
StreamJoin: A Generic Database Approach
to Support the Class of Stream-Oriented Applications

Clara Nippl
Department of Computer Science
Technical University of Munich

D-80290 Munich, Germany
nippl@in.tum.de

Ralf Rantzau, Bernhard Mitschang
Institute of Parallel and Distributed High-

Performance Systems, University of Stuttgart
D-70565 Stuttgart, Germany

{rantzau, mitsch}@informatik.uni-stuttgart.de

Abstract
Today many applications routinely generate large

quantities of data. The data often takes the form of (time)
series, or more generally streams, i.e. an ordered se-
quence of records. Analysis of this data requires stream
processing techniques which differ in significant ways
from what current database analysis and query tech-
niques have been optimized for. In this paper we present
a new operator, called StreamJoin, that can efficiently be
used to solve stream-related problems of various
applications, such as universal quantification, pattern
recognition and data mining. Contrary to other
approaches, StreamJoin processing provides rapid
response times, a non-blocking execution as well as
economical resource utilization. Adaptability to different
application scenarios is realized by means of parameters.
In addition, the StreamJoin operator can be efficiently
embedded into the database engine, thus implicitly using
the optimization and parallelization capabilities for the
benefit of the application. The paper focuses on the
applicability of StreamJoin to integrate application
semantics into the DBMS.

1. Introduction

All-quantification can be seen as a primitive in a
number of upcoming data analysis scenarios as e.g. time
series analysis in finance, genomic sequence matching in
biochemistry, and frequent itemset discovery in data-
bases. Since these application areas show a tremendous
growth in data volume and because the data analysis
problems are getting more complex, an efficient process-
ing of the all-quantification close to the data is getting
vital to the success of these applications.

Our approach is twofold: Firstly, we define a new op-
erator, called StreamJoin that directly evaluates all-
quantification in an efficient manner. Secondly, we show

how this operator can efficiently be integrated into a
state-of-the-art DBMS.

Please note that the implementation strategy as well
as a detailed description of the StreamJoin algorithm are
covered in another paper [17]. In this paper we concen-
trate on identifying the usage of the StreamJoin primitive
within the applications mentioned below:
• Universal Quantification: Forthcoming applications

stress the need for an efficient implementation of uni-
versal quantification concepts. Given e.g. a decision
support system (DSS), a frequently formulated query
type is the following: “Find the custom-
ers/suppliers/stores that buy/supply/sell all items that
satisfy a particular condition.”

• Sequences: Recently, there is a growing interest in
periodicity search [10] in time-related databases. For
instance, databases for stock analysis often process
queries like: “Find all stocks that monotonically
fall/rise in a given period of time.”

• Pattern Recognition: In the domain of molecular biol-
ogy, scientists frequently attempt to match functionally
unknown proteins against a protein coding database of
known proteins. If a match is found, it is likely that the
proteins are functionally related. Thus, given a se-
quence and a protein coding database, the problem can
be formulated as follows: “Find the item sequences in
the database that contain all items of the pattern se-
quence in the given order.”

• Data Mining: One of the core mechanisms of many
data mining algorithms [1] is a phase that evaluates
patterns called frequent itemsets. A frequent itemset is
a set of items appearing together in a number of data-
base records meeting a user-defined threshold, called
minimum support. The final itemsets are usually de-
rived using a set of candidate itemsets. That means, a
candidate itemset is established as being a frequent
itemset if the number of transactions containing all
items in the candidate itemset exceeds the predefined
support.

CANDIDATE

S100,43
S200,10

S200,22

S100,10

StreamJoin (itemset, item, transaction.new = transaction.old)

(100, 43, 1)
(100, 10, 3)

IR = CANDIDATE (itemset, item, transaction)
(100, 10, 1)
(100, 10, 2)

(200, 10, 1)

(200, 10, 3)
(200, 10, 2)

(200, 22, 2)
(200, 22, 1)

(200, 2)

FR (itemset, transaction)
(100, 1)
(200, 1)

match on
transaction

group for
itemset 100

group for
itemset 200

CANDIDATE

S100,43
S200,10

S200,22

S100,10

StreamJoin (itemset, item, transaction.new = transaction.old)

(100, 43, 1)
(100, 10, 3)

IR = CANDIDATE (itemset, item, transaction)
(100, 10, 1)
(100, 10, 2)

(200, 10, 1)

(200, 10, 3)
(200, 10, 2)

(200, 22, 2)
(200, 22, 1)

(200, 2)

FR (itemset, transaction)
(100, 1)
(200, 1)

match on
transaction

group for
itemset 100

group for
itemset 200

Figure 1: StreamJoin processing for an input

stream of candidate itemsets.

• Digital Libraries: Modern digital l ibraries offer a
profiling service to keep track of their users’ individual
reading interests. A profile usually consists of a set of
keywords. One task of the profiling service is to find
the documents that contain all keywords. In some
cases, the words in the documents have to fulfil l cer-
tain additional position requirements like a specific or-
der [15].

If we analyze in more detail the data involved in these
query types, we recognize that it often takes the form of
streams, i.e. a variable number of (intermediate result)
tuples that share a common feature. A stream corresponds
for instance to the set of transactions that contain a spe-
cific item or the set of documents that contain a specific
keyword. The subsequent processing within an applica-
tion domain refers to certain relationships in-between the
streams. For instance, the final result of the universal
quantification is given by those tuples that are included in
all streams. In the case of profile evaluation, the tuples in
subsequent streams have to fulfi ll the required position-
ing requirements.

Given the above, we conclude that there is an impor-
tant class of applications where there is a need to perform
stream analysis instead of traditional data analysis,
achieved for instance through aggregations. A further
common feature of all these applications is the fact that
the number of streams is also variable and not known a
priori, as it corresponds e.g. to the number of items in an
itemset, or the number of search terms in a profile.

In this paper, we introduce a new database operator,
called StreamJoin, that can efficiently solve the problems
mentioned above. Thereby, we concentrate on the appli-
cability of this strategy for various scenarios covering
universal quantification, sequences, and pattern recogni-
tion. In our previous work, we have already employed the
StreamJoin operator to data mining tasks [18] and profile
evaluation [15].

Consequently, the paper is organized as follows. In
Section 2 we describe the basic functionality of the
StreamJoin operator. Section 3 demonstrates the applica-
bility of this technique for universal quantification. Sec-
tion 4 and 5 exemplify the usage of StreamJoin for se-
quence analysis, respectively pattern recognition in ge-
nomic databases. A performance evaluation is given in
Section 6. Finally, Section 7 presents some concluding
remarks.

2. The StreamJoin Operator

The arity of the StreamJoin operator is 1, contrary to
traditional join operators. Thus, it can also be regarded as
a specific aggregation or restriction operator. Two distin-
guished attributes divide the entire input into groups that
in turn are subdivided into streams. These attributes are
handed over to the StreamJoin operator as parameters,
called GroupId and StreamId. From the StreamJoin’s

point of view any of the input attributes can act as
GroupId or StreamId, provided that the input is grouped
on these attributes.

The main functionality of this operator is to join sub-
sequent streams of a given group. Thereby, both the join
attributes as well as the corresponding join conditions are
given as parameters. Obviously, the join attributes, or
JoinIds, are different from the GroupId or StreamId at-
tributes.

Hence, we define the following signature for the
StreamJoin operator: StreamJoin (GroupId, StreamId,
predicate(JoinId1, JoinId2, ...))

The first two parameters specify the attributes that de-
fine a group and the streams within a group. The subse-
quent parameter defines the join predicate as a boolean
expression over the join condition. This join predicate
defines condition(s) between attribute values of the cur-
rent stream and those of the previous stream. This is ex-
pressed by the suffixes new and old. Thus, JoinId.new
represents the value of the attribute JoinId in the current
stream and JoinId.old represents the value of the same
attribute in the previous stream.

For a better understanding, we il lustrate this function-
ality by using the following example. Consider the data
mining problem of finding frequent itemsets. Assume
that some kind of pre-processing has delivered a set of
candidate itemsets organized in a table CANDIDATE
(itemset, item, transaction) as depicted in Fig. 1. We are
interested in those transactions that contain all items of
any given itemset.

In order to provide this result, we simply join subse-
quent streams on the transaction attribute. Thereby, an
instance of the StreamJoin operator that performs this
functionality has the signature StreamJoin (itemset, item,
transaction.new = transaction.old). We assume that the
tuples of CANDIDATE are grouped on itemset and item.
We call this input of the StreamJoin operator an interme-
diate result (IR) since it is usually the output of a more
complex query execution plan (QEP) and not a base table
as in this example.

The processing is illustrated in Fig. 1 for two example
groups, 100 and 200. The group, i.e. candidate itemset,

100 is constituted of two streams, called S100,10 and S100,43.
These streams define the transactions that contain item 10
and 43, respectively. The StreamJoin operator joins all
streams of each group on the attribute transaction. This
yields one tuple (100, 1) for the group 100 indicating that
the transaction 1 contains all items of the candidate item-
set 100, namely 10 an 43. The same join processing for
the group 200 results in two tuples, namely (200,1) and
(200, 2). Here, both transaction 1 and transaction 2 con-
tain all items of the candidate itemset 200. Hence, the
final result FR contains three tuples.

The implementation of StreamJoin is based on sepa-
rate iterations, corresponding to the streams within a
group. Thereby, hash-based data structures are used to
memorize those tuples of the input that are candidates for
the final result. In the first iteration, the number of candi-
dates is equal to the number of tuples in the first stream.
However, this number decreases in each iteration, since
only those tuples are retained that satisfy the join condi-
tion. This process continues until the next group is
reached. The tuples that survive all iterations satisfy the
join condition for every stream of a group and are added
to the output stream, e.g. the final result FR in Fig. 1.
Please note that the number of tuples to be kept in mem-
ory at a given time is at most the size of a single stream.
In addition, the intermediate result sizes decrease with
each iteration. Thus, this strategy yields an economical
memory consumption.

As already mentioned, the input of the StreamJoin
operator has to be grouped on the GroupId and StreamId
attributes. Obviously, this requirement can always be
fulfi lled by adequate sorting techniques. However, as
shown later on in this paper, sorting can mostly be
avoided. This results from the fact that often the neces-
sary grouping for the StreamJoin operator implicitly
comes via pre-processing steps performed earlier in the
query execution plan.

Please note that this description of StreamJoin shows
certain similarities to the evaluation of recursive queries
in database systems [5]. Indeed, though the two areas
seem radically different because of the approach and for-
malism used, they have some common features. First, the
presented hash-based implementation of StreamJoin is
similar to the transitive closure algorithm described in
[11]. Second, both approaches apply a variable number of
consecutive iterations and a stop condition to obtain the
final result. Moreover, in both cases the number of itera-
tions is not known a priori, being dependent on the value
distribution of the input. However, the difference be-
tween the two approaches lies in the characteristics of the
iterations. As already mentioned, StreamJoin processes
its input stream-wise or linearly, i.e. a given input tuple is
generally considered only once. In contrast, the evalua-
tion of transitive closure, or recursion in general, requires
a repeated processing of the input. This cyclic method
may consider the same input tuple several times in order

to produce the complete result. Another important differ-
ence between the two approaches lies in the fact that the
StreamJoin processing reduces the intermediate result
with each iteration, as the tuples which do not match the
join predicate are eliminated. In contrast, transitive clo-
sure produces in each iteration new tuples that are added
to the final result. Finally, there is also a major difference
between the two stop conditions applied. The transitive
closure algorithm stops when no new tuples are pro-
duced, i.e. the (intermediate) result set of a given iteration
is identical to the one of the previous iteration. In con-
trast, the StreamJoin algorithm joins streams of the same
group until the subsequent group is reached. Thus, the
stop condition for joining is the fact that the value of the
current tuple’s GroupId attribute is different from that of
the previous input tuple.

A thorough discussion of frequent itemset discovery
involving StreamJoin and a more detailed description of
the algorithm and implementation can be found in [17].
We introduced the StreamJoin operator only as far as is
necessary for the understanding of this paper.

3. Universal Quantification

Complex queries containing quantifiers, also called
quantified queries, become increasingly important in
forthcoming applications, such as OLAP systems. How-
ever, relational database systems do not adequately sup-
port such queries. Effective support is needed both at the
language level and in the underlying query processing
system. As far as the first issue is concerned, quantified
queries are usually expressed in SQL by various clauses
like GROUP BY and counting, as well as predicates like
ALL, ANY/SOME, (NOT) EXISTS, and (NOT) IN.

We first consider the example given in [8], a univer-
sity database with two relations, COURSE (courseNo,
title) and TRANSCRIPT (studentId, courseNo, ...). The
goal is to find the students who have taken all courses
offered by the university. Two examples of expressing
this query in SQL are presented below.

SELECT DISTINCT t1.studentId
FROM TRANSCRIPT t1
WHERE NOT EXISTS (
 SELECT * FROM COURSE c
 WHERE NOT EXISTS (
 SELECT * FROM TRANSCRIPT t2
 WHERE t2.studentId = t1.studentId
 AND t2.courseNo = c.courseNo))

SELECT t.studentId
FROM TRANSCRIPT t
GROUP BY t.studentId
HAVING COUNT(t.courseNo) = (
 SELECT COUNT(courseNo)
 FROM COURSE)

Obviously, these formulations are not intuitive and in
addition difficult to optimize. Language extensions have
already been proposed in the literature [12] [19] and

meanwhile considered as additional predicates in the
SQL:1999 standardization [9]. In this paper, we concen-
trate on the support provided by relational query proces-
sors.

Since all-quantification can be seen as a division op-
eration, there is a direct relationship from StreamJoin to a
division operation. In fact, StreamJoin can mimic a divi-
sion operation by simply using an equi-join predicate
involving the division column.

3.1. Related Work

[6] presents a comprehensive treatment of universal
quantification from the query level to evaluation. Accord-
ing to this analysis, plans implementing the all-
quantification with an anti-semijoin are superior to all
other alternatives. However, this approach is best sup-
ported in object-oriented and object-relational models.
Thus, it is still an open problem how to deal with univer-
sal quantifiers in data warehouse applications, that are
mostly based on a relational star or snowflake schema.
Because of high data volumes, especially in these envi-
ronments effective support is needed, and data reorgani-
zation has to be avoided.

Universal quantification is evaluated in [8] by a hash-
based division algorithm. However, this approach applies
only for a special class of queries, namely those for
which the quantifier’s range constitutes a closed formula
[6]. In [7] generalized join and aggregation operators are
presented. However, the scope of the paper is restricted
only to traditional aggregation operations over groups,
such as average, max, count etc., and is not applicable for
all-quantification. [19] proposes a generalized quantifier
framework that defines a completely new query subsys-
tem. Thus, it requires significant changes within the
query execution system, since special indexes and multi-
dimensional structures have to be built for all relations.
Moreover, the results are not directly applicable for large-
scale applications, such as e.g. OLAP. In addition, web
technology can benefit from universal quantification as
expressed for example in the web join approach like in
[3].
In the following, in order to assess the applicability of the
different implementation approaches, namely hash-join,
anti-semijoin and StreamJoin, we will consider two ex-
ample scenarios employing universal quantification.

3.2. Example Scenario 1: The University Data-
base

We first consider the university database example
mentioned above. Again, the request is to find the stu-
dents who have taken all courses offered by the univer-
sity. As already mentioned, this database contains two
relations, COURSE (courseno, title) and TRANSCRIPT
(studentid, courseno, ...).

The Hash-Division Algorithm. In [8] the TRANSCRIPT
relation is called the dividend, the COURSE table the
divisor and the division result is called quotient. The
hash-division algorithm uses two hash tables, one for the
divisor and one for the quotient. For each tuple in the
quotient table a bitmap is kept with one bit for each divi-
sor tuple. First, all divisor tuples are inserted into the di-
visor table. Next, the algorithm consumes the dividend
relation. If a matching tuple is found in the divisor table,
the dividend tuple is newly inserted as a candidate into
the quotient table and its bitmap is initialized with zeros
except for the bit corresponding to the matching divisor
tuple. However, if it is already present, the only thing to
be done is to modify the associated bitmap by turning the
bit corresponding to the matching divisor tuple to 1.
When all tuples of the dividend relation are consumed,
the quotient consists of those tuples in the quotient table
for which the corresponding bitmap contains no zeros.

The Anti-Semijoin Approach. As described in [6], in an
object-oriented model the N:M relationship enrolled be-
tween students and courses is typically modeled by a set-
valued attribute enrolledCourses for each student. Thus
the all-quantification can be resolved by an anti-semijoin
on the two tables TRANSCRIPT and COURSE using the
condition courseNo ∉ enrolledCourses. The anti-
semijoin adds to the output stream only those tuples, i.e.
students, for which no join partner has been found. This
is equivalent to the fact that all courses are included in
the enrolledCourses attribute of the given student item,
hence the student has attended all courses.
However, in a relational schema this approach cannot be
applied. Obviously, the anti-semijoin on TRANSCRIPT
and COURSE, using the condition courseNo ≠ courseNo,
yields as a result an empty set if referential integrity is
guaranteed. Thus, the anti-semijoin strategy cannot be
applied for the evaluation of universal quantification in
e.g. data warehouses that adopt a relational star or snow-
flake schema.

The StreamJoin Approach. Fig. 2 presents the QEP for
the evaluation of the all-quantification via the StreamJoin
operator. By joining the two tables TRANSCRIPT and
COURSE using e.g. an index on courseNo for the TRAN-
SCRIPT table, the intermediate result IR consists of sepa-
rate streams for each course, containing the students that
have taken that course. These streams are called SDatabases,
SCompilers and SGraphics in our example. In order to obtain
the students that have participated in all courses, a join of
these streams on the studentId attribute is necessary. This
operation is performed by the StreamJoin operator, yield-
ing in the example from Fig. 2 one tuple for the final re-
sult FR. Please note that the parameter corresponding to
the GroupId is set to 0 (or any arbitrary constant value),
as there is only one divisor set to be tested.

Join (courseNo = courseNo)

SCompilers
SGraphics

SDatabases

StreamJoin (0, courseNo, studentId.new = studentId.old)

(Joe, Compilers)

(Jill, Compilers)

IR (studentId, courseNo)

(Jack, Databases)

(Jill, Databases)
(Jill, Graphics)
(Joe, Graphics)

(Jill)
FR (studentId)

(Compilers)
(Graphics)

(Databases)

COURSETRANSCRIPT

(Joe, Compilers)
(Jill, Compilers)

(Jack, Databases)
(Jill, Databases)

(Jill, Graphics)
(Joe, Graphics)

Join (courseNo = courseNo)

SCompilers
SGraphics

SDatabases

StreamJoin (0, courseNo, studentId.new = studentId.old)

(Joe, Compilers)

(Jill, Compilers)

IR (studentId, courseNo)

(Jack, Databases)

(Jill, Databases)
(Jill, Graphics)
(Joe, Graphics)

(Jill)
FR (studentId)

(Compilers)
(Graphics)

(Databases)

COURSETRANSCRIPT

(Joe, Compilers)
(Jill, Compilers)

(Jack, Databases)
(Jill, Databases)

(Jill, Graphics)
(Joe, Graphics)

Figure 2: Evaluation of universal quantification
with the Streamjoin approach.

As compared to the hash-division algorithm, this ap-
proach needs less buffer space, as the maximum memory
consumption corresponds to the size of the first stream
(in this example the two tuples of the stream SDatabases).
As shown in Section 2, the intermediate result sizes de-
crease with each iteration because the tuples which do not
match the join condition are eliminated. In contrast, the
hash-division algorithm has to keep the whole divisor, i.e.
the COURSE table (3 tuples), in memory, together with
all quotient candidates and their corresponding bitmaps
(3 tuples + 3 bitmaps). For this small example, this sums
up to 6 tuples + 3 bitmaps that have to be kept perma-
nently in memory for the hash-division algorithm, com-
pared to at most 2 tuples, i.e. the number of distinct items
in the first stream, that are kept in memory for the
StreamJoin approach.

3.3. Example Scenario 2: Data Warehouse

Consider a data warehouse with a central FACT table,
describing the sales in a given time period, and several
dimension tables, e.g. NATION being one of them:

FACT (partkey, suppkey, nationkey, ...)
NATION (regionkey, nationkey, nationname, ...)
...

Assume that for marketing purposes, a user is interested
in the query: “Find the suppliers who supply a part that is
being sold in all nations of a region.”
In the following, we analyze how this query can be
solved by the various approaches.

The Hash-Division Algorithm. In this case, the divisor
table is NATION, or, more precisely, it is constituted of
several parts of this table, each part corresponding to a
region. It results already from this aspect that the hash-
division algorithm cannot be applied in a straightforward
way, as it has to be extended to keep separate bitmaps for
every divisor, i.e. every region. In addition, each <part-
key, suppkey> combination has to be considered as a pos-
sible quotient candidate. Thus, the quotient table is con-
stituted of all such combinations, each having in addition

several bitmaps corresponding to the different regions.
These memory requirements also show that the algorithm
is not competitive for this type of query.

The Anti-Semijoin Approach. Similar to Section 3.2.2,
the approach is not applicable for this relational schema,
since the anti-semijoin between the two tables on the
nationkey attributes yields an empty set.

The StreamJoin Approach. Since nationkey is one of
the dimensions of the central FACT table, suppose for
simplicity purposes that there exists an index on this at-
tribute. We further assume that the NATION table is
sorted on the regionkey attribute. Please note that if this
condition is not fulfi lled by the physical databases design,
it can be accomplished e.g. by a corresponding sort op-
erator. By joining the NATION and FACT table, each
region defines a group, containing the parts that have
been sold in that region. In the example in Fig. 3 the
groups are defined by the values Africa and America.
Each group contains several streams, corresponding to
the different countries of that region. For instance, the
group Africa is constituted of the streams Algeria and
Kenya. This intermediate result constitutes the input for
the StreamJoin operator. Thus, the GroupId parameter of
the StreamJoin operator as defined in Section 2 corre-
sponds to the regionkey attribute, while the StreamId is
set to nationkey. If we had joined the streams on the
suppkey attribute alone, we would have obtained the sup-
pliers whose different parts are sold in all countries of a
region. However, the query contains as an additional con-
straint that it must be the same part that is sold in all
countries. Thus, the join is defined on two attributes,
namely suppkey and partkey. For both attributes, the join
condition is equality, expressed by suppkey.old =
suppkey.new, respectively partkey.old = partkey.new.

4. Sequences

Recently, patterns and sequences, especially time se-
quences, appear in various application domains. Typical
examples are scientific experiments such as temperature
records generated by sensors, business applications such

Join (nationkey = nationkey)

SAfrica, Kenya
SAmerica, Argentina

SAfrica, Algeria

StreamJoin (regionkey, nationkey, suppkey.new = suppkey.old; partkey.new = partkey.old)

IR (regionkey, nationkey, ...)

FACTNATION

(Africa, Algeria, ...)
(Africa, Algeria, ...)
(Africa, Kenya, ...)
(America, Argentina, ...)
(America, Brazil, ...)
(America, Brazil, ...)
(America, Canada, ...)

SAmerica, Argentina
SAmerica, Argentina

Join (nationkey = nationkey)

SAfrica, Kenya
SAmerica, Argentina

SAfrica, Algeria

StreamJoin (regionkey, nationkey, suppkey.new = suppkey.old; partkey.new = partkey.old)

IR (regionkey, nationkey, ...)

FACTNATION

(Africa, Algeria, ...)
(Africa, Algeria, ...)
(Africa, Kenya, ...)
(America, Argentina, ...)
(America, Brazil, ...)
(America, Brazil, ...)
(America, Canada, ...)

SAmerica, Argentina
SAmerica, Argentina

Figure 3: Simplified QEP for an OLAP query

involving a StreamJoin operator.

as stock price indexes or bank account histories and
medical applications such as cardiology data. Sequence
processing is a challenging task for data mining purposes
as well [24]. The corresponding (temporal) databases
tend to be voluminous, thus forcing efficient algorithms
to reduce processing overhead, such as communication
costs etc. However, related work treats sequence analysis
mostly on top of a database. In contrast, the StreamJoin
operator processes sequences in an integrated fashion
internal to the DBMS. This will be demonstrated in the
following using as an example an application operating
on financial data.

One interesting scenario in finance is to identify pairs
of stocks whose prices track one another, i.e. show simi-
lar pricing over a specified period of time [14]. Suppose a
database for stock analysis that contains the table
STOCKINFO (week, day, stockkey, price). Without loss
of generality, we assume that this table is sorted on the
week and day attributes. Hence, the query “Which stocks
have had continuously rising prices during an entire
week?” can be simply evaluated by a scan of the STOCK-
INFO table followed by the StreamJoin operator. The
corresponding signature is expressed as follows:

StreamJoin (week, day, stockkey.new = stockkey.old;
price.new > price.old).
Hence, the GroupId parameter is set to week, StreamId is
set to day, and the join is performed on the stockkey and
price attributes. In this way only those tuples of a new
stream, i.e. a new day, qualify, that satisfy the condition
that for the same stockkey (stockkey.new = stockkey.old)
the price is rising (price.new > price.old). Subsequent
projection on attributes stockkey and week finally yields
the stocks that have had continuously increasing prices
for all successive days of a week.

Assume that the user is further interested in stocks
that are chasing one another. In a simplified model, this
can be defined by the fact that every time the price of the
first stock is going up during an entire week, the price of
the second stock is also rising during the subsequent
week. Thus, the query can be answered by a self-join
followed by the StreamJoin operator as shown by the
QEP depicted in Fig. 4. The self-join is on condition that
the attribute value week2 is subsequent to week1, given
by the expression week2 = week1 + 1. The intermediate
result (stockkey1, week1, stockkey2) expresses pairs of
stocks that chase one another in two subsequent weeks.
However, the condition for chasing stock prices is that
every time the first stock is rising, the second is also ris-
ing in the subsequent week. This condition is evaluated
by the StreamJoin operator. The input is delivered by the
intermediate result described above, by setting the pa-
rameters GroupId to stockkey1, StreamId to week1 and by
defining the join predicate on stockkey2.

In Fig. 4, we have depicted the group defined by the
stock IBM. This group is constituted of two streams, cor-
responding to the weeks with rising prices for this stock.

By joining the streams on stockkey2, we obtain the stocks
that chase IBM in all subsequent weeks. In this example,
the price of CPQ is rising every time when the price of
IBM is rising, while MSF is chasing IBM only in the
fourth week. Thus, MSF is eliminated by StreamJoin for
the final result.

5. Pattern Discovery in Genomic Databases

Genomic databases assist molecular biologists in un-
derstanding the biochemical function, chemical structure,
and evolutionary history of organisms. Popular systems
for searching genomic databases perform a type of pat-
tern matching over data sets called sequences. Efficiency
in such exhaustive systems is crucial, since some servers
process over 40,000 queries per day [2], and several que-
ries require comparison to over one gigabyte of genomic
sequence data. A genomic database contains sequence
records that are continuous strings drawn from a specific
alphabet, varying from a few characters to several hun-
dred thousand characters in length. During each query
task, a new string called pattern has to be matched
against the old strings. Thereby, the strategy must be able
to find statistically significant similarities in the presence
of not only varying sequence lengths, but also repetitive
subsequences. Contrary to most related work [23] [22],
our approach to discovering patterns in a database of ge-
netic sequences is realized within the database engine.

We consider the patterns as being regular expressions
of the form *X1*X2*..., where X1, X2 are segments of a
sequence made up of consecutive letters, and * represents
a variable length of intermediate letters. We treat this
variable length as a parameter, called int_length. The user
is interested in the locations (positions) where a pattern is
contained in a given sequence. Suppose that the informa-
tion corresponding to sequences is stored in a table SE-
QUENCE (pos, letter) and the pattern is stored in a table
PATTERN (letter). Please note that this is only a simpli-
fied representation. Thus, if e.g. there are several patterns
to be analyzed, the PATTERN table has to be extended by
a patternkey attribute. Similarly, in such a general case,
the SEQUENCE table contains a sequencekey attribute as

Join (week2 = week1 + 1)

SIBM, 13

SIBM, 4

StreamJoin (stockkey1, week1, stockkey2.new = stockkey2.old)

IR (stockkey1, week1, stockkey2, ...)

(IBM, CPQ, ...)
FR (stockkey1, stockkey2, ...)

STOCKINFOSTOCKINFO

(IBM, 13, CPQ, ...)

(IBM, 4, CPQ, ...)
(IBM, 4, MSF, ...)

(stockkey2, week2)
(IBM, 4)
(IBM, 13)
(CPQ, 1)
(CPQ, 5)
(CPQ, 14)
(MSF, 5)
(MSF, 17)

(stockkey1, week1)
(IBM, 4)
(IBM, 13)
(CPQ, 1)
(CPQ, 5)
(CPQ, 14)
(MSF, 5)
(MSF, 17)

Join (week2 = week1 + 1)

SIBM, 13

SIBM, 4

StreamJoin (stockkey1, week1, stockkey2.new = stockkey2.old)

IR (stockkey1, week1, stockkey2, ...)

(IBM, CPQ, ...)
FR (stockkey1, stockkey2, ...)

STOCKINFOSTOCKINFO

(IBM, 13, CPQ, ...)

(IBM, 4, CPQ, ...)
(IBM, 4, MSF, ...)

(stockkey2, week2)
(IBM, 4)
(IBM, 13)
(CPQ, 1)
(CPQ, 5)
(CPQ, 14)
(MSF, 5)
(MSF, 17)

(stockkey1, week1)
(IBM, 4)
(IBM, 13)
(CPQ, 1)
(CPQ, 5)
(CPQ, 14)
(MSF, 5)
(MSF, 17)

Figure 4: QEP for the usage of the StreamJoin
operator in financial time series.

well. In the example that follows we assume that the pat-
tern has the form A*B*C, with int_length being 1, i.e. one
intermediate letter is allowed for matching subsequences.

This query can be evaluated in an integrated fashion
by using the StreamJoin operator as shown in Fig. 5.
Here, each element of the pattern defines a stream, con-
taining all positions of the sequence where this element
occurs. We are interested in the portions of the sequence
that contain all elements of the pattern in the given order
with the imposed position requirements. Hence, for a
variable length of intermediate letters the join condition
for the StreamJoin operator is on the pos attribute, ex-
pressed by the following parameter:

pos.new <= pos.old + int_length + 1.
In the example from Fig. 5, by substituting int_length

with 1, we obtain:
pos.new <= pos.old + 2.

The GroupId parameter of the StreamJoin operator is set
to 1 (or any constant value), since a group is defined by a
pattern and in this simple example there is only one pat-
tern involved. In the generalized case the GroupId is set
to the patternkey attribute and StreamId is set to the letter
attribute. In our example we have three streams corre-
sponding to the letters A, B, and C of the pattern. As men-
tioned, only the sequences satisfying the imposed posi-
tion requirements qualify. For instance, the tuples (A, 5)
and (B, 8) of the intermediate result IR do not survive,
since the distance between the letters is greater than 1.
The result contains the end positions of the matching
sequences found. In this example, the pattern is included
in the SEQUENCE table from position 1 to 4, hence the
result contains the position 4.

6. Performance Evaluation

In the following, we present our preliminary meas-
urement results and first performance assessments for the
universal quantification problem.

6.1. Measurements

For the performance evaluation, we have integrated
the StreamJoin operator into the MIDAS system. MIDAS
[4] is a prototype of a parallel object-relational database
system running on a hybrid architecture comprising sev-
eral SMP nodes combined in a shared-disk manner. We
used a 100 MB TPC-D database [21], running on a clus-
ter of 4 SUN-ULTRA1 workstations with 143 MHz Ultra
SPARC processors, connected via a Fast Ethernet net-
work. For this database, we have evaluated different pos-
sibilities of evaluating the query presented in Section 3.3,
namely “Find the suppliers who supply a part that is be-
ing sold in all nations of a region.”

We first compared the memory requirements of the
StreamJoin and hash-division approaches, on condition
that the latter is extended to handle also complex divi-
sors, e.g. by keeping several bitmaps for each quotient
candidate in memory. In our database the number of dis-
tinct <partkey, suppkey> combinations is 79.947. Each
such combination has to keep a separate bitmap corre-
sponding to each region. In the TPC-D database, the
number of regions is 5, each region being constituted of 5
nations. Thus, the memory requirement for the quotient
table of the hash-division algorithm is as follows: 79,947
(tuples) × 16 bits (partkey, suppkey attributes) × 5 (bit-
maps corresponding to each region) × 5 bits (nations per
region) = 3.2 MB.

The quotient table is permanently needed by the algo-
rithm, thus, if it does not fit into memory, both divisor
and quotient tables have to be partitioned, resulting into
considerable disk I/O costs. Please recall that the inter-
mediate result size of the StreamJoin approach decreases
in each step. During the measurements, the memory con-
sumption of this algorithm averaged to ca. 280 KB. The
peak of the memory consumption has been 700 KB.
However, this has been measured only for a small time
period, corresponding to a single stream. Furthermore,
the hash-division algorithm has to consume all of its in-
put before it produces the first output tuple. An additional
advantage of the StreamJoin algorithm is that it forwards
the result tuples region by region, thus making this ap-
proach also more attractive for pipelining as well as in-
teractive use e.g. by OLAP users.

As presented in Section 3.3, the anti-semijoin ap-
proach is not suitable for this scenario. Other possibilities
[6] for evaluating the all-quantificator are based on
counting or set difference. Hence, we compared the
StreamJoin evaluation with these two strategies as well.

In this performance evaluation, we have used differ-
ent QEP variants for the StreamJoin approach. These
variants are identical in the way they use the StreamJoin
operator. However, they differ in the strategies employed
to accomplish the necessary grouping on the GroupId and
StreamId attributes for the input of StreamJoin. This
grouping can of course always be accomplished by a cor-

Join (letter = letter)

SB
SC

SA

StreamJoin (1(patternkey), letter, pos.new = pos.old)

(B)

IR (letter, pos)

(A)

(C)

(4)
FR (pos)

(2, X)
(3, B)

(1, A)

SEQUENCEPATTERN

(B, 8)
(B, 3)

(A, 1)
(A, 5)

(C, 4)

(5, A)
(6, X)

(4, C)

(7, D)
(8, B)

Join (letter = letter)

SB
SC

SA

StreamJoin (1(patternkey), letter, pos.new = pos.old)

(B)

IR (letter, pos)

(A)

(C)

(4)
FR (pos)

(2, X)
(3, B)

(1, A)

SEQUENCEPATTERN

(B, 8)
(B, 3)

(A, 1)
(A, 5)

(C, 4)

(5, A)
(6, X)

(4, C)

(7, D)
(8, B)

Figure 5: QEP for the usage of the StreamJoin
operator in pattern recognition.

responding sort operator. However, this is not always
necessary if the optimizer chooses adequate physical im-
plementations for the operators delivering the StreamJoin
input.

In the TPC-D database used, the central table is called
LINEITEM. The example of Fig. 3 that is already dis-
cussed in Section 3.3 is adopted here; the input of the
StreamJoin operator is delivered by an equi-join between
LINEITEM and the computed table NATION that delivers
the regionkey and nationkey attributes. Assume that NA-
TION is sorted on regionkey and nationkey. Consider the
following evaluation alternatives w.r.t. the join between
LINEITEM and NATION:
• an index-nested-loops join, using an index of the

LINEITEM table; this is mostly possible, since in data
warehouse schemas there are typically indexes on the
dimension attributes of the fact table.

• a hash join, the NATION table being used as the prob-
ing table.

In these cases, the join result is constituted as follows: for
each tuple of the NATION table a set of tuples (regionkey,
nationkey, ...) is generated, yielding exactly one stream
and containing the parts that have been sold in a given
nation of a region. Hence, the necessary grouping of
StreamJoin input is already satisfied and no additional
sort operations are necessary. In addition to the two pos-
sibilities presented above, for our performance evaluation
we have also considered a QEP variant where the index
for the index-nested-loops join has been built on the fly.

The results of our performance evaluation for the ap-
proach based on counting as well as for the StreamJoin
variants can be found in Fig. 6. The approach based on
set difference took more than 10 hours for only one re-
gion, hence it is obviously not competitive. In Fig. 6, we
present our measurement results for both the sequential
case (called Seq in the figure) as well as for the parallel
scenarios, called Par1 (in this case only pipelining has
been used) to Par4, according to the degree of parallel-
ism used. Hereby, we have only modified the degree of
parallelism of the subplans that have been in charge of
performing the universal quantification. The rest of the

QEPs (called Base in Fig. 6) has been left unchanged. In
order to be able to asses the speedups correctly, in Fig. 6
we have given the constant costs of these unchanged QEP
parts as well.

The performance evaluation shows that the Stream-
Join approach outperforms the variant based on counting
by factors, even if the index of the LINEITEM table is
built on the fly. The best results have been achieved for
the hash-join variant, as this approach allows a uniform
evaluation with minimal I/O costs after the hash table has
been built. However, this variant can only be used if the
database cache is large enough to hold the tables of both
the hash-join and StreamJoin operators. One can see that
the only situation where this requirement could not be
accomplished was the sequential case, where the entire
QEP is evaluated on the same processing node.
As shown in Fig. 6, after subtracting the constant base
costs, quasi-linear speedups have been achieved. This
demonstrates the good parallelization potential of the
StreamJoin approach, thus further increasing perform-
ance.

6.2. Performance Assessment

Please note that the preliminary performance evalua-
tion presented in the previous section refers only to the
all-quantification facility of the StreamJoin operator. Our
aim was to show that this basic functionality already pre-
sents good results and thus is worthwhile to be consid-
ered as a primitive in the database engine. Important
characteristics of this operator are the low memory con-
sumption and avoidance of intermediate result materiali-
zations, all resulting in reduced I/O.

However, as presented in the previous sections of this
paper, as well as in [17] [15], StreamJoin is able to ex-
press much more complicated application-specific func-
tionality as well. It can be efficiently integrated into the
database engine, as a stand-alone operator or a user-
defined table operator [13] [17]. The resulting plans guar-
antee a non-blocking and uniform data flow among the
operators involved. Additionally, StreamJoin can be
efficiently expressed and referenced by SQL-like lan-
guages [17].

Hence, a parallel execution [16], reliability, and port-
ability are supported.

7. Conclusion

In this paper we have pointed out the importance of
stream-oriented processing as a generic execution strat-
egy that is applied by different applications like time se-
ries, DNA analysis, data mining, and universal quantifi-
cation. We have presented a new database operator,
called StreamJoin, that provides a resource-effective and
efficient strategy to solve the problem of stream analysis
within the database engine. Thus, no data transfer be-

Figure 6: Performance Evaluation.

tween the database and the application is necessary. Tak-
ing into account the volume of the involved applications,
this aspect alone already results in substantial perform-
ance improvements.

The StreamJoin operator interfaces in a natural way
the other query processing capabilities of the database
engine, thereby being able to make use of all existing
facilities and optimizations, such as indexes, sorting etc.
Its non-blocking feature can be efficiently used for pipe-
lining purposes. As shown by relevant examples in this
paper, adaptability to diverse application domains is pro-
vided by means of appropriate parameter settings.
Stream analysis, l ike most data analysis, is best done in a
way that permits interactive exploration. The StreamJoin
approach presented in this paper is a novel strategy to-
wards efficiently satisfying such ad hoc queries as well.
Thereby, due to its economic memory consumption it is
also particularly suitable for multi-user environments.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I.
Verkamo. Fast Discovery of Association Rules, in: Ad-
vances in Knowledge Discovery and Data Mining. Chapter
12, AAAI/MIT Press, 1995.

[2] D. Benson, D. Lipman, J. Ostell. GenBank. Nucleic Acids
Research, 21(13): 2963-2965, 1993.

[3] S. S. Bhowmick, S. Madria, W. K. Ng. Detecting and Rep-
resenting Relevant Web Deltas using Web Join. Proc.
ICDCS, Taipei, China, 2000.

[4] G. Bozas, M. Jaedicke, A. Listl, B. Mitschang, A. Reiser,
S. Zimmermann. On Transforming a Sequential SQL-
DBMS into a Parallel One: First Results and Experiences
of the MIDAS Project. Proc. EUROPAR, 1996.

[5] F. Cacace, S. Ceri, M. A. W. Houtsma. A Survey of Paral-
lel Execution Strategies for Transitive Closure and Logic
Programs. Distributed and Parallel Databases, 1(4): 337-
382, 1993.

[6] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner. Opti-
mizing Queries with Universal Quantification in Object-
Oriented and Object-Relational Databases. Proc. VLDB,
Athens, Greece, 1997.

[7] U. Dayal: Of Nests and Trees: A Unified Approach to
Processing Queries that Contain Nested Subqueries. Proc.
VLDB, Brighton, 1987.

[8] G. Graefe, R. L. Cole. Fast Algorithms for Universal
Quantification in Large Databases. TODS, 20(2): 187-236,
1995.

[9] P. Gulutzan, T. Pelzer. SQL Complete, Really. R&D
Books, 1999.

[10] J. Han, W. Gong, Y. Yin. Mining Segment-Wise Periodic
Patterns in Time Related Databases. Proc. KDD, New
York City, NY, 1998.

[11] M. A. W. Houtsma, A. N. Wildschut, J. Flokstra. Imple-
mentation and Performance Evaluation of a Parallel Tran-
sitive Closure Algorithm on PRISMA/DB. Proc. VLDB,
Dublin, 1993.

[12] P. Hsu, D. Parker. Improving SQL with Generalized Quan-
tifiers. Proc. Data Engineering, Taipeh, Taiwan, 1995.

[13] M. Jaedicke, B. Mitschang. User-Defined Table Operators:
Enhancing Extensibility for ORDBMS. Proc. VLDB, Ed-
inburgh, 1999.

[14] L. Molesky, M. Caruso. Managing Financial Time Series
Data: Object-Relational and Object Database Systems. Tu-
torial VLDB Conf., New York City, NY, 1998.

[15] C. Nippl, M. Jaedicke, B. Mitschang. Accelerating Profil-
ing Services by Parallel Database Technology. Proc.
PDPTA, Las Vegas, 1997.

[16] C. Nippl, B. Mitschang. TOPAZ: A Cost-Based, Rule-
Driven, Multi-Phase Parallelizer. Proc. VLDB, New York
City, 1998.

[17] C. Nippl, A. Reiser, B. Mitschang. Extending Database
Functionality to Support Frequent Itemset Processing.
Technical Report, Technical University of Munich, 2000.

[18] C. Nippl, A. Reiser, B. Mitschang. Conquering the Search
Space for the Calculation of the Maximal Frequent Set.
Technical Report, Technical University of Munich, 2000.

[19] S. Rao, A. Badia, D. v. Gucht. Providing Better Support
for a Class of Decision Support Queries. Proc. SIGMOD,
Montreal, 1996.

[20] D. Schneider. The Ins and Outs of Data Warehousing.
Tutorial on the VLDB Conf., Athens, 1997.

[21] Transaction Processing Council. TPC Benchmark D. Stan-
dard Specification, Revision 1.3, 1997.

[22] T. Tsunoda, M. Fukagawa, T. Takagi. Time and Memory
Efficient Algorithm for Extracting Palindromic and Repeti-
tive Subsequences in Nucleic Acid Sequences. Pacific
Symposium on Biocomputing, 1999.

[23] H. Williams, J. Zobel. Indexing Nucleotide Databases for
Fast Query Evaluation. Proc. EDBT, Avignon, 1996.

[24] M. J. Zaki. Efficient Enumeration of Frequent Sequences.
Proc. CIKM, Bethesda, 1998.

