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Abstract 
Many decision support applications are built upon 

data mining and OLAP tools and allow users to answer 
information requests based on a data warehouse that is 
managed by a powerful DBMS. In this paper, we focus 
on tools that generate sequences of SQL statements in 
order to produce the requested information. Our thor-
ough analysis revealed that many sequences of queries 
that are generated by commercial tools are not very effi-
cient. An optimized system architecture is suggested for 
these applications. The main component is a DSS opti-
mizer that accepts previously generated sequences of 
queries and remodels them according to a set of optimi-
zation strategies, before they are executed by the under-
lying database system. The advantages of this extended 
architecture are discussed and a couple of appropriate 
optimization strategies are identified. Experimental re-
sults are given, showing that these strategies are appro-
priate to optimize query sequences of OLAP applications. 

 
 

1. Introduction 

During the last decade data warehouses turned out to 
be the common basis for the integration and analysis of 
data in modern enterprises. Decision support applications 
are used to analyze data on the operational level as well 
as on the strategic level. This includes techniques like 
online analytical processing (OLAP) and data mining. 
Additional tools are used for the preprocessing and inte-
gration of data from different sources. 

A lot of work has been done on decision support sys-
tems and their optimization. In the field of data mining 
the focus was on algorithms. There is for example a huge 
set of algorithms for mining association rules including 
parallel algorithms [11] [2]. For OLAP applications, sev-
eral important aspects have been discussed in literature. 
One is the integration of additional operators into the 
database system, e.g. the cube operator [9] [10] and its 
efficient implementation [12]. Query primitives that al-
low related query plans to share portions of their evalua-
tion are introduced in [34]. Another focus is the use of 

specific index types in order to optimize typical OLAP 
queries [18] [19]. There has also been a lot of work in the 
area of using materialized views to answer decision sup-
port queries and the maintenance of these materialized 
views [3] [27] [28] [33]. Our work is recognizing this 
previous work, but also complementing it. We are not 
aware of any comparable approach that involves a sepa-
rate optimizer in between the decision support tool and 
the data warehouse database system (DWDBS) as we 
suggest it. 

In this paper, we focus on a commonly used process-
ing model for decision support systems (DSS). According 
to this model, the application generates a sequence of 
SQL statements, which is processed by the DWDBS. The 
result tables of the statements in a sequence build the 
basis for the final result that is presented to the user as 
reply to his/her information request. SQL is used as query 
language because most data warehouses are based on a 
relational or extended relational database system. As the 
information requests of the users are likely to be very 
complex, many applications produce sequences of rather 
simple statements for each request in order to reduce the 
complexity of the query generation process and in order 
to preserve portability to other database systems. 

We analyzed tools that work according to this model 
and found that there are many possibilities to improve the 
query sequences they generate and the way they are exe-
cuted. We will show that several of these approaches are 
independent of the application and its special query gen-
eration process. Hence, they could be used for many de-
cision support applications that are run on a data ware-
house. This leads us to an optimized system architecture. 
The central element of this architecture is a DSS opti-
mizer that accepts sequences of SQL statements. The 
sequences are processed according to a set of optimiza-
tion strategies. An optimized version of the sequence is 
sent to the DWDBS and executed there. As in the original 
model, the application uses the partial results in order to 
produce the final result for an information request. The 
strategies we suggest for the DSS optimizer include the 
combination of a sequence of statements into a single 
complex statement, semantic rewrite strategies, parallel 
execution of statements in a query sequence as well as 



 

providing additional statistical information for the query 
optimizer of the DWDBS. 

This paper is organized as follows: In Section 2 we 
describe our application scenario and the common archi-
tecture of decision support systems. The optimized archi-
tecture that includes a DSS optimizer as an additional 
component is introduced in Section 3. In Section 4 we 
discuss some strategies that are appropriate for this DSS 
optimizer. The results of our performance analysis 
assessing the benefits of these strategies are explained in 
Section 5. Finally, our conclusions are given in Section 6. 

2. Application Scenario 

In this section we describe some basic aspects of data 
warehousing, decision support systems and the OLAP 
application scenario we have chosen for our investiga-
tions. We present some examples for typical information 
requests and the common architecture of systems that 
process such requests. 

2.1. Data Warehousing 

Data warehousing has gained more and more impor-
tance for decision support in organizations and enter-
prises [15] [26]. Most medium-sized and large organiza-
tions integrate data that is relevant for decisions and that 
originates from different data sources into a data ware-
house. Due to the huge amount of data, usually parallel, 
(object-) relational database systems are deployed. In 
addition, several tools are needed for the extraction and 
cleansing process as well as for the analysis of the data. 

The analysis of data has two main aspects. On the one 
hand, OLAP tools are used to view the data along differ-
ent dimensions [4]. Typical dimensions that are relevant 
for an enterprise are time, customers, suppliers and prod-
ucts. The users should know which information they are 
about to retrieve from the data warehouse. In knowledge 
discovery, on the other hand, data mining tools are able 
to detect correlations and to find previously unknown 
pattern in data. It is possible, for example, to determine 
correlations between the consuming behavior of a certain 
group of customers and some characteristics of these cus-
tomers like age or profession. Examples for OLAP tools 
are MicroStrategy [16] and BusinessObjects [1] whereas 
Darwin [29], Enterprise Miner [24] and Intelligent Miner 
[30] are representatives for data mining tools. 

Typical data models for data warehouses are called 
star schema and snowflake schema. For our experiments, 
we have chosen the snowflake schema given in Figure 1 
that shows some important aspects of a retailer. Our 
schema is based on the TPC-H Benchmark [31], which 
comprises decision support SQL queries. The original 
schema consists of eight tables describing a typical sce-
nario of a retailer. The retailer receives orders (table 
ORDERS) that consist of single items (LINEITEM). The 

orders are sent by customers (CUSTOMER), which re-
side in a nation (NATION) and region (REGION). The 
items refer to parts (PART) delivered by suppliers (SUP-
PLIER), which reside in a nation and region, too. Finally, 
the parts delivered by a supplier are given by the joint 
table PARTSUPP. 

We used a modified schema for our experiments. 
There are two main reasons for that: 
• The OLAP tool we used for our experiments needs a 

special type of schema, a snowflake schema with par-
tially redundant dimension tables. The necessary 
modifications are just formal, and easily achievable by 
syntactical equivalence transformations. There are no 
semantic changes. 

• The time dimensions are extended in two ways. First, 
the date field of the original schema is split into sepa-
rate tables for days, weeks, months and years. Second, 
additional information is provided for each unit of 
time, e.g. the last day, week or month for a given date. 
These extensions make days, weeks, months etc. ex-
plicitly available for queries and enable for example 
the comparison of a given month with the respective 
month in the preceding years. 
The modified schema has more fact and dimension 

tables than the original schema. Figure 1 depicts the part 
of the modified schema, which is relevant for our exam-
ple queries. The main fact table is shown in the middle of 
the picture. Some of the dimension tables and connec-
tions to further tables are given around this fact table. 
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Figure 1. Snowflake Schema based on TPC-H 

2.2. OLAP Scenario 

We have chosen a typical OLAP scenario of a retail 
company for our experiments. This includes some infor-
mation requests a user could define and process by means 
of an OLAP tool. The selection of requests is based on 
the following requirements: 
• The requests have to be typical questions a retailer 

would ask based on the information available in the 
data warehouse. 



 

Information request A: Which are the top products 
whose number of sold pieces in the months chosen by 
the user compared to the respective month ago has in-
creased mostly? 

Information request B: What is the distribution of the 
number of sold products over the different countries for 
products and years chosen by the user? 

Information request C: Which are the top customers 
who bought products in the last three years of a mini-
mum total amount chosen by the user and who show the 
lowest standard deviation of the totals in these years? 

Figure 2. Selected Information Requests 

• It must be feasible to model the requests with currently 
available OLAP tools and it must be feasible to answer 
these questions based on our schema. 

• The complexity of selected requests should be similar 
to the complexity of business questions in the TPC-H 
benchmark. 
Three typical information requests that meet these re-

quirements are shown in Figure 2. They are important for 
the management of a retailer as the questions belong to 
the categories merchandise management or customer 
relationship management [14] [23]. The schema we pre-
sented above includes the relevant information that is 
necessary to answer these requests. 

2.3. Architectural Issues 

Numerous decision support applications are based on 
the system architecture given in Figure 3. The end users 
specify the information they need by means of a graphi-
cal user interface. For example, they have to define the 
relevant data and the necessary calculations on these facts 
as well as criteria for filtering and the way results should 
be presented. These requirements are used by the applica-
tion to generate a sequence of SQL queries. Meta data is 
used by the query generator in order to produce the ap-
propriate query sequences. In an OLAP application the 
meta data include information about available fact tables 
and the hierarchical dependencies of attributes in one 
dimension. As soon as the query generator produced a 
sequence of SQL queries, these queries are sent to the 
data warehouse database system one after the other. The 
application reads and processes partial results from the 
DWDBS and finally presents the result to the end user. 

Many typical decision support applications generate 
sequences of SQL queries. For information request A in 
our scenario such a sequence is given in Figure 4. This 
query sequence (QS) was produced by an OLAP tool. 
The Figure only shows the four insert statements. The 
create table statements and other details that are also part 
of the generated sequence are omitted here for the sake of 
readability. The first statement (Q1) produces the tempo-
rary table A1 that includes the sum of the fact quantity for 
all parts in January and February 1994. The second 

statement (Q2) only differs in that it sums the same quan-
tity for the preceding months of January and February 
1994. The purpose of the third query (Q3) is mainly to 
calculate the absolute and relative increase of the quantity 
for each part based on the values of Q1 and Q2. Finally, 
Q4 selects all parts from Q3 according to the given rank-
ing criterion and provides the result data in table A4. 
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Figure 3. Standard System Architecture 

This sample query sequence consists of four state-
ments. In general, the conversion of OLAP information 
requests into sequences of SQL statements results in se-
quences of different complexity, which ranges from just 
one to eight queries for the information requests we have 
chosen here. According to our experience, it is very likely 
that relevant business questions result in query sequences 
with several statements, sometimes even more than 20. 
Hence, the three information requests given in Figure 2 
represent important types of OLAP queries and are rele-
vant in order to judge optimization strategies. 

INSERT INTO A1 (orderyearkey, ordermonthkey, partkey, sumquantity)
SELECT a2.orderyearkey, a2.ordermonthkey, a1.partkey, SUM(a1.quantity)
FROM   lineitem_orders a1, orderday a2
WHERE  a2.orderdate = a1.orderdate 
AND    a2.ordermonthkey IN (199401,199402)
GROUP BY a2.orderyearkey, a2.ordermonthkey, a1.partkey;

INSERT INTO A2 (ordermonthkey, partkey, sumquantity)
SELECT a2.ordermonthkey, a1.partkey, SUM(a1.quantity)
FROM   lineitem_orders a1, orderday a2
WHERE  a2.lastmonthdate = a1.orderdate 
AND    a2.ordermonthkey IN (199401, 199402)
GROUP BY a2.ordermonthkey, a1.partkey;

INSERT INTO A3 (ordermonthkey, ordermonthname, orderyearkey,
orderyear, partkey, partname, sumquantity, 
lmsumquantity, incrquantity, incrquantity2)

SELECT a3.ordermonthkey, a3.ordermonthname, a4.orderyearkey,
a4.orderyear, a5.partkey, a5.partname, a1.sumquantity,
a2.sumquantity, a1.sumquantity-a2.sumquantity, 
(a1.sumquantity - a2.sumquantity) / a2.sumquantity 

FROM  A1,A2, ordermonth a3, orderyear a4, part a5
WHERE A1.ordermonthkey = A2.ordermonthkey AND A1.partkey = A2.partkey
AND   A1.ordermonthkey = a3.ordermonthkey
AND   A1.orderyearkey = a4.orderyearkey AND A1.partkey = a5.partkey;

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey,
orderyear, partkey, partname, sumquantity,
lmsumquantity, incrquantity, incrquantity2)

SELECT a1.ordermonthkey, a1.ordermonthname, a1.orderyearkey,
a1.orderyear, a1.partkey, a1.partname, a1.sumquantity,
a1.lmsumquantity, a1.incrquantity, a1.incrquantity2

FROM   A3
WHERE  A3.incrquantity2 >= 98;

Q1

Q2

Q4

Q3

INSERT INTO A1 (orderyearkey, ordermonthkey, partkey, sumquantity)
SELECT a2.orderyearkey, a2.ordermonthkey, a1.partkey, SUM(a1.quantity)
FROM   lineitem_orders a1, orderday a2
WHERE  a2.orderdate = a1.orderdate 
AND    a2.ordermonthkey IN (199401,199402)
GROUP BY a2.orderyearkey, a2.ordermonthkey, a1.partkey;

INSERT INTO A2 (ordermonthkey, partkey, sumquantity)
SELECT a2.ordermonthkey, a1.partkey, SUM(a1.quantity)
FROM   lineitem_orders a1, orderday a2
WHERE  a2.lastmonthdate = a1.orderdate 
AND    a2.ordermonthkey IN (199401, 199402)
GROUP BY a2.ordermonthkey, a1.partkey;

INSERT INTO A3 (ordermonthkey, ordermonthname, orderyearkey,
orderyear, partkey, partname, sumquantity, 
lmsumquantity, incrquantity, incrquantity2)

SELECT a3.ordermonthkey, a3.ordermonthname, a4.orderyearkey,
a4.orderyear, a5.partkey, a5.partname, a1.sumquantity,
a2.sumquantity, a1.sumquantity-a2.sumquantity, 
(a1.sumquantity - a2.sumquantity) / a2.sumquantity 

FROM  A1,A2, ordermonth a3, orderyear a4, part a5
WHERE A1.ordermonthkey = A2.ordermonthkey AND A1.partkey = A2.partkey
AND   A1.ordermonthkey = a3.ordermonthkey
AND   A1.orderyearkey = a4.orderyearkey AND A1.partkey = a5.partkey;

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey,
orderyear, partkey, partname, sumquantity,
lmsumquantity, incrquantity, incrquantity2)

SELECT a1.ordermonthkey, a1.ordermonthname, a1.orderyearkey,
a1.orderyear, a1.partkey, a1.partname, a1.sumquantity,
a1.lmsumquantity, a1.incrquantity, a1.incrquantity2

FROM   A3
WHERE  A3.incrquantity2 >= 98;

Q1

Q2

Q4

Q3

 

Figure 4. Query Sequence for Request A 



 

3. Optimized System Architecture 

In the standard architecture presented in Figure 3 the 
performance of a decision support application mainly 
depends on the capabilities of the query generator and on 
the query optimization and execution capabilities of the 
DWDBS. Therefore, if one envisages performance prob-
lems there are two different ways to go: On the one hand, 
one could improve the query generator and on the other, 
one could improve the query optimizer of the DWDBS. 

Improving the query generator means to enhance the 
set of rules according to which the queries are generated. 
This task depends on the underlying DWDBS. The opti-
mum query sequence for IBM DB2 could look quite dif-
ferent compared to the optimum sequence for Oracle or 
SQL Server. Since almost all decision support applica-
tions aim to support several database systems, the optimi-
zation strategies of the query generator have to be devel-
oped for each dedicated database system. Furthermore, 
this has to be done for each decision support application 
separately. Hence, there could be different optimization 
strategies for every combination of a decision support 
application and the underlying DWDBS. 

Improving the query optimizer of the DWDBS is also 
a very difficult task. New query optimization strategies 
for decision support that are implemented in a database 
system should on the one hand be based on the analysis 
of a couple of decision support applications. On the other 
hand, the developers have to show that the new optimiza-
tions do not negatively influence the performance of 
other types of applications or even deteriorate the per-
formance of the optimizer itself. 

In summary, both starting-points for performance en-
hancements of decision support applications in a standard 
architecture turn out to be very difficult. The complexity 
results from the heterogeneity of applications and data-
base systems as well as from the complexity of query 
optimizers that are used in commercial database systems. 

We suggest an optimized system architecture for de-
cision support which is shown in Figure 5. The main idea 
of this architecture is a DSS optimizer as an additional 
system component between the query generator and the 
DWDBS. This optimizer accepts query sequences from 
different applications. It transforms these sequences into 
optimized versions of query sequences, which are then 
sent to the DWDBS. The DSS optimizer is neither part of 
a special application nor of the database system. The 
main advantages of the extended architecture are as fol-
lows: 
• In a typical data warehouse environment, several deci-

sion support applications access data in the warehouse. 
The DSS optimizer offers performance enhancements 
for all of these applications. 

• The DSS optimizer is not part of a decision support 
application. Therefore, its development and enhance-

ment is not part of the application development. It is 
done only once and not especially for each application.  

• The DSS optimizer offers performance enhancements 
for existing decision support applications without the 
need to change the query generation process of these 
applications. They benefit from the optimizer simply 
by directing their query streams to it instead of sending 
them directly to the DWDBS. 

• Using the DSS optimizer reduces the need for each 
application to consider special capabilities of the un-
derlying database system. The query generators of the 
applications can mostly be kept independent of the da-
tabase system, thus they are less complex. 

• The DSS optimizer may include optimization strate-
gies that are offered by some database systems as well 
as strategies that are not supported by state-of-the-art 
database systems. Multi-Query-Optimization is an ex-
ample for an area where current systems offer only lit-
tle support. 
In summary, the optimized system architecture offers 

support for many decision support applications and many 
database systems without additional development effort 
for each of the applications or database systems. 

Query
Generator

Result
Processing Meta Data

SQL

Information Request

Partial Results

Result

DSS
Optimizer

SQL

Query
Rewrite

Parallelism

Statistics

Decision Support Application

Data Warehouse
Datenbase System

Graphical User Interface

Query
Generator

Result
Processing Meta Data

SQL

Information Request

Partial Results

Result

DSS
Optimizer

SQL

Query
Rewrite

Parallelism

Statistics

Decision Support Application

Data Warehouse
Datenbase System

Graphical User Interface

 

Figure 5. Optimized System Architecture 

4. Strategies for the DSS Optimizer 

In this section, we describe a set of strategies that of-
fer performance enhancements for sequences generated 
by decision support tools. For each of them we argue 
whether it is an appropriate strategy for the DSS opti-
mizer or not. The goal is to incorporate all optimizations 
into the DSS optimizer that need no information about 
the application and little information about the underlying 
database system. For all strategies we identified as ap-
propriate, we discuss the main aspects of their implemen-
tation. More details are given in [25]. 

Not all optimization strategies mentioned here are 
new. The contribution of this paper is not to find new 
algorithms for a database optimizer, but to combine exist-



 

ing technology in an additional system component that 
offers performance advantages for a huge range of appli-
cations and that is independent of the concrete applica-
tion and the DWDBS. Currently, none of the existing 
systems follows this approach. 

4.1. Rewrite Strategies for Query Sequences 

Strategy I: Single-Query (SQ) 
Typical query sequences that are produced by deci-

sion support applications can be rewritten as a single and 
in most cases more complex query. A straightforward 
method to achieve this single-query is as follows: Start-
ing with the second query in the sequence, replace the 
occurrence of each temporary table in the FROM clause 
by the complete SELECT statement that generates data 
for this temporary table. If we use this simple syntactic 
replacement algorithm for the query sequence in Figure 
4, we first have to look at Q2. As this one does not use 
any temporary table, we have to examine query Q3. It 
needs data from table A1 as well as from A2. Therefore, 
the FROM clause is changed and A1 is replaced by the 
SELECT statement of Q1. The same replacement is nec-
essary for A2. The new query for A3 does not include any 
references to temporary tables. Hence, we can proceed 
with the last query in this sequence. It is only based on 
the content of A3. Its purpose is to filter out the relevant 
data according to the ranking criterion. We replace A3 in 
the FROM clause of query Q4 by the new version of the 
query for A3. The resulting single-query for information 
request A is shown in Figure 6. 

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey, orderyear,
partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

SELECT a1.ordermonthkey, a1.ordermonthname, a1.orderyearkey,
a1.orderyear, a1.partkey, a1.partname, a1.sumquantity,
a1.lmsumquantity, a1.incrquantity, a1.incrquantity2

FROM

(SELECT a3.ordermonthkey, a3.ordermonthname, a4.orderyearkey,
a4.orderyear, a5.partkey, a5.partname, a1.sumquantity,
a2.sumquantity, a1.sumquantity - a2.sumquantity
AS incrquantity, 
(a1.sumquantity - a2.sumquantity) /
a2.sumquantity AS incrquantity2

FROM

(SELECT a2.orderyearkey, a2.ordermonthkey,
a1.partkey, SUM(a1.quantity)

FROM   lineitem_orders a1, orderday a2
WHERE  a2.orderdate = a1.orderdate
AND    a2.ordermonthkey IN (199401, 199402)
GROUP BY a2.orderyearkey, a2.ordermonthkey, a1.partkey
) AS a1 (orderyearkey, ordermonthkey, partkey, sumquantity),

(SELECT a2.ordermonthkey, a1.partkey, SUM(a1.quantity)
FROM   lineitem_orders a1, orderday a2
WHERE  a2.lastmonthdate = a1.orderdate
AND    a2.ordermonthkey IN (199401, 199402)
GROUP BY a2.ordermonthkey, a1.partkey
) AS a2 (ordermonthkey, partkey, sumquantity),

ordermonth a3, orderyear a4, part a5
WHERE a1.ordermonthkey = a2.ordermonthkey  
AND a1.partkey = a2.partkey AND a1.ordermonthkey = a3.ordermonthkey
AND a1.orderyearkey = a4.orderyearkey AND a1.partkey = a5.partkey
) AS a1 ( ordermonthkey, ordermonthname, orderyearkey, orderyear,

partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

WHERE a1.incrquantity2 >= 98;

from Q1

from Q2

from Q3

from Q3

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey, orderyear,
partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

SELECT a1.ordermonthkey, a1.ordermonthname, a1.orderyearkey,
a1.orderyear, a1.partkey, a1.partname, a1.sumquantity,
a1.lmsumquantity, a1.incrquantity, a1.incrquantity2

FROM

(SELECT a3.ordermonthkey, a3.ordermonthname, a4.orderyearkey,
a4.orderyear, a5.partkey, a5.partname, a1.sumquantity,
a2.sumquantity, a1.sumquantity - a2.sumquantity
AS incrquantity, 
(a1.sumquantity - a2.sumquantity) /
a2.sumquantity AS incrquantity2

FROM

(SELECT a2.orderyearkey, a2.ordermonthkey,
a1.partkey, SUM(a1.quantity)

FROM   lineitem_orders a1, orderday a2
WHERE  a2.orderdate = a1.orderdate
AND    a2.ordermonthkey IN (199401, 199402)
GROUP BY a2.orderyearkey, a2.ordermonthkey, a1.partkey
) AS a1 (orderyearkey, ordermonthkey, partkey, sumquantity),

(SELECT a2.ordermonthkey, a1.partkey, SUM(a1.quantity)
FROM   lineitem_orders a1, orderday a2
WHERE  a2.lastmonthdate = a1.orderdate
AND    a2.ordermonthkey IN (199401, 199402)
GROUP BY a2.ordermonthkey, a1.partkey
) AS a2 (ordermonthkey, partkey, sumquantity),

ordermonth a3, orderyear a4, part a5
WHERE a1.ordermonthkey = a2.ordermonthkey  
AND a1.partkey = a2.partkey AND a1.ordermonthkey = a3.ordermonthkey
AND a1.orderyearkey = a4.orderyearkey AND a1.partkey = a5.partkey
) AS a1 ( ordermonthkey, ordermonthname, orderyearkey, orderyear,

partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

WHERE a1.incrquantity2 >= 98;

from Q1

from Q2

from Q3

from Q3

 

Figure 6. Single-Query for Request A 

This type of query rewrite that is similar to view ex-
pansion is an appropriate strategy for the DSS optimizer 
because it does not require any knowledge about the ap-
plication that generated the query sequence or about the 
DWDBS. The rewrite strategy is only based on the list of 
queries that constitute the given query sequence. 

 
Why should this single-query run faster than the 

original sequence of queries? There are two main argu-
ments. First, there is less overhead for creating temporary 
tables and for inserting data into these tables. Only one 
temporary table is explicitly generated and filled with 
data, whereas all other temporary results are handled by 
the database system as part of the query execution. In our 
experiments, some temporary tables contained several 
millions of rows. These tables were filled with about 
8000 rows per second. Thus, loading temporary tables 
represents significant overhead for some of the query 
sequences. There is some additional overhead for the 
creation of these temporary tables to be taken into ac-
count. 

Second, there are more chances for query optimiza-
tion by the DWDBS. In case of a query sequence, the 
statements of the sequence are sent to the DWDBS one 
after the other. Hence, the query plan for each statement 
is generated without any knowledge about the other state-
ments in the sequence. If the complete sequence is 
combined into one single statement the query optimizer 
has the whole picture. Therefore, the optimizer might 
have a chance to exploit common sub-expressions among 
the query portions that previously belonged to separate 
queries. 

Table 1. Characteristics of different Queries 

Optimization Strategy Information 
Request A 

Information 
Request C 

 JOINS SORTS JOINS SORTS 

QS max. 5 max. 10 max. 6 max. 8 

QS + MergeSelect - - max. 3 max. 3 

QS + WhereToGroup - - max. 4 max. 3 

SQ 7 14 33 37 

SQ + MergeSelect - - 13 14 

SQ + WhereToGroup - - 16 16 

 
Given these advantages of a single-query, it seems to 

be a good idea to combine queries of a sequence into a 
single one in general. Nevertheless, the task is not that 
easy for the DSS optimizer. We have further analyzed the 
queries in our application scenario based on the query 
plans the optimizer of DB2 generated for our experi-
ments. Table 1 shows how they differ in the number of 
joins and sort operations. The values given here espe-
cially show that the straightforward combination of the 
original query sequence into one SQL query can result in 
a large number of joins and sorts. For information request 



 

C the single-query (SQ) needs 33 joins and 37 sort opera-
tions. The corresponding query plan has more than 200 
nodes. This complexity is not easy to handle for the 
optimizer of the DWDBS. Its output might be a rather 
‘bad’ query plan. As one example, the number of join 
orders increases exponentially with the number of joins. 
With more than 10 joins, it is likely that the optimizer is 
not able to consider all relevant orders. Additionally, it 
might not detect all common sub-expressions that are part 
of the query and that could be combined. The appropriate 
and manageable complexity of queries depends on the 
characteristics of the optimizer used in the DWDBS. 

So far, our discussion has shown that in some cases a 
sequence of queries might run faster than the combined 
single-query and that in other situations this might not be 
true. Our experiments show examples for both cases. 
Hence, the DSS optimizer has to decide for each query 
sequence whether it should be combined or not. 

Strategy II: Partial Combination 
One alternative is not to combine the whole sequence 

into a single-query but to merge it into a couple of que-
ries. As we have argued, one single-query could be too 
complex for the optimizer of a DWDBS to find a good 
execution plan. If the DSS optimizer generates a small 
number of semi-complex queries, this new sequence 
could be more efficient. The optimization task is then to 
find the proper points where to cut off the original se-
quence. This could be done based on dependency graphs 
as given in Figure 8. 

For some query sequences it is not possible to gener-
ate an equivalent single-query, because there are depend-
encies within the sequence. This appears in the case of 
ranking. In the query sequence shown in Figure 4 the last 
query Q4 selects data according to a filter criterion. For 
the sake of simplicity, we assumed that the filter value is 
known in advance. Depending on the way the user de-
fined the information request and the query generation 
process of the application, this filter predicate might be 
determined based on data in A3. In this case, the last 
query of the sequence could include a variable instead of 
the filter predicate. Hence, the partial combination strat-
egy is applicable. The DSS optimizer could combine Q1, 
Q2 and Q3 as described for Strategy I and leave Q4 as is. 

This strategy is not appropriate for the query se-
quences we present in this paper. Nevertheless, it is a 
suitable strategy for the DSS optimizer because it is only 
based on the list of queries that constitute the given query 
sequence. 

Strategy III: Semantic Rewrite 
Another deciding factor for the DSS optimizer could 

be based on supplementary analysis of the original query 
sequence. One method to minimize the runtime of query 
execution is to minimize the number of temporary tables 
in the whole sequence, thus removing the overhead for 

writing to and reading from temporary tables. It is also 
important to avoid repeated references to temporary ta-
bles when composing the single query. Most temporary 
tables imply joins between underlying tables. Repeated 
referencing of temporary tables in different queries of a 
sequence implies a redundant computation of these tem-
porary tables via nested SQL statements when composing 
the single query. 

Simple transformations are the following: 
• Queries which restrict one single previous temporary 

table by additional projections and/or selections can be 
propagated to the query creating this preceding tempo-
rary table, i.e. the projections and/or selections of the 
consuming query are moved into the foregoing query 
by concatenating both projections (ConcatProject) 
and/or selections (ConcatSelect). 

• Queries with identical FROM, WHERE, GROUP BY, 
HAVING and ORDER BY clause can be merged into 
one query by concatenating the SELECT clauses. We 
refer to this transformation as MergeSelect. 

• Queries with identical SELECT, FROM, GROUP BY, 
HAVING and ORDER BY clauses can sometimes be 
merged into one query by concatenating the WHERE 
clauses by AND (MergeWhere). If the queries differ 
only in a selection on the same column, they can be 
combined by replacing parts of the WHERE clause by 
an additional grouping on this column (Where-
ToGroup). 

• Queries with identical SELECT, FROM, WHERE, 
GROUP BY and ORDER BY clause can be merged 
into one query by concatenating the HAVING clauses 
by AND (MergeHaving). 

INSERT INTO C5 
(custkey, stddev1, stddev2)

SELECT a1.custkey,
STDDEV(a1.endprice),
STDDEV(a1.endprice) / 
AVG(a1.endprice)

FROM lineitem_orders a1,
orderday a2

WHERE a2.orderdate =
a1.orderdate

AND a2.orderyearkey IN
(1992,1993,1994)

GROUP BY a1.custkey;

INSERT INTO C7
(custkey, custname, stddev1,
stddev2, turnover1992,
turnover1993, turnover1994)

SELECT C4.custkey, a3.custname,
C5.stddev1, C5.stddev2,
C4.turnover1992,
C4.turnover1993,
C4.turnover1994

FROM  C4, C5, customer a3
WHERE C4.custkey = C5.custkey
AND C4.custkey = a3.custkey;

INSERT INTO C5 (custkey, stddeviation)
SELECT a1.custkey, STDDEV(a1.endprice)
FROM  lineitem_orders a1,

orderday a2, C4
WHERE a2.orderdate = a1.orderdate
AND   a2.orderyearkey

IN (1992,1993,1994)
AND   a1.custkey = C4.custkey
GROUP BY a1.custkey;

INSERT INTO C6 (custkey,stddeviation)
SELECT a1.custkey, 

STDDEV(a1.endprice)/
AVG(a1.endprice)

FROM  lineitem_orders a1,
orderday a2, C4

WHERE a2.orderdate = a1.orderdate
AND   a2.orderyearkey IN

(1992,1993,1994)
AND   a1.custkey = C4.custkey
GROUP BY a1.custkey;

INSERT INTO C7 (custkey, custname,
stddev1, stddev2, turnover1992,
turnover1993, turnover1994)

SELECT a4.custkey, a4.custname,
C5.stddeviation, C6.stddeviation,
C1.turnover1992, C2.turnover1993,
C3.turnover1994

FROM  C1, C2, C3, C5, C6,
customer a4

WHERE C5.custkey = C1.custkey
AND C5.custkey = C2.custkey
AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey
AND C5.custkey = a4.custkey;
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INSERT INTO C5 

(custkey, stddev1, stddev2)
SELECT a1.custkey,

STDDEV(a1.endprice),
STDDEV(a1.endprice) / 
AVG(a1.endprice)

FROM lineitem_orders a1,
orderday a2

WHERE a2.orderdate =
a1.orderdate

AND a2.orderyearkey IN
(1992,1993,1994)

GROUP BY a1.custkey;

INSERT INTO C7
(custkey, custname, stddev1,
stddev2, turnover1992,
turnover1993, turnover1994)

SELECT C4.custkey, a3.custname,
C5.stddev1, C5.stddev2,
C4.turnover1992,
C4.turnover1993,
C4.turnover1994

FROM  C4, C5, customer a3
WHERE C4.custkey = C5.custkey
AND C4.custkey = a3.custkey;

INSERT INTO C5 (custkey, stddeviation)
SELECT a1.custkey, STDDEV(a1.endprice)
FROM  lineitem_orders a1,

orderday a2, C4
WHERE a2.orderdate = a1.orderdate
AND   a2.orderyearkey

IN (1992,1993,1994)
AND   a1.custkey = C4.custkey
GROUP BY a1.custkey;

INSERT INTO C6 (custkey,stddeviation)
SELECT a1.custkey, 

STDDEV(a1.endprice)/
AVG(a1.endprice)

FROM  lineitem_orders a1,
orderday a2, C4

WHERE a2.orderdate = a1.orderdate
AND   a2.orderyearkey IN

(1992,1993,1994)
AND   a1.custkey = C4.custkey
GROUP BY a1.custkey;

INSERT INTO C7 (custkey, custname,
stddev1, stddev2, turnover1992,
turnover1993, turnover1994)

SELECT a4.custkey, a4.custname,
C5.stddeviation, C6.stddeviation,
C1.turnover1992, C2.turnover1993,
C3.turnover1994

FROM  C1, C2, C3, C5, C6,
customer a4

WHERE C5.custkey = C1.custkey
AND C5.custkey = C2.custkey
AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey
AND C5.custkey = a4.custkey;
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Figure 7. Modified Sequences for Request C 



 

We generated two modified query sequences for in-
formation request C. QS+MergeSelect is built by using 
the MergeSelect transformation for the tables C5 and C6 
of QS and by using a more complex transformation, 
which additionally reduces the number of joins in the 
new tables C5 and C7. The transformation process is 
shown in Figure 7. The other modification 
(QS+WhereToGroup) uses the WhereToGroup transfor-
mation to further reduce the number of queries in the 
sequence [25]. 

Obviously, these rewrite strategies can also be com-
bined with the single-query strategy and the partial com-
bination strategy. We refer to the queries resulting from 
these hybrid strategies as SQ+MergeSelect and 
SQ+WhereToGroup, where each respective query se-
quence is combined into one query. As a consequence, 
the number of join and sort operations in the rewritten 
queries drop drastically (more than 50%) as can be seen 
in Table 1. 

4.2. Parallelism 

In this section we discuss how parallel execution can 
support the query sequences generated by decision sup-
port applications. Our focus is not on intra-query parallel-
ism. We assume that the DWDBS is able to generate par-
allel query plans for all queries in a sequence, where suit-
able. 

Apart from this perspective on parallelism, it is also 
interesting to see whether the DSS optimizer can figure 
out a group of queries in the sequence that could be run 
in parallel. Therefore, our focal point is inter-query paral-
lelism. For each sequence of queries, we can determine 
how the steps of the sequence depend on each other and 
describe these dependencies for example by means of a 
graph. The dependency graphs for the query sequences A 
and C of our application scenario are shown in Figure 8. 
For sequence A the graph shows, that A1 and A2 could be 
generated in parallel. For sequence C, the tables C1, C2 
and C3 could first be generated in parallel and later in the 
sequence the same holds for tables C5 and C6. In general, 
a group of queries can be executed in parallel, if none of 
the queries within the group depends on each other. 
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A2

A4

A3

C1

C2

C3

C4

C5

C6

C7

C8

A1

A2

A4

A3

C1

C2

C3

C4

C5

C6

C7

C8  

Figure 8. Dependency Graphs 

The dependency graph for a given sequence of que-
ries can easily be determined by observing the FROM 
clauses of all queries. The graph consists of the tempo-
rary tables Tempi as nodes. An edge from node Tempi to 
Tempj exists if the FROM clause of query Qj contains 
Tempi. In particular, no knowledge about the application 
is required. Hence, this optimization strategy turns out to 
be applicable for the DSS optimizer. 

The implementation of this strategy can be based on 
methods that generate parallel execution plans for SQL 
queries as they are used in standard database systems. 
These techniques produce an internal representation of 
the queries, which is extended by data and pipeline paral-
lelism. The same methods could be used to exploit de-
pendency graphs for query sequences like those in Figure 
8. That is why available technology is very well suited 
for the DSS optimizer [7] [21]. 

But how about the interface of the DSS optimizer to 
the database system? The standard interface of a 
DWDBS allows the application to send one query after 
the other within one database transaction. For each of the 
SQL statements to be run in parallel, a separate connec-
tion and a separate transaction is necessary. Since those 
queries that are independent of each other should be 
started in parallel, only their access to the data warehouse 
base tables could inhibit the use of parallel transactions. 
If we assume that decision support applications only read 
base tables in the data warehouse, the standard SQL in-
terface of database systems turns out to be sufficient for 
the optimization strategy we have discussed here. 

4.3. Statistics 

Query sequences generated by decision support appli-
cations usually produce the result data set that is relevant 
for the end user as the last step of the sequence. As soon 
as this last query terminates the final result is available 
and all other temporary tables could be dropped. For 
query sequence A in our example, table A4 contains all 
relevant data for the end user whereas tables A1, A2 and 
A3 may be deleted as soon as A4 is complete. 

Each query in a sequence is processed by the opti-
mizer of the DWDBS. One important factor that deter-
mines the efficiency of query execution is whether all 
necessary statistical information is available for the opti-
mizer or not. Relevant statistical information is the num-
ber of rows, the number and type of all columns and the 
distribution of values in all columns of each table that is 
read by a query. Most database systems do not automati-
cally update statistical information. For example, a sepa-
rate statement is available for Oracle8i that starts the up-
date of statistical information for a single table [22]. The 
following statement would be necessary to generate sta-
tistics for A1: ANALYZE TABLE A1 COMPUTE STA-
TISTICS. Additional parameters may be used in order 



 

to make available more detailed information on the table 
and its indexes. 

We assume that statistical information is up to date 
for all base tables of the data warehouse. However, this is 
not true for temporary tables generated by a sequence of 
queries. If the execution of a query sequence should be 
based on current statistics, the statements that provide 
this information have to be added to the sequence. The 
sequence for query C, as given in Figure 8, could be 
augmented by calling ANALYZE TABLE for the tempo-
rary tables C1 through C7. The statistical information has 
to be available for each of these tables before the tables 
are read by another query in the sequence for the first 
time. The statistical information for table C1 does not 
have to be present until the query for C4 starts execution. 

This leads to an additional strategy for the DSS opti-
mizer that is applicable without any knowledge about the 
application that generated a sequence of queries. A se-
quence could be extended by statements that provide ad-
ditional statistical information for the DWDBS optimizer. 
For this task the DSS optimizer has to know, how this is 
done for different database systems and which parameters 
influence the available statistics. It also has to take into 
account the trade-off between the time that is needed for 
the update of statistical information and the query execu-
tion time that is saved with execution plans based on this 
information. Further enhancements could be achieved by 
running statistic updates in parallel to other statements in 
the sequence. This is always possible if the queries do not 
depend on the temporary table for which the statistic up-
date is in progress. 

4.4. Partitioning and Indexing 

All optimization strategies we have discussed so far 
are based on rewriting a sequence of SQL statements or 
enhancing the way it is executed. In this section, we will 
briefly discuss some approaches to support OLAP appli-
cations by changing the schema of the data warehouse. 

Additional indexes on base tables in the data ware-
house enable the optimizer of the DWDBS to find query 
plans that are more efficient. No rewriting of queries is 
required. It is necessary to find the proper combination of 
indexes that offer maximum support for all applications 
on the data warehouse and take into account given con-
straints on disk space and time for index maintenance. If 
typical query sequences on the data warehouse are 
known, administration tools of current database systems 
can be used to establish the suitable set of indexes [5] 
[13]. 

Partition tables support typical OLAP queries because 
they reduce the amount of base data that has to be 
scanned for one sequence of queries. One large fact table 
could include data for several years. If the typical query 
retrieves data for exactly one year, it might be more effi-
cient to store the facts in partition tables for each year. 

The scan of one partition table instead of scanning the 
complete large fact table might then be sufficient for 
many queries. A smaller volume of data is likely to result 
in a more efficient retrieval of results. This kind of parti-
tioning is supported by some OLAP tools [16]. 

Applications on a data warehouse can also be sup-
ported by aggregate tables. Especially OLAP applications 
require a lot of grouping and aggregation. If the aggre-
gated data is already present in the data warehouse, que-
ries run more efficient because less data has to be proc-
essed and less aggregations have to be computed. Some 
algorithms to find the proper set of aggregate tables are 
described in [12]. [33] describes a couple of approaches 
how a given query can be processed based on existing 
aggregate tables. 

Our experimental results indicate that indexes, aggre-
gate and partition tables are appropriate means to en-
hance query sequences. Nevertheless, the DSS optimizer 
is not the suitable component to create indexes, aggregate 
tables or partition tables. The successful exploitation of 
these three strategies is based on knowledge about the 
schema of the data warehouse and the characteristics of 
all applications that access data in the warehouse. There 
is another important difference to the optimization ap-
proaches described in Section 4.1 through 4.3. All strate-
gies we described there offer a local optimization for ex-
actly one sequence of queries, whereas additional indexes 
and additional tables also influence the performance of 
other queries. Therefore, they should be part of the 
DWDBS administration. 

5. Experimental Results 

For our experiments, we have created the modified 
schema as described in Section 2.1 in a database system. 
We populated the tables with data based on the original 
TPC-H data, generated with three different scale factors 
according to the benchmark specifications. Our largest 
data set for which the results are presented here was pro-
duced with scale factor 10. The raw data summarizes to 
10 GB, the main fact table lineitem_orders has about 60 
million rows. The environment used for the experiments 
consists of a Sun Enterprise E4500 with 12 processors, 
12 GB main memory, the object-relational database sys-
tem IBM DB2/UDB V7.1 and a benchmark tool that is 
provided with DB2. 

From a technological point of view, we could have 
used any other market-strength DBMS since we only 
used techniques that are commonly available (e.g. paral-
lelism, indexes, partitioning as well as statistics). The 
decision for DB2 was twofold: First, we wanted to collect 
detailed information on the generated query plans. This 
information is provided by the EXPLAIN utility of DB2 
[13]. Second, DB2 is known for its good optimization 
technology and thus can play a good reference point. 



 

The results given in Table 2 are a subset of more than 
400 experiments, where one experiment is the execution 
of one query sequence for one information request on one 
test data set. Each value presented here, is the average of 
at least three experiments. Some cells of Table 2 are 
empty because not all optimization strategies were appli-
cable to all of the three information requests. Most of 
them are applicable to information request A and request 
C. Business questions that are similar to these two are 
very likely to build the majority of questions in a real 
environment. 

Table 2. Experimental Results (in seconds) 

Information Requests  Optimization Strategy 

A B C 

1 QS 4877 498 30209 

2 QS + MergeSelect - - 4188 

3 QS + WhereToGroup - - 2296 

4 SQ 2834 - 10734 

5 SQ + MergeSelect - - 3853 

6 SQ + WhereToGroup - - 4900 

7 QS + Statistics 3109 - 5263 

8 QS + Parallelism 3939 - 29004 

9 QS + Indexes 5428 25 - 

10 QS + Partitions 3712 26 27984 

 
Looking at the results in more details, one can see that 

in almost all cases the optimization strategies were suc-
cessful in reducing the runtime of the information re-
quests. Sometimes there was only a slight enhancement 
whereas other strategies led to an execution time that was 
an order of a magnitude shorter than for the original 
query. 

The execution time for the original sequence of que-
ries (QS) is given in line 1. The modified versions of the 
query sequences and their combination into a single-
query (SQ) as described in Section 4.1 are shown in lines 
2 through 6. These results show that combining the 
statements of a sequence is likely to improve the per-
formance. However, this is not true for information re-
quest C. The sequence QS+WhereToGroup runs much 
faster than the corresponding single-query. Hence, the 
DSS optimizer has to decide in which situation it is ap-
propriate to combine the queries of a sequence and in 
which the eventually modified version of the sequence is 
the best choice. 

Line 7 of Table 2 shows the results for the query se-
quence that was enhanced by generating additional statis-
tical information for temporary tables. In our experi-
ments, this version of the queries runs always faster than 
the original sequence. For information request C it was 
also faster than the very complex single-query (SQ), 
whereas for request A it was slower than the single-
query. Therefore, leaving the query sequence as is and 
generating additional statistical information for tempo-

rary tables is a supplementary alternative to the other 
strategies, which can be used by the DSS optimizer. 

The third basic alternative for the DSS optimizer is to 
run the sequence of queries as it was generated, but with 
some queries of the sequence in parallel as described in 
Section 4.2. The experimental results for this strategy are 
given in line 8. They show only a slight improvement 
compared to the original sequence. Especially for infor-
mation request C the enhancement is less than 10 percent. 
This is because the runtime of the query sequence for this 
question is dominated by only one query that joins sev-
eral temporary tables. 

Some results for the strategies that turned out not to 
be appropriate for the DSS optimizer are given in lines 9 
and 10. With additional indexes and partitions, we can 
see a remarkable performance enhancement for informa-
tion request B. Additional partition tables reduced the 
runtime for information requests A and C, where the re-
duction is between 8 and 25 percent. For the information 
requests A and C we achieved further improvements by 
other strategies that are useable by the DSS optimizer. 
Hence, we do not loose too much optimization potential 
if the DSS optimizer has to ignore additional indexes and 
partitions as optimization strategies. Nevertheless, in a 
real environment these strategies are mandatory for the 
administrator of the data warehouse. 

6. Conclusion 

In this work we investigated that an optimizer in be-
tween decision support applications and the DWDBS is 
essential for the efficient processing of some classes of 
typical information requests generated by DSS tools. 
Hence, we suggested an optimized system architecture 
for decision support applications. In this architecture, 
generated query sequences are rewritten by an additional 
system component, called DSS optimizer. The transfor-
mation is based on optimization strategies that are inde-
pendent of the application and use little knowledge about 
the underlying database system. This DSS optimizer has 
two main advantages. First, it is able to support several 
applications without any need to change their query gen-
eration algorithms. Second, it is capable of applying op-
timization strategies that are not supported by state-of-
the-art database systems. 

We set up a realistic application scenario, selected a 
set of relevant information requests and ran a large series 
of experiments based on TPC-H data. Our experiments 
have shown that all three strategies we proposed for the 
DSS optimizer were successful. They reduced the run-
time of the given query sequences significantly. None of 
the three strategies turned out to be the best in all situa-
tions. Hence, it is the task of the DSS optimizer to decide 
upon the strategy to use. This decision should be based 
on information gained from the query sequence itself and 
on meta data gained from the underlying database sys-



 

tem. Therefore, further work will focus on heuristics that 
could be used by the DSS optimizer in order to decide 
which optimization strategy or which combination of 
strategies should be used for a given sequence of queries. 

Another important issue of future work is the design 
and implementation of the DSS optimizer. The basic 
technology for a DSS optimizer is in place because all 
three strategies are based on matured technology. Gener-
ating single-queries is similar to view expansion. Deter-
mining queries within a sequence that could run in paral-
lel is based on parallel database technology [7] [21]. Us-
ing statistical information for query optimization is a ba-
sic optimization technology. Furthermore, we want to 
apply extensible optimization technology as is available 
with systems like CASCADES [8]. In doing so, one has 
to observe that the DSS optimizer is not a general-
purpose optimizer, but only a specific component that 
supports only a predefined set of optimization strategies. 
Consequently, we want to reconsider the main design 
decisions of an optimizer e.g. search space, rule set and 
cost-based decision making. As a result, we want to come 
up with a tailored and efficient DSS optimization compo-
nent. 
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