Improving the Processing of Decision Support Queries:
The Casefor a DSS Optimizer

Holger Schwarz, Ralf Wagner, Bernhard Mitschang
Institute of Parallel and Distributed High-Performance Systems, University of Stuttgart
D-70565 Suttgart, Germany
{hrschwar, wagnerrf, mitsch} @informatik.uni-stuttgart.de

Abstract

Many decision support applications are built upon
data mining and OLAP tools and allow users to answer
information requests based on a data warehouse that is
managed by a powerful DBMS. In this paper, we focus
on tools that generate sequences of SQL statements in
order to produce the requested information. Our thor-
ough analysis revealed that many sequences of queries
that are generated by commercial tools are not very effi-
cient. An optimized system architecture is suggested for
these applications. The main component is a DSS opti-
mizer that accepts previously generated sequences of
gueries and remodels them according to a set of optimi-
zation strategies, before they are executed by the under-
lying database system. The advantages of this extended
architecture are discussed and a couple of appropriate
optimization strategies are identified. Experimental re-
sults are given, showing that these strategies are appro-
priate to optimize query sequences of OLAP applications.

1. Introduction

During the last decade data warehouses turned out to
be the common basis for the integration and analysis of
data in modern enterprises. Decision support applications
are used to analyze data on the operational level as well
as on the strategic level. This includes techniques like
online analytical processing (OLAP) and data mining.
Additional tools are used for the preprocessing and inte-
gration of data from different sources.

A lot of work has been done on decision support sys
tems and their optimization. In the field of data mining
the focus was on algorithms. There is for example a huge
set of algorithms for mining association rules including
paralel algorithms[11] [2]. For OLAP applications, sev-
eral important aspects have been discussed in literature.
One is the integration of additional operators into the
database system, e.g. the cube operator [9] [10] and its
efficient implementation [12]. Query primitives that a-
low related query plans to share portions of their evalua-
tion are introduced in [34]. Another focus is the use of

specific index types in order to optimize typical OLAP
queries [18] [19]. There has also been alot of work in the
area of using materialized views to answer decision sup-
port queries and the maintenance of these materialized
views [3] [27] [28] [33]. Our work is recognizing this
previous work, but also complementing it. We are not
aware of any comparable approach that involves a sepa-
rate optimizer in between the decision support tool and
the data warehouse database system (DWDBS) as we
suggest it.

In this paper, we focus on a commonly used process-
ing model for decision support systems (DSS). According
to this model, the application generates a sequence of
SQL statements, which is processed by the DWDBS. The
result tables of the statements in a sequence build the
basis for the fina result that is presented to the user as
reply to his/her information request. SQL is used as query
language because most data warehouses are based on a
relational or extended relational database system. As the
information requests of the users are likely to be very
complex, many applications produce sequences of rather
simple statements for each request in order to reduce the
complexity of the query generation process and in order
to preserve portability to other database systems.

We analyzed tools that work according to this model
and found that there are many possibilities to improve the
query sequences they generate and the way they are exe-
cuted. We will show that several of these approaches are
independent of the application and its special query gen-
eration process. Hence, they could be used for many de-
cision support applications that are run on a data ware-
house. This leads us to an optimized system architecture.
The central element of this architecture is a DSS opti-
mizer that accepts sequences of SQL statements. The
sequences are processed according to a set of optimiza-
tion strategies. An optimized version of the sequence is
sent to the DWDBS and executed there. Asin the original
model, the application uses the partial results in order to
produce the final result for an information request. The
strategies we suggest for the DSS optimizer include the
combination of a sequence of statements into a single
complex statement, semantic rewrite strategies, parallel
execution of statements in a query sequence as well as

providing additional statistical information for the query
optimizer of the DWDBS.

This paper is organized as follows: In Section 2 we
describe our application scenario and the common archi-
tecture of decision support systems. The optimized archi-
tecture that includes a DSS optimizer as an additional
component is introduced in Section 3. In Section 4 we
discuss some strategies that are appropriate for this DSS
optimizer. The results of our performance analysis
assessing the benefits of these strategies are explained in
Section 5. Finally, our conclusions are given in Section 6.

2. Application Scenario

In this section we describe some basic aspects of data
warehousing, decision support systems and the OLAP
application scenario we have chosen for our investiga-
tions. We present some examples for typical information
requests and the common architecture of systems that
process such requests.

2.1. DataWarehousing

Data warehousing has gained more and more impor-
tance for decision support in organizations and enter-
prises [15] [26]. Most medium-sized and large organiza-
tions integrate data that is relevant for decisions and that
originates from different data sources into a data ware-
house. Due to the huge amount of data, usualy paralel,
(object-) relational database systems are deployed. In
addition, several tools are needed for the extraction and
cleansing process as well as for the analysis of the data.

The analysis of data has two main aspects. On the one
hand, OLAP tools are used to view the data along differ-
ent dimensions [4]. Typical dimensions that are relevant
for an enterprise are time, customers, suppliers and prod-
ucts. The users should know which information they are
about to retrieve from the data warehouse. In knowledge
discovery, on the other hand, data mining tools are able
to detect correlations and to find previously unknown
pattern in data. It is possible, for example, to determine
correlations between the consuming behavior of a certain
group of customers and some characteristics of these cus-
tomers like age or profession. Examples for OLAP tools
are MicroStrategy [16] and BusinessObjects [1] whereas
Darwin [29], Enterprise Miner [24] and Intelligent Miner
[30] are representatives for data mining tools.

Typical data models for data warehouses are called
star schema and snowflake schema. For our experiments,
we have chosen the snowflake schema given in Figure 1
that shows some important aspects of a retailer. Our
schema is based on the TPC-H Benchmark [31], which
comprises decision support SQL queries. The original
schema consists of eight tables describing a typical sce-
nario of a retailer. The retailer receives orders (table
ORDERYS) that consist of single items (LINEITEM). The

orders are sent by customers (CUSTOMER), which re-

side in a nation (NATION) and region (REGION). The

items refer to parts (PART) delivered by suppliers (SUP-

PLIER), which reside in a nation and region, too. Finaly,

the parts delivered by a supplier are given by the joint

table PARTSUPP.

We used a modified schema for our experiments.
There are two main reasons for that:

e The OLAP tool we used for our experiments needs a
special type of schema, a snowflake schema with par-
tially redundant dimension tables. The necessary
modifications are just formal, and easily achievable by
syntactical equivalence transformations. There are no
semantic changes.

» The time dimensions are extended in two ways. First,
the date field of the original schema is split into sepa-
rate tables for days, weeks, months and years. Second,
additional information is provided for each unit of
time, e.g. the last day, week or month for a given date.
These extensions make days, weeks, months etc. ex-
plicitly available for queries and enable for example
the comparison of a given month with the respective
month in the preceding years.

The modified schema has more fact and dimension
tables than the original schema. Figure 1 depicts the part
of the modified schema, which is relevant for our exam-
ple queries. The main fact table is shown in the middle of
the picture. Some of the dimension tables and connec-
tions to further tables are given around this fact table.

ORDER CUSTOMER

ORDERKEY CUSTKEY
«—| oRrDpERSTATUS CUSTNAME
«—| ORDERPRIORITY CUSTNATIONKEY [
<«—| SHIPPRIORITY CUSTREGIONKEY [

LINEITEM_ORDERS;

PART ORDERKEY SHIPDAY

PARTKEY < PARTKEY SHIPDATE
PARTNAME SUPPKEY SHIPDAY

MFGR CUSTKEY SHIPDAYNAME
BRAND SHIPDATE

ORDERDATE

1t

SHIPMONTHKEY [

SUPPLIER

l;).UANT\TV ORDERDAY ORDERMONTH

SUPPKEY
SUPPNAME

ORDERDATE ORDERMONTHKEY
ORDERDAY ORDERMONTH
SUPPNATIONKEY ORDERDAYNAME ORDERDMONTHNAME
]

SUPPREGIONKEY ORDERMONTHKEY ORDERYEARKEY —>

Figure 1. Snowflake Schema based on TPC-H

2.2. OLAP Scenario

We have chosen a typical OLAP scenario of a retail
company for our experiments. This includes some infor-
mation requests a user could define and process by means
of an OLAP tool. The selection of requests is based on
the following requirements:

» The requests have to be typical questions a retailer
would ask based on the information available in the
data warehouse.

Infor mation request A: Which are the top products
whose number of sold pieces in the months chosen by
the user compared to the respective month ago hasin-
creased mostly?

Information request B: What isthe distribution of the
number of sold products over the different countries for
products and years chosen by the user?

Information request C: Which are the top customers
who bought productsin the last three years of a mini-
mum total amount chosen by the user and who show the
lowest standard deviation of the totals in these years?

Figure 2. Selected Information Requests

It must be feasible to model the requests with currently
available OLAP tools and it must be feasible to answer
these questions based on our schema.

e The complexity of selected requests should be similar
to the complexity of business questions in the TPC-H
benchmark.

Three typical information requests that meet these re-
quirements are shown in Figure 2. They are important for
the management of a retailer as the questions belong to
the categories merchandise management or customer
relationship management [14] [23]. The schema we pre-
sented above includes the relevant information that is
necessary to answer these requests.

2.3. Architectural Issues

Numerous decision support applications are based on
the system architecture given in Figure 3. The end users
specify the information they need by means of a graphi-
cal user interface. For example, they have to define the
relevant data and the necessary calculations on these facts
as well as criteria for filtering and the way results should
be presented. These reguirements are used by the applica-
tion to generate a sequence of SQL queries. Meta data is
used by the query generator in order to produce the ap-
propriate query sequences. In an OLAP application the
meta data include information about available fact tables
and the hierarchical dependencies of attributes in one
dimension. As soon as the query generator produced a
sequence of SQL queries, these queries are sent to the
data warehouse database system one after the other. The
application reads and processes partial results from the
DWDBS and finally presents the result to the end user.

Many typical decision support applications generate
sequences of SQL queries. For information request A in
our scenario such a sequence is given in Figure 4. This
query sequence (QS) was produced by an OLAP tool.
The Figure only shows the four insert statements. The
create table statements and other details that are also part
of the generated sequence are omitted here for the sake of
readability. The first statement (Q1) produces the tempo-
rary table Al that includes the sum of the fact quantity for
al parts in January and February 1994. The second

statement (Q2) only differsin that it sums the same quan-
tity for the preceding months of January and February
1994. The purpose of the third query (Q3) is mainly to
calculate the absolute and relative increase of the quantity
for each part based on the values of Q1 and Q2. Finally,
Q4 selects dl parts from Q3 according to the given rank-
ing criterion and provides the result datain table A4.

Graphical User Interface

Resuy Information Request
A 4 Decision Support Application
— 5
Result Query
Processing Generator Meta Data

; SQL

Data Warehouse
Database System

Partial
Results

Figure 3. Standard System Architecture

This sample query sequence consists of four state-
ments. In general, the conversion of OLAP information
requests into sequences of SQL statements results in se-
quences of different complexity, which ranges from just
one to eight queries for the information requests we have
chosen here. According to our experience, it isvery likely
that relevant business questions result in query sequences
with several statements, sometimes even more than 20.
Hence, the three information requests given in Figure 2
represent important types of OLAP queries and are rele-
vant in order to judge optimization strategies.

I NSERT | NTO Al (orderyearkey, ordernonthkey, partkey, sunguantity)
SELECT a2. orderyearkey, a2.ordernonthkey, al.partkey, SUMal.quantity)
FROM lineitemorders al, orderday a2
WHERE a2.orderdate = al.orderdate
AND a2. ordernont hkey IN (199401, 199402)

GROUP BY a2. orderyearkey, a2.ordernonthkey, al.partkey;

I NSERT | NTO A2 (ordernont hkey, partkey, sunguantity)
SELECT a2. ordernont hkey, al.partkey, SUMal.quantity)
FROM lineitemorders al, orderday a2
WHERE a2.| astnonthdate = al.orderdate
AND a2.ordernont hkey IN (199401, 199402)
GROUP BY a2.order nont hkey, al. partkey;

| NSERT | NTO A3 (ordernont hkey, ordernont hnane, orderyearkey,
orderyear, partkey, partnanme, sunmguantity,
I msunguantity, incrquantity, incrquantity?2)
SELECT a3. ordernont hkey, a3.ordernont hnane, a4. orderyearkey, Q
a4.orderyear, a5.partkey, a5.partnane, al.sunguantity,
a2.sunguantity, al.sunguantity-a2.sunguantity,
(al.sunguantity - a2.sunguantity) / a2.sunguantity
FROM A1, A2, ordernonth a3, orderyear a4, part a5
WHERE ALl. or der nont hkey = A2. ordernont hkey AND Al. partkey = A2. partkey
AND Al.ordernont hkey = a3. ordernont hkey
AND Al.orderyearkey = a4.orderyearkey AND Al. partkey = a5. partkey;

I NSERT | NTO A4 (ordernont hkey, ordernont hnane, orderyearkey,
orderyear, partkey, partnanme, sunmguantity,
| msunguantity, incrquantity, incrquantity2)

SELECT al. ordernont hkey, al.ordernonthnane, al.orderyearkey,
al.orderyear, al.partkey, al.partnane, al.sunguantity,
al.l msunguantity, al.incrquantity, al.incrquantity?2

FROM A3

WHERE A3.incrquantity2 >= 98;

Figure 4. Query Sequence for Request A

3. Optimized System Architecture

In the standard architecture presented in Figure 3 the
performance of a decision support application mainly
depends on the capabilities of the query generator and on
the query optimization and execution capabilities of the
DWDBS. Therefore, if one envisages performance prob-
lems there are two different ways to go: On the one hand,
one could improve the query generator and on the other,
one could improve the query optimizer of the DWDBS.

Improving the query generator means to enhance the
set of rules according to which the queries are generated.
This task depends on the underlying DWDBS. The opti-
mum query sequence for IBM DB2 could look quite dif-
ferent compared to the optimum sequence for Oracle or
SQL Server. Since almost all decision support applica
tions aim to support several database systems, the optimi-
zation strategies of the query generator have to be devel-
oped for each dedicated database system. Furthermore,
this has to be done for each decision support application
separately. Hence, there could be different optimization
strategies for every combination of a decision support
application and the underlying DWDBS.

Improving the query optimizer of the DWDBS is also
a very difficult task. New query optimization strategies
for decision support that are implemented in a database
system should on the one hand be based on the analysis
of a couple of decision support applications. On the other
hand, the developers have to show that the new optimiza-
tions do not negatively influence the performance of
other types of applications or even deteriorate the per-
formance of the optimizer itself.

In summary, both starting-points for performance en-
hancements of decision support applications in a standard
architecture turn out to be very difficult. The complexity
results from the heterogeneity of applications and data-
base systems as well as from the complexity of query
optimizersthat are used in commercial database systems.

We suggest an optimized system architecture for de-
cision support which is shown in Figure 5. The main idea
of this architecture is a DSS optimizer as an additional
system component between the query generator and the
DWDBS. This optimizer accepts query sequences from
different applications. It transforms these sequences into
optimized versions of query sequences, which are then
sent to the DWDBS. The DSS optimizer is neither part of
a special application nor of the database system. The
main advantages of the extended architecture are as fol-
lows:

e Inatypica data warehouse environment, several deci-
sion support applications access data in the warehouse.
The DSS optimizer offers performance enhancements
for al of these applications.

e The DSS optimizer is not part of a decision support
application. Therefore, its development and enhance-

ment is not part of the application development. It is
done only once and not especially for each application.

» The DSS optimizer offers performance enhancements
for existing decision support applications without the
need to change the query generation process of these
applications. They benefit from the optimizer simply
by directing their query streamsto it instead of sending
them directly to the DWDBS.

e Using the DSS optimizer reduces the need for each
application to consider special capabilities of the un-
derlying database system. The query generators of the
applications can mostly be kept independent of the da-
tabase system, thus they are less complex.

» The DSS optimizer may include optimization strate-
gies that are offered by some database systems as well
as strategies that are not supported by state-of-the-art
database systems. Multi-Query-Optimization is an ex-
ample for an area where current systems offer only lit-
tle support.

In summary, the optimized system architecture offers
support for many decision support applications and many
database systems without additional development effort
for each of the applications or database systems.

Graphical User Interface

Resty Information Request

v Decision Support Application
Result Query ¢
Processing Generator Meta Data
|
+ SQL
Quew
Partial Results DSS P;:IE:;
Optimizer
P Statistics

SQL

k— Y VY
Data Warehouse
Datenbase System

Figure 5. Optimized System Architecture

4. Strategiesfor the DSS Optimizer

In this section, we describe a set of strategies that of-
fer performance enhancements for sequences generated
by decision support tools. For each of them we argue
whether it is an appropriate strategy for the DSS opti-
mizer or not. The goal is to incorporate al optimizations
into the DSS optimizer that need no information about
the application and little information about the underlying
database system. For al strategies we identified as ap-
propriate, we discuss the main aspects of their implemen-
tation. More details are given in [25].

Not al optimization strategies mentioned here are
new. The contribution of this paper is not to find new
algorithms for a database optimizer, but to combine exist-

ing technology in an additional system component that
offers performance advantages for a huge range of appli-
cations and that is independent of the concrete applica
tion and the DWDBS. Currently, none of the existing
systems follows this approach.

4.1. Rewrite Strategiesfor Query Sequences

Strategy |: Single-Query (SQ)

Typical query sequences that are produced by deci-
sion support applications can be rewritten as a single and
in most cases more complex query. A straightforward
method to achieve this single-query is as follows: Start-
ing with the second query in the sequence, replace the
occurrence of each temporary table in the FROM clause
by the complete SELECT statement that generates data
for this temporary table. If we use this simple syntactic
replacement algorithm for the query sequence in Figure
4, we first have to look at Q2. As this one does not use
any temporary table, we have to examine query Q3. It
needs data from table Al as well as from A2. Therefore,
the FROM clause is changed and Al is replaced by the
SELECT statement of Q1. The same replacement is nec-
essary for A2. The new query for A3 does not include any
references to temporary tables. Hence, we can proceed
with the last query in this sequence. It is only based on
the content of A3. Its purpose is to filter out the relevant
data according to the ranking criterion. We replace A3 in
the FROM clause of query Q4 by the new version of the
query for A3. The resulting single-query for information
request A is shown in Figure 6.

I NSERT | NTO A4 (ordernont hkey, ordernonthnane, orderyearkey, orderyear,
partkey, partname, sumquantity, |nsunguantity,
incrquantity, incrquantity2)

SELECT al. or der nont hkey, al. order nont hname, al. orderyearkey,
al.orderyear, al.partkey, al.partname, al.sunguantity,
al.l msunguantity, al.incrquantity, al.incrquantity2

FROM

(SELECT a3. order mont hkey, a3. order mont hnane, a4. or deryear key,
a4.orderyear, a5.partkey, a5.partnane, al.surmguantity,
a2.sunguantity, al.sunguantity - a2.surmguantity
AS incrquantity,

(al.sumguantity - a2.sunguantity) / from Q3
a2.sunguantity AS incrquantity2

FROM

(SELECT a2. or der yearkey, a2. order mont hkey,
al.partkey, SUMal.quantity)
FROM lineitemorders al, orderday a2
WHERE a2.orderdate = al.orderdate
AND a2.ordernonthkey IN (199401, 199402)
GROUP BY a2. orderyearkey, a2.ordernonthkey, al.partkey
AS al (orderyearkey, ordernonthkey, partkey, sumuantity),

(SELECT a2. order nont hkey, al.partkey, SUMal.quantity)
FROM lineitemorders al, orderday a2
WHERE a2.lastnonthdate = al.orderdate
AND a2. order nont hkey | N (199401, 199402)
GRQUP BY a2. order nont hkey, al. partkey
) AS a2 (ordernonthkey, partkey, sumguantity),

ordermonth a3, orderyear a4, part a5
VWHERE al. ordernont hkey = a2. or der nont hkey
AND al.partkey = a2.partkey AND al.order nont hkey = a3. or der mont hkey
AND al.orderyearkey = ad.orderyearkey AND al.partkey = a5. partkey
) AS al (ordernonthkey, ordernonthnane, orderyearkey, orderyear,
partkey, partnane, sunguantity, |nsumguantity,
incrquantity, incrquantity2)

WHERE al.incrquantity2 >= 98;

Figure 6. Single-Query for Request A

This type of query rewrite that is similar to view ex-
pansion is an appropriate strategy for the DSS optimizer
because it does not require any knowledge about the ap-
plication that generated the query sequence or about the
DWDBS. The rewrite strategy is only based on the list of
queries that constitute the given query sequence.

Why should this single-query run faster than the
origina sequence of queries? There are two main argu-
ments. First, there is less overhead for creating temporary
tables and for inserting data into these tables. Only one
temporary table is explicitly generated and filled with
data, whereas al other temporary results are handled by
the database system as part of the query execution. In our
experiments, some temporary tables contained several
millions of rows. These tables were filled with about
8000 rows per second. Thus, loading temporary tables
represents significant overhead for some of the query
sequences. There is some additional overhead for the
creation of these temporary tables to be taken into ac-
count.

Second, there are more chances for query optimiza-
tion by the DWDBS. In case of a query sequence, the
statements of the sequence are sent to the DWDBS one
after the other. Hence, the query plan for each statement
is generated without any knowledge about the other state-
ments in the sequence. If the complete sequence is
combined into one single statement the query optimizer
has the whole picture. Therefore, the optimizer might
have a chance to exploit common sub-expressions among
the query portions that previously belonged to separate
queries.

Table 1. Characteristics of different Queries

Optimization Strategy Information Information
Request A Request C
JOINS | SORTS | JOINS | SORTS
QS max.5 | max. 10| max.6 | max. 8
QS + MergeSelect - - max. 3 | max. 3
QS + WhereToGroup - - max.4 | max.3
SQ 7 14 33 37
SQ + MergeSelect - - 13 14
SQ + WhereToGroup - - 16 16

Given these advantages of a single-query, it seems to
be a good idea to combine queries of a sequence into a
single one in general. Nevertheless, the task is not that
easy for the DSS optimizer. We have further analyzed the
queries in our application scenario based on the query
plans the optimizer of DB2 generated for our experi-
ments. Table 1 shows how they differ in the number of
joins and sort operations. The values given here espe-
cialy show that the straightforward combination of the
original query sequence into one SQL query can result in
alarge number of joins and sorts. For information request

C the single-query (SQ) needs 33 joins and 37 sort opera-
tions. The corresponding query plan has more than 200
nodes. This complexity is not easy to handle for the
optimizer of the DWDBS. Its output might be a rather
‘bad’ query plan. As one example, the number of join
orders increases exponentialy with the number of joins.
With more than 10 joins, it is likely that the optimizer is
not able to consider al relevant orders. Additionally, it
might not detect all common sub-expressions that are part
of the query and that could be combined. The appropriate
and manageable complexity of queries depends on the
characteristics of the optimizer used in the DWDBS.

So far, our discussion has shown that in some cases a
sequence of queries might run faster than the combined
single-query and that in other situations this might not be
true. Our experiments show examples for both cases.
Hence, the DSS optimizer has to decide for each query
sequence whether it should be combined or not.

Strategy |1: Partial Combination

One alternative is not to combine the whole sequence
into a single-query but to merge it into a couple of que-
ries. As we have argued, one single-query could be too
complex for the optimizer of a DWDBS to find a good
execution plan. If the DSS optimizer generates a small
number of semi-complex queries, this new sequence
could be more efficient. The optimization task is then to
find the proper points where to cut off the origina se-
guence. This could be done based on dependency graphs
asgiveninFigure 8.

For some query sequences it is not possible to gener-
ate an equivalent single-query, because there are depend-
encies within the sequence. This appears in the case of
ranking. In the query sequence shown in Figure 4 the last
query Q4 selects data according to a filter criterion. For
the sake of simplicity, we assumed that the filter value is
known in advance. Depending on the way the user de-
fined the information request and the query generation
process of the application, this filter predicate might be
determined based on data in A3. In this case, the last
query of the sequence could include a variable instead of
the filter predicate. Hence, the partial combination strat-
egy is applicable. The DSS optimizer could combine Q1,
Q2 and Q3 as described for Strategy | and leave Q4 asiis.

This strategy is not appropriate for the query se-
guences we present in this paper. Nevertheless, it is a
suitable strategy for the DSS optimizer because it is only
based on the list of queries that congtitute the given query
sequence.

Strategy 111: Semantic Rewrite

Another deciding factor for the DSS optimizer could
be based on supplementary analysis of the original query
sequence. One method to minimize the runtime of query
execution is to minimize the number of temporary tables
in the whole sequence, thus removing the overhead for

writing to and reading from temporary tables. It is aso

important to avoid repeated references to temporary ta-

bles when composing the single query. Most temporary
tables imply joins between underlying tables. Repeated

referencing of temporary tables in different queries of a

sequence implies a redundant computation of these tem-

porary tables via nested SQL statements when composing
the single query.
Simpl e transformations are the following:

» Queries which restrict one single previous temporary
table by additional projections and/or selections can be
propagated to the query creating this preceding tempo-
rary table, i.e. the projections and/or selections of the
consuming query are moved into the foregoing query
by concatenating both projections (ConcatProject)
and/or selections (ConcatSelect).

* Queries with identical FROM, WHERE, GROUP BY,
HAVING and ORDER BY clause can be merged into
one query by concatenating the SELECT clauses. We
refer to this transformation as MergeSelect.

e Queries with identical SELECT, FROM, GROUP BY,
HAVING and ORDER BY clauses can sometimes be
merged into one query by concatenating the WHERE
clauses by AND (MergeWhere). If the queries differ
only in a selection on the same column, they can be
combined by replacing parts of the WHERE clause by
an additional grouping on this column (Where-
ToGroup).

e Queries with identical SELECT, FROM, WHERE,
GROUP BY and ORDER BY clause can be merged
into one query by concatenating the HAVING clauses
by AND (MergeHaving).

QS QS + MergeSelect

I NSERT I NTO C5 (custkey, stddeviation) | NSERT | NTO C5
SELECT al. custkey, STDDEV(al.endprice) (custkey, stddevl, stddev2)
FROM lineitemorders al, LSELECT al. cust key,

orderday a2, C4 STDDEV(al. endpri ce),

WHERE a2. orderdate = al.orderdate
AND a2. or deryear key

I'N (1992, 1993, 1994)
AND al.custkey = C4.custkey
GROUP BY al. cust key;

STDDEV(al. endprice) /
AVQ al. endpri ce)
FROM | i neitem orders al,
orderday a2
WHERE a2. orderdate =
al.orderdate
AND a2. orderyearkey IN
(1992, 1993, 1994)
GROUP BY al. cust key;

I NSERT I NTO C6 (custkey, st ddevi ati on)
SELECT al. cust key,
STDDEV(al. endprice)/
AV al. endpri ce)
FROM lineitemorders al,
orderday a2, C4
WHERE a2. orderdate = al.orderdate
AND a2.orderyearkey IN
(1992, 1993, 1994)
AND al.custkey = C4.custkey
GROUP BY al. cust key;

I NSERT I NTO C7 (custkey, custnane,
stddevl, stddev2, turnover1992,
turnover 1993, turnover 1994)

SELECT a4. custkey, a4.custnane,

C5. stddevi ation, C6.stddeviation,

I NSERT | NTO C7
(custkey, custnane, stddevl,
stddev2, turnover1992,
turnover1993, turnover1994)
SELECT CA4. custkey, a3.custnane,
C5. stddevl, C5.stddev2,
C4. turnover 1992,
C4. turnover 1993,
CA. turnover 1994
FROM 4, C5, custoner a3
WHERE C4. custkey = C5. cust key
AND C4. custkey = a3.custkey;

CL.turnover1992, C2.turnover 1993,
C3. tur nover 1994
FROM C1, &, &, G5, Cs,
custoner a4
WHERE C5. cust key = Cl. cust key
AND C5. cust key = C2. cust key
AND C5. cust key = C3. cust key
AND C5. cust key = CB. cust key
AND C5. cust key = a4. cust key;

Figure 7. Modified Sequences for Request C

We generated two modified query sequences for in-
formation request C. QS+ MergeSalect is built by using
the MergeSelect transformation for the tables C5 and C6
of QS and by using a more complex transformation,
which additionally reduces the number of joins in the
new tables C5 and C7. The transformation process is
shown in Figure 7. The other modification
(QS+WhereToGroup) uses the WhereToGroup transfor-
mation to further reduce the number of queries in the
sequence [25].

Obvioudly, these rewrite strategies can also be com-
bined with the single-query strategy and the partial com-
bination strategy. We refer to the queries resulting from
these hybrid strategies as SQ+MergeSelect and
+WhereToGroup, where each respective query se-
guence is combined into one query. As a consequence,
the number of join and sort operations in the rewritten
queries drop drastically (more than 50%) as can be seen
inTable 1.

42. Parallelism

In this section we discuss how parallel execution can
support the query sequences generated by decision sup-
port applications. Our focusis not on intra-query parallel-
ism. We assume that the DWDBS is able to generate par-
allel query plans for all queriesin a sequence, where suit-
able.

Apart from this perspective on parallelism, it is also
interesting to see whether the DSS optimizer can figure
out a group of queries in the sequence that could be run
in parallel. Therefore, our focal point is inter-query paral-
lelism. For each sequence of queries, we can determine
how the steps of the sequence depend on each other and
describe these dependencies for example by means of a
graph. The dependency graphs for the query sequences A
and C of our application scenario are shown in Figure 8.
For sequence A the graph shows, that A1 and A2 could be
generated in parallel. For sequence C, the tables C1, C2
and C3 could first be generated in parallel and later in the
sequence the same holds for tables C5 and C6. In general,
a group of queries can be executed in parallel, if none of
the queries within the group depends on each other.

Al] H c2 —

Figure 8. Dependency Graphs

The dependency graph for a given sequence of que-
ries can easily be determined by observing the FROM
clauses of al queries. The graph consists of the tempo-
rary tables Temp; as nodes. An edge from node Temp; to
Temp; exists if the FROM clause of query Q; contains
Temp;. In particular, no knowledge about the application
is required. Hence, this optimization strategy turns out to
be applicable for the DSS optimizer.

The implementation of this strategy can be based on
methods that generate parallel execution plans for SQL
queries as they are used in standard database systems.
These techniques produce an internal representation of
the queries, which is extended by data and pipeline paral -
lelism. The same methods could be used to exploit de-
pendency graphs for query sequences like those in Figure
8. That is why available technology is very well suited
for the DSS optimizer [7] [21].

But how about the interface of the DSS optimizer to
the database system? The standard interface of a
DWDBS allows the application to send one query after
the other within one database transaction. For each of the
SQL statements to be run in parallel, a separate connec-
tion and a separate transaction is necessary. Since those
queries that are independent of each other should be
started in parallel, only their access to the data warehouse
base tables could inhibit the use of parallel transactions.
If we assume that decision support applications only read
base tables in the data warehouse, the standard SQL in-
terface of database systems turns out to be sufficient for
the optimization strategy we have discussed here.

4.3, Statistics

Query sequences generated by decision support appli-
cations usually produce the result data set that is relevant
for the end user as the last step of the sequence. As soon
as this last query terminates the final result is available
and all other temporary tables could be dropped. For
query sequence A in our example, table A4 contains all
relevant data for the end user whereas tables Al, A2 and
A3 may be deleted as soon as A4 is complete.

Each query in a sequence is processed by the opti-
mizer of the DWDBS. One important factor that deter-
mines the efficiency of query execution is whether all
necessary statistical information is available for the opti-
mizer or not. Relevant statistical information is the num-
ber of rows, the number and type of all columns and the
distribution of valuesin all columns of each table that is
read by a query. Most database systems do not automati-
caly update statistical information. For example, a sepa-
rate statement is available for Oracle8i that starts the up-
date of statistical information for a single table [22]. The
following statement would be necessary to generate sta-
tisticsfor Al: ANALYZE TABLE Al COVPUTE STA-
TI STI CS. Additional parameters may be used in order

to make available more detailed information on the table
and itsindexes.

We assume that statistical information is up to date
for al base tables of the data warehouse. However, thisis
not true for temporary tables generated by a sequence of
gueries. If the execution of a query sequence should be
based on current statistics, the statements that provide
this information have to be added to the sequence. The
sequence for query C, as given in Figure 8, could be
augmented by calling ANALYZE TABLE for the tempo-
rary tables C1 through C7. The statistical information has
to be available for each of these tables before the tables
are read by another query in the sequence for the first
time. The dtatistical information for table C1 does not
have to be present until the query for C4 starts execution.

This leads to an additional strategy for the DSS opti-
mizer that is applicable without any knowledge about the
application that generated a sequence of queries. A se-
guence could be extended by statements that provide ad-
ditional statistical information for the DWDBS optimizer.
For this task the DSS optimizer has to know, how thisis
done for different database systems and which parameters
influence the available statistics. It aso has to take into
account the trade-off between the time that is needed for
the update of statistical information and the query execu-
tion time that is saved with execution plans based on this
information. Further enhancements could be achieved by
running statistic updates in parallel to other statementsin
the sequence. Thisis always possible if the queries do not
depend on the temporary table for which the statistic up-
dateisin progress.

4.4. Partitioning and Indexing

All optimization strategies we have discussed so far
are based on rewriting a sequence of SQL statements or
enhancing the way it is executed. In this section, we will
briefly discuss some approaches to support OLAP appli-
cations by changing the schema of the data warehouse.

Additional indexes on base tables in the data ware-
house enable the optimizer of the DWDBS to find query
plans that are more efficient. No rewriting of queries is
required. It is necessary to find the proper combination of
indexes that offer maximum support for al applications
on the data warehouse and take into account given con-
straints on disk space and time for index maintenance. If
typical query sequences on the data warehouse are
known, administration tools of current database systems
can be used to establish the suitable set of indexes [5]
[13].

Partition tables support typical OLAP queries because
they reduce the amount of base data that has to be
scanned for one sequence of queries. One large fact table
could include data for severa years. If the typical query
retrieves data for exactly one year, it might be more effi-
cient to store the facts in partition tables for each year.

The scan of one partition table instead of scanning the
complete large fact table might then be sufficient for
many queries. A smaller volume of datais likely to result
in a more efficient retrieval of results. This kind of parti-
tioning is supported by some OLAP tools[16].

Applications on a data warehouse can also be sup-
ported by aggregate tables. Especialy OLAP applications
require a lot of grouping and aggregation. If the aggre-
gated data is already present in the data warehouse, que-
ries run more efficient because less data has to be proc-
essed and less aggregations have to be computed. Some
algorithms to find the proper set of aggregate tables are
described in [12]. [33] describes a couple of approaches
how a given query can be processed based on existing
aggregate tables.

Our experimental results indicate that indexes, aggre-
gate and partition tables are appropriate means to en-
hance query sequences. Nevertheless, the DSS optimizer
is not the suitable component to create indexes, aggregate
tables or partition tables. The successful exploitation of
these three strategies is based on knowledge about the
schema of the data warehouse and the characteristics of
all applications that access data in the warehouse. There
is another important difference to the optimization ap-
proaches described in Section 4.1 through 4.3. All strate-
gies we described there offer alocal optimization for ex-
actly one sequence of queries, whereas additional indexes
and additional tables also influence the performance of
other queries. Therefore, they should be part of the
DWDBS administration.

5. Experimental Results

For our experiments, we have created the modified
schema as described in Section 2.1 in a database system.
We populated the tables with data based on the original
TPC-H data, generated with three different scale factors
according to the benchmark specifications. Our largest
data set for which the results are presented here was pro-
duced with scale factor 10. The raw data summarizes to
10 GB, the main fact table lineitem orders has about 60
million rows. The environment used for the experiments
consists of a Sun Enterprise E4500 with 12 processors,
12 GB main memory, the object-relational database sys-
tem IBM DB2/UDB V7.1 and a benchmark tool that is
provided with DB2.

From a technological point of view, we could have
used any other market-strength DBMS since we only
used techniques that are commonly available (e.g. paral-
lelism, indexes, partitioning as well as statistics). The
decision for DB2 was twofold: First, we wanted to collect
detailed information on the generated query plans. This
information is provided by the EXPLAIN utility of DB2
[13]. Second, DB2 is known for its good optimization
technology and thus can play a good reference point.

The results given in Table 2 are a subset of more than
400 experiments, where one experiment is the execution
of one query sequence for one information request on one
test data set. Each value presented here, is the average of
at least three experiments. Some cells of Table 2 are
empty because not al optimization strategies were appli-
cable to al of the three information requests. Most of
them are applicable to information request A and request
C. Business questions that are similar to these two are
very likely to build the mgjority of questions in a rea
environment.

Table 2. Experimental Results (in seconds)

Optimization Strategy Information Reguests
A B C
1/|Qs 4877 498 30209
2 | QS + MergeSelect - - 4188
3 | QS + WhereToGroup - - 2296
4 | SQ 2834 - 10734
5 | SQ + MergeSelect - - 3853
6 | SQ + WhereToGroup - - 4900
7 | QS+ Statistics 3109 - 5263
8 | QS+ Parallelism 3939 - 29004
9 | QS+ Indexes 5428 25 -
10 | QS + Partitions 3712 26 27984

Looking at the results in more details, one can see that
in amost all cases the optimization strategies were suc-
cessful in reducing the runtime of the information re-
quests. Sometimes there was only a dlight enhancement
whereas other strategies led to an execution time that was
an order of a magnitude shorter than for the original
query.

The execution time for the original sequence of que-
ries (QS) is given in line 1. The modified versions of the
query sequences and their combination into a single-
query (SQ) as described in Section 4.1 are shown in lines
2 through 6. These results show that combining the
statements of a sequence is likely to improve the per-
formance. However, this is not true for information re-
guest C. The sequence QS+WhereToGroup runs much
faster than the corresponding single-query. Hence, the
DSS optimizer has to decide in which situation it is ap-
propriate to combine the queries of a sequence and in
which the eventually modified version of the sequence is
the best choice.

Line 7 of Table 2 shows the results for the query se-
guence that was enhanced by generating additional statis-
tical information for temporary tables. In our experi-
ments, this version of the queries runs aways faster than
the original sequence. For information request C it was
also faster than the very complex single-query (SQ),
whereas for request A it was dower than the single-
query. Therefore, leaving the query sequence as is and
generating additional statistical information for tempo-

rary tables is a supplementary aternative to the other
strategies, which can be used by the DSS optimizer.

The third basic alternative for the DSS optimizer is to
run the sequence of queries as it was generated, but with
some queries of the sequence in parallel as described in
Section 4.2. The experimental results for this strategy are
given in line 8. They show only a dlight improvement
compared to the original sequence. Especialy for infor-
mation request C the enhancement is less than 10 percent.
This is because the runtime of the query sequence for this
guestion is dominated by only one query that joins sev-
eral temporary tables.

Some results for the strategies that turned out not to
be appropriate for the DSS optimizer are given in lines 9
and 10. With additional indexes and partitions, we can
see a remarkable performance enhancement for informa-
tion request B. Additional partition tables reduced the
runtime for information requests A and C, where the re-
duction is between 8 and 25 percent. For the information
requests A and C we achieved further improvements by
other strategies that are useable by the DSS optimizer.
Hence, we do not loose too much optimization potential
if the DSS optimizer has to ignore additional indexes and
partitions as optimization strategies. Nevertheless, in a
real environment these strategies are mandatory for the
administrator of the data warehouse.

6. Conclusion

In this work we investigated that an optimizer in be-
tween decision support applications and the DWDBS is
essential for the efficient processing of some classes of
typical information requests generated by DSS tools.
Hence, we suggested an optimized system architecture
for decision support applications. In this architecture,
generated query sequences are rewritten by an additional
system component, called DSS optimizer. The transfor-
mation is based on optimization strategies that are inde-
pendent of the application and use little knowledge about
the underlying database system. This DSS optimizer has
two main advantages. First, it is able to support severa
applications without any need to change their query gen-
eration algorithms. Second, it is capable of applying op-
timization strategies that are not supported by state-of-
the-art database systems.

We set up a realistic application scenario, selected a
set of relevant information requests and ran alarge series
of experiments based on TPC-H data. Our experiments
have shown that all three strategies we proposed for the
DSS optimizer were successful. They reduced the run-
time of the given query sequences significantly. None of
the three strategies turned out to be the best in all situa-
tions. Hence, it is the task of the DSS optimizer to decide
upon the strategy to use. This decision should be based
on information gained from the query sequence itself and
on meta data gained from the underlying database sys-

tem. Therefore, further work will focus on heuristics that
could be used by the DSS optimizer in order to decide
which optimization strategy or which combination of
strategies should be used for a given sequence of queries.

Another important issue of future work is the design
and implementation of the DSS optimizer. The basic
technology for a DSS optimizer is in place because al
three strategies are based on matured technology. Gener-
ating single-queries is similar to view expansion. Deter-
mining queries within a sequence that could run in paral-
lel is based on parallel database technology [7] [21]. Us
ing statistical information for query optimization is a ba-
sic optimization technology. Furthermore, we want to
apply extensible optimization technology as is available
with systems like CASCADES [8]. In doing so, one has
to observe that the DSS optimizer is not a general-
purpose optimizer, but only a specific component that
supports only a predefined set of optimization strategies.
Consequently, we want to reconsider the main design
decisions of an optimizer e.g. search space, rule set and
cost-based decision making. As aresult, we want to come
up with atailored and efficient DSS optimization compo-
nent.

Acknowledgement. We would like to thank Leonard
Shapiro and Ralf Rantzau for helpful discussions and
their comments on an early version of the paper.

References

[1] AberdeenGroup: Bringing Analytical Reporting to Enter-
prise Business Intelligence. Aberdeen Group, Boston,
1999.

[2] R. Agrawal, J. C. Shafer: Parallel Mining of Association
Rules. In: TKDE 8(6), 1996.

[3] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K. Shim:
Optimizing Queries with Materialized Views. In: ICDE,
March 1995.

[4] S. Chaudhuri, U. Dayal: An Overview of Data Warehous-
ing and OLAP Technology. In: SIGMOD Record, Vol.
26., No. 1, 1997.

[5] S. Chaudhuri, V. Narasayya: AutoAdmin “What-if" Index
Analysis Utility. In: SIGMOD Record, Vol. 27, No. 2,
1998.

[6] C.J Date, H. Darwen: A guide to the SQL standard. 4th
ed., Addison-Wesley, Reading, 1997.

[71 D. Dewitt, J. Gray: Parald Database Systems: The Fu-
ture of High Performance Database Systems. In: CACM,
Vol. 35, No. 6, pp. 85-92, 1992.

[8] G. Graefe: The Cascades Framework for Query Optimiza-
tion. In: DE Bulletin, Vol. 18, No. 3, 1995.

[9] J Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, M. Venkatrap, F. Pdlow, H. Pirahesh: Data
Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab and Sub-Totals. In: Data Mining
and Knowledge Discovery, Vol. 1, No. 1, 1997.

[10] P. Gulutzan, Trudy Pelzer: SQL-99 Complete, Really.
R&D Books, Lawrence, 1999.

[11]
[12]
[13]
[14]
[19]
[16]
[17]
[18]

[19]

[20]

[21]

[22]
[23]
[24]

[29]

[26]

[27]
[28]

[29]
[30]

[31]

[32]

[33]

[34]

J. Han, M. Kamber: Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

V. Harinarayan, A. Rgjaraman, J. D. UlIman: Implement-
ing Data Cubes Efficiently. In: SIGMOD Record, Vol. 25,
No. 2, 1996.

IBM: DB2 Command Reference, 1999.

Informix: Data Warehousing for the Retail Industry.
White Paper, http://www.informix.com, 1998.

R. Kimball: The Data Warehouse Toolkit. John Wiley &
Sons, New Y ork, 1996.

MicroStrategy: The Case for Relational OLAP. White
Paper, MicroStrategy, 1995.

B. Mitschang: Query Processing in Database Systems (in
German), Vieweg-Verlag, 1995.

P. O'Neil, G. Graefe: Multi-Table Joins Through Bit-
mapped Join Indices. In: SIGMOD Record, Vol. 24, No.
3, 1995.

P. O'Neil, D. Quantas: Improved Query Performance with
Variant Indexes. In: SIGMOD Record Vol. 26, No. 2,
1997.

C. Nippl: Providing Efficient, Extensible and Adaptive
Intra-query Parallelism for Advanced Applications. Tech-
nische Universitét M tinchen, Dissertation, 2000.

C. Nippl, B. Mitschang: TOPAZ: A Cost-Based, Rule-
Driven, Multi-Phase Parallélizer. Proc. VLDB Conf., New
York, 1998.

Oracle Corporation: Oracle8i SQL Reference. Release 3
(8.1.7), Oracle, September 2000.

D. Peppers, M. Rogers: Data Warehousing and Retailing.
DM Reviews, October 1998.

SAS Institute: Finding the Solution to Data Mining. White
Paper, SAS Institute, 1998.

H. Schwarz, R. Wagner, B. Mitschang: Improving the
Processing of Decision Support Queries: Strategies for a
DSS Optimizer. University of Stuttgart, Faculty of Com-
puter Science, Technical Report TR-2001-02, 2001.

A. Sen, V. S. Jacob: Industrial-Strength Data Warehous-
ing. In CACM Val. 41, No. 9, 1998.

D. Srivastava, S. Dar, S. Jagadish, A. Levy. In: VLDB,
September 1996.

S. N. Subramanian, S. Venkataraman: Cost-Based Opti-
mization of Decision Support Queries using Transient-
Views. In: SIGMOD Record, Vol. 27, No. 2.

Thinking Maschines Corporation: Darwin Reference.
Release 3.0.1. Thinking Maschine Corporation, 1998.

D. S. Tkach: Information Mining with the IBM Intelligent
Miner Family. White Paper, IBM, 1998.

Transaction Processing Performance Council: TPC
Benchmark H (Decision Support) Standard Specification,
Revision 1.1.0, June 1999.

R. Wagner: Optimization of an OLAP Application for
Retailers (in German). University of Stuttgart, Faculty of
Computer Science, Project Paper, Nr. 1770, 2000.

M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M.
Uratas Answering Complex SQL queries Using Auto-
matic Summary Tables. In: SSIGMOD Record, Vol. 29,
No. 2, 2000.

Y. Zhao, P. M. Deshpande, J. F. Naughton, A. Shukla
Simultanous Optimization and Evaluation of Multiple
Dimensional Queries. In. SIGMOD Record, Vol. 27, No.
2,1998.

