
Published in: Reiner Anderl, Christine Frick, Alfred Katzenbach, Joachim Rix (editors). Proceedings of
the ProSTEP Science Days 2000 “SMART Engineering” on 13./14. September 2000 at DaimlerChrys-
ler, Stuttgart, Germany. Pages 252-260. ISBN 3-8167-5585-2

1

The Requirements for a
Component-based Architecture

Jochen Rütschlin

DaimlerChrysler AG, Research and Technology, P.O. Box 2360, 89013 Ulm
Email: jochen.ruetschlin@DaimlerChrysler.com

Summary

Today’s enterprises are going to concentrate more and more on their core business.
They do not want to implement basic functionality again and again. That’s why
they are using packaged software products like SAP R/3, Dassault Systemes’
ENOVIA, and so on. But the introduction of such software suites also brings in
elements and information that are already available in the enterprise (and should
remain in the legacy systems).

In this paper, we will point out the problem on two typical architectural scenarios
and give with this the motivation for a component-based architecture. Besides we
propose an architecture and discuss the lacks of the current CORBA-, EJB- and
COM-approaches.

Keywords: components, component model, framework, packaged software

1 Introduction

The IT (information technology) infrastructure of many enterprises currently con-
sists of so-called legacy systems. These have been developed over the years and
include not only internally developed software but purchased software that has
been customized as well. In any case, these are poorly connected systems each of
them representing a kind of “information island”. This results in increased search
time to find the relevant, distributed information and the problem of information
loss when transferring and converting data between to systems. To avoid these
disadvantages, we are working on a continuous data flow between the systems
along the process chain.

In the beginning, research concentrated on the integration of data schemas only.
The data of the legacy systems was integrated into a global schema by mapping the
heterogeneous data models (e.g. hierarchical, relational, object-oriented, etc.) and
heterogeneous structures (e.g., normalized tables versus one big table to represent
the same information) into a uniform data model and a uniform representation.
Standardized data models and schemas, e.g. the AP214 [ISO94] of STEP [ISO97],

2

are very important because of their international acceptance. The common and
particularly transparent access of data has been realized either by an FDBS (feder-
ated database system) [SL90] or an additional software layer called middleware.

The next step was the awareness that it is not enough to integrate the systems only
via their database interfaces. A huge number of applications do not allow direct
access to their databases. Examples for these systems are ERP1 software like SAP
R/3 [SAP] or ENOVIA [Enovia]. Instead, a method of an API (application pro-
gramming interface) has to be used to access the required data or functionality. As
a consequence, an approach for integrating systems does not only have to consider
data but also functions provided by APIs.
Another trend that can be observed is the tendency towards the usage of packaged
off-the-shelf software. Enterprises do not want to waste time in developing stan-
dard software/services by themselves. They are going to concentrate on the devel-
opment of competitive functions (functionality representing the competence of the
enterprise) and take care on their core business. To realize an interoperability be-
tween the competitive functions and the packaged software, there is also a kind of
integration needed.

The best approach for this integration seems to be the use of components. Addi-
tional functions (the competitive ones mentioned above) could be plugged into the
basic framework. Software pieces could be re-used instead of re-implemented, or
they could be replaced by newer ones without major changes and adaptations. In
such a scenario, we can also replace the integrating middleware for our legacy
systems by the framework itself (respectively by lightweight wrappers which en-
capsulate the legacy system and provide the unified framework API).

We propose to use the concept of component models to address the two major
challenges mentioned above: customization of packaged off-the-shelf software and
replacement of legacy systems. These two scenarios will be described in more de-
tail in Section 2. This will lead us then to identify the need for a framework as the
architectural basis for a component model.

Afterwards, we sketch out required functionality and elements which should be
provided by an appropriate architecture in Section 3. In Section 4 we consider im-
plementation aspects and finally summarize our ideas in Section 5.

2 Application Scenarios

Illustrated by two typical scenarios, the need for component-like applications will
be shown in this section. The first is the enhancement of functionality of so-called
packaged software. The second scenario focuses on the modularization of software
packages.

1 ERP = enterprise resource planning.

3

2.1 Extending & Customizing Packaged Software

In most big enterprises, IT strategy means to concentrate on core business—the
competitive functions representing the knowledge and competence of an enterprise.
People do not want to waste time developing again and again basic functionality
that is already implemented in many applications. Instead, they use packaged soft-
ware like SAP/R3 or PeopleSoft [PS] proving this basic functionality. Although the
vendor of these products offer extensions for special industrial branches they can-
not cover all fields of operation. Hence, the enterprises are forced to enhance the
functionality of the packaged software in some way. Imagine to build up a produc-
tion line. On the one hand, business objects like bills of material, assembly plans,
and inventory information are used. Those items can be managed by the packaged
software. On the other hand, there is enterprise specific information that cannot be
handled by the commercial software. Exactly this information increases the effi-
ciency of the production line by, for instance, enabling specialized just-in-time
processes and an optimized sequence of work items.
The scope of extending packaged software ranges from adding some simple if-
clause-branchings up to plugging in big components with the power of application-
sized software. The first case can still be overcome with built-in programming lan-
guages like ABAP (advanced business application programming) in the case of
SAP/R3 [Man98], whereas on the other end of our functionality scope a component
architecture with an open API is needed.

2.2 Modularization of Software Products

The architecture in Figure 1 shows a typical Web application infrastructure. The
user interacts by means of a browser with a portal providing a personalized front-
end environment. The portal software includes an AS (application server) �, a
Web server realizing the GUI (graphical user interface) �, an LDAP2 directory for
storing the user profiles �, and the portal functionality (personalization and chan-
neling) itself �. In order to run the AS, another Web server �, another LDAP di-
rectory � as well as a database � (for storing the configuration values and
authorization information) are needed. Moreover, there might be independent Web
servers � offering additional information to the portal or legacy databases 	 con-
nected to the client via the AS.

2 = lightweight directory access protocol. “This is a software protocol for enabling anyone to
locate organizations, individuals, and other resources such as files and devices in a network,
whether on the Internet or on a corporate intranet. LDAP is a "lightweight" (smaller amount
of code) version of DAP (directory access protocol), which is part of X.500, a standard for
directory services in a network..” (Source: http://www.whatis.com/ldap.htm)

4

Application Server PackagePortal Package

Portal

LDAP

Application
Server

LDAP

DBMS
HTTP-
Server

HTTP-
Server

HTTP-
Server

DBMS
DBMS

cgi, etc.

DBMS

�

� ��

�

�

��

	

Figure 1: A typical Web application infrastructure.

Obviously, buying and running single software packages like an AS or a portal
brings in software products and information that is already available in the enter-
prise’s IT infrastructure. If, for instance, we have a look at the security aspects in
this scenario, we can realize that the required information is stored redundantly in
different places. Each application brings in its individual security model and secu-
rity database, although in most cases authentication and authorization information
is already stored somewhere in the system. Web resources on simple Web servers
are protected by “htaccess” files3 and a file based user/group database; security
information of the portal is stored in the LDAP directory; the AS holds its authen-
tication information in another LDAP directory and the authorization information
for the Web resources is kept in a relational database. Finally, information stored in
a database is protected by authorization information which is also stored within the
database—the authorization information is mostly based on the user’s operating
system identity. In such a heterogeneous scenario, it is rather difficult to build a
single sign-on mechanism, not to mention the unification of the authorization pro-
cedure.

Summarizing the discussion of the two application scenarios, the main disadvan-
tage of today’s IT solutions is the missing extensibility of packaged software to
cover the whole functionality needed by the enterprise. In addition, we have to deal

3 These are files in the directory structure of your Web resources holding the authorization
information for specific HTML files.

5

with high redundancy of software products and stored information. In the next sec-
tion, we will introduce our ideas for a component framework architecture over-
coming these shortcomings.

3 Architecture Requirements

In the following, we will develop the functionality needed to build a component
framework which is shown in Figure 2.

?

Corporate
Repository

Figure 2: Component Architecture Framework.

The core of our proposed component architecture is a communication infrastruc-
ture to which the components could be plugged in easily. During the plugging-in
process the component registers itself to the framework. A corporate repository
(CD) storing this registration data also contains additional information about all
systems (software and hardware) of the enterprise. The idea is, that components
looking for a certain functionality can get and analyze the semantic information of
all components registered at the CD. Together with the corresponding syntactic
interface description, the found method can directly be called. For example, an
engineer is browsing the bill of material in his EDM (engineering data manage-
ment) system and realizes that a certain part is not released. His EDM system cer-
tainly offers the releasing functionality in the GUI, but does not have an imple-
mentation on its own. So his application is contacting the CD and looking for an
appropriate component offering the desired functionality on the relevant part of the
global data schema. The found component is “started” with identification of the
part which has to be released. As result it returns a status message (e.g. “part
sucessfully released”) to the EDM system.

6

When speaking about a component, we mean simple clients, applications like Sma-
ragd4, or large software packages like SAP/R3. In Figure 3 we can see such a com-
ponent from its functional view.

SSeemmaannttiiccss

�

��

�

IInnppuutt//OOuuttppuutt

TTrraannssaaccttiioonnss ((XXAA))

EEvveennttss

FFuunnccttiioonn CCaallllss

DDaattaa SScchheemmaa

SSeeccuurriittyy

WWoorrkkffllooww

QQuueerriieess

GGUUII

Figure 3: A component with its interfaces.

The component by itself acts as an independent application. With this it has a GUI
�, implements some business logic �, possibly has an internal workflow �, and
encloses some data �.

Basically, a component processes information. It needs interfaces for the data ex-
change (input/output) and for the call of its functionality (call interface). Moreover
the input/output functionality—which essentially is a routing of parameters only—
could be extended to an interface for submitting search-inquiries, based on SQL5

for example (query interface).

By supporting asynchronous communication, we give the component the possibil-
ity to react on unforeseen events or to set off events by itself (event interface).
The component processes a part of the (assumed) global schema and thus encap-
sulates its data. To keep the data consistent, we are offering a transaction interface
with the 2-phase-commit protocol (XA interface).

4 Smaragd is a product from SDRC to maintain product structure linked together with the
corresponding CAD (computer aided design) files.
5 = structured query language [ANSI99]. Query language to access data stored in a rela-
tional database system.

7

The security interface offers functions e.g. to exchange authentication information
between components in order to realize a single sign-on or to cipher/decipher in-
put/output data. Furthermore, the interface should be able to process authorization
information of the underlying global schema.

To support the lookup for a particular functionality, the component must offer a
description of its semantics. With this description only, the component can be
guaranteed exchangeable with other components that have exactly the same func-
tionality.

Besides, the component maybe contains a sub-workflow, so the entry- and exit-
points of the workflow must be accessible through the component’s interface.

Finally, a component should offer a presentation for the GUI. Compo-
nents/applications could then be used from other applications. Examples are a
TWAIN driver from the Windows operating system, whose dialog window can be
accessed from different graphic tools, or the Adobe Acrobat reader, which displays
a selected PDF file from the internet directly via the web browser.

4 Design and Implementation Aspects

In order to build such a component framework we consider already existing com-
ponent models for fulfilling our requirements. Most important are the “three big
commercial” ones, namely Microsoft’s COM+ (component object model, [Pla99]),
Sun’s EJBs (enterprise JavaBeans, [EJB]), and CORBA (common object request
broker architecture, [OMG]) of the Object Management Group (OMG). These ar-
chitectures focus nearly on the same characteristics: reusability, distribution, and
interoperability. But beneath these advantages, they only support a more or less
technical realization of communication. Imagine a (possibly distributed) pool with
components of the same functionality. The client software can choose an instance
of this pool depending on the current distribution and load of the system. In such a
scenario, the mentioned models show some weaknesses, because they only de-
scribe the signature of functions and components. Since a semantic description is
missing, no automatic choice and communication can occur with other compo-
nents. Because of the same reasons there is no possibility to verify that a replaced
component offers exactly the same functionality than the original one. Comparable
to the AP214, a commonly defined semantics could help to exactly specify the
functionality of a component.
Concerning the granularity of the commercial component models, they do not
match our requirements either. When speaking about a component, we consider a
stand-alone application like a product data management system or a CAD applica-
tion. EJBs, in contrast, aim at the encapsulation of smaller units like business ob-
jects.

Aside from the problems described so far, each component model has its peculiar-
ity: COM+ is limited to the Windows platform, EJBs are dependent on the Java

8

programming language, and CORBA cannot deal efficiently with data-intensive
operations [Sel00].

Considering all the aspects mentioned so far, a more comprehensive component
model is necessary. Our intention is not to develop yet another component model
but to realize a solution based on existing technologies.

5 Conclusions and Outlook

In this paper, we have worked out the requirements for a component-based archi-
tecture. After motivating the need for such an architecture by the problematic of
packaged software and the shortage of modularization of software products, we
have proposed first steps to achieve a component-based architecture. The paper
closes with some remarks regarding the three commercial component models
(CORBA, EJB, COM+) and their deficiency for such an architecture.

Our next steps include the definition of a global security model, since it represents
an important element of a component model as described in this paper. Moreover,
we are looking for an appropriate communication infrastructure for the framework.
In addition, we will continue to have a look at the commercial models considering
their evolution w.r.t. our requirements.

6 References

[EJB] Sun Microsystems (2000). Enterprise JavaBeans.
http://java.sun.com/products/ejb/

[Enovia] Enovia Corporation (2000). ENOVIAVPM.
http://www.enovia.com/solutions/ html/edesvpmoverview.htm

[ISO94] ISO 10303 (1994). Industrial Automation Systems and Integration – Product
Data Representation and Exchange – Part 1: “Overview and Fundamental
Principles”, International Standard.

[ISO97] ISO CD 10303 (1997). Industrial Automation Systems and Integration – Prod-
uct Data Representation and Exchange – Part 214: “Core Data for Automative
Mechanical Design Processes”, Committee Draft.

[ANSI99] American National Standards Institute, Inc. (1999). Database Languages –
SQL – Part 2. Foundation (SQL/Foundation). ANSI/ISO/IEC9075-2-1999. In:
American National Standard for Information Technology, approved Dec-1999.

[Man98] Hans Dieter Mann (1998). ABAP/4 Sprachreferenz. Feldkirchen: Franzis.
ISBN 3772356842.

[OMG] OMG (1999). CORBA Components – Joint Revised Submission. OMG TC
document 99-02-05.
http://www.omg.org/cgi-bin/doc?orbos/99-02-05

[Pla99] David S. Platt (June 1999). Understanding COM+. Redmond, Washington:
Microsoft Press. ISBN 0-73560-666-8.

[PS] PeopleSoft, Inc. http://www.peoplesoft.com/

9

[SAP] SAP AG (2000). SAP R/3.
http://www.sap.com/solutions/r3/

[Sel00] Jürgen Sellentin (2000). Datenversorgung komponentenbasierter Informa-
tionssysteme. Informationstechnologien für die Praxis. Berlin · Heidelberg ·
New York [a.o.]: Springer-Verlag. ISBN 3-540-67728-3.

[SL90] Amit P. Sheth, James A. Larson (1990). Federated Database Systems for Man-
aging Distributed, Heterogeneous, and Autonomous Databases. ACM Com-
puting Surveys, 22 (3): 183-236.

	Introduction
	Application Scenarios
	Extending & Customizing Packaged Software
	Modularization of Software Products

	Architecture Requirements
	Design and Implementation Aspects
	Conclusions and Outlook
	References

