 5 bits (nations per 
region) = 3.2 MB. 

The quotient table is permanently needed by the algo-
rithm, thus, if it does not fit into memory, both divisor 
and quotient tables have to be partitioned, resulting into 
considerable disk I/O costs. Please recall that the inter-
mediate result size of the StreamJoin approach decreases 
in each step. During the measurements, the memory con-
sumption of this algorithm averaged to ca. 280 KB. The 
peak of the memory consumption has been 700 KB. 
However, this has been measured only for a small time 
period, corresponding to a single stream. Furthermore, 
the hash-division algorithm has to consume all of its in-
put before it produces the first output tuple. An additional 
advantage of the StreamJoin algorithm is that it forwards 
the result tuples region by region, thus making this ap-
proach also more attractive for pipelining as well as in-
teractive use e.g. by OLAP users. 

As presented in Section 3.3, the anti-semijoin ap-
proach is not suitable for this scenario. Other possibilities 
[6] for evaluating the all-quantificator are based on 
counting or set difference. Hence, we compared the 
StreamJoin evaluation with these two strategies as well.  

In this performance evaluation, we have used differ-
ent QEP variants for the StreamJoin approach. These 
variants are identical in the way they use the StreamJoin 
operator. However, they differ in the strategies employed 
to accomplish the necessary grouping on the GroupId and 
StreamId attributes for the input of StreamJoin. This 
grouping can of course always be accomplished by a cor-
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Figure 5: QEP for the usage of the StreamJoin 
operator in pattern recognition. 



 

responding sort operator. However, this is not always 
necessary if the optimizer chooses adequate physical im-
plementations for the operators delivering the StreamJoin 
input.  

In the TPC-D database used, the central table is called 
LINEITEM. The example of Fig. 3 that is already dis-
cussed in Section 3.3 is adopted here; the input of the 
StreamJoin operator is delivered by an equi-join between 
LINEITEM and the computed table NATION that delivers 
the regionkey and nationkey attributes. Assume that NA-
TION is sorted on regionkey and nationkey. Consider the 
following evaluation alternatives w.r.t. the join between 
LINEITEM and NATION:  
• an index-nested-loops join, using an index of the 

LINEITEM table; this is mostly possible, since in data 
warehouse schemas there are typically indexes on the 
dimension attributes of the fact table. 

• a hash join, the NATION table being used as the prob-
ing table. 

In these cases, the join result is constituted as follows: for 
each tuple of the NATION table a set of tuples (regionkey, 
nationkey, ...) is generated, yielding exactly one stream 
and containing the parts that have been sold in a given 
nation of a region. Hence, the necessary grouping of 
StreamJoin input is already satisfied and no additional 
sort operations are necessary. In addition to the two pos-
sibilities presented above, for our performance evaluation 
we have also considered a QEP variant where the index 
for the index-nested-loops join has been built on the fly.  

The results of our performance evaluation for the ap-
proach based on counting as well as for the StreamJoin 
variants can be found in Fig. 6. The approach based on 
set difference took more than 10 hours for only one re-
gion, hence it is obviously not competitive. In Fig. 6, we 
present our measurement results for both the sequential 
case (called Seq in the figure) as well as for the parallel 
scenarios, called Par1 (in this case only pipelining has 
been used) to Par4, according to the degree of parallel-
ism used. Hereby, we have only modified the degree of 
parallelism of the subplans that have been in charge of 
performing the universal quantification. The rest of the 

QEPs (called Base in Fig. 6) has been left unchanged. In 
order to be able to asses the speedups correctly, in Fig. 6 
we have given the constant costs of these unchanged QEP 
parts as well. 

The performance evaluation shows that the Stream-
Join approach outperforms the variant based on counting 
by factors, even if the index of the LINEITEM table is 
built on the fly. The best results have been achieved for 
the hash-join variant, as this approach allows a uniform 
evaluation with minimal I/O costs after the hash table has 
been built. However, this variant can only be used if the 
database cache is large enough to hold the tables of both 
the hash-join and StreamJoin operators. One can see that 
the only situation where this requirement could not be 
accomplished was the sequential case, where the entire 
QEP is evaluated on the same processing node.  
As shown in Fig. 6, after subtracting the constant base 
costs, quasi-linear speedups have been achieved. This 
demonstrates the good parallelization potential of the 
StreamJoin approach, thus further increasing perform-
ance. 

6.2. Performance Assessment 

Please note that the preliminary performance evalua-
tion presented in the previous section refers only to the 
all-quantification facility of the StreamJoin operator. Our 
aim was to show that this basic functionality already pre-
sents good results and thus is worthwhile to be consid-
ered as a primitive in the database engine. Important 
characteristics of this operator are the low memory con-
sumption and avoidance of intermediate result materiali-
zations, all resulting in reduced I/O.  

However, as presented in the previous sections of this 
paper, as well as in [17] [15], StreamJoin is able to ex-
press much more complicated application-specific func-
tionality as well. It can be efficiently integrated into the 
database engine, as a stand-alone operator or a user-
defined table operator [13] [17]. The resulting plans guar-
antee a non-blocking and uniform data flow among the 
operators involved. Additionally, StreamJoin can be 
efficiently expressed and referenced by SQL-like lan-
guages [17].  

Hence, a parallel execution [16], reliability, and port-
ability are supported. 

7. Conclusion 

In this paper we have pointed out the importance of 
stream-oriented processing as a generic execution strat-
egy that is applied by different applications like time se-
ries, DNA analysis, data mining, and universal quantifi-
cation. We have presented a new database operator, 
called StreamJoin, that provides a resource-effective and 
efficient strategy to solve the problem of stream analysis 
within the database engine. Thus, no data transfer be-

Figure 6: Performance Evaluation. 



 

tween the database and the application is necessary. Tak-
ing into account the volume of the involved applications, 
this aspect alone already results in substantial perform-
ance improvements. 

The StreamJoin operator interfaces in a natural way 
the other query processing capabilities of the database 
engine, thereby being able to make use of all existing 
facilities and optimizations, such as indexes, sorting etc. 
Its non-blocking feature can be efficiently used for pipe-
lining purposes. As shown by relevant examples in this 
paper, adaptability to diverse application domains is pro-
vided by means of appropriate parameter settings.  
Stream analysis, l ike most data analysis, is best done in a 
way that permits interactive exploration. The StreamJoin 
approach presented in this paper is a novel strategy to-
wards efficiently satisfying such ad hoc queries as well. 
Thereby, due to its economic memory consumption it is 
also particularly suitable for multi-user environments. 
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