
���������	�
����
���������
�������������	�
Aiko Frank
���������	�
�����
����
���������������
�����

�������
�����
����
�������
����� ����!��"�����������������
����#�

Bernhard Mitschang
���������	�
�����
����
���������������
�����

�������
�����
����
�������
����$%!��"�����������������
����#�
��������

�%����

#���
 ��
��
 ��&������
��&�$�
 ��
#�����'���#
#���
�
������������
 ��#
 �%��(#
 '�
 ��&&����#
 '�
 ��
 ��#��(���

�������
���
���$%������
�$$���
 ��
#���
 ��
 $��"(�$�
&�����
�&&(���

 $��$�����$�
 $�����(
 ��#
 ���
 &%���
 $�����
 ���
��
 �&����
 ��
 '�
 $����#���#�
 ���
 #���
�
 &��$�����
 �(��
#����#
 $��&�������
 '������
 �%�
 #���
�����
)�
��������
�'���
 �$�����
 ��
 �%�
 &��#�$�
 ��#��
 #���
�
 ��#
 �%�
 ���(�
�*$%��
�
 �"
 &��(�������
 ����(��
 ���
 $��$��(
 �������
+�����((�#
#���
�$$���
'�
����("
#����,�
"�(("�(
�((
�%�
���#�
"��
$��&��������
-�
��((
&������
�
���
�&&���$%
�%��
��(���
��
 �
 $��$�&�
 ��#
 ������
 ��#�(
 �%�$%
 ����
�����
$��$������
 �$��������
 '�
 �
 $�����
 ��"��������
 �&�$�
�""����

 "(�*�'(�
 &����$�(�
 "��
 $��&�������
 ��
 �%�
 �%���#
�'.�$���
 -�
 ��((
 #��$��'�
 �%�
 $������/�'�(���
 �"
 �%�
&����$�(�
��
�((��
�%�
�&&���$%
��
'�
�#�&��#
��
#�""�����
$��&�������
�$��������

�������
�����
�

Processes in concurrent engineering and design rely on
cooperation between the different participants. This
cooperation is necessary to establish and coordinate the
tasks needed to fullfil the goal of the design process. Those
tasks (also called design steps) - in which the complete
process can be subdivided into - rely on the results, states
and progress of concurrent, previous, and future tasks.
Typically it can not be exactly planned beforehand which
tasks are necessary, how the tasks depend on each other,
and how and when those tasks have to interact. Thus it is
necessary to offer mechanisms to support cooperation at
runtime.

We already presented our activity model for
coordinating design tasks in [3]. In this paper we will
discuss data sharing as the second pillar of the ASCEND
project (�$������
��&&���
��
+���&�������
0)����������
"��
����
�
 ������). The situation we started from is given by

non-integrated systems which should share data in order to
coordinate tasks in a joint process (Figure 1). The difficulty
is that the data to be exchanged is not under a common
system control. That might cause inconsistent views,
conflicts and errors. So our answer is to transfer the data to
be shared under a common and adequately customized
system control.

Figure 1. Data sharing for heterogenous
systems

��������
������������

A new technical term for activities that integrate both,
groupware as well as workflow is called #���
�"(��. To
give an idea of our activity model, we describe the design
of a new computer printer as a designflow (Figure 2).

First the general specifications for the printer have to be
established: type (laser, ink), processor and chipsets, page
format, OS platforms, pricing, and so on. This results into a
specification document, which is stored in the shared
information space (SIS). Also a preliminary list of
hardware components and software modules (generic
driver files, ...) to be used is collected and stored in the SIS.

We didn’t detail the activity ���������
 �&�$� which
might contain group meetings, and analysis of vendor
documents. The first printer specification is used by the
groupware activity ����
�
 +���#������� to delegate the
design of hard- and software. Those activities are further
detailed, containing specific sub-activities. The hardware
design activities have to work closely together, since they
share e.g. the circuit layout, hardware specs and

Task
System A

Task

Task

Task

Task
System B

Task

Task

Task

components. Changes in the specs or layout can be
propagated and when necessary negotiated. Similar, the
software design activities have to have access to the current
hardware design and specification in order to correctly
write software for the printer. The software activities have
also to interact on shared data (i.e. files, specs) as is typical
for software processes. Tests are executed to validate the
software and simulate the hardware (e.g. electro magnetic
compatibility). The hardware simulation is described as a
workflow since it is a automatable process. Finally the
����
�
+���#������� is responsible to decide if the design
is finished.

Figure 2. Designflow for printer design

The SIS in the example is important for the activities to
exchange current design and preliminary results. Thus all
activities can be aware of the work of others which they
depend upon. For example, if the display is altered, the �1
activity gets notified and can react to those changes. The
notification is possible since the �1 activity is registered on
the (output) components.

��������� !������
���

A straightforward approach to support concurrent tasks
is synchronizing them, like DB transactions or workflow
systems do [5]. The processes we look at can be dynamic
and require interaction and sharing of preliminary results.
Thus they shouldn’t be synchronized nor can be completely
defined in advance. We actually don’t want to serialize
tasks anyway, since this prohibits any kind of parallelism.
Instead we want to encourage cooperation, awareness and
early data exchange which is typical for design and

engineering processes. Additionally, we want to have
system support for executing a process and individual
actvities.

First we have a look at the activity model as part of the
��+0)�
 ����
�"(��
 2�#�((ADM). Our approach is
combining groupware and workflow technology to
comprehensively support structured and less structured
parts of processes. The complete integration of existing
groupware and workflow systems is not readily possible.
We suggest an integration by encapsulating corresponding
processes into ASCEND groupware and workflow
activities, which can then be combined in ASCEND
designflow activities (see [3] and Figure 3).

Figure 3. Combining different systems in a
common activity model

The second part of the ADM regards data handling. The
control of data access is a very well suited mechanism for
coordination between concurrent tasks since data
dependencies also translate into task interdependency.
Those dependencies can be solved by concurrency control
or additionally by cooperative interaction (e.g. negotiation)
between tasks, respectively their actors (human users of
activities).

The wrapping of the activities, as pictured in the above
figure, realizes the integration into our designflow system.
Our system also offers cooperation functionality like data
sharing. For this the shared data has to be moved into the
SIS (Figure 4). Logically the usage of those shared objects
in the SIS is handled through the designflow system. I.e.
the system guarantees that access to the objects is executed
like the objects are natively stored through the designflow
system. Resulting problems are mentioned in Section 3.

Design Printer

designflow activity
workflow activity

groupware activity

delegate

use

information space

Determine Specs

Design Coordination

UI

Simulation
EMC

Hardware Design Software Design

Casing

Display

Circuitry

Processors

Keyboard Chip Sets

Network

Internal Modules

Drivers Network

Tests

Write Doc.

Specification
HW specs
SW specs

components
circuit layout
documentation

Write Doc.

Task

Groupware System

Task Task

Activity

Workflow System

ActivityActivity

Designflow Activity

Groupware Activity Workflow Activity

Activity

ActivityActivity

Task

Task Task

Figure 4. Transferring data into SIS

When examining objetcs to be used, one has to be aware
that the objects often have dependencies between
themselves, i.e. we have $��&(�*
 �'.�$�
 ����$�����.
Sometimes complex objects are summarized as documents.
Using this abstraction, one can think of a document being
simultaneously edited by two users A and B. If the
document is a single object, all actions on it are potentially
in conflict. When the document can be “looked into”—i.e.
it is separated into different objects like paragraphs or
chapters—those sub-objects can be individually assigned
and coordinated (e.g. [1]). Thus interference occurs less,
when each user can only write to certain objects, which are
distinct from the other user’s ones. On the other hand if
sub-objects are shared, awareness can be reached by
making this fact known (e.g. displaying locked
paragraphs). Another advantage is using object
decomposition. Sub-objects can then be delegated to other
tasks. This sub-object is exactly the part that the task has to
work on, like delegating only the printer’s case instead of
all components. Of course it is possible to query any other
sub-object of the complex object if it is necessary to access
their information to complete a task, as would be necessary
to know the dimension of keyboard and display to correctly
define the printer’s case. The sub-objects also have
dependencies amongst them, like the printer’s case has to
be large enough to fit in the corresponding toner cartridge.
We propose to use dependencies for objects in Section 2.2
for building complex objects to support such scenarios.

The last aspect discussed is the customization of
objects. This is advantageous on two levels. First it is
important to support requirement of different applications
with different semantics of objects and even different

object types. Secondly, as already discussed in [4], the
granularity of objects is a crucial issue, which determines
the degree of cooperation (and coupling). By using an
object-oriented approach this should be fairly easy (Section
3). To finally use the objects with varying granularity and
semantics, the access protocol also has to be flexible to
adapt to different application semantics. Our answer to this
is the use of conversation protocols in Section 2.3.

�������	��
����������������
�����
�������

In this chapter we discuss the concepts of the SIS. The
information space comprises many aspects to support data
exchange and cooperation. Since we use protocols to share
objects, we can easily establish awareness and cooperation
patterns. Also direct cooperation on the basis of interaction
through protocols is possible.

������"������
�����

In the ADM we call objects and activities entities, since
they are somehow self-contained and can interact with each
other. The basic aspects of the SIS comprise the
information space itself containing objects and their
dependencies, a communication layer for exchanging
messages, and finally the protocols for communication
between the entities (Figure 5).

Figure 5. Communication and cooperation
infrastructure for ASCEND

��������
���������������������

The SIS is basically a simple name service, where all
available objects and dependencies are being referenced.
Thus objects to be shared have to be registered into this
name service by some tool or application. Removal from
the SIS is realized by unregistering the corresponding
object. The object has to make sure that all connected
activities and dependencies are then also disconnected.

Task

Groupware System

Task Task

Activity

Workflow System

ActivityActivity

Designflow Activity

Groupware Activity Workflow Activity

Activity

ActivityActivity

Task

Task Task

Shared Information Space

$��&�������

#���
�$$���

#���
�$$���

Messages
Protocols

Activity

Shared Information Space

Object

Activity Activity Activity

Object
Object

Dependency Dependency

1

2

31 Object Usage 2 Object Structuring Inter-Activity Negotiation

3

Our approach to SIS can be characterized as being
object-oriented. An object of the SIS implements at least
the following structures and functions:

• user register
Activities intending to use an object have to register on
it. Thus depending on the access protocols implemented
and applied to the object, users can be e.g. notified on
object modifications caused by others.

• communication
In order to communicate with an object, like modifica-
tion, registration and so on, a receive function for mes-
sages has to be offered. Also the object itself has to
have some kind of send function to communicate with
other entities.

• privileges
Typically the different users may have also different
access rights to an object. Those have to be managed by
the objects. Negotiation for privileges is executed via
according protocols.

• dependencies
Dependencies among objects are recognized.

• identifier
An object has an unique identifier, and is stored by this
in a name service.

All objects derive from the same interface, allowing
dynamic handling of different objects types.
Communication with an object relies on a known protocol
(as opposed to fully dynamic conversations). This
independency from the encapsulated resource eases the
handling of different objects.

As explained before, dependencies are introduced for
establishing complex object structures, e.g. to support task
delegation scenarios with decomposed design items. The
semantics of dependencies can be manifold. Currently we
only look at “part of” and “is a” as dependencies, but
whenever necessary, additional dependencies can be
introduced. Of course the handling of dependencies can get
in-efficient, when complex interactions between the objects
have to be handled. It is up to specific implementations to
find a compromise between functionality and efficiency. A
dependency has to fullfil the following:

• object list
Here all dependent objects are referenced. In case of
e.g. a “part of” dependency, they can be distinguished
regarding super-object(s) and sub-objects. By querying
this list a sub-object may find its siblings and its super-
object (vice versa for super-object).

• communication
To realize interaction for dependencies and objects (e.g.

notification) we also use the same communication inter-
face like entities.

• identifier
Like an object, a dependency is also stored in the name
service by this identifier.

Typical scenarios involving dependencies include bill of
materials, hierarchically structured objects, or objects with
specific semantical relationships. Regarding our previous
example, we may have a structure like the one shown in
Figure 6. Further part-of relationships as for the chip set or
the circuit board are existent, but have not been detailed.
As one can see, the is-a relationship can be also very useful
to express semantics for scenarios.

Figure 6. Object relationships for printer
structure

��#�����
�
�
��

We picked aspects from conversation nets, speech acts
[7] and agent technology to build powerful but simple
protocols for interaction among the entities in our model.
The advantage of combining those technolgies is the
simple definition of protocols, comprehensibility and the
possible deployment of a generic protocol engine, which
can be customized to support different protocols. Our
protocols realize the access, interaction and negotiation
between the ADM entities. Thus cooperation patterns can
be established and group awareness (e.g. querying all users
of an object) achieved.

Figure 7 depicts a typical usage protocol, from the
object’s view, as a simple example. First the object receives
the registration request of an actvity (usage). Now the
object has to decide, whether to accept the request or reject
it (reject/accept). This decision can be delayed when
the object decides to negotiate parameters of the request
(propose), e.g. by proposing a read only privilege instead
of an exclusive one. This negotiation can take some
iterations until a final agreement or denial is reached.

printer part of
display

chipset

circuit board

is a

68030

processor68020

68000

Figure 7. Usage request for SIS object

An object access protocol can look similar to the usage
protocol. Instead of usage, the conversation topic would
be for example read. But depending on the object type, an
access protocol can become a lot more complex (Figure 8):

The activity E tries to modify object y (1). Since object
y knows that it’s in a tight coupled part-of relationship, it
has to ask its super-object x for a permit to be modified (2).
Object x’s implementation requires registered activities to
agree on changes, so it has to ask these activities for a
permit itself (3). The result is transferred back to object y
(4) and also made known to activity E (5). If the requested
modification has been successful, the part-of dependency
can then actively notify its other users object y about the
modification (6) to ensure consistent views.

Figure 8. Complex access protocol

The above scenario is kind of a worst case of an access
request (esp. if you take into account that step 3 could
additionally require a further negotiation between activities
A, B, and C to reach a common decision). But it illustrates
what can be achieved through the combination of
customizable protocols, dependencies, and objects.
Generally one will not always implement dependencies and
objects (and their corresponding protocols) as suggested by
this scenario, but instead as is sensible for a specific
application scenario.

#��$����%���
�

We will now briefly describe how to realize the
presented concepts and where customization is possible.

#�������
��������������
�����

The objects are a central concept to our approach since
they are used to coordinate the work, raise group
awareness, and support cooperation. Our implementation
CASSY (+��&�������
 �$������
 ��&&���
 �3����) uses
CORBA as middleware. This allows wrapping of
proprietary systems and resources as well as the
exploitation of existing services (events, workflow facility,
...). The groupware facility has been implemented by
ourselves using CORBA. It offers typical groupware
functionality like tasks, workspaces, groups, resources.
Problems arise from the API supported by legacy systems,
if they don’t offer access to internal structures and
functionality (e.g. IBM’s FlowMark). In that case they
can’t be fully integrated by CASSY. E.g. if objects in the
workflow system can not be locked over the API, CASSY
has to make sure to lock the object for modification access
outside of the workflow activity while the corresponding
workflow is running.

ADM objects and activities are implemented as
CORBA objects. Adaptibility of objects and dependencies
is fairly easy by exploiting object-oriented concepts like
inheritance. E.g. a simple part-of dependency
implementation can just realize the storing of the
referenced objects and querying them. When a tighter
coupled approach is required, a dependency can be derived
and additionally implement mechanisms like propagation
of changes from one object to the other referenced objects.

#�������
�
�
�������%���
�

An adaptive object model alone is not sufficient for
supporting manifold scenarios in design and concurrent
engineering. Flexible protocols are as well needed to use
the object model as suggested by the application scenario.

Being CORBA objects, the objects of the ADM have
already some characteristics of active objects, which led us
to look into agent technology. We found the approach of
agent communication promising, especially since it is very
adaptable and supports arbitrary interactions. For our
prototype implementation we used the JATLite package [6]
as platform for agent communication. The message format
has been defined in KQML [2]. KQML is very flexible and
thus lets us define very sophisticated protocols. As can be
seen in the screenshot (Figure 9) we implemented some

R:usage

S:accept

S:reject
S:propose

R:accept/reject start state

state

final state

R: receive
S: send

negotiation
phase

object yobject x part of

activity
A

activity
B

activity
C

activity
D

activity
E

usage

2

5

4

3
1

i protocol step

Shared Information Space

6

protocols and corresponding entities to test the definition of
protocols and their usability. Currently we want to
implement this approach into CASSY, because of the
positive results from the prototype.

Figure 9. Screenshot of protocol agent

A further advantage of this implementation is that actors
can also be integrated into protocols. The implementation
can be used to offer an actor choices of answers (or
requests) valid in a protocol (see list of transitions in Figure
9). Thus the proposed approach can allow direct interaction
between actors and/or entities. If a protocol between
entities reaches a point where human interaction is required
a corresponding choice of messages can be presented to the
actor. Through this we can integrate the actors more tight
into the process.

&���
������
�

Efficient design processes are characterized by the high
degree of concurrency and interdependence of the single
tasks or design steps. Those tasks are based on the
structuring and execution of activities, and the usage of
common data. We described a model to integrate shared
objects in a common information space for concurrent
activities. Our approach promotes cooperative techniques
like awareness and negotiation through the actvity model
and SIS combined with the protocols (e.g. delegation). This
allows cooperation to take place between the actors and
entities in our system model.

The adaptability enables one to customize the model to
specific needs. The object protocols can be designed for
many scenarios, even very sophisticated cooperation
patterns. Object implementations can be suited to specific
object types and exploit their full functionality through the
generic message interface. Finally by the exploitation of
dependencies, complex object structures can be established

and functionally used. The degree of cooperation can be
adapted to the scenario by accordingly adapting protocols
and object granularity. Already the protocols we
established realize a high degree of dynamic
communication. We apply an implementation approach
that is built on agent technology. In doing so the model can
be even extended to dynamic cooperation interactions and
ad hoc adaptability for newly arising situations.

Further work requires the implementation of exemplary
protocols and object structures into CASSY to further
validate the proposed concepts. Also it seems worthwhile
to investigate whether those protocols could also be
advantageous for communication between system services
in CASSY, like the activity management or user client.

'����(�
)���	������

This work is partly sponsored by DFG grant MI 311/8.
We also thank Erol Bozak for his work on the prototype
implementation.

*��$���������

[1] Borghoff, U. M., Schlichter , J. H.: Computer-Supported
Cooperative Work: Introduction to Distributed Applications.
Springer, Berlin, 2000

[2] Finin, T., et al.: KQML: A Language and Protocol for Knowl-
edge and Information Exchange. In: Fuchi, K., Yokoi, T.:
Knowledge Building and Knowledge Sharing. Ohmsha and
IOS Press, 1994

[3] Frank, A.: Towards an Activity Model for Design Applica-
tions. ISCA 14th Intern. Conference on Computers and Their
Applications, April 7-9, Cancun, Mexico, 1999

[4] Frank, A., Sellentin J., Mitschang, B.:�TOGA - A Customiz-
able Service for Data-Centric Collaboration. Information Sys-
tems Journal, Vol. 25, No. 2, Elsevier Science Ltd., UK, 2000

[5] Gray, J., Reuter A.: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publ., San Mateo, CA, 1993

[6] Jeon, H., Petrie, C., Cutosky, M. R.: JATLite: A Java Agent
Infrastructure with Message Routing. IEEE Internet Comput-
ing, IEEE, 200

[7] Winogard, T., Flores, F.: Understanding Computers and Cog-
nition: A New Foundation for Design. Norwood, NJ: Ablex,
1986

