
Abstract
Reliable multicast is realized in a scalable way by tree based
approaches, where the receivers are organized in an ACK tree.
Usually, expanding ring search (ERS) is used to create such ACK
trees. However, ERS has some shortcomings like poor scalability,
strong dependency on the multicast routing protocol and the need
for bidirectional multicast capable networks, which makes it
difficult to use ERS as the Internet standard mechanism.
In this paper we propose the Token Repository Service (TRS),
which is based on a token repository and a modification of ERS.
The TRS stores tokens, which represents the right for a joining
node to connect to a certain parent node in the ACK tree.
Performance evaluations show that the TRS approach has several
advantageous compared to ERS, like improved scalability and
independence of the routing protocol.

1. Introduction

Several protocols have been proposed to provide a reliable ser-
vice on top of IP multicast [1, 2, 3, 4, 5, 6]. Reliable multicast pro-
tocols are based on the concept of controlling the successful
delivery by some kind of acknowledgments returned by the receiv-
ers to the source. While simple approaches like the class of sender-
and receiver-based reliable multicast protocols [1, 2] can cause the
well-known acknowledgment implosion problem, tree-based
approaches are the most promising ones [3, 4, 5, 6]. All group
members are organized in a tree, the so-called ACK tree. Instead
of sending positive or negative acknowledgments directly to the
sender, each receiver confirms the correct message delivery only
to its parent in the ACK tree, which is in most cases responsible
for possible retransmits. Since the maximum number of child
nodes is limited for each node, no ACK tree node is overwhelmed
by acknowledgment messages.

However, tree-based protocols raise another problem, namely
that of setting up and maintaining the ACK tree. A new member
joining a multicast group must be connected to the group’s ACK
tree, which is usually done by a technique called expanding ring
search (ERS) [7]. ERS is a multicast-based search technique for
discovering a suitable parent node in the ACK tree, by gradually
increasing the search scope. The advantage of ERS is its simplicity
and robustness against node and network failures. On the other
hand, the suitability of ERS on a large scale has not been investi-
gated so far. Our simulation results will show that the use of ERS
has several shortcomings, since it results in a large message over-
head and has further special problems with the common multicast
routing protocols. ERS with the source-based DVMRP [8] results
in a large message overhead on the routing layer, since for each
receiver joining the ACK tree a new routing tree has to be estab-

lished. ERS with the unidirectional core-based PIM-SM protocol
[9] results in ACK trees of poor quality, since the search for a par-
ent node is always started from the same core node.

In this paper we present the token repository service (TRS) as
an alternative approach for constructing ACK trees. Our approach
is based on a distributed token repository and the traditional ERS.
This provides improved scalability in the ACK tree construction
and better shaped ACK trees, necessary for ensuring reliable mul-
ticasting with high throughput. The TRS stores tokens, where a
token provides basically the right to connect to a certain parent
node in the ACK tree. A node joining a group asks the TRS for a
token of this group, which identifies the parent to connect to.

The remainder of this paper is organized as follows. In the next
section background and related work are discussed. Section 3
describes the token repository service in detail and the following
section describes the protocol in the presence of failures. In
Section 5 we present performance evaluations before we conclude
with a brief summary in Section 6.

2. Problem definition and related work

The following tree terminology is used to describe the ACK
tree. If the last edge in a tree on the path from the root r to a node
x is (y, x) then y is the parent of x and x is a child of y. A node with
no children is a leaf node. All other nodes are called non-leaf
nodes. The root node has height 1 in the tree. The height of any
other node in the tree is one higher than the height of its parent.
The height of a tree is the maximum height of the tree’s nodes. The
maximum number of children of a node x in a tree is called the
bound of x. If a node x is k-bounded and has already k child nodes,
x is called occupied. A k-ary tree is a tree with bound k for all
nodes.

When a new member joins a reliable multicast group it must be
connected to the group’s ACK tree. In more detail it must be con-
nected to a k-bounded parent that is not already occupied. Most
approaches to establish an ACK tree are based on expanding ring
search (ERS) [7]. With the basic ERS approach for setting up ACK
trees, the joining node looks for a parent in the ACK tree by send-
ing multicast search messages with increasing search scopes [3].
The first message is sent with a time-to-live (TTL) of one, i.e. it is
limited to the sender’s LAN. If a non-occupied group member
receives this message it returns an answer allowing the new mem-
ber to connect to it. If no node answers within a certain time, the
TTL is increased and a new search message is sent. The joining
node repeats this until an answer arrives or the maximum TTL of
255 is reached. Note that increasing the TTL step by step reduces
the network load and detects preferably parents that are close to
the searching node.

Some protocols reverse the method described above by making
the non-occupied ACK tree nodes search for child nodes with mul-
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ticast invitation messages [4, 5], which we will call expanding ring
advertisement (ERA). The invitation messages can be sent with
fixed TTL [4], increasing TTL [6] or according to a special distri-
bution function [5]. Some protocols use a combination of both
approaches [6]. 

ERS and ERA approaches have the great advantage of fault tol-
erance. On the other hand, our performance evaluations in
Section 5 will show that both result in serious drawbacks, e.g.
huge message overhead. An additional drawback is their depen-
dency on the various routing protocols, resulting in particular
problems with each of them. Please see Section 5 for details.

In the following sections we will describe the token repository
service with proxy server strategy (TRS-PS) [10], which is based
on a combination of a repository service and the well-known ERS.
In [11] we have already proposed an alternative approach for cre-
ating multicast ACK trees, which we will further reference as
token repository service with random-choice strategy (TRS-RC).
Both strategies share the same concept which we will describe in
Section 3.1 but differ in their implementation strategy. In contrast
to TRS-RC, the proxy server strategy presented in this paper, uses
ERS which results in less state information to be maintained and in
a simpler implementation. 

3. The Token Repository Service with Proxy 
Server Strategy (TRS-PS)

3.1 Interface and concept of the Token Repository 
Service

Before we describe our protocol in more detail we introduce
the concept of the token repository service. A token stored in the
TRS represents the right to connect to a particular parent node in a
given ACK tree. When a k-bounded node has created or joined a
group, k tokens are generated and stored in the repository. The cre-
ating or joining node is called the tokens’ owner. A token is
defined by a 3-tuple <group, owner, height>, where group identi-
fies the multicast group of the owner. We define the height of a
token to be the height of its owner in the corresponding ACK tree.
The height is used to determine the “quality” of a token (see
Section 3.3).

Initially, there are k tokens of a group in the repository, gener-
ated on behalf of a create group operation. When a node N wants
to join a given group, it asks the TRS for a token of this group. The
repository service then selects a token of this group and returns it
to N. The returned token is removed out of the repository and new
tokens with owner N are created. The joining node N is now able
to connect to the received token’s owner in the corresponding
ACK tree.

When a node leaves a group, it removes all of this group’s
tokens out of the repository for which it is the owner. The leaving
node has allocated a token belonging to its parent in the ACK tree.
This token is returned to the repository, which then can be reused
by some other node joining this group later. Table 1 shows the
operations provided by the token repository service.

3.2 Implementation of the Token Repository 
Service with Proxy Server Strategy

In this section, we will describe the basic principles of imple-
menting TRS-PS. To meet the design goals of scalability and reli-
ability, the token repository service is implemented as a distributed

system of token repository servers, repServers for short. Each rep-
Server is responsible for a disjunct set of nodes, called domain.
For example repServer S1 in Figure 1 is responsible for domain 1
consisting of nodes N1x. 

Note that nodes can be arbitrarily assigned to domains and that
the repServer does not have to be located inside its domain. How-
ever, in order to construct low-delay ACK trees and to minimize
communication overhead, domains should structure the network
by communication distance, i.e. the communication distance
between two nodes in the same domain should be typically smaller
than between two nodes in different domains. Furthermore, the
repServer should be located inside its domain. A repServer,
responsible for all nodes in its domain, is called these nodes’ home
repServer. In Figure 1, S1 is the home repServer of nodes N1x.
During normal operation nodes access the token repository service
only via their home repServer. 

Tokens are stored at the repServers. All token information is
stored in so-called token baskets. A repServer holds one basket for
each known group, which contains this group’s tokens. However,
not all tokens of a group are stored at only one repServer, thus sev-
eral repServers may store token baskets for the same group.

Tokens are created on behalf of a create or join group opera-
tion, since the creating or joining node is able to accept child

Table 1. Operations provided by the TRS

Operation Description

repCreateGroup
(Group, K)

This operation makes Group known to the reposi-
tory service. The caller becomes the root of the 
ACK tree, which is K-bounded.

repDeleteGroup
(Group)

This operation deletes all token information of 
Group in the repository.

repJoinGroup 
(Group, NewMem-
ber, K) returns 
(Token)

repJoinGroup is called when the node identified 
by NewMember wants to join Group, where New-
Member is K-bound. The operation returns a 
token identifying the parent in the ACK tree to 
connect to.

repLeaveGroup
(Group, Member)

This operation deletes all of Group’s tokens 
owned by Member.

repAddToken
(Group, Owner)

repAddToken adds a new token owned by Owner. 
It is called by Owner when a child of Owner dis-
connects from the Group’s ACK tree.

repRefreshToken
(Group, Owner, 
Amount)

To provide fault tolerance, repRefreshToken is 
periodically called by the tokens’ owner. It indi-
cates how many child nodes (Amount) can still be 
accepted (see Section 4).

Fig. 1. Domain structure
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nodes. A token is always stored at the repServer responsible for its
owner’s domain. If a node requests a token from its home rep-
Server and this repServer possesses a token of the requested group,
it simply delivers such a token. A repServer possesses tokens of a
group only if a node in its domain has created or joined this group
before. Consequently, it is possible that a repServer does not pos-
sess tokens for each group. Therefore, it is possible that a node’s
home repServer cannot satisfy a token request although another
repServer could provide a suitable token. For example assume that
all tokens of a group are stored on a single repServer S1, responsi-
ble for domain 1. If a node in another domain, say domain 2 for
example, requests its home repServer S2 for a token, our approach
must ensure that finally S2 can deliver one of S1’s tokens to the
requesting node.

To meet this requirement in the proxy server approach, a rep-
Server initiates a token search for a group’s token if a node in its
domain requests a token and none is available locally. The token
search is processed by ERS. All repServers belong to the same
well-known multicast group. If a repServer has to search for a
token, it starts an ERS search on the repServers’ multicast group.
If a repServer receives such a token search message and possesses
a token of this group, it hands over one token to the searching rep-
Server. In Section 3.4 we will describe this in more detail. Our
search mechanism ensures the following:

1. Always a token is selected whose owner is as close as possi-
ble to the joining node.

2. If there are several tokens whose owners are close to the join-
ing node, the one with the lowest height is chosen.

In summary, if a requested token is available locally at the
requestor’s home repServer, the requestor and the owner of this
token are in the same domain. This is the best case in terms of
communication overhead between the repServers and communica-
tion distance between requestor and owner. If a token is not avail-
able locally, the ERS search procedure tries to find a token in a
domain close to the requestor’s domain.

3.3 Token information

A repServer stores all tokens of a group in a token basket, i.e.
one token basket exists for each group known at the repServer. A
token basket has the following structure:

• Group: Unique multicast group identifier.
• SetOfTokenPackets: The tokens are grouped according to

their owner into so-called token packets. 
Each token packet includes the following information:

• Owner: Unique identifier of the tokens’ owner. A node
receiving a token from this packet is allowed to connect to
owner in the corresponding ACK tree.

• Height: Owner’s height in the corresponding ACK tree. The
height is used to distinguish the “quality” of alternative
tokens. A token with low height is preferable since its use
results in an ACK tree with low height and therefore low
average path length.

• Tokens: Amount of tokens in this token packet. 
• ExpDate: Expiration date of the token packet (see Section 4). 
A token basket is to be established when the first set of tokens

associated with the corresponding group is created and it is deleted
when the last of this group’s token has been removed from it. Each
token basket contains a set of token packets. A token packet
encloses all of a group’s tokens belonging to the same owner. 

3.4 Group management operations

In this section we will describe the group management opera-
tions create group, delete group, join group and leave group in
more detail. When describing these operations, we assume the
absence of failures. Communication and node failures will be con-
sidered in Section 4.

All descriptions in this section refer only to the TRS that cre-
ates the ACK tree and not the multicast transport protocol that uses
the ACK tree. It is necessary to explicitly distinguish between
those two protocol classes since the multicast transport protocol
has to implement the same group management operations. For a
description of ACK tree based multicast transport protocols see [3,
4, 5].

A node N creates a new multicast group by initiating a rep-
CreateGroup (Group, K) operation at its home repServer S. Subse-
quently, S creates a token basket for Group including one token
packet with owner N. K specifies the amount of tokens in the token
packet. The height of the token packet is initialized with one,
because owner N as the root node has the height one in the ACK
tree. For example assume node N11 in Figure 1 sends a repCreate-
Group operation to its home repServer S1, responsible for domain
1. Subsequently S1 will create a token basket for this group. Figure
2 depicts this scenario in more detail and after the token basket is
created.

When the operation repDeleteGroup (Group) is invoked at a
repServer, this server deletes the Group’s token basket and sends a
DeleteGroup (Group) message to all other repServers. Since all
repServers belong to a well-known multicast group, this can sim-
ply be done by a multicast message. Each repServer receiving
DeleteGroup (Group) removes the Group’s token basket. Note that
it is sufficient to send DeleteGroup by the best effort IP multicast
service since the expiration date mechanism described in Section 4
ensures that all outdated state information is removed despite of
node and communication failures.

When a node triggers a repJoinGroup (Group, NewMember, K)
operation at its home repServer S, S checks whether a token for
Group is locally available. If such a token exists locally, S removes
one token with lowest height from the token packet and sends it to
the requestor of repJoinGroup. Subsequently, S creates a new
token packet for owner NewMember with K tokens. The height of
the new token packet is the height of the delivered token increased
by one. Assume for example that in the scenario depicted in Figure

Fig. 2. Example scenario
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2 a node belonging to domain 1, say N12, sends a repJoinGroup
operation to its home repServer S1. S1 has a locally available token
for the requested group which is delivered to N12. 

Now we will consider the situation that a repServer S has no
local tokens for a requested group. If this is the case, S initiates a
token search by using ERS. The search starts with a multicast
TokenSearch message to the repServers’ group address with a TTL
of one. If no repServer returns an answer within a certain time, S
repeats the search message with an increased TTL, and again waits
for an answer. This process is continued until S receives an answer
or the maximum TTL of 255 is reached.

A repServer receiving a TokenSearch (Group, Requestor) mes-
sage has to check whether it has a token for the requested Group. If
this is the case, it responds to Requestor with an unicasted Token-
Avail (Group, Height, Provider) message, where Height is the
minimal height of Group’s local tokens at the token Provider.
Since each ERS search message may result in more than one
answer, S has to choose one responding node. The Height value is
used as a token quality metric. S chooses the responding token pro-
vider R with the lowest token height by sending a unicast Get-
Token message to R. Finally S receives the requested token with a
Token message from R and R removes this token from its token
packet.

After S has received a token, it establishes a token basket for
Group, including a token packet for NewMember, where New-
Member was the caller of repJoinGroup. Then the received token
is handed over to NewMember. 

To illustrate the token search procedure by means of an exam-
ple, take Figure 2 and assume that node N31 wants to join a group
and therefore sends a repJoinGroup message to its repServer S3.
S3 checks whether it has a token for this group. Since there is no
locally available token, S3 has to initiate a token search by multi-
casting TokenSearch with increasing TTL until a token is found.
The first few multicast messages with a TTL less than 4 do not
reach other repServers. The token search message with a TTL of 4
is received by repServer S2, however S2 has no tokens and there-
fore does not reply to S3. The next search message with a TTL of 5
is received by S1, which owns a suitable token and answers with a
TokenAvail message. Subsequently, S3 stops multicasting
TokenSearch messages and sends a GetToken message to S1.
Finally, S1 sends the requested token to S3 which forwards it to the
searching node N31. Since S3 creates new tokens with owner N31,
following join requests in domain 3 can be processed by S3 with-
out further token searches. The entire message sequence for this
example scenario is depicted in Figure 3.

During this two phase token search procedure - phase one
includes TokenSearch and TokenAvail, phase two includes Get-

Token and Token messages - the following infrequent situation
may occur. If a repServer responds with a TokenAvail message, it
indicates that at this moment a suitable token is available, i.e. the
token will not be reserved for the requesting repServer. Note that
this design leads to a stateless and thus light-weight protocol. For
example assume that S1 in Figure 2 has only one token and
receives two TokenSearch messages, one from S2 at time t2 and
one from S3 at time t3, where t2 is before t3. S1 responds to S2 with
TokenAvail but also to S3 since S1 cannot know whether S2 will
choose S1’s token or has already chosen another one. Therefore, it
can occur that both, S2 and S3 request S1’s token by sending a Get-
Token message. In this case, S1 hands over its token to the first
caller of GetToken; all other requestors receives a NoToken mes-
sage, instead. 

If a repServer S receives a NoToken message it simply chooses
another repServer provided that S has received more than one
TokenAvail message in the first search phase. Otherwise, S simply
continues the token search procedure by sending a new
TokenSearch message with increased TTL. The internal messages
for the token search procedure are summarized in Table 2.

When a node N leaves a group, all of its tokens are removed.
The used multicast transport protocol must ensure that a node is
only allowed to leave a group if it has no child nodes in the ACK
tree, i.e. is a leaf node. A non-leaf node can leave a group after it
has arranged a rejoining for all child nodes at other ACK tree
nodes. As we assume that a node has no descendants in the ACK
tree when it leaves the group, all tokens owned by N are in the
group’s token basket stored on N’s home repServer S. When
receiving repLeaveGroup (Group, Member), S removes N’s token
packet from the Group’s token basket. 

If N leaves a group this affects not only the tokens owned by N,
but also the token owned by N’s parent in the ACK tree. Concep-
tually, if N leaves a group it releases its parent’s token allocated by
N so far. Hence N’s parent adds this token by means of the repAd-
dToken operation to the token basket of its home repServer when it
recognizes that N leaves the group.

4. Protocol in the presence of failures

In the previous section we have described the group manage-
ment operations during normal conditions without considering
communication and node failures. In this section we will describe
the behavior in such failure situations.Fig. 3. A typical token search

S1 S2 S3 N31repJoinGroup

TokenSearch

TokenSearch

TokenAvail

GetToken

Token

Token

ti
m

e

Table 2. Internal TRS-PS operations

Operation Description

TokenSearch
(Group, Requestor)

Multicasted by a repServer identified by 
Requestor to search for a token of Group.

TokenAvail
(Group, Height, Pro-
vider)

TokenAvail is the response to TokenSearch if the 
Provider has a suitable token with height given 
by Height.

GetToken
(Group, Requestor)

Sent by the token searching Requestor to the Pro-
vider of TokenAvail to get a token for Group.

Token
(Group, Owner, 
Height)

Token is sent by the Provider as a reply to the 
GetToken request if a token for Group is avail-
able. 

NoToken
(Group)

Sent by the Provider as a reply to the GetToken 
request if no token for Group is available.



All token information is maintained according to the soft state
principle [12]. Token packets are associated with an expiration
date. If the expiration date is reached, it must either be extended or
the token packet will be discarded automatically. Obviously, the
lifetime of a token packet depends on the lifetime of its owner. To
prevent a token packet from expiring, the token’s owner periodi-
cally refreshes the token information of not already used tokens,
which extends their expiration date. If no refresh message is
received within two refresh cycles, the token packet is discarded.
On the other hand, if a refresh message is received without storing
the corresponding tokens, these tokens are created.

Although our protocols discard token packets explicitly during
normal operations, this mechanism allows to design a robust but
nevertheless light-weight protocol, ensuring even in the presence
of node and communication failures that eventually all outdated
information is removed. In addition, this mechanism allows us to
keep token information in volatile memory which is necessary to
provide a high repServer throughput. If the token information is
lost due to a repServer crash, the refresh mechanism recovers the
lost data. In summary, if a node is alive and not occupied, the net-
work is not partitioned and the home repServer is also alive,
tokens of these node are maintained by the TRS. This behavior is
known as the worthwhile fate-sharing design principle [12].

As this mechanism is only necessary to discard outdated infor-
mation and recover tokens in case of node or communication fail-
ures, the refresh cycles can be rather large. Furthermore, only
nodes that are not already occupied need to refresh their token
information, therefore, the communication overhead is low. 

If a repServer has restarted and must reply to a repJoinGroup
message before the token information is recovered, it simply starts
a token search procedure. If the home repServer is not available
when repCreateGroup, repDeleteGroup or repJoinGroup is to be
performed, some other repServer can be selected to execute those
operations. Of course, when selecting another repServer, those that
are in close domains are preferable. To be able to select another
repServer, each node can maintain a list of repServers. The first
and most preferable repServer in this list is the home repServer in
this node’s domain. The following elements in the list enumerate
all alternative repServers with decreasing suitability. 

In case of an unavailable home repServer, the caller of rep-
LeaveGroup can give up as the expiration date mechanism will
ensure that the corresponding token packet will be deleted. Of
course, it makes no sense to select another repServer because the
tokens can be deleted only at the repServer, the corresponding rep-
JoinGroup operation was performed at. 

Alternatively, if the home repServer is not available, the sender
of repCreateGroup and repDeleteGroup can give up, too. In the
case of repCreateGroup no token information will be established,
which is treated the same way as the loss of tokens due to crashes
(see above). In the case of repDeleteGroup the expiration date
mechanism will eventually remove all outdated tokens. 

In summary, the token repository service is still operational
even in failure situation. Therefore, the proposed mechanism is as
robust as ERS.

5. Performance evaluation

In this section we present some analysis and simulations com-
paring the TRS approach with ERS and ERA. The analytical stud-
ies evaluate the maximum message overhead and the height of the
created ACK tree. The simulations additionally evaluate the ACK
tree delay.

5.1 Analysis

5.1.1  Message overhead. The following message overhead
evaluation considers only the overhead for group management
rather than the overhead on routing layer or the reliable multicast
transport protocol. We assume a scenario in which the join and
leave operations are independent, i.e. all join operations are pro-
cessed before the first leave operation and we do not consider pos-
sible rejoining overhead when non-leaf nodes leave the ACK tree.
Furthermore we assume the absence of failures. As the message
overhead of ERA depends mainly on the time period, it is not con-
sidered here.

Using ERS, create, delete and leave a group is not explicitly
done, therefore the message overhead is 0. The worst case for join-
ing a group is that 255 multicast search messages must be sent to
find a parent node, since 255 is the maximum time-to-live value in
an IP packet and that all nodes that have already joined the ACK
tree reply to the searching node. The maximum number of mes-
sages mj for joining a group is therefore as follows:

Index u/m identifies unicast/multicast messages and j is the
number of join operations (see Table 3). Since there is a square
component in the formula, the worst case message overhead is
quadratic.

The message overhead for creating a group using TRS is one
message, the repCreateGroup message. To delete a group, rep-
DeleteGroup is sent to the home repServer which sends one multi-
cast DeleteGroup message. 

To join a group repJoinGroup must be sent to the repServer and
then a token is replied. If a repServer has no local token for a
requested group, a token search is invoked by sending multicast
search messages. In the worst case 255 search messages are sent
and every other repServer sends an answer message. Finally, the
token is handed over, which needs additionally two messages.
Such a token search is processed only once per repServer and the
repServer at which the group is created needs no token search at
all. The maximum number of messages for joining a group is
therefore as follows, where B is the number of requested rep-
Servers:

If we assume that we have a large number of join operations,
that means j >> B then:

This means, the number of messages rises linear with the num-
ber of join operations. To leave a group only one message, rep-
LeaveGroup is sent to the repServer.

The following numerical example illustrates the results.
Assume that a multicast groups is created, 1000 nodes join the
group, 500 nodes leave the group and 100 repServers are involved.
ERS results in a maximum overhead of more than 755 thousand
messages while TRS results in less than 38 thousand messages.
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5.1.2  Tree height. Using ERS/ERA, the maximum height of
the created ACK tree is only limited by the number of join opera-
tions, i.e. in the worst case the height can be equal to j-l+1, where
j is the number of join operations and l the number of leave opera-
tions. With TRS the height of the created ACK tree is determined
by the number of join operations and the number of requested rep-
Servers. If only one repServer is requested, a tree with minimal
height is created since for each token request the token with mini-
mal height in the ACK tree is delivered. Therefore the height can
be calculated as follows:

If we consider B instead of one repServer, the worst case is that
at B-1 repServers only one join operation is processed and that
each of these join operations results in a parent with maximum
height in the ACK tree. All other join operations are processed by
one repServer. The maximum height can be expressed as follows:

Again we want to make a numerical example. We assume that
1000 join operations and 500 leave operations are made and that
100 repServers are involved. The ACK tree is k-bounded with
k=10. While ERS can result in an ACK tree of height 501, TRS
guarantees a maximum height of 103. 

5.2 Simulations

We have performed simulations to compare TRS with ERS and
ERA. Before the simulation results are presented, the simulated
scenario is described.

5.2.1  Simulation scenario. Our simulations are performed
using the NS2 [13] network simulator. Our simulation scenarios
consist of various hierarchical networks with 100 to almost 2000
nodes, including LAN, MAN and WAN structures. The networks
were generated with Tiers [14]. All links are symmetrical duplex
links with the bandwidths 10Mbps for LANs, 100Mbps for MANs
and WANs. The link delays are chosen randomly for each link
from 1ms to 3ms for LANs, 1ms to 8ms for MANs and 5ms to
19ms for WANs.

Since the multicast routing protocol significantly influences the
measured results, we have run most simulations with both, the dis-
tance vector multicast routing protocol (DVMRP) [8] and protocol
independent multicast sparse mode (PIM-SM) [9]. All routers in
the network use drop tail queues.

In the simulations we investigate the behavior of the various
protocols during normal conditions, i.e. we do not consider error
situations. All messages were delivered reliably, nodes do not fail
and the network is not partitioned.

Some simulations are performed with various background traf-
fic conditions. The exponentially distributed background traffic is
generated by randomly placed senders and receivers of TCP
streams. Since the background traffic consumes a lot of CPU and
memory resources we were not able to simulate high background
load with the given network bandwidths. Therefore, we had to
decrease all bandwidths by factor 100 in order to run the simula-
tions with background traffic.

The token repository service is configured with 8 repServers.
ERS is configured with various timeout intervals which are
described in the next section. ERA is also configured with various
timeout intervals and with a fixed TTL scope of 127 as it is used in
RMTP [4]. In all simulations the ACK tree is bounded with k = 10. 

5.2.2  Simulation results. Our first simulation result in Fig. 4
depicts the dependency between received messages on transport
layer and various levels of background load. Using the ERS or
ERA approach, messages are received by the group members,
while in the TRS approach messages are additionally received by
the repServers. In this simulation study we have used 200 join
operations and the routing protocol DVMRP. The background load
is measured as the percentage of busy links during the simulation
time. A load of 100% means that each network link was busy, i.e.
has a non-empty outgoing routing queue, during the entire simula-
tion. 

The results show that ERS scales poorly with the background
load. If the background load exceeds a certain level, the number of
received messages rises exponentially. This behavior is caused by
increased message delays due to high background load. When the
delay of a search and the resulting answer message exceeds the
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mx.............Number of messages to create (x=c), delete (x=d), join (x=j)
or leave (x=l) a group.

c, d, j, l .....Number of create, delete, join or leave operations.
Xu, Xm......X unicast or multicast messages.
B...............Number of repServers requested for a token.
N...............Amount of nodes in a complete k-ary tree.
h ...............Height of the created ACK tree.

Table 3. Notation and summary of analytical results
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timeout interval, i.e. the time per hop, a node waits for an answer
to arrive, the sender of ERS starts a new multicast search message
with increased TTL. For example, if the timeout is one second and
the search scope ten hops then the node performing ERS waits ten
seconds for an answer before it starts a new search. The lower this
time to wait is, the sooner a new search message is sent and there-
fore the earlier the effect of exponentially increasing message
overhead occurs. However, the timeout parameter can only be
increased within a certain range, since this influences the delay of
a join operation. Moreover, as it can be seen in the chart, increas-
ing the timeout interval also increases the message overhead in
case of low background load. For example, in Fig. 4 the message
overhead of ERS with 5s timeout interval, which is up to 13%
background load higher than that of the other ERS curves with
lower timeout intervals. Since it takes longer for a node to join the
ACK tree if the timeout interval is increased, it also takes longer
before the joining node itself is able to accept child nodes. There-
fore, other joining nodes must possibly search in a larger scope to
connect to the ACK tree. 

ERA results in a high message overhead independent of the
background load. With increased background load, the message
overhead seems to decrease but this is only caused by our simula-
tion scenario. The use of ERA leads to network congestion and
consequently to a high message delay. Since the simulated time
period was restricted, not all invitation messages were delivered
during simulation time.

The message overhead of both TRS strategies, TRS-RC and
TRS-PS is much lower compared to ERS and ERA and moreover,
independent of the background load, always constant. Both strate-
gies result in about the same message overhead. We have also sim-
ulated the proxy server strategy with various timeout intervals but
the results have differed only slightly.

We have made another simulation study to investigate the
impact of network size. Fig. 5 shows the results for 50 join opera-
tions with DVMRP and PIM-SM routing. The message overhead
of TRS-RC and ERA is constant, independent of the network size
and routing protocol. The results show that TRS-PS sends more
messages than TRS-RC and the number of messages increases
with larger networks. However, compared to ERS and ERA the
number of messages is always smaller and rises only slightly with
the network size. 

Fig. 6 shows the round trip delay of the various approaches
depending on the number of join operations in a network with 251
nodes. The round trip delay is the time between sending a message
and receiving the last aggregated ACK at the root node. 

Fig. 4. Messages received depending on the
background load
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Fig. 5. Messages sent depending on the
network size
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Fig. 6. Round trip delay depending on the 
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As it can be seen in the chart, TRS-PS results in a low round-
trip delay. Independent of the routing protocol TRS-PS performs
better than ERA and with PIM-SM routing even better than ERS.
Low delays are desirable since the average throughput of a reliable
(multicast) channel with a window-based sending scheme is lim-
ited by the quotient of buffer size / round trip delay. The lower the
delay is the higher is the throughput respectively the lower is the
required buffer size. 

Above all, in the case of PIM-SM routing the proxy server
approach is an appreciable improvement compared to ERS and
ERA. The poor results of ERS and ERA with PIM-SM originate
from the dissemination of multicast messages starting always from
the same core node in the network for all senders. Therefore, ERS
finds always nodes close to this core rather than close to the
searching node which results in high round trip delays. The use of
ERA leads to a similar problem, since the distance between the
invitation sending node and the receiver cannot be determined by
analyzing the TTL values which will only provide the distance
between the receiver and the core.

The last simulation results depicted in Fig. 7 investigate the
average path length of the created ACK trees. The path length
affects the reliability of the created ACK tree. The multicast ser-
vice may be disrupted for a node if one of its parents in the ACK
tree becomes unavailable. Therefore, the lower the number of par-
ents the higher the reliability from this node’s perspective. So, the
average path length of the ACK tree can be used as a quality crite-
rion for reliability, since it is equivalent to the average number of
nodes that must rejoin the tree if a single ACK tree node fails.

Fig. 7 shows that TRS-PS as well as TRS-RC and ERA lead to
ACK trees with low path lengths that are near to the theoretical
minimum. The use of ERS results in unbalanced ACK trees espe-

cially in combination with the routing protocol PIM-SM, i.e. the
failure of a single node may lead to a vast overhead for example
for rejoining its child nodes.

In summary, the presented simulations illustrate that TRS-PS
performs better than ERS and ERA in terms of message overhead
and scalability and in many cases better in terms of round-trip
delay and reliability.

6. Summary

The presented token repository service with proxy server strat-
egy (TRS-PS) is an efficient and robust approach for constructing
ACK trees. Compared to the already proposed random-choice
strategy, the proxy server strategy is a simpler strategy that needs
to maintain less state information and therefore is easier to imple-
ment. Compared to the various approaches based on expanding
ring search, TRS-PS has several advantages like improved scal-
ability, the usability even for unidirectional multicast networks,
the generation of well-shaped ACK trees with low round trip delay
and high reliability independent of the multicast routing protocol.
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Fig. 7. Average path length of the created ACK tree
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