Improving Multicast ACK Tree Construction with the Token Repository Service

Christian Maihofer

Institute of Parallel and Distributed High-Performance Systems (IPVR),
University of Stuttgart, Germany
maihoefer@informatik.uni-stuttgart.de

Abstract

Many new applications like groupware systems, news and
file distribution or audio/video systems are based on multi-
cast asa prerequisite for scalability. Many of these applica-
tions need the multicast support to be reliable, which isre-
alized in a scalable way by tree based multicast transport
protocols, where the receivers are organized in a ACK tree.
Tree based approaches raise the problem of setting up and
maintaining the ACK tree, which is usually done by varia-
tions of the expanding ring search (ERS) approach. In this
paper we present an alternative approach for creating ACK
treeswhich isbased on the concept of a distributed token re-
pository service. Smulation results show that our approach
leads to a lower message overhead than ERSand resultsin
better shaped ACK trees.

1. Introduction

Multicast support is a prerequisite to ensure scalability
for large receiver groups. Although multicast support is
already available in the Internet, the provided |P multicast
service[1, 2] offers only best effort semantics. Several pro-
tocols have been proposed to overcome this drawback by a
protocol layer on top of IP multicast [3, 4, 5, 6, 7, 8].

All reliable multicast protocols are based on the same
concept, controlling the successful delivery by some kind
of acknowledgments returned by the receivers to the
source. Some protocols use forward error correction (FEC)
to add redundancy and hence improve the probability for
correct message delivery. However, if delivery is to be
guaranteed this must aways be combined with the
acknowledgment concept.

The class of sender- and receiver-based reliable multi-
cast protocols[3, 4], where all receivers send their positive
or negative acknowledgment (ACK) messages to the
source, can cause the well-known acknowledgment implo-

sion problem. In large multicast groups, with many hun-
dreds or even thousands of members, the source may be
overwhelmed by the amount of acknowledgments. The
ACK implosion problem is a critical challenge for reliable
multicast solutions.

To overcome the ACK implosion problem, the most
promising approaches are tree-based protocols [5, 6, 7, 8].
They ensure scalability by organizing all group membersin
a so-caled ACK tree. Although severa variations of tree-
based reliable multicast protocols are available, mainly dis-
tinguished by their use of positive or negative acknowledg-
ments, all solutions share the same concept. Instead of
sending an acknowledgment message directly to the
sender, each receiver confirms the correct delivery only to
its predecessor in the ACK tree, which is responsible for
possible retransmits. An inner node in the ACK tree col-
lects all acknowledgments. After it has received the multi-
cast message and the corresponding ACK from each
successor, it sends an aggregated ACK to its predecessor,
confirming the correct message delivery for the entire
subhierarchy. Since each node in the ACK tree has an
upper bound on the number of its successors, no node and
no part of the network is congested by messages.

Tree-based protocols raise the problem of setting up the
ACK tree. A new member joining a multicast group must
be connected to the group’s ACK tree, which is usually
done by a technique called expanding ring search (ERS).
ERS is a multicast based search technique to discover a
suitable predecessor node in the ACK tree, by gradually
increasing the search scope. The advantage of ERS is its
simplicity and robustness against node and network fail-
ures. On the other hand, the suitability of ERS on the large
scale has not been investigated so far. Our simulation
results will show that the use of ERS has several shortcom-
ings, since it results in a large message overhead and
causes particular problems in combination with unidirec-
tional core base routed networks.

In this paper we propose an alternative approach for
constructing ACK trees, called token repository service

(TRS). Our approach is based on a distributed token repos-
itory and the traditional ERS. This provides improved scal-
ability in the ACK tree construction and better shaped
ACK trees, necessary for ensuring reliable multicasting
with high throughput. The TRS stores tokens, where a
token provides basically the right to connect to a certain
predecessor node in the ACK tree. A node joining a group
asks the TRS for atoken of this group, which identifies the
predecessor to connect to.

The remainder of this paper is organized as follows. In
the next section background and related work are dis-
cussed. Section 3 describes the token repository service in
detail and in Section 4 we present simulation results before
we conclude with a brief summary in Section 5.

2. Problem definition and related work

Reliable multicast protocols can be classified into
sender-based, receiver-based, ring-based and tree-based
approaches. In a sender-based protocol, the sender is
responsible for error control. The receivers send positive
ACKs to the sender which allows to detect errors by miss-
ing ACKs. In large groups, this protocol class results in a
large number of ACK messages and consequently in an
overwhelmed sender.

Usually, the probability for delivering a packet correctly
is higher than the probability for an error, hence the use of
negative ACKs (NAKSs) to indicate missing packets instead
of positive ones for every correct packet resultsin a lower
message overhead. The class of receiver-based protocols
uses this approach where the error detection must be done
by the receivers. If the retransmits are also sent by multi-
cadt, it is sufficient for the sender to detect that at |east one
receiver needs a retransmit. Therefore, a NAK avoidance
scheme [4] can be used, in which a receiver that has
detected an error sends a NAK via multicast provided that
not already a NAK for the same data has been already sent
by another receiver. Although receiver-based protocols
scale better than sender-based ones, they have some other
drawbacks. One drawback known as the crying-baby prob-
lem [4] isits dependency on the most unreliable receiver or
most unreliable path to a receiver, respectively. If one
receiver permanently detects message loss and multicasts
NAKS, all of this group’s members are congested. Another
drawback is the non-determinism since a sender cannot
decide whether a message has been received by all receiv-
ers and therefore can be discarded, or if a NAK will be still
received later.

In ring-based protocols [9], all group members are orga-
nized in a virtual ring structure, where one member in the
ring has the role of the retransmitter for lost messages. The
scalability is improved by passing the retransmitter role

from time to time to the next member in the ring. This
mechanism is also useful to ensure a global ordering of
events. Since each member must maintain a membership
list and the ring management is complex, ring based proto-
cols have a limited scalability.

Tree-based protocols offer the best scalability for large
groups, since each group member is involved in the error
control scheme with an acceptable small part. To overcome
the ACK implosion problem all group members are orga-
nized in a ACK tree, where each inner node is responsible
for its subhierarchy. Instead of sending an acknowledgment
message directly to the sender, each receiver confirms the
correct delivery only to its predecessor in the ACK tree.
Each non-leaf node in the ACK tree collects all acknowl-
edgments from its direct successor nodes. If an ACK is
missing at a non-leaf node it sends a retransmit to the cor-
responding node. Depending on the used transport protocol
an inner node sends an ACK to its predecessor after it has
received the multicast message or sends an aggregated
ACK after it has received the multicast message and the
corresponding ACK from each successor, confirming the
correct message delivery for the entire subhierarchy. If
finally the root node has received all ACKs from its direct
successors nodes, the reliable message delivery is ensured.

Each node in the ACK tree has an upper bound on the
number of its successors, therefore no node and no part of
the network is congested by messages. We will call a node
k-bounded if it can accept at most k successor nodes.

When a new member joins a reliable multicast group the
question arises how it will be connected to the group’s
ACK tree. The problem is to connect the new member to a
k-bounded predecessor that is not already occupied, i.e. has
not already k successors. Most approaches to establish an
ACK tree are based on expanding ring search (ERS). ERS
is a common technique to search for resources in a network
[10]. With the basic ERS approach for setting up ACK
trees, the joining node looks for a predecessor in the ACK
tree by sending multicast search messages with increasing
search scopes [5]. The first message is sent with a time-to-
live (TTL) of one, i.e. it is limited to the sender’s LAN (see
Fig. 1.). If a non-occupied group member receives this
message it returns an answer allowing the new member to
connect to it. If no node answers within a certain time, the
TTL is increased and a new search message is sent. The
joining node repeats this until an answer arrives or the
maximum TTL of 255 is reached. Note that increasing the
TTL step by step reduces the network load and detects
preferably predecessors that are close to the searching
node.

Several proposed protocols reverse the method
described above by making the non-occupied ACK tree
nodes search for successor nodes with multicast invitation
messages [6, 8]. The invitation messages can be sent with

\
| |
| e |
| R |
| |
| ‘l_l‘ |
R
~————qt——_
R
TTL=3 [LAN
\ /

Fig. 1. Increasing search radius of ERS

fixed TTL [6], increasing TTL [11] or according to a spe-
cial distribution function [8]. We will call this method
expanding ring advertisement (ERA) [8]. Some protocols
use a combination of both approaches[7, 11].

ERS and ERA approaches have the great advantage of
fault tolerance. On the other hand, our simulation resultsin
Section 4.2 will show that both result in a huge message
overhead. An additional drawback of ERS and ERA are
their dependency on the various routing protocols, result-
ing in particular problems with each of them. ERS and
ERA with distance vector multicast routing (DVMRP) [12]
lead to a vast overhead at al involved routers because a
new multicast routing tree is to be build for each sender.
This means each node that joins a group via ERS enforces
anew, separate routing tree. If ERA is used, a routing tree
must be maintained for all non-occupied nodesin the ACK
tree. Note that if a member is only a receiver of multicast
messages, these trees are only used for the ERS/ERA
search. With an unidirectional shared tree approach like
PIM-SM [13], the use of ERS and ERA result in a traffic
concentration at the core, an even higher message overhead
and ACK trees of poor quality. A further serious drawback
of ERA isthe message overhead due to the invitation mes-
sages, which are sent even if no node wantsto join.

In the following sections we will propose the token
repository service with proxy server strategy (TRS-PS),
which is based on a combination of a repository service
and the well-known ERS. In [14] we have dready
described an alternative approach for creating multicast
ACK trees, which we will further reference as token repos-
itory service with random-choice strategy (TRS-RC). Both
strategies share the same concept which we will describein
Section 3.1 but differ in their implementation strategy. In
contrast to TRS-RC, the proxy server strategy, presented in
this paper, uses ERS which resultsin less state information
to be maintained and in a simpler implementation.

3. TheToken Repository Servicewith Proxy
Server Srategy (TRS-PS)

3.1. Interfaceand concept

In this section, we will describe the interface and con-
cept of the token repository service, which is our proposed
infrastructure for building up ACK trees. The details of the
implementation will be covered in the next section.

A token stored in the TRS represents the right to con-
nect to a particular node in a given ACK tree. When a k-
bounded node has created or joined a group, k tokens are
generated and stored in the repository. The creating or join-
ing node is called the tokens’ owner. A token is defined by
a 3-tuple <group, owner, height>, where group identifies
the multicast group of the owner. We define the height of a
token to be the height of its owner in the corresponding
ACK tree. The height is used to determine the “quality” of
a token (see Section 3.3).

Initially there are k tokens of a group in the repository,
generated on behalf of a create group operation. When a
node N wants to join a given group, it asks the TRS for a
token of this group. The repository service then selects a
token of this group and returns it to N. The returned token
is removed out of the repository and new tokens with
owner N are created. The joining node N is now able to
connect to the received token’s owner in the corresponding
ACK tree.

When a node leaves a group, it removes all of this
group’s tokens out of the repository for which it is the
owner. The leaving node has allocated a token belonging to
its predecessor in the ACK tree. This token is returned to
the repository, which then can be reused by some other
node joining this group later. Table 1 shows the operations
provided by the token repository service.

3.2. Implementation of the TRS-PS strategy

To meet the design goals of scalability and reliability,
the token repository service is implemented as a distributed
system of token repository servers, repServers for short.
Each repServer is responsible for a disjunct set of nodes,
called domain. For example repServer S, in Figure 2 is
responsible for domain 1 consisting of nodes N,.

Note that nodes can be arbitrarily assigned to domains
and that the repServer does not have to be located inside its
domain. However, to construct low-delay ACK trees and to
minimize communication overhead domains should struc-
ture the network by communication distance, i.e. the com-
munication distance between two nodes in the same

Table 1. Operations provided by the TRS

Operation Description
repCreateGroup | This operation makes Group known to
(Group, Ack- the repository service. AckRoot identi-
Root, K) fies the root of the ACK tree, which is

K-bounded.

repDeleteGroup
(Group)

This operation deletes all token infor-
mation of Group in the repository.

repJoinGroup
(Group, New-
Member, K)
returns (Token)

repJoinGroup is called when the node
identified by NewMember wants to
join Group, where NewMember is K-
bound. The operation returns a token
identifying the predecessor in the ACK
tree to connect to.

repLeaveGroup | This operation deletes all of Group’s
(Group, Member) |tokens owned by Member.
repAddToken repAddToken adds a new token owned

(Group, Owner)

by Owner into the repository. It is
called when a successor of Owner dis-
connects from the Group’s ACK tree.

domain should be typically smaller than between two
nodes in different domains [15]. Furthermore, the
repServer should be located inside its domain. A repServer,
responsible for al nodes in its domain, is caled these
nodes’ home repServer. In Figure 2, S; is the home
repServer of nodes N4,. Nodes access the token repository
service only via their home repServer.

Tokens are stored on the repServers. All token informa-
tion is stored in so-called token baskets. A repServer holds
one basket for each known group, which contains this
group’s tokens. However, not all tokens of a group are
stored at only one repServer, thus several repServers may
store token baskets for the same group.

Tokens are created on behalf of a create or join group
operation, since the creating or joining node is able to
accept successor nodes. A token is always stored at the rep-

Domain 2
(Y (D
Ny
@@@@@)
9 (™

® RepServer responsible for domain x

Domain 1

&)

@ Node y in domain x
Fig. 2. Domain structure

Server responsible for its owner’s domain. If a node
requests a token from its home repServer and this rep-
Server possesses a token of the requested group, it simply
delivers such a token. A repServer possesses tokens of a
group only if a node in its domain has created or joined this
group. Consequently in general a repServer does not pos-
sess tokens for each group. Therefore, it is possible that a
node’s home repServer cannot satisfy a token request
although another repServer could provide a suitable token.
For example assume that all tokens of a group are stored on
a single repServer Sq, responsible for domain 1. If a node
in another domain, say domain 2 for example, requests its
home repServer S, for a token, our approach must ensure
that finally S, can deliver one of S;’s tokens to the request-
ing node.

To meet this requirement in the proxy server approach, a
repServer initiates a token search for a group’s token if a
node in its domain requests a token and none is available
locally. The token search is processed by ERS. All rep-
Servers belong to the same well-known multicast group. If
a repServer has to search for a token, it starts an ERS
search on the repServers’ multicast group. If a repServer
receives such a token search message and possesses a
token of this group, it hands over one token to the search-
ing repServer. In Section 3.4 we will describe this in more
detail. Our search mechanism ensures the following:

1. Always a token is selected whose owner is as close

as possible to the joining node.

2. If there are several tokens whose owners are close
to the joining node, the one with the lowest height is
chosen.

In summary, if a requested token is available locally at
the requestor’s home repServer, the requestor and the
owner of this token are in the same domain. This is the best
case in terms of communication overhead between the rep-
Servers and communication distance between requestor
and owner. If a token is not available locally, the ERS
search procedure tries to find a token in a domain close to
the requestor’s domain.

3.3. Token information

A repServer stores all tokens of a group in a token bas-
ket, i.e. one token basket exists for each group known at the
repServer. A token basket has the following structure:

e Group: This field identifies the corresponding multicast
group in a unique way.

* SetOfTokenPackets: The tokens in the token basket are
grouped according to their owner into so-called token
packets.

Each token packet includes the following information:

e Owner: This field identifies the owner of the token pack-
et uniquely. A node receiving a token from this packet is
allowed to connect to Owner in the corresponding ACK
tree.

« Height: This field specifies the height of the Owner in
the corresponding ACK tree. This information can be
used to distinguish the “quality” of alternative tokens. A
token with low height is preferable since its use results
in an ACK tree with low height and therefore low aver-
age path length.

» Tokens: This field specifies the amount of tokens in this
token packet.

+ ExpDate: This field defines when the token packet ex-
pires.

A token basket is to be established when the first set of
tokens associated with the corresponding group is created
and it is deleted when the last of this group’s token has
been removed from it. Each token basket contains a set of
token packets. A token packet encloses all of a group’s
tokens belonging to the same owner.

The token information is maintained according to the
soft state principle [16]. Token packets are associated with
an expiration date. If an expiration date is reached, it must
either be extended or the token packet will be discarded
automatically. Although our protocols discard token pack-
ets explicitly during normal operations, this mechanism
allows to design a robust protocol, ensuring even in the
presence of node and communication failures that eventu-
ally all outdated information is removed. In addition, hav-
ing such a mechanism in place allows to use light-weight
protocols for explicitly deleting token packets.

If a token packet expires it must be checked, whether it
is still valid and thus the expiration date should be
extended, or whether the associated token packet has to be
removed. Obviously, the lifetime of a token packet depends
on the lifetime of its owner. When a token packet expires,
the repServer storing this packet asks the token packet’s
owner to extend the expiration date. If the owner responds,
the expiration date is extended accordingly, otherwise the
entire packet is removed. If this was the last token packet in
this group’s token basket, the token basket is deleted, too.

3.4. Group management operations

In this section we will describe the group management
operations create group, delete group, join group and leave
group in more detail.

All descriptions in this section refer only to the TRS that
creates the ACK tree and not the multicast transport proto-
col that uses the ACK tree. It is necessary to explicitly dis-

tinguish between those two protocol classes since the
multicast transport protocol has to implement the same
group management operations. For a description of ACK
tree based multicast transport protocols see [5, 6, 7, 8].

A node N creates a new multicast group by initiating a
repCreateGroup (Group, AckRoot, K) operation at its home
repServer S Subsequently, S creates a token basket for
Group including one token packet with owner N. K speci-
fies the amount of tokens in the token packet. The height of
the token packet is initialized with one, because owner N as
the root node has the height one in the ACK tree. For
example assume node Nq; in Figure 2 sends a repCreate-
Group operation to its home repServer S;, responsible for
domain 1. Subsequently S; will create a token basket for
this group. Figure 3 depicts this scenario after the token
basket is created.

Token basket

Domain 2
with one Token i

@ repServer for
domain x

@ Node y in
domain x

[R] Router

Domain 1

Fig. 3. Example scenario

When the operation repDeleteGroup (Group) is trig-
gered at a repServer, this server deletes the Group’s token
basket and sends a DeleteGroup (Group) message to all
other repServers. Since all repServers belong to a well-
known multicast group, this can simply be done by a multi-
cast message. Each repServer receiving DeleteGroup
(Group) removes the Group’s token basket. Note that it is
sufficient to send DeleteGroup by the best effort IP multi-
cast service since the expiration date mechanism ensures
that all state information is removed within the expiration
time despite of node and communication failures.

When a node triggers a repJoinGroup (Group, New-
Member, K) operation at its home repServer S S checks
whether a token for Group is locally available. If such a
token exists locally, S removes one token with lowest
height from the token packet and sends it to the requestor
of repJoinGroup. Subsequently S creates a new token
packet for owner NewMember with K tokens. The Height
of the new token packet is the height of the delivered token
increased by one. Assume for example that in the scenario

depicted in Figure 3 a node belonging to domain 1, say
N1, sends arepJoinGroup operation to its home repServer
S;. S; has alocally available token for the requested group
which isdelivered to Nq».

Now we will consider the situation that a repServer S
has no local tokens for arequested group. If thisisthe case,
Sinitiates a token search by using ERS. The search starts
with a multicast TokenSearch message to the repServers’
group address with a TTL of one. If no repServer returns an
answer within a certain time, Srepeats the search message
with an increased TTL, and again waits for an answer. This
process is continued until Sreceives an answer or the max-
imum TTL of 255 is reached.

A repServer receiving a TokenSearch (Group,
Requestor) message has to check whether it has a token for
the requested Group. If this is the case, it responds to
Requestor with a unicasted TokenAvail (Group, Height,
Provider) message, where Height is the minimal height of
Group’s local tokens at the token Provider. Since each ERS
search message may result in more than one answer, Shas
to choose one responding node. The Height value is used as
a token quality metric. Schooses the responding token pro-
vider R with the lowest token height by sending a unicast
GetToken message to R. Finally S receives the requested
token with a Token message from R and R removes this
token from its token packet.

After Shas received a token, it establishes a token bas-
ket for Group, including a token packet for NewMember,
where NewMember was the caller of repJoinGroup. Then
the received token is handed over to NewMember.

To illustrate the token search procedure by means of an
example, take Figure 3 and assume that node N3; wants to
join a group and therefore sends a repJoinGroup message
to its repServer Ss. S checks whether it has a token for this
group. Since there is no locally available token, S3 has to
initiate a token search by multicasting TokenSearch with
increasing TTL until a token is found. The first multicast
messages with a TTL less than 5 do not reach other rep-
Servers or only S, which has no tokens and therefore does
not reply to S3. The next search message witha TTL of 5 is
received by S; which owns a suitable token and answers
with a TokenAvail message. Subsequently S5 stops multi-
casting TokenSearch messages and sends a GetToken mes-
sage to S,. Finally, S; sends the requested token to Sj
which forwards it to the searching node N3,. Since S5 cre-
ates new tokens with owner N34, following join requests in
domain 3 can be processed by S without further token
searchs.

Note that if a repServer R replies with TokenAvail to a
searching repServer S the token is not reserved at R. This
means that if R receives a GetToken message possibly no
token for the requested group exists. In this case R replies
with a NoToken message and S has to search for another

repServer.

The internal operations for the token search procedure
are summarized in Table 2.

Table 2. Internal TRS-PS operations

Operation Description
TokenSearch A TokenSearch is multicasted by a rep-
(Group, Server identified by Requestor to
Requestor) search for a token of Group.
TokenAvail TokenAvail is the response to Token-
(Group, Height, | Search if the Provider has a suitable
Provider) token with height given by Height.
GetToken GetToken is sent by the token search-
(Group, ing Requestor to the Provider of
Requestor) TokenAvail to get a token for Group.
Token Token is sent by the Provider as a reply
(Group, Owner, |to the GetToken request if a token for
Height) Group is available.

NoToken NoToken is sent by the Provider as a
(Group) reply to the GetToken request if no
token for Group is available.

When a node N leaves a group, all of its tokens are
removed. As we assume that a node has no descendants in
the ACK tree when it leaves the group?, all tokens owned
by N are in the group’s token basket stored on N’s home
repServer S. When receiving repLeaveGroup (Group,
Member), S removes N’s token packet from the Group’s
token basket.

If N leaves a group this affects not only the tokens
owned by N, but also the token owned by N’s predecessor
in the ACK tree. Conceptually if N leaves a group it
releases its predecessor’s token allocated by N so far.
Hence N’s predecessor adds this token by means of the
repAddToken operation to the token basket of its home rep-
Server when it recognizes that N leaves the group.

4. Simulations

We have performed simulations to compare the token
repository service with expanding ring search strategies.
Before the simulation results are presented, we will
describe the simulated scenario in the following subsec-
tion.

L The used multicast transport protocol must ensure that a node is
only allowed to leave a group if it has no successor nodesin the ACK tree,
i.e. isaleaf node. An inner node can leave a group after it has arranged a
rejoining for all successor nodes at other ACK tree nodes.

4.1. Simulation scenario

Our simulations are performed using the NS2 [17] net-
work simulator. The networks were generated with Tiers
[18]. All links are symmetrical duplex links with the band-
widths 10Mbps for LANs, 100Mbps for MANs and
1000Mbps for WANS. The link delays are chosen randomly
for each link from 1ms to 3ms for LANs, 1ms to 8ms for
MANS and 5ms to 19ms for WANSs. Some simulations are
performed with various background traffic conditions. The
exponentially distributed background traffic is generated
by randomly placed senders and receivers of TCP streams.
Since the background traffic consumes a lot of CPU and
memory resources we were not able to simulate high back-
ground load with the given network bandwidths. Therefore,
we had to decrease all bandwidths by factor 100 in order to
run the simulations with background traffic.

TRSis configured with 8 repServers. ERS is configured
with various timeout intervals which are described in the
next section. ERA is also configured with various timeout
intervals and with afixed TTL scope of 127 asitisused in
RMTP [6]. In al simulations the maximum branching fac-
tor in the ACK treeisk = 10.

4.2. Simulation results

Our first simulation result in Fig. 4 depicts the depen-
dency between received messages and various levels of
background load. Using the ERS or ERA approach, mes-
sages are received by the group members, while in the TRS
approach messages are additionally received by the rep-
Servers. In this simulation study we have used 200 join
operations and the routing protocol DVMRP. The back-
ground load is measured as the percentage of busy links
during the simulation time, i.e. a background load of 100%
means that each network link was busy during the entire
simulation.

25000

DVMRP —6—TRS-PS 0.1s
timeout
—#—ERS 0.1s
20000 = timeout
4-- ERS 0.25s
timeout

A --#--ERS 0.5s
timeout
. --0--ERS 1s
) e timeout
- -%-ERS 2s
timeout
-+ ERS 5s
timeout
-—-ERA 20s
timeout
—x—ERA 30s

timeout

15000

10000

5000 -

average number of received messages
)
[=]

T T T
0 3 6 13 17 18 19
background load [%]

Fig. 4. Received messages

The results show that ERS scales poorly with the back-

ground load. If the background load exceeds a certain
level, the number of received messages rises exponentially.
This behavior is caused by increased message delays dueto
high background load. When the delay of a search and the
resulting answer message exceeds the timeout interval, the
sender of ERS starts a new multicast search message with
increased TTL. Note that the timeout parameter for ERS
specifies the time per hop, a node waits for an answer to
arrive, before it sends a new search message with an
increased TTL. For example, if the timeout is one second
and the search scope ten hops then the node performing
ERS waits ten seconds for an answer before it starts a new
search. The lower this time to wait is, the sooner a new
search message is sent and therefore the earlier the effect of
exponentially increasing message overhead occurs. How-
ever, the timeout parameter can only be increased within a
certain range, since this influences the delay of ajoin oper-
ation. Moreover, as it can be seen in the chart, increasing
the timeout interval also increases the message overhead in
case of low background load. For example in Fig. 4 the
message overhead of ERS with 5s timeout interval is up to
13% background load higher than that of the other ERS
curves with lower timeout intervals. Since it takes longer
for a node to join the ACK tree if the timeout interval is
increased, it also takes longer before the joining node itself
is able to accept successor nodes. Therefore, other joining
nodes must possibly search in alarger scope to connect to
the ACK tree.

ERA results in a high message overhead independent of
the background load. With increased background load, the
message overhead seems to decrease but thisis only caused
by our simulation that runs for a restricted simulated time
period. The use of ERA leads to network congestion and
conseguently to a high message delay, therefore not all
invitation messages were delivered during the simulated
time.

The message overhead of TRS-PS is much lower com-
pared to ERS and ERA and moreover, independent of the
background load, always constant. We have also simulated
the proxy server strategy with various timeout intervals but
the results have differed only dightly.

Fig. 5 illustrates the average path length of the created
ACK trees. The path length affects the delay and reliability
of the created ACK tree. The multicast service may be dis-
rupted for anode if one of its predecessorsin the ACK tree
becomes unavailable. Therefore, the lower the number of
predecessors the higher the reliability from this node’s per-
spective. So, the average path length of the ACK tree can
be used as a quality criterion for reliability, since it is
equivalent to the average number of nodes that must rejoin
the tree if a single ACK tree node fails.

Fig. 5 shows that TRS-PS as well as ERA lead to ACK
trees with low path lengths that are near to the theoretical

-06-ERA DVMRP
-x--ERS
5 1 —O—TRS-PS

—=— minimal dem—mm—— -7

average path length
w

20 50 70 100 120 150 170 200 220
number of join operations

_o-ERA X PIM-SM
7N
9 -x--ERS -
. —0—TRS-PS SR il
—=— minimal P AN 7 x
. N
e 7 L, g
i) e
5 6 7
= <
) —
) x” /D\D\ . A=
g 4 _ —
@ W B —me- o
2 S N oo- -
2
1
0

20 50 70 100 120 150 170 200 220

number of join operations

Fig. 5. Path length of the created ACK tree

minimum. The use of ERSresultsin unbalanced ACK trees
especially in combination with the routing protocol PIM-
SM, i.e. thefailure of asingle node may lead to avast over-
head for example for rejoining its successors.

5. Conclusions

In this paper we have presented the token repository ser-
vice with proxy server strategy (TRS-PS), which is an effi-
cient and robust approach for constructing ACK trees. The
basic concept of our approach is a distributed token reposi-
tory combined with the fault tolerant ERS approach. The
repository service stores tokens which represent the right to
connect to a certain node in an existing ACK tree.

Compared to the various approaches based on expand-
ing ring search, TRS-PS has several advantages. It needs
no bidirectional multicast support for joining nodes and
produces network load only when areceiver joins or leaves
agroup. Furthermore, using TRS-PS, the undesired impact
of the multicast routing protocol on the ACK tree construc-
tion in terms of scalability and quality of the created ACK
trees is aimost eliminated. We can conclude from the pre-
sented simulation results that TRS-PS appreciably
improves scalability and improves in many cases the qual-
ity of the created ACK trees.

References

[1] Deering, S.; Cheriton, D.: Host Groups. A multicast
extension to the Internet protocol, RFC 966, 1985.

[2] Deering, S.: Host extensions for | P multicasting, RFC 1112,
19809.

[3] Pingdi, S.; Towsey, D.; Kurose, F.: A comparison of
sender-initiated and receiver-initiated reliable multicast
protocols, Proceedings of ACM SIGMETRICS, 1994, pages
221-230.

[4] Levine, B.N.; Garcia-Luna-Aceves, J.J.: A comparison of
known classes of reliable multicast protocols, Proceedings of
the |IEEE International Conference on Network Protocols,
1996, pages 112-121.

[5] Yavatkar, R.; Griffioen, J; Sudan, M.. A reliable
dissemination protocol for interactive collaborative
applications, Proceedings of the third ACM International
Conference on Multimedia, 1995, pages 333-344.

[6] Lin, JC.; Paul, S.: RMTP: A reliable multicast transport
protocol, Proceedings of the Conference on Computer
Communications (IEEE Infocom), 1996, pages 1414-1424.

[7] Chiu, D. M.; Hurst, S.; Kadansky, J.; Wedey, J: TRAM: A
tree-based reliable multicast protocol, Sun Microsystems
Laboratories Technical Report Series, TR-98-66, 1998.

[8] Hofmann, M.: Adding scalahility to transport level multicast,
Lecture Notes in Computer Science, No. 1185, 1996, pages
41-55.

[9] Whetten, B.; Kaplan, S, Montgomery, T.. A high
performance totally ordered multicast protocol, available
from http://147.46.59.102/~imhyo/papers/multicast/
RMP_dagstuhl.ps.

[10] Boggs, D.: Internet broadcasting, Ph.D. Th., XEROX Palo
Alto Research Center, Technical Report CSL-83-3, 1983.

[11] Levine, B.N.; Lavo, D.B.; Garcia-Luna-Aceves, JJ.: The
case for reliable concurrent multicasting using shared ACK
trees, Proceedings of the fourth ACM International
Conference on Multimedia, 1996, pages 365-376.

[12] Waitzman, D., Partridge, C., Deering, S.E.: Distance vector
multicast routing protocol, RFC 1075, 1988.

[13] Estrin, D.; Farinacci, D.; Helmy, A.; Thaler, D.; Deering, S;;
Handley, M.; Jacobson, V.; Liu, C.; Sharma, P.; Wei, L.
Protocol independent multicast-sparse mode (PIM-SM):
protocol specification, RFC 2362, 1998.

[14] Rothermel, K.; Maihofer, C.: A robust and efficient
mechanism for constructing multicast acknowledgment
trees, Proceedings of the IEEE Eight International
Conference on Computer Communications and Networks
(IEEE ICCCN), 1999.

[15] Theilmann, W.; Rothermel, K.: Dynamic distance maps of
the Internet, Proceedings of the Conference on Computer
Communications (IEEE Infocom), 2000.

[16] Clark, D.: The design philosophy of the DARPA internet
protocols, Proceedings of ACM SIGCOMM, 1988, pages
106-114.

[17] UCB/LBNL/VINT Network Simulator - ns (version 2), http:/
Mww-mash.cs.berkeley.edu/ns/ns.html.

[18] Tiers Topology Generator, http://www.geocities.com/
ResearchTriangle/3867/sourcecode.html.

