
A Delay Analysis of Reliable Multicast Protocols

Christian Maihöfer and Kurt Rothermel
University of Stuttgart, Institute of Parallel and Distributed High Performance Systems (IPVR),

Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany�
christian.maihoefer � kurt.rothermel � @informatik.uni-stuttgart.de

Keywords — reliable multicast, sender-initiated, receiver-initiated,
SRM

Abstract — We present a delay analysis of one sender- and two
receiver-initiated classes of reliable multicast protocols. Besides the
average delivery delay we consider the delay to reliably deliver all
packets and the round trip delay. The former two examines the delay
between generation of a packet at the sender and correct reception at
a randomly chosen receiver or all receivers, respectively. The latter is
the delay between generation of a packet at the sender and reception
of all acknowledgment packets at the sender.

Our numerical results show that receiver-initiated protocols provide
significantly better scalability for large receiver groups and transmis-
sion rates compared to the sender-initiated protocol. However, the de-
lay of the sender-initiated protocol within its scalability range is sub-
stantially lower compared to the receiver-initiated protocols.

To assess the quality of our analytical model we have compared
the analytical results with a SRM-like protocol simulation. We show
that the analytical and simulation results are strongly correlated, which
demonstrates the appropriateness of our analytical model.

I. INTRODUCTION

If a reliable multicast protocol is used for real time applications,
the resulting message delivery delay is an important issue. For ex-
ample real time applications like interactive distributed simulations,
distributed games, or the delivery of MPEG I-frames [1] benefit from
guaranteed reliability. Besides time constraints of some applications,
low delays are vital for providing high throughput with a window
based sending scheme [2].

Known multicast protocols try to achieve reliable data delivery by
forward error correction or retransmission schemes or by a combina-
tion of both approaches. As FEC alone cannot guarantee reliability
we focus in this paper on protocols using a retransmission scheme.
We distinguish among the three well-known protocol classes sender-
initiated, receiver-initiated and receiver-initiated with feedback sup-
pression.

The sender-initiated protocol class in denoted as (A1). Receivers
return a positive acknowledgment (ACK) to the sender in order to in-
dicate successful reception of the data packet. If the sender misses an
ACK packet from one or more receivers, a multicast retransmission
is sent to the whole group. An example for a sender-initiated proto-
col is the Xpress Transport Protocol (XTP) [3]. In contrast to sender-
initiated protocols, receiver-initiated protocols return only negative ac-
knowledgments (NAKs) instead of ACKs. As in the sender-initiated
protocol class, we assume that retransmissions are sent using multi-
cast. In protocols of class (N1), a receiver sends a unicast NAK to
the sender after it has detected a missing or corrupted data packet. A

missing packet can be detected by a gap in the sequence numbers. An
example for (N1) is PGM [4]. Protocol (N2) uses multicast NAKs
with NAK suppression. If an error is detected a NAK is sent to the
whole group scheduled at a random time in the future provided that
not already a NAK has been received for this data packet. Thus, in
ideal case, only one NAK is received by the sender for each lost data
packet. An example for such a protocol is the scalable reliable multi-
casting protocol (SRM) [5].

As the number of control messages is reduced with the use of neg-
ative acknowledgments and with the use of the NAK suppression
scheme, scalability for a larger number of group members is improved,
which has already been shown by previous work [6], [7], [8]. In this
paper we present a delay analysis of the discussed protocol classes. In
contrast to previous delay analysis we assume a more realistic system
model as explained in Section II and we analyze several delay values.
Besides average and maximum delay between sender and receiver we
determine the round trip delay between sending a data packet and re-
ceiving the last corresponding control packet at the sender. The round
trip delay determines the time after a data packet can be removed from
memory and influences the sending rate if the sender uses a window
based sending scheme [2]. Furthermore, knowledge about this delay
is important to adjust timers at the sender and receivers. To assess
the analytical results we have implemented a protocol of class (N2) in
the network simulator NS-2 environment and compare the analytical
results with simulation results.

Analogous to previous work, our results show that in terms of scal-
ability (N2) is superior to (N1) and (N1) is superior to (A1). However,
we have obtained more accurate absolute delays, which indicate that
within its scalability range, (A1) provides substantially lower delays
compared to receiver-initiated protocols. This results from the faster
loss detection of sender-initiated protocols by missing ACK packets
at the sender. Recall that receiver-initiated protocols detect a missing
packet by a gap in the sequence number, which can result in a rather
long delay. By analyzing the maximum delay and round trip delay
additionally to the average delivery delay, we can provide a more ac-
curate characterization of the considered protocol classes, which is es-
pecially important for applications with time bounds for the delivery
delay.

The remainder of this paper is structured as follows. In the next sec-
tion related work is discussed. In Section III we introduce our assumed
system model followed by the detailed delay analysis. Numerical re-
sults are presented in Section IV and compared with simulation results
in Section V. Finally, we will conclude with a brief summary.

II. BACKGROUND AND RELATED WORK

The first comparative analysis of reliable multicast protocols was
done by Pingali et al. [9]. They have compared the processing re-

quirements of the same classes of sender- and receiver-initiated pro-
tocols we will use in our analysis. Levine et al. [10] have extended
this work to the class of ring- and tree-based approaches and showed
that tree-based approaches are superior in terms of scalability. In [7]
a more realistic system model including loss of control packets was
analyzed and further protocol classes were introduced. Besides pro-
cessing requirements, bandwidth efficiency was subject to several an-
alytical studies for example by Kasera et al. [11], Nonnenmacher et al.
[12] and Maihöfer et al. [8].

Regarding delay analysis, the first comparative delay analysis of
sender- and receiver-initiated approaches was presented by Yamamoto
et al. [6] and DeCleene [13]. Yamamoto et al. have analyzed the ex-
pected average delivery delay and showed that receiver-initiated pro-
tocols with NAK suppression provide best scalability. However, their
analytical model for this class was simplified in assuming that all re-
ceivers are perfectly synchronized and thus only one NAK is sent back
to the sender in case of message loss. While the analysis in [6] is in-
dependent of the network topology, in [13] a delay analysis of generic
ACK- and NAK-based protocols operating over star and linear topolo-
gies was presented. In [12] the effect of local recovery and retransmis-
sion of parity packets on bandwidth and delay of NAK-based protocols
is examined. While the bandwidth analysis is made in detail, the delay
analysis is rather brief. They concluded that local recovery techniques
and parity packets outperforms other approaches.

Our paper follows the work in [6] but extends previous work in four
significant ways. First, we consider the loss of control packets rather
than assuming reliable delivery. Second, we assume that local clocks
are not synchronized. Both assumption especially affects the NAK
suppression scheme. Third, besides average delivery delay we exam-
ine the threshold delay and the round trip delay. Threshold delay is
the delay to reliably deliver all packets with a certain probability. For
applications with time bounds for the delivery of messages, thresh-
old delay should be considered rather than average delay. In most
cases threshold delay gives a more realistic impression of the delay
behaviour of reliable multicast protocols. For example, for low packet
loss probabilities and within the scalability range, the average deliv-
ery delays of all classes are rather similar and only moderately higher
than the message propagation delay of the network, which means they
are rather similar to unreliable protocols without retransmissions. In
contrast to average delay, threshold delay allows to compare the pro-
tocols and the performance of their retransmission schemes in more
detail. Round trip delay examines the delay until all receivers have
acknowledged correct reception to the sender. The round trip delay
determines when to remove packets from the sender’s buffer space.
Furthermore, it may limit the throughput of a protocol if a window-
based sending scheme is used, since the round trip delay determines
the delay to advance the window [2]. Note that according to our defini-
tion only protocol class (A1) provides such a signaling. Nevertheless,
we will examine the expected round trip delay if an additional signal-
ing scheme would be applied to (N1) and (N2), which is necessary if
a window-based sending scheme is used. In such a case, usually pe-
riodic positive acknowledgments are used. Even without an explicit
signaling, the expected delays can be rather helpful to appropriately
configure the delay to delete data packets at the sender if it cannot
keep all data packets for possible retransmissions in memory. Finally,
we have implemented a SRM-like protocol [5] similar to protocol class
(N2) in the network simulation environment NS2 [14] and compared
the results.

III. ANALYSIS

A. System Model

We assume the following system model for our analytical evalua-
tions. A single sender multicasts a message to a set of � identical
receivers. With probability ��� the multicast message is corrupted or
lost during the transmission to a single receiver. With probability �	�
for ACKs, ��
 for unicast NAKs and ��
 for multicast NAKs, a control
message is corrupted or lost. We assume that nodes do not fail and that
the network is not partitioned, i.e. retransmissions are finally success-
ful. All nodes work exclusively for the multicast transport protocols
and no background load is considered.

B. Analytical Approach

Our goal is to determine the delays between the initial generation
of a packet at the sender and the correct reception at a receiver as well
as the reception of the last control packet at the sender. These delays
are determined by the necessary processing times for a packet at the
sender and receivers, transmission delays, timeout delays to wait for
a data or control packet and finally the number of necessary transmis-
sions for correct reception of data and control packets.

The processing time at a node is determined by the load of such a
node, i.e. the processing of data and control packets. We first deter-
mine the rates for initial sending and arrival of packets. Arrival times
are modeled as a poisson distribution which results in exponentially
distributed inter-arrival times. As we assume general distributed ser-
vice times this queue type is defined as
�� ��� � queue [15].

The number of necessary data packet transmissions � is determined
by the packet loss probabilities � � , � � , ��
 and ��
 . � has already
been determined for the various protocol classes in our processing and
bandwidth requirements analysis [7], [8].

Given the average processing times and the number of transmissions
we can determine the delay experienced by a single data packet. A
summary of the frequently used notations is given in Table 1.

C. Sender-initiated Protocol (A1)

C.1 Mean Waiting Times at the Sender

As a first step we have to determine the mean waiting time for a
packet between generation or arrival and completion of processing or
sending. The waiting time is determined by the load on the sender; the
load is given by the packet flows processed by the sender under the
considered protocol. The sender of protocol (A1) has to process the
following three arriving packet flows:
1. Data packets that are transmitted for the first time. This packet
flow is referred to as ���� and has rate � . The processing time for a data
packet is � .
2. Data packets that are retransmitted due to packet loss. This packet
flow is referred to as ���� and has rate ��������� �! #"%$'&�" , since every packet
is (����� �()"*$+&)-times retransmitted. �,�-� �! �" is the total number of
necessary transmissions to correctly receive a data packet at all re-
ceivers.
3. Control packets that are received by the sender with flow �.�/ and
rate �	�0�,�-� �()" � &1$ � � " � &2$ � � " . � is the number of receivers. Each
receiver returns an ACK for every transmission provided that no data
packet loss occurs with probability � &3$ ��� " . The sender receives an
ACK packet provided that no ACK loss occurs with probability � &1$� � " . The processing time for an ACK packet is 4 .

Table 1
FREQUENTLY USED NOTATIONS FOR THE ANALYSIS5

Size of the receiver set.6879;: 6<7= Waiting time for the sender or receiver. > ?@BA � :)C � :)CEDGFH
Sending rate for data packets.H 9I Initial transmission flow from the sender.H 9J : H 9K ACK or NAK packet flow received at the sender.H 9L Retransmission flow at the sender.H =I Data packet reception flow at the receiver.H =K NAK flow from a receiver.H =K.M L NAK flow received at a receiver.N 7 91: N 7 = Total load on the sender or receiver.O 9 : O = Sender or receiver timeout delay.P Packet propagation delay in the network.Q 7R : Q 7S Mean time between the initial arriving of a data
packet at the sender and the correct reception at a ran-
dom receiver or at all receivers with probability T .Q 7=VUVW Mean time between the initial arriving of a data
packet at the sender and the correct reception of all
control packets at the sender.X
Processing time for data packets.Y
Processing time for control packets.Z W Probability for multicast data loss at a receiver.[!\ : [^] : Z_] Probability for unicast ACK, NAK or multicast NAK
loss.
 7 :
 7L Total number of necessary transmissions to receive a
data packet correctly at all receivers or at a random
receiver ` in the presence of data and ACK or NAK
loss.a 7 : a 7L Number of necessary rounds to correctly deliver a
packet to all receivers or to receiver ` .a 7b : a 7b#M L Total number of empty rounds or empty rounds for
receiver ` , respectively.

The expected total number of necessary transmissions �,��� �()" to
receive the data packet correctly at all receivers is given in [7]:

����� �("dcfegh�i
j � kBl � $m&�" h�n &&m$po� hGq (1)

with probability for a retransmission o� :o� c � �sr � &0$ � � " � � q (2)

i. e. either a data packet is lost (���) or the data packet is received
correctly and the ACK is lost (� &m$ ��� " ���).

The load on the sender is given by the traffic intensity t , which is
generally the product of the traffic rate � and mean processing time for
a request (data transmission, retransmission or request) ����u " [15]:

t c �	����u "wv (3)

The load on the sender (t �! � , traffic intensity) is then the sum of the
packet rates:

t �! � c �	����� �(" ����� " r �	�0�,��� �! " � &x$ ��� " � &x$ �B� " ����4 "�v (4)

As explained in Section III-B the system can be modeled as a
y� ���z� queue. With the help of the Pollaczek-Chintchine formula and
the formula of Little the mean waiting time for a packet until process-
ing starts is [15]:

�,�-{ "dc �	�,�-ud| "} � &0$ t " q (5)

where u is the processing time for a request. Given this formula, the
waiting time for protocol (A1) at the sender is:

���-{ �! � "dc �-�G�� r ���� " �����~| " r ���/ �,�-42| "} � &0$ t �! � "
v

(6)

C.2 Mean Waiting Times at a Receiver

The only packet flow at the receiver is the reception of data packets,
which are acknowledged by an ACK, � e� , with rate �	�,�-� �()" � &�$ � � " .
The processing time is � r 4 since the arrival of a packet is followed
by replying an ACK packet to the sender. Note that � and 4 are
independent random variables. The load on the receiver is:t �(e c ������� �(" � &x$ ��� " j ����� " r �,�-4 " l v (7)

The mean waiting time of a packet at the receiver until processing
starts is (see Eq. 5):

�,��{ �(e "�c � e� � j ��� r 4 " | l} � &0$ t �! e "
v

(8)

With � and 4 are independent random variables, �,��� r { "�c�,�-� " r �,��{ " , �1�_�_�-� "�c ���-� | "�$ �����-� "�" | and �1���B�-� r { "�c�1�_�_�-� " r �3���B�-{ " :
�,��{ �(e "�c � e� j �����~| " r �,��41| " r } ����� " �,��4 " l} � &0$ t �! e "

v
(9)

C.3 Overall Delay of Protocol (A1)

Now that we have analyzed the mean waiting times at the sender and
receiver we are able to determine the delay of a specific data packet.
This delay includes the waiting time after arrival or generation of a
data packet at the sender, the time needed to send a packet, the network
propagation delay, the time needed to receive a packet at a receiver and
the waiting time for processing.� � is assumed to be the constant sender timeout delay after which a
missing ACK is assumed to be lost or the corresponding data packet,
respectively, and a retransmission is invoked. � is assumed to be the
constant network propagation delay for a packet. The probability that
a receiver needs � transmissions until correct reception of a data packet
is �'��� � c � "�c ����� � � &d$ ��� " . � � is the necessary number of transmis-
sions to correctly receive a data packet at a random receiver � . ����u �! � "
is assumed to be the mean time between the initial arrival or generation
of a data packet at the sender and the correct reception at a receiver.
Yamamoto et al. [6] have shown that ����u �(� " equals:

�,��u �! � "(c��(�g� i �
��� � � &0$ � � " j �_���,�-{ �(� " r ����� "�" r ��� $�&)" � � lG�

r � r �,��{ �(e " r ����� "wv (10)

By taking the expectation of the geometric distribution, this can be
simplified to:

����u �(� "�c �,��{ �(� " r ����� " r ��� � �&0$ ��� r � r �,�-{ �! e " r �,��� "�v (11)

With �,�-� � "*c &m$ ��� and ����� � "�$s&3c � �&0$ ��� [7], where �,�-� � "
is the number of necessary transmissions for a single receiver � :�,��u �! � "(c ����� � " j ���-{ �! � " r �,��� " l r j �,��� � "!$�& l � �� ��� �

time at the sender

r ��������
transport

r �,�-{ �! e " r �,��� "� ��� �
time at a receiver

v
(12)

Besides the average delivery delay we can determine the expected
maximum delay to reliably deliver all data packets with a certain prob-
ability, denoted as � . We will call this delay threshold delay ����u �(� " .
With ����� " denoting the number of transmissions, � c<&,$ � �3�!�¡ £¢
holds. Now, ����u �! � " can be obtained as follows:

����� "dc¥¤¡¦ � &x$ � "¤¡¦ ����� " q �¨§ &0$ ��� (13)

����u �(� "�c �,�-� " j �,�-{ �! � " r �,��� " l r j �,�-� "V$�& l � �r � r �,��{ �(e " r ����� "wv (14)

Finally, we want to examine the delay for receiving all ACK pack-
ets at the sender. This delay is important since in many cases a win-
dow based sending scheme is used and upon reception of all ACKs
the corresponding data packet can be deleted and the sending window
advanced. We obtain the round trip delay �,��u �! ed© � " as follows:����u �(e(© � "(c

j ����� �("!$�& l j � � r �,�-{ �! � " r �,��� " l� ��� �
sending transmissions

r ����� " r ���-{ �! � " r � r ���-{ �! e " r �,��� "� ��� �
receiving last successful retransmission

r ����4 " r �,��{ �(e " r � r �,��{ �(� " r ����4 "� ��� �
send and receive last ACK

v
(15)

D. Receiver-initiated Protocol (N1)

D.1 Mean Waiting Times at a Sender

Analogous to protocol (A1), three packet flows are to be processed
at the sender. Packet flow �.�� for the first transmission with rate � and
processing time � . Then the NAK flow ���� with rate ���������
 �"�$ª&�"
that triggers a retransmission and therefore has processing time � r 4 .
Finally, ���« with rate ����¬ � &G$ ��
 "%$ ���,���
 �"%$'&�"�" of additional NAKs,
which are processed but trigger no retransmission and therefore have
the processing time 4 .¬� is the total number of NAKs sent in all rounds and is determined
in the processing requirements analysis [7] as follows:¬� c+­ �!�¡
 ¢®)i ¯ ® ��° ® v (16)

¯ ® , the number of NAKs sent in round ± is given by:
¯ ® c ��� ® � q (17)

where � � ® is the probability for a single receiver that until round± all data packets are lost. � ® is the probability that all sent NAKs in
round ± are lost: � ® c �B

 ® c ��
3² � ® e v (18)

The number of transmissions is (see Eq. 1):

�,���
 "dc egh�i
j � kBl � $m&�" h�n &&0$ � � h v (19)

Given these flows, the load on the sender is:t
 � c �	�,��� " r � j �,���
 "V$�& l �,��� r 4 "
r � � ¬� %� &m$ �
 "!$ j �����
 "^$�& lG� �,�-4 " (20)c �	�,���
 " �,��� " r ��¬ � &0$ ��
 " �,�-4 "wv (21)

The mean waiting time for a packet at the sender until it is processed
is:

�,��{
 � "Vc �	�,��u(| "} � &0$ t
 � " (22)

c ���� �����~| " r ���� j �,���~| " r �,�-42| " r } �,��� " ����4 " l r ���« ����43| "} � &0$ t
 � "
v

(23)

D.2 Mean Waiting Times at a Receiver

A receiver detects a missing packet by a gap in the sequence num-
bers, i.e. when it receives packet

k r & without having received
k
. As a

consequence of this error detection mechanism, the delay for detecting
an error is influenced by the data packet sending rate � . Since NAKs
are also subject to packet losses, one or more NAKs must be sent to
trigger a retransmission. After sending a NAK a timer is started at
the receiver. If the timer expires, a new NAK is sent and the timer is
restarted until the data packet is correctly transmitted.

At the receiver we have the following two packet flows. Flow � e�
of data packets received from the sender with rate �������
 �" � &1$ � � "
and processing time � . And the flow � e« of generated NAKs with rate� j �,��³
 � "�$2& l and processing time 4 . ³
 � is the number of necessary
transmissions for a single receiver plus the number of empty rounds in
which no retransmission is triggered due to NAK loss (see [7]):

����³
 � "�c �,���
 � " r �,��³
 ��´ µ " (24)

����³
 ��´ µ "�cE­ �V��
 � ¢ � ®)i j ��° ® $s& l (25)

�,�-�
 � "�c &&x$ � � v (26)

Given these flows, the load on a receiver is:

t
 e c �	�����
 " � &x$ � � " ����� "
r ���,��³
 �·¶ &�" j �,��³
 �¹¸ ³
 �º¶ &�"!$s& l ����4 "wv (27)

Now, the mean waiting time for a packet at a receiver is:

���-{
 e "dc � e� �,���~| " r � e« ����42| "} � &0$ t
 e "
v

(28)

D.3 Overall Delay of Protocol (N1)

After the sender has transmitted a data packet it collects all NAKs
within a certain timeout period and sends a retransmission. We assume
the timeout period to be long enough for all NAKs to be received.

To obtain the overall delay, Yamamoto et al. [6] distinguish between
the following phases:
1. Loss Detection Phase. This phase encompasses the time between
the initial arrival of a packet

k
at the sender and the triggering of a

NAK at one of the receivers, which have lost the first data packet. The
loss is detected with the arrival of a packet � , where � ¶ k .
2. Loss Recovery Phase. This phase encompasses the time between
the end of the first phase and the correct reception of a packet at the
considered receiver. As data packets and NAKs can be lost, this phase
includes the periodical sending of NAKs until the data packet is re-
ceived correctly.

D.4 Loss Detection Phase

Here we must consider the time to unsuccessfully send data pack-
ets, the time to send and receive the first successful data packet and
the time to send an initial NAK for the first lost data packet. The ran-
dom variable » is the number of consecutive lost packets at the ± r &
unsuccessful receivers. Given that ¼ c ± , the conditional probability
distribution of » is:

�'��» c ¤ ¸ ¼ c ± "(c �#½ � ®)n ¢� � &m$ � ®)n � " q
¤ c+¾ q & q v�v�v and ± c+¾ q & q v�v�v q � $�&�v (29)

The number of subsequent lost packets at ± r & receiver follows from
the expectation of the geometric distribution:

�,��» ¸ ¼ c ± "(c � ®#n �&x$ � ®)n � v
(30)

To obtain the mean ± among the possible ones between 0 and � $s&
we have:

����» ¸ ¼ "�c e � g®#i�¿
j � $s&± l � ®� � &0$ � � " e � � ® � ®#n �&m$ � ®)n � v

(31)

Now we multiply the mean number of subsequent lost packets with
the time À , to process a packet. The delay of the » r & st packet is:

���-{
 � " r �,��� "� ��� �
sender processing delay

r ������w�
propagation delay

r �,�-{
 e " r ����� "wv� ��� �
receiver processing delay

(32)

Finally, the first phase can be expressed as follows:

�,��Á
 "dc e � g®#i�¿
j � $s&± l � ®� � &0$ ��� " e � � ® � ®#n �&0$ � ®)n �

&
�

r �,��{
 � " r �,�-{
 e " r � r } �,��� " r ����4 "wv (33)

D.5 Loss Recovery Phase

From the viewpoint of a random receiver, this phase encompasses
a number of timeout rounds. This means, the initial sent NAK in�,��Á
 w" was unsuccessful. The following receiver timeouts have the
length � e r ���-{
 e " r �,�-4 " , where � e is the timeout period, {
 e the
waiting time and 4 the processing time for a NAK. After a number of
unsuccessful sent NAKs, this round ends with a final successful sent
NAK to the sender. This includes the propagation delay to the sender,
the sending of the data packet, the propagation delay to the receiver
and receiver processing of the received data packet. The mean loss
recovery delay under the assumption that NAK packets are not lost is:

�����
 "(c �g
� i
� ��� � � &x$ ��� " �z� $�&)" j � e r ���-{
 e " r �,�-4 " l

r } j ����� " r � l r �,�-{
 � " r ���-{
 e " r �,��4 " (34)

c � �&0$ ���
j � e r ���-{
 e " r �,��4 " l r } j ����� " r � l

r ���-{
 � " r �,��{
 e " r �,��4 " (35)c j �����
 � "!$s& l j � e r �,�-{
 e " r ����4 " l r } j �,��� " r � l
r ���-{
 � " r �,��{
 e " r �,��4 "wv (36)

Note that � is the number of timeout rounds due to data packet or
NAK loss. If we consider the loss of NAK packets, only one case, the
loss of all sent NAK packets increases the recovery delay. The total
retransmission rounds due to data packet loss and loss of all NAK
packets is denoted as ³
 � (see Eq. 24). Therefore, we change the
above equation to:

�,���
 "�c j �,��³
 � "V$�& l j � e r ���-{
 e " r �,��4 " l r } j ����� " r � l
r ���-{
 � " r �,�-{
 e " r ����4 "wv (37)

The overall delay of protocol (N1) consists of both phases:

�,��u
 � "�c � &x$ � � " j ���-{
 � " r �,��{
 e " r } ����� " r � l
r ��� j ����Á
 " r �,���
 " l v (38)

The delay to reliably deliver a certain percentage � of data packets
is denoted by �,�-u
 � " . It can be obtained with a modified loss recovery
phase as follows:

�,���
 "(c j �,���
 � " r �,��³
 µ�´ � "!$s& l�Â j � e r �,�-{
 e " r ����4 " l
r � r ���-{
 � " r �,�-4 "
r �,��� " r � r ���-{
 e " r �,��� " (39)

�,��u
 � "(c �,��Á
 " r �,���
 "wv (40)

�,��³
 µ�´ � " is determined similar to Eq. 25 with �,���
 � " instead of�,���
 � " . Besides the delivery delay we want to determine the delay
for removing the data packet at the sender and to advance the sending
window. Although protocols (N1) and (N2) provide no signaling for
the correct reception of a data packet at all receivers, we will examine
the expected round trip delay if an additional signaling scheme would
be applied, which is necessary if a window-based sending scheme is
used (see discussion in Section II).

�����
 "dc j ����³
 "!$�& l j � e r �,�-{
 e " r ����4 " l r } j �,��� " r � l
r �,�-{
 � " r ���-{
 e " r �,��4 " (41)

����u
 e(© � "dc � &x$ � � " e
j �,�-{
 � " r ���-{
 e " r } ����� " r � l

r j &0$ � &0$ ��� " e l j �,��Á
 " r �,���
 " l
r �,��4 " r � r �,��{
 � " r �,��4 "wv (42)

E. Receiver-initiated Protocol (N2)

Protocol (N2) varies protocol (N1) with a NAK suppression mech-
anism trying to reduce the number of NAKs. Analogous to protocol
(N1), we assume that the sender maintains a timer to collect all NAKs
belonging to one round and therefore prevent multiple retransmissions
for the same lost data packet.

E.1 Mean Waiting Times at a Sender

At the sender we distinguish among the following three packet
flows: First, the flow for the initial data packet transmission �.�� with
rate � and processing time � . Second, the NAK flow that trigger a re-
transmission ���� with rate � j �����
 | "G$¨& l and processing time � r 4 .
Finally, the third flow of additional NAKs, which are not necessary to
trigger a retransmission ���« with rate �	¬� �� &�$ �
 "d$ �G�� and processing
time 4 .

The number of generated NAKs is:

¬� c ­ �!�¡
 | ¢®)i ¯ ® ��° ® v (43)

� ® is the probability that all sent NAKs in round ± are lost:

� ® c �
 ®
 v
(44)

¯ ® , the number of NAKs sent in round ± , is obtained as follows. The
first receiver that did not receive the data packet sends a NAK. The
probability for packet loss in round ± is � ®� , which is equal to ¯ ® ´ ,
the probability for the first receiver to send a NAK. Then a second
receiver sends a NAK provided that it has received no data packet
and no NAK packet. Either the first receiver has sent no NAK (with
probability &($ ¯ ® ´) or the NAK was lost or sent simultaneously (with
probability ¯ ® ´ ���
 r �BÃ $ �
 �BÃ "). As we assume a system model in
which local clocks are not synchronized, it is possible that NAKs are
sent simultaneously. This probability is given by � Ã . Now, ¯ ® can be
expressed as follows:

¯ ® c ­ eh�i ¯ ® ´ h (45)

¯ ® ´ c � � ® (46)

¯ ® ´ | c ��� ® � &0$ ¯ ® ´ r ¯ ® ´ ���
 r ��Ã $ �
 �BÃ "�"c ¯ ® ´ $ ¯ |® ´ r ¯ |® ´ ���
 r ��Ã $ �
 ��Ã " (47)

¯ ® ´ « c ¯ ® ´ « � $ ¯ |® ´ « � r ¯ |® ´ « � ����
 r � Ã $ ��
m� Ã " q ¦ ¶ &�v (48)

The number of transmissions is (see Eq. 1):

�,���
 | "�c egh�i
j � k l � $m&�" h�n &&x$ ��� h v (49)

Given these flows, the load on the sender is:

t
 |� c �	�����
 | " ����� " r �	¬ � &0$ ��
 " �,��4 "wv (50)

The mean waiting time of a packet at the sender until it is processed
is:

�,��{
 |� "Vc �	�,��u(| "} � &0$ t
 |� " (51)

c ���� �����~| " r ���� j �,���~| " r �,�-42| " r } �,��� " ����4 " l r ���« ����42| "} � &0$ t
 |� " (52)

E.2 Mean Waiting Times at a Receiver

At the receiver we distinguish among three packet flows. � e� is the
flow of data packets from the sender with rate �	�,�-�
 | " � &2$ ��� " and
processing time � . The second flow � e« consists of the submitted NAK
packets with rate � j �,��³
 |� "2$�&)" l ¬ |¬�Ä and processing time 4 . The
probability for sending a NAK is according to the throughput analysis¬ |¬ Ä . ¬ | is the average number of NAKs sent in each round and ¬ Ä is
the mean number of receivers that did not receive a data packet and
therefore want to send a NAK. The third flow � e«�´ � are the received
NAKs from other receivers with rate ��� &�$ �
 "B� ¬ |

j ����³
 | "0$E& l $¬ |¬ Ä
j ����³
 |� "!$�& l�� and processing time 4 .

The number of rounds ³
 | is the sum of the number of neces-
sary rounds for sending transmissions �
 | and the number of empty
rounds in which all NAKs are lost and therefore no retransmission is
made:

³
 |� c �
 |� r ³
 |µ�´ � (53)

³
 | c �
 | r ³
 |µ (54)

�,��³
 |µ "dc ­ �V��
 | ¢ � ®#i j ��° ® $�& l (55)

�,��³
 |µ�´ � "dc+­ �V��
 |� ¢ � ®#i j ��° ® $�& l v (56)

³
 |� and �
 |� are the corresponding numbers for a single receiver.
The number of necessary transmissions, �
 |� , for a single receiver� is given by the probability � � . Analogous to Eq. 26 of protocol (N1)

the expectation is:

�,���
 |� "(c &&0$ ��� v (57)

¬ | is the average number of NAKs sent in each round and ¬ Ä is
the mean number of receivers that did not receive a data packet and
therefore want to send a NAK:

¬ | c
&

�,��³
 | " ­ �V��

 | ¢®)i ¯ ® ��° ® (58)

¬ Ä c &
�,��³
 | " ­ �V��

 | ¢®)i � ®� � ��° ® q (59)

where (&#Å�&1$ � ®) is the number of empty rounds plus the last suc-
cessful NAK sending (see Eq. 56 and 26).

With these flows, the load on the receiver is:

t
 |e c �	�,���
 | " � &m$ � � " �,��� " r ��� e« r � e«�´ � " ����4 "�v (60)

Therefore, the mean waiting time of a packet at a receiver is:

���-{
 |e "dc � e� �,���~| " r ��� e« r � e«.´ � " ����41| "} � &x$ t
 |e "
v

(61)

Analogous to protocol (N1) we distinguish between the loss detec-
tion and loss recovery phase to analyze the overall delay.

E.3 Loss Detection Phase

This phase is similar to (N1) but additionally considers a random
delay �,��Æ
 | " . This delay starts with the discovery of packet loss at
the first receiver. It ends with the expiration of the backoff timer and
the transmission of the initial NAK. The loss detection phase is given
as follows:

�,��Á
 | "(c e � g®#i�¿
j � $�&± l � ®� � &0$ � � " e � � ® � ®#n �&0$ � ®)n �� ��� �

mean number of subsequent lost packets

&
�

r ���-{
 |� " r �,�-{
 |e " r � r } �,��� "� ��� �
delay of the first received packet

r �,��Æ
 | " r �,��4 "wv (62)

E.4 Loss Recovery Phase

The loss recovery phase is similar to (N1):

�,���
 | "(c j �,��³
 |� "!$s& l j � e r �,�-{
 |e " r ����Æ
 | " r ����4 " l
r } j ����� " r � l r �,�-4 " r �,�-{
 |� " r ���-{
 |e "�v

(63)

E.5 Overall Delay of Protocol (N2)

The overall delay of protocol (N2) is analogous to protocol (N1):

�,��u
 |� "(c � &0$ � � " j ���-{
 |� " r �,��{
 |e " r } ����� " r � l
r ��� j ����Á
 | " r �,���
 | " l v (64)

The delay to reliably deliver a certain percentage � of data packets
is denoted by �,�-u!Ç�|� " . It can be obtained as follows:

�����
 | "(c j �����
 |� " r �,��³
 |µ�´ � "!$s& l
Â j � e r �,�-{
 |e " r ����Æ
 | " r ����4 " l
r � r ���-{
 |� " r �,�-4 "
r �,��� " r � r ���-{
 |e " r �,��� " (65)

�,��u
 |� "(c ����Á
 | " r �,���
 | "wv (66)

Analogous to protocol (N1) we determine the round trip delay as:

�,���
 | "(c j �,��³
 | "V$�& l j � e r ���-{
 |e " r �,��Æ
 | " r �,��4 " l
r } j �,��� " r � l r ����4 " r ���-{
 |� " r �,�-{
 |e "

(67)

�,�-u
 |ed© � "(c � &0$ ��� " e
j ���-{
 |� " r �,��{
 |e " r } ����� " r � l

r j &0$ � &x$ � � " e l j �,��Á
 | " r �����
 | " l
r ����4 " r � r �,�-{
 |� " r ����4 "�v (68)

IV. NUMERICAL RESULTS

We examine the expected delays of the analyzed protocols by means
of some numerical examples. The chosen delays are according to mea-
surements in [16]

XÉÈËÊBÌ	ÌBÍ*Î
for data packets and

YÏÈ � Ì�ÌBÍ*Î for
control packets. Analogous to [6], the packet processing times are
assumed as constant with no variability, i.e. according to �3���B��� "1c�,���~| "�$ ���,��� "�" | c+¾ , the second moments are determined as �,���Ð| "Vc���,��� "�" | . The propagation delay is chosen as P È � ÌBÑEÎ . The timeouts
are chosen as the doubled propagation delay, i.e.

O 9 ÈÒO = È D Ì�ÑEÎ .
For the NAK suppression time we have assumed Ó ÈÕÔ�Ì�ÑEÎ

. A dis-
cussion of reasonable values for the NAK suppression time can be
found in [6].

Average Delivery Delay
p=0.1

10

100

10 100 1000 10000 100000

D
e

la
y

 [
m

s
]

A1 av.
N1 av.
N2 av.

Average Delivery Delay
p=0.01

10

100

10 100 1000 10000 100000

D
e

la
y

 [
m

s
]

A1 av.
N1 av.
N2 av.

Threshold Delivery Delay
p=0.1

10

100

1000

10 100 1000 10000 100000

D
e

la
y

 [
m

s
]

A1 0.999
N1 0.999
N2 0.999

Threshold Delivery Delay
p=0.01

10

100

1000

10 100 1000 10000 100000

D
e

la
y

 [
m

s
]

A1 0.999
N1 0.999
N2 0.999

Round Trip Delay
p=0.1

10

100

1000

10 100 1000 10000 100000

Number of Receivers

D
e

la
y

 [
m

s
]

A1 RTD
N1 RTD
N2 RTD

Round Trip Delay
p=0.01

10

100

1000

10 100 1000 10000 100000

Number of Receivers

D
e

la
y

 [
m

s
]

A1 RTD
N1 RTD
N2 RTD

Fig. 1. Delays with respect to the number of receivers

Figure 1 plots the expected average delay, the threshold delay to
reliably deliver all packets with probability 0.999 and the round trip
delay for all protocol classes with varying number of receivers. Data
and control packet loss probability is

Ì�Ö � (left side) and
Ì.Ö Ì � (right

side). The data rate is
H È×Ì�Ö Ì �ÙØÚ'Û . Figure 2 plots the delays for 1000

receivers with varying sending rate
H

.
As it can be seen, protocol (A1) provides poor scalability. If the

number of receivers or the sending rate exceeds a certain limit, pro-
tocol (A1) becomes quickly overwhelmed with feedback control mes-
sages. For example, with sending rate

H È×Ì�Ö Ì �ÙØÚ'Û and loss probabil-
ity 0.1, protocol (A1) can support only up to 250 receivers. Protocol
(N1) as well as (N2) provide significantly better scalability.

Although (N1) and (N2) provide better scalability, their average de-
livery delays as well as threshold and round trip delays are higher
within their scalability range. This results from the receiver-initiated
loss detection. Recall that receiver-initiated protocols detect packet
loss by a gap in the sequence number, i.e. not before a subsequent
packet is correctly received. For low sending rates this loss detec-
tion delay is the dominant delay. The varying sending rate in Fig-
ure 2 shows this in more detail. For example, with sending rateH ÈÜÌ�Ö Ì�Ì	Ì � ØÚ3Û it takes about 10s to detect packet loss. You can see
in Figure 2 that the threshold delay and the round trip delay are about
10s. With respect to the average delivery delay, only nodes that have
lost a packet are affected by the loss detection delay. Therefore, for
loss probability 0.1 only 10% of all nodes need to wait 10s for detect-
ing a packet loss; all other nodes receive the packet from the initial
transmission. Therefore, the average delay is about 1s. With packet
loss probability 0.01, the average delay is also decreased by about the
factor 10.

The average delivery delay of all protocol classes within their scal-
ability range and with low loss probability is close to the propagation
delay of P È � ÌBÑEÎ , since most nodes need no retransmissions. Com-

pared to the average delivery delay, the threshold delay to deliver all
messages with probability 0.999 is significantly higher. For applica-
tions having a time constraint to deliver all messages, threshold delay
may be more important than average delivery delay. Analogous to av-
erage delivery delay, protocol (A1) has a significantly lower threshold
delay within its scalability range, while protocols (N1) and (N2) pro-
vide better scalability for large groups or high transmission rates. With
probability 1 for reliably deliver all packets, the threshold delay of our
analysis would be infinite for all protocol classes, since there exists a
low but non-zero probability that an infinite number of retransmissions
is necessary. We will show in Section V that the threshold delay forT È×Ì�Ö Ý�Ý	Ý is a good approximation for the delay to deliver all packets
correctly.

The round trip delay for protocol (A1) shows the expected delay
until all ACKs are received. After this time, the sender can remove
the data packet. Besides freeing buffer space, the round trip delay is
important if a window based sending scheme for flow and congestion
control is used. In this case the round trip delay may limit the through-
put, since throughput is basically given by Þ�ß	à_à bwL�Û�á%JãâwbL I-I [2]. As shown
in Figure 1 the round trip delay increases with the group size. As
protocols (N1) and (N2) provide no signaling for correct reception of
data packets, the displayed round trip delay shows the expected de-
lay if for example periodic positive acknowledgments would be used.
Such periodic ACKs are used for example by SRM [5]. Otherwise, if
no periodic ACKs are used, the expected round trip delay may be at
least useful as a clue to configure the timeout delay for removal of data
packets.

V. COMPARISON WITH SIMULATION RESULTS

To assess the analytical results we have implemented a SRM like
[5] reliable multicast protocol in the NS2 [14] network simulator en-
vironment. Recall that SRM is a receiver-initiated protocol with NAK

Average Delivery Delay
p=0.1

10

100

1000

10000

0,000001 0,00001 0,0001 0,001 0,01 0,1 1

D
e

la
y

 [
m

s
]

A1 av.
N1 av.
N2 av.

Average Delivery Delay
p=0.01

10

100

1000

10000

0,000001 0,00001 0,0001 0,001 0,01 0,1 1

D
e

la
y

 [
m

s
]

A1 av.
N1 av.
N2 av.

Threshold Delivery Delay
p=0.1

10

100

1000

10000

100000

0,000001 0,00001 0,0001 0,001 0,01 0,1 1

D
e

la
y

 [
m

s
]

A1 0.999
N1 0.999
N2 0.999

Threshold Delivery Delay
p=0.01

10

100

1000

10000

100000

0,000001 0,00001 0,0001 0,001 0,01 0,1 1

D
e

la
y

 [
m

s
]

A1 0.999
N1 0.999
N2 0.999

Round Trip Delay
p=0.1

10

100

1000

10000

100000

0,000001 0,00001 0,0001 0,001 0,01 0,1 1

Sending Rate Lambda [1/ms]

D
e

la
y

 [
m

s
]

A1 RTD
N1 RTD
N2 RTD Round Trip Delay

p=0.01

10

100

1000

10000

100000

0,000001 0,00001 0,0001 0,001 0,01 0,1 1

Sending Rate Lambda [1/ms]

D
e

la
y

 [
m

s
]

A1 RTD
N1 RTD
N2 RTD

Fig. 2. Delays with respect to the sending rate

suppression, hence it belongs to class (N2). Besides the NAK sup-
pression scheme our protocol use a rate and window based sending
scheme for flow and congestion control. This requires the use of ad-
ditional positive ACKs to advance the sending window. We have used
ACKs only for controlling the sending window and not for trigger-
ing retransmissions which is completely NAK-based. While receivers
in our implementation send an ACK after every correct data packet re-
ception, a real world implementation would do this rather periodically.

While we have varied the sending rate, the window size was always
5. For our simulations we have used two networks generated by Tiers
[17] with 250 and 1000 nodes. All nodes in the network use DVMRP
[18] routing. To simulate message loss, each link in the network is
configured with probability 0.02% or 0.002% respectively for message
loss. We have measured an average end-to-end message loss probabil-
ity for data packets of about 12% or 1% respectively. The average
propagation delay was measured to be about 70ms for the 250 node
network and 130ms for the 1000 node network. Though it would be
very interesting, we were not able to simulate the saturation of SRM
and the resulting delay explosion. The reason is that the saturation fol-
lows from the overwhelming CPU requirements but NS2 is a network
simulator rather than a CPU simulator.

Figure 3 shows the average delay, round trip delay and threshold
delay for varying sending rates and varying number of receivers. If
the sending rate varies, the number of receivers is 100. If the number
of receivers varies, the sending rate is

Ì�Ö Ì	Ì �¥ØÚ'Û . By comparing the
average delay, we can see that the analysis predicts very exactly the
simulation results. In most cases, the deviation is less than 10%.

The analytical results for the threshold delay are made with proba-
bility 0.999 for correct delivery of all packets. The measured simula-
tion results show the delay to correctly deliver all packets. We can see
that the predicted results for threshold probability 0.999 are close to
the measured results. In fact, for loss probability 0.01 they are almost

identical with a deviation less than 5%. For loss probability 0.12%
the measured results are up to

H È8Ì�Ö Ì	Ì�ÌGÊ ØÚ'Û about two times of the
predicted results and between

H ÈyÌ�Ö Ì	Ì�Ô ØÚ'Û and
Ì�Ö � ØÚ3Û only half of

the predicted results. Note that some of this deviation results from
the window based sending scheme. If no further data packets can be
sent due to missing ACKs of previous sent packets, the loss detection
of the last packet sent is also delayed. If the average delay is mea-
sured, the results are only moderately affected by this behaviour since
most packets are received from the initial transmission. However, for
the threshold delay we measure the maximum delay which is affected
significantly.

The results for the round trip delay are similar to the threshold delay
results. Again, maximum delays are measured here which are more
affected by the window based sending scheme or fluctuating message
loss probabilities. Thus, the measured and analytical results show a
larger deviation compared to the average delays.

The last figure shows the delay results for a varying number of re-
ceivers. Here we can see that within the scalability range, the average
delivery delay is indeed almost independent of the group size. Al-
though there is again a deviation in the absolute results for the round
trip delay, the predicted and measured results show a similar delay
increase with increased group size.

We can conclude from the results that the measured average deliv-
ery delay from our simulation studies is very appropriately predicted
by our analytical model. For the round trip delay and threshold de-
lay there are more significant deviations. They may result from fluc-
tuating message loss probabilities in the simulation as well as from
the window based sending scheme which introduces additional de-
lays. However, in all cases the behaviour of the analytical model and
the simulation studies with varying number of receivers, varying loss
probabilities and varying sending rates are closely correlated.

Average Delivery Delay

10

100

1000

10000

100000

0,000001 0,00001 0,0001 0,001 0,01 0,1

D
e

la
y

 [
m

s
]

N2 av. (p=0,12)
SRM av. (p=0,12)
N2 av. (p=0,01)
SRM av. (p=0,01)

Threshold Delivery Delay

100

1000

10000

100000

1000000

0,000001 0,00001 0,0001 0,001 0,01 0,1

D
e

la
y

 [
m

s
]

N2 0.999 (p=0,12)
SRM 0.999 (p=0,12)
N2 0.999 (p=0,01)
SRM 0.999 (p=0,01)

Round Trip Delay

100

1000

10000

100000

1000000

0,000001 0,00001 0,0001 0,001 0,01 0,1

Sending Rate Lambda [1/ms]

D
e

la
y

 [
m

s
]

N2 RTD (p=0,12)
SRM RTD (p=0,12)
N2 RTD (p=0,01)
SRM RTD (p=0,01)

100

1000

10000

0 25 50 75 100 125

Number of Receivers

D
e

la
y

 [
m

s
]

N2 av. (p=0,1) N2 RTD (p=0,1) N2 0.999 (p=0,1)
SRM av. (p=0,1) SRM RTD (p=0,1) SRM 0.999 (p=0,1)

Fig. 3. Analytical versus Simulation Results

VI. SUMMARY

We have presented a delay analysis of a sender-initiated, a receiver-
initiated and a receiver-initiated reliable multicast protocol class with
NAK suppression. Besides the average delivery delay we have consid-
ered the delay to reliably deliver all packets and the round trip delay.

Our numerical results showed that receiver-initiated protocols pro-
vide significantly better scalability for large receiver groups and trans-
mission rates compared to the sender-initiated protocol. However, the
delay of the sender-initiated protocol within its scalability range is sub-
stantially lower compared to the receiver-initiated protocols and there-
fore possibly more appropriate for delay sensitive applications.

To assess the quality of our analytical model we have compared the
analytical results with a SRM-like protocol simulation. Both show
identical behaviour with varying number of receivers, transmission
rates or loss probabilities. In case of average delivery delay, even
the absolute delays of the analytical and simulation results are almost
identical which shows that our analytical model is appropriate.

REFERENCES

[1] S. Pejhan, M. Schwartz, and D. Anastassiou, “Error control us-
ing retransmission schemes in multicast transport protocols for
real-time media,” IEEE/ACM Transactions on Networking, vol.
4, no. 3, pp. 413–427, 1996.

[2] M. Allman, D. Glover, and L. Sanchez, “Enhancing TCP over
satellite channels using standard mechanisms,” RFC 2488, 1999.

[3] T. W. Strayer, B. J. Dempsey, and A. C. Weaver, XTP – The
Xpress transfer protocol, Addison-Wesley Publishing Company,
1992.

[4] T. Speakman, D. Farinacci, S. Lin, and A. Tweedly, “PGM
reliable transport protocol specification,” Internet Engineering
Task Force, Network Working Group, Internet Draft ä draft-
speakman-pgm-spec-04.txt å , work in progress, 2000.

[5] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A
reliable multicast framework for light-weight sessions and appli-
cation level framing,” IEEE/ACM Transactions on Networking,
vol. 5, no. 6, pp. 784–803, Dec. 1997.

[6] M. Yamamoto, JF. Kurose, DF. Towsley, and H. Ikeda, “A delay
analysis of sender-initiated and receiver-initiated reliable mul-
ticast protocols,” in Proceedings of IEEE INFOCOM’97, Los
Alamitos, Apr. 1997, pp. 480–488, IEEE.

[7] C. Maihöfer, K. Rothermel, and N. Mantei, “A throughput anal-
ysis of reliable multicast transport protocols,” in Proceedings of
the Ninth International Conference on Computer Communica-
tions and Networks, Las Vegas, Oct. 2000, pp. 250–257, IEEE.

[8] C. Maihöfer, “A bandwidth analysis of reliable multicast trans-
port protocols,” in Proceedings of the Second International
Workshop on Networked Group Communication (NGC 2000),
Palo Alto, Nov. 2000, pp. 15–26, ACM.

[9] S. Pingali, D. Towsley, and J. F. Kurose, “A comparison of
sender-initiated and receiver-initiated reliable multicast proto-
cols,” in Proceedings of the Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, New York, May 1994,
pp. 221–230, ACM Press.

[10] B. Levine and J. Garcia-Luna-Aceves, “A comparison of reliable
multicast protocols,” Multimedia Systems, vol. 6, no. 5, pp. 334–
348, Sept. 1998.

[11] S. Kasera, J. Kurose, and D. Towsley, “A comparison of server-
based and receiver-based local recovery approaches for scalable
reliable multicast,” in Proceedings of IEEE INFOCOM’98, New
York, Apr. 1998, pp. 988–995, IEEE.

[12] J. Nonnenmacher, M. Lacher, M. Jung, G. Carl, and E. Bier-
sack, “How bad is reliable multicast without local recovery,” in
Proceedings of IEEE INFOCOM’98, New York, Apr. 1998, pp.
972–979, IEEE.

[13] B. DeCleene, “Delay characteristics of generic reliable multicast
protocols,” Technical Report TR-08150-3, TASC, 1996.

[14] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, M. Handley
P. Haldar, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. Mc-
Canne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu, and
D. Zappala, “Improving simulation for network research,” Tech-
nical Report 99-702, University of Southern California, 1999.

[15] Leonard Kleinrock, Queueing Systems, Volume II: Computer
Applications, Wiley Interscience, New York, 1976.

[16] S. Kasera, J. Kurose, and D. Towsley, “Scalable reliable multi-
cast using multiple multicast groups,” in Proceedings of ACM
SIGMETRICS, Seattle, jun 1997, pp. 64–74, ACM.

[17] K. Calvert, M.B. Doar, and E.W. Zegura, “Modeling internet
topology,” IEEE Communications Magazine, vol. 35, no. 6, pp.
160–163, June 1997.

[18] D. Waitzman, C. Partridge, and S. Deering, “Distance vector
multicast routing protocol,” RFC 1075, 1988.

