Agent Protocols for Integration and Cooperation in a Design
Application Framework

Aiko Frank
Universitdt Stuttgart, IPVR, Breitwiesenstr. 20-22D, 70565 Stuttgart, Germany,

Aiko. Frank@informatik.uni-stuttgart.de

Abstract

Design is a discipline, which requires support for the com-
bination of different systems and tools, spontaneous inter-
action between designers, sharing of (design) data, and
adaptability to altering conditions. When looking at design
processes it is a demanding task to coordinate and organize
the work of the different team members. The work of a sin-
gle person not only depends upon the work of others, but
can also influence the work of other designers as well. Cor-
respondingly, patterns of cooperation are to be established
to minimize or resolve resulting conflicts, support the con-
current use of data, and to coordinate the work process.

In order to fulfill those requirements the ASCEND Design-
flow Model and its prototype CASSY offer a corresponding
object model, an architecture combining workflow and
groupware systems, and finally a protocol integration layer
based on agent communication. This protocol layer helps
to flexibly combine the functionality of the different systems
and services, since it can be adapted to different applica-
tion scenarios. In this paper, we will describe the concepts
of the protocols and their implementation architecture,
resulting in a generic protocol engine.

1. Introduction

In this section we describe the motivation for our
approach and how protocols help to adapt to different
application scenarios as well as integrate data sharing,
workflow, and groupware functionality.

1.1. Motivation

Divide and conquer is the underlying technique that
allows to cope with the inherent complexity of engineering
design. This strategy refers to a decomposition of the arti-
fact under design into separate design items and to the del-
egation of design tasks to separate design teams, with each
design team being responsible for the design of the
assigned design item. To be able to concurrently work
within a team on those partitions without interfering or
avoiding to interfere with other designers is a demanding

task. Participantsin design have to cooperate often by other
means than their current design environment; they have to
resort to personal communication methods (like e-mail or
telephone) or have to follow certain external design guide-
lines in order to coordinate their work and to resolve con-
flicts. Since these rules and design guidelines are specified
outside the system, integrity cannot be controlled automati-
cally, leading to manual and error prone design control.

It is known that both workflow and groupware technol-
ogy can be successfully applied in order to support design
activities that are carried out by applications, like eg.
mechanical engineering, software design, or planning [10].
However, there is hardly any workflow or groupware sys-
tem exploited for an entire design process. One major rea-
son for this lack of acceptance is the restrictive
applicability of both technologies: workflow technology
concentrates on mostly rigid and predefined activity mod-
eling and thus restricts the creativity needed within the
design process; a single workflow defined gets instantiated
and enacted many times and is processed more or less auto-
matically. Quite contrary, groupware supports cooperation
among persons, focussing on powerful cooperation proto-
cols (e.g., data sharing, conferences, group editing); each
cooperation being performed differently.

1.2. Related Work

Current CAD or CASE tools, often suffer from alack of
coordination among the ongoing design activities. Most
rely simply on version management and shared files sys-
tems. CAD framework research, as found in CONCORD
[10], NELSIS [13], and Odyssey [3], is more advanced
since they provide the coordination of design steps, called
designflow management. CONCORD and NELSIS aso
realize some kind of repository for managing design data
(i.e., the meta data as well). Odyssey uses a resource man-
ager for data handling.

Still these approaches focus mainly on the concepts of
tool integration as well as activity management. Coopera-
tion is often neglected. CONCORD stands out by offering
so called cooperative designflows and corresponding coop-

eration operations based on a comprehensive transaction
model [10]. But this approach is restricted to a shared data
area between cooperating activities. Also operations on the
shared data are limited. Basically the available operations
are read, write, transmit, permit, revoke and a notification
mechanism. Thisis a profound base for executing coopera-
tion on data[11]. Unfortunately it is hard to realize specific
access protocols for different data types. The CONCORD
approach is based on database objects with the correspond-
ing data operations, whereas we prefer to also support
higher level operations for the objects (e.g., rotation for
CAD abjects). At last we want to support direct negotiation
between designers, especially regarding the goals of their
corresponding assignments. Hence, we believe it to be
important to offer cooperation protocols which can be
adapted to various application scenarios. Additionally our
approach focusses on integrating different systems (work-
flow systems, groupware applications, data storage, and
tools). To realize our model we propose the use of adapt-
able protocolsto deliver the according interactions.

1.3. System overview

By means of the ASCEND Designflow Model (ADM),
one is able to specify designflows adapted to an applica
tion’s particular design process and design methodology. A
designflow can comprise complex design activities that are
built out of workflow activities and groupware activities.
Furthermore the shared data is organized in a shared infor-
mation space (SIS), as described in [7]. The basic pillars of
this model and our prototype implementation CASSY
(Cooperative Activity Support System) are the common
activity management, an object model, a shared informa
tion space and the exploitation of flexible protocols to
ensure adaptability to different design scenarios. Those
protocols act as the glue between the different aspects of
the ADM. They can realize cooperation patterns in differ-
ent ways, ranging from direct negotiations between design-
ers up to handling concurrent access to CASSY objects.
CASSY uses CORBA as middleware for integrating the
different services and systems. We implemented a work-
flow facility [4] by wrapping IBM’s Workflow System
FlowMark to support automated processes. On the other
hand we implemented a groupware facility by ourselves for
generic cooperative functionality.

There exist three main challenges: activity management,
data management, and last but not least the integration and
adaptation of these aspects by protocols.

A common activity management coordinates the design
steps, called activities. The sharing of data has been real-
ized by introducing an object model for structured data.
Below in Figure 1 the basic building blocks of the ADM

are presented. Activities represent (complex) design tasks.
We alow the hierarchical structuring (consists of) of activi-
ties, asit is well known from workflow management. The
objects are data in the SIS which are used by the activities.
They can aso be structured by introducing adaptable
dependencieslike part of and isa [7]. Further functionality
can be exploited by the notion of delegation and protocols
describing interactions (e.g. usage and negotiation) in a
designflow. [7] and [6] give a more detailed coverage.

Opject delegation
CAD filg object usage
negotiation

Opject
pricelist part .Of
consists of
: activity sequence

[ks

designflow strcuture

activity structure

object structure

Building blocks of the ADM

Figure 1.

One challenge still needs to be discussed: how the inter-
action between the activity model, the SIS, and the human
designersis realized. We propose to use flexible protocols,
as presented in Figure 2 to combine the those aspects. We
offer access layersto wrap the corresponding systems. This
enables us to map and adjust their functionality for our
implementation. Groupware and workflow activities are
encapsulated by wrappers with interfaces for protocol
interaction. Similar the objects for the SIS have to be inte-
grated through the proprietary system interfaces (i.e., we
do not store them redundantly). The drawback is to find a
compromise between the available system functionality
and the desired one. For example, workflow data is not
existent if the corresponding workflow isn’t running. Also
accessing this data is very restrictive, since most workflow
systems don't propagate internal states on a fine granular
level. Thus we have to take such restrictions into account,
by accordingly adding and removing workflow data from
and to the SIS.

The ADM itself consists of the system components
activity management, SIS, and user interface (Figure 2).
They realize the combination of the wrapped functionality.
Finally, the integration by protocols gives us the opportu-
nity to dynamically combine the components and corre-
spondingly adapt their interaction behavior. Thus an
implementation can be customized to various design meth-
odol ogies and scenarios.

In the following section we present, what kind of proto-

colswe need and how they are defined. Section 3 describes
the means to realize such protocols, whereasin Section 4 a
prototype is presented. Finally we close by summarizing
our work and suggesting future research areas.
users Otask / activity
| user interface | D data object

‘ i

|

r — — 7
| | Protocol Layer |
o |
| (oo | |
| | |
| |
| |

Shared

Information Space

| A Groupware Access Layer
v 1BRe SS90 MO |IOMN

@ | *|1> Object Access Layer <1— |

l_Groupwaresystem D D [] D D H Workflow System

data from other sources
Figure 2. Protocols as integration enabler

2. Explicit specification of protocols

In this chapter we first define the components of proto-
cols. Thereafter some examples will be given to convey the
power of such protocolsin a design environment.

2.1. Building protocols

A protocol consists of the “control flow”, i.e. some kind
of state transition graph, the actions caused, and the under-
lying infrastructure, like messages. A conversation is the
execution of an interaction between more than one partici-
pant based on a common protocol.

Protocol graphs

We use two different types of states. The first one is
called observer state and depends on an external message
to arrive. The second kind is an internal state, which is
reached by executing a transition through the previous
state. Two conversing parties, use couples of internal and
observer states to exchange messages, respectively.

Basic message structure

The protocol layer acts as the communication enabler
between the entities of the ADM. The Communication
itself relies on messages passed between the parties of a
protocol. A message contains the following parameters:

e Topic: Thetopicisashort description of the intention of
the message, like write, use, accept.

e Sender: A message identifies the sender of itself.

e Recipient(s): Also the recipients are specified.

e Context ID: This D binds a message to a conversation.

o Further parameters: Those specify additional informa
tion (e.g., the new value for a data object, a textual
description, references to entities).

Composition of a protocol

A protocol is described in a state transition graph. A
state implements the actions taken, when the state is
reached. Afterwards it checks the post-conditions and
decides the next transition(s) to be taken. Start and final
states are specifically marked as such.

A protocol for a conversation between two parties con-
sists of an initiator protocol and the counterpart protocol.
Those complement each other (by observer and internal
states) and form the conversation protocol. If more than
two parties are part of a conversation, one can distinguish
between either multiple protocol couples or differing coun-
terpart protocols specific to each participant.

For simplicity, we will only describe in the following
sections either the initiator or counterpart protocol, since
most of the time their structure is identical and they differ
only by the transitions (send/receive). If important differ-
ences occur, we will specifically mention those.

2.2. Protocol samples

Generally all entities of the ADM can take part in proto-
cols. Also human users should be included by offering cor-
responding interfaces via some kind of interaction agent.
This way, protocol communication can be completely sys-
tem supported to ensure proper and consistent handling of
any entity of the ADM.

shared information space

—> +“—>
delegatlon usage (write) usage (read/notify) negotiation

Figure 3. Design process: bicycle

A design scenario

To better understand the application of the following
protocols, we describe a simple scenario. The goal of the
design process in Figure 3 is to produce the design of a

bicycle. The complete design artifact bike is divided into
two design item sets (i.e., frame and wheels/gear). Those
are delegated to two different activities, which declare a
usage relationship to their respective items from the SIS.
Since the wheels and gear depend from the frame design
and vice versa, additional usage relationships are estab-
lished, to be notified on changes. As hinted through the
double-arrow the two activities negotiate, when they want
to resolve conflicts between their designs.

Negotiation

Negotiation is a generic protocol, which can be used in
most situations since it readlizes a standard interaction
behavior (Figure 4). It starts by aproposal, which is negoti-
ated. This request can be altered by proposing different
statements from any negotiation partner and finally be
rejected or accepted. The request states the topic and some
representation of the content (e.g. “change gear design” or
some formal specification). The state diagram shows the
reguester’s view in such a negotiation:

S: send
e R: receive

R:a:cep/t?—

f Sy ;S:aooept/rejec:[RN ‘, ?"A Sart state
) [Ja
) '\Eﬁggaion [] final state

Figure 4. Generic negotiation protocol

This protocol can be exploited in many areas, when no
specific protocol exists, but the participants have to con-
verse in an organized way. The genericity is an advantage,
since it can be exploited when implementing new applica
tion scenarios. Easily a specific negotiation protocol can be
instantiated to adjust to the needs of the specific scenario,
without implementing the control logic of a conversation,
but only by using corresponding topics and parameters.

Usage

An important scenario for the ADM is the concurrent
use of shared data in the SIS. For an activity to use an
object of the SIS, it first has to register on this object to
establish a usage relationship. After a successful registra-
tion the activity can issue operation requests to this object
(e.g., read, write, or change of access permission). Finally
the usage relationship is terminated. It isn't necessary to
realize all of the three phases in a single protocol, in con-
trary it seems to be more efficient to offer different proto-
cols. That allows us to dynamically use the protocol which
best fits the current situation and the specific object type.

A usage request is detailed in Figure 5. It differs only

dightly from the generic negotiation. But one should note
that the topic (usage) is predefined as the negotiation phase
is aso more exactly tailored to the registration (e.g.,
whether aread lock can be acquired). The termination of an
usage is not detailed, as it works as one can expect.

S: send
S.granth I’?’ o t/> _éct‘ - R: receive
. Riaccept/r
@ R:u%gg " le @ i start state
- .S.change >
Sdenyi \g Dstate
negotiate .
parameters D final state

Figure 5. Usage request protocol

Object operations

The operational requests to an object depend on the
object type. For example, a database table offers SQL que-
ries and locking, a CAD object might alow its rotation. We
look athree examples for awrite operation, to see how this
can be realized:

e Exploitation of locking mechanism: Only if the writer
possesses exclusive write access, the request is exe-
cuted at once. If write access is not given, the requester
can be informed of the owner(s) of write locks (through
the parameters of the reject message). Then it lies upon
the requesting activity to start negotiating with the
owner(s) about transferring the write lock. After acquir-
ing the lock it can try again the write operation.

__ possible notification of change to

~ dl registered activities

S es# check access permission

(inform about reason
V Rwrite | .
A Sfailure

for denia, e.g.,
Figure 6. Write operation with locks

blocking activities)

e The object is shared by many activities which have to
agree on the proposed write (see also [8]). This requires
the protocol to find a decision if the request is accepted
or rejected (Figure 7). This might seem complicated,
but raises consistent views between the activities on the
data. Also the notion of group awareness is reached,
since the other activities become aware of the changes.

e The writer has no write access, but the object trieson a
best effort basis to execute the operation. So the object
itself starts negotiating with the owners of write locksto
either permit the write operation or to transfer the
access rights. If successful, the write operation can be
executed. In this case the protocol of the object invokes
some other negotiation protocol(s), while it is in the
"check state’ of Figure 6.

The basic write protocol remains the same for all pre-
sented scenarios, but the implementation of the actions of
the states varies. It strongly depends on the intended use of
the abject. We will discuss this further, regarding customiz-
ability in Section 3.2.

decideif writeis committed

Ssu
W Rwrite
/ > >
f Sfailure
\/ S:execut
S:.commit

R:reject
R:accept

S.discard

ask registered activities for commit c\ol lect answers

Figure 7. Write operation with multi user commit

Delegation

Design typically relies on decomposing adesign artefact
into smaller design items and delegating those to different
design activities. The specification of a design item is the
means to ensure a better integrability when combining the
single items again to form the desired artifact. Asit iswell
known, often problems arise when designing separate
items which have inter-dependencies. Dynamic change of
the specification is necessary to adapt to changing situa-
tions. Also the integration of the design items can cause
problems, which have to be solved by revising design
items, thus delegating them again to be worked over.

The delegation protocol supports this process and thusis
generally a protocol between activities. It comprises the
assignment of a piece of work (i.e., adesignitem), negotia-
tion about the specification for the assigned item, and the
decision whether the task has been completed. The comple-
tion does not only depend on fulfilling the specification of
a single design item, but might also be deferred until all
design items have been successfully integrated.

The protocol for initiating the delegation (Figure 8)
transmits the specification and the reference to the corre-
sponding object in the SIS by parameters of the message.
The specification can be negotiated (refine). A change can
be proposed from either activity until the delegation is
accepted or rejected.

A later change of specification can be initiated from
either side of a delegation relationship. Thus the case of
design problems (i.e., the specification can't be fulfilled as
planned) and the case of integration problems (i.e., specifi-
cation was fulfilled but a conflict occurred in the integra-

tion) can be handled by our system. Basically this protocol
is identical to the initiation, except for the topic delegate
changes to modify_spec (not depicted).

'wmt
S:accept
T R:refine

[Ridelegate

& Srefine >
S:rejecti
R:rgject

Initiating a delegation

Figure 8.

Finally the delegation can be concluded as shown in
Figure 9. Here the delegated activity returns with the fin-
ished design item. The delegator can decide to accept it or
to demand further work (redelegate), which has to be spec-
ified and can be negotiated (refine).

S:accept T R:acc_del T
) Rretun al Rregject
7 Sredelegalg
R:refine

Figure 9. Conclusion of the delegation

2.3. Further areas of interests

As can be seen by the discussed scenarios, it can be nec-
essary to nest conversations, if a request requires involve-
ment from other parties. Thus a state of a protocol can
contain the execution of a further protocol. The integration
of users into conversation can often be mandatory (e.g.,
when access permissions should be transferred). So it is
important integrate users into the protocol handling.

3. Realization

We currently don’t plan to introduce dynamic conversa-
tion, asisfound in autonomous agent systems. We prefer to
pre-define certain interaction patterns, which can be cus-
tomized to different requirements. In this section we cover
the basic ways of customization and introduce our notion
of protocol engine.

3.1. Motivation

Our model is very powerful by integrating different
technologies. For example, the aspects of activities, SIS,
delegation, and conversation combined, allow to control
the coordination of work on different levels (Figure 10).
For one, work can be partitioned by delegation, where the
specification can be dynamically altered in order to prevent
and resolve conflicts. Furthermore object access is coordi-

nated by using according protocols. Hence, indirect con-
flict resolution is achieved. Finally, conflicts are directly
negotiated between activities, if al other meansfail.

specification o
frame specification
flict ti — wheel§——
conflict prevention [—— / _ —
direct conflict resolution < .

G
'

indirect conflict resolution___ ‘ . - ’
i
SIS

- - P usage — - delegation - negotiation
Figure 10. Levels of protocol application

3.2. Customization

Protocols allow to customize the ADM, since interac-
tions can be defined as required by a specific application.
Thus an implementation can be adjusted to many different
relationships and cooperation patterns. As an example, the
ADM supports the introduction of different types of
objects. Their usage can be customized on three levels:

¢ Introduction of anew protocol.

e Use of an aready existing protocol and altering it
according to the new handling, this can mean for exam-
ple introducing new topics, parameters, or states.

e Useof aready existing protocols and changing only the
states action (e.g., by implementing a different * check
state’ in the write example from Section 2.2). This
allows other entities to use this object type even without
changing their counterpart protocol.

Thus we realize a compromise between dynamic agent
conversation and purely pre-defined interaction. Dynamic
composition of pre-defined protocols is achieved in our
model by nesting. Existing protocols can be re-used
through a reservoir of protocols and protocol fragments,
which are composed as needed for a specific application
(see Figure 11). E.g., a two phase commit protocol (2PC)
can be applied in many protocols, where a decision with
veto right has to be supported (see Figure 11 @).

The state implementations show how differently a pro-
tocol state can be implemented, without affecting transi-
tions (numbered @ to ®). Nesting is the execution call to a
protocol from the protocol reservoir (Figure 11 ®). When
picking from the protocol reservoir, additional entities can
be included into the conversation (e.g., by calling the 2PC
protocol on a write request). Therefore very complex con-
versations can be established.

/ state implementation ™\

if (access (activity)
=='X")
write(new_data);
transit (SUCCESS) ;
else transit (FAIL);

write request

execute_prot (

®

[~~~

r = write(new_data);

if(r == TRUE)
transit (SUCCESS) ;

else transit (FAIL) ;

©)
/ \) |
o if (param size > 50)
F.yan 4] r = exec_prot (2PC);

transit (r); 6
[else

r = write(new_data);
transit (r) ;

protocol reservoir

Figure 11. Implementations for write protocol

A further example for such a complex protocol is given
in[7], where a(sub) object y isinstalled in a part-of-depen-
dency with a super object x. This super object has to be
queried for a permit for modifications on its sub-objects.

3.3. Protocol engine

To actually being able to exploit the described approach,
an implementation has to offer the re-use of protocols. Itis
obvious that the definition of messages and the nesting of
protocols must be also supported accordingly. Finally the
integration of the protocol execution into the entities
should be of no great effort. Thus we decided on a protocol
engine component, which executes arbitrary protocols.

/ Entity Interface \
System Calls Interaction
Protocol Engine
Common Context |
Entity Specific Protocol Protocol Protocol
Implementation A B 1 Z
<> State Actions I Protocols
A
\ ACC&'iLaY“ CASSY Entity j
v
Externa System protocol
(e.g., FlowMark) reservoir

Figure 12. Protocol engine for CASSY entities

This engine is a plug in component for ADM entities.
Figure 12 shows the embedding of the protocol enginein a
CASSY entity. Calls to the entity are divided in system
cals, like registering an object to the SIS, and active inter-
action between different entities and system components
through protocols (e.g., delegation, usage). The protocols
are taken from the protocol reservoir and customized by

correspondingly implemented actions. These state actions
interact with the specific entity’s implementation, hence
realizing the object behavior. The entity’s implementation
relies on the access layers, which are depicted in Figure 2.

The protocol engine has to satisfy the previously stated
requirements. The message structure should be defined
through some language, which is easy to understand, sim-
ple to use, but still powerful enough to describe complex
facts. We will discuss this in the next chapter.

4. Implementation

To support the desired protocol engine with its flexible
protocols, we didn't have to look very hard. CASSY is
based on CORBA aobjects, which aready show some active
object behavior. Hence, we found the approach of agent
communication promising, especially sinceit is very adapt-
able and supports arbitrary interactions. For our prototype
implementation we used the Java based JATLite package
[9] as platform for agent communi cation. The message for-
mat of our implementation has been defined in KQML [5],
because of its ease of use and flexibility.

In our current implementation protocols are constructed
in Java classes. An excerpt from the usage protocol class
(class Usage) is listed below. It extends the class
InteractionDefinition and implements the initiator
part of the usage protocol:

public class Usage extends
abcassy.interaction.InteractionDefinition{
public InteractionMachine getInitiatorMachine (
String initiator, String counterpart, String
contextId) {

InteractionMachine rval = null;

ActionRepertoire actionRepertoire =
this.getActionRepertoire() ;

String sender = initiator; String receiver =
counterpart; String context = contextId;
KQMLmessage USAGE = new KQMLmessage (" (use
:object ID <ID> :usage-type <type> :context " +
context + " :gsender " + sender + " :receiver " +
receiver + ")");

// further messages...

ObserverState o0 = new ObserverState ("00") ;
AbstractState sO=AbstractState.getInstance("S0") ;
// further states...
MessageObserverTransition t0 = new
MessageObserverTransition(o0, sO,
new Fact (USAGE), null,
actionRepertoire.getSendAction()) ;
// further transitions...

rval = new InteractionMachine (00) ;
rval.addState (s0) ;

/] ..

rval.addTransition (t0) ;

/] ..

return rval;

} /*getInitiatorMachine()*/} //class Usage

"S (USAGE) ",

The listing shows the definition of messages using
KQML (i.e., class koMLMessage; the definition of the
messages and the implemented protocols are detailed in
[2]). Various protocol states are initialized, where a
ObeserverState IS waiting for a messages and
AbstractState Sends messages. Finally transitions
between these states are defined. Since Java supports
dynamic class loading, such protocols can be loaded at
runtime. This directly supports our notion of protocol res-
ervoir, where the protocols can be used as needed, without
implementing them anew.

Connection Manager | Interaction Marager |

interaction navigator &

Defiition | Instance | Interaction Requests
|[irtaraction Graph

action navigator
INSTANEES i
[=gert1 = agerdl -
DEFINTIONS :
[Hegatistion
[Delegstion

[usage

{[mteraction cortert
Actual state | Dutgoing me . [Transition sel..| Observed fact| |

H 1= S(FRO) siPRO1L_ || proposal <. Pefom |
B I
i || {tzchine Menitor. ey
F—— Performative [propose
Attributes
Atribite Walue Class

propesal =prop.> java.lang.5ting
sender agentt java.lang.5ting
context 0982786106808 | java.lang.String
receiver agentd jawa.lang Stiing
proposal_id =Ib> jawa.lang Stiing

Figure 13. Screenshot: protocol execution

To demonstrate communication we shortly describe an
execution of the negatiation protocol, which is depicted as
state graph in Figure 13. Thisshows a client after theinitia-
tion of the protocol and the fact editor, which allows to edit
the message to be sent. States are dark grey for active,
white for intermediate, and light grey for final. Transitions
are labeled by S and E for send and receive, respectively.
The parentheses contain the abbreviations for the topics
(PRO: propose, ACP: accept, REJ: reject, REF: refine).

Interaction navigator

¢ |[{Defirition | instance [{interaction Requests |
|irtarzetion Graph

action navigatar
INSTANCES

) agentt == agent

DEFINTIONS :
) Megatiation
[oelegation

[usage

i [|Imteraction Contesd

Actual state | Dutgoing tran.. [Fact before =. [Fact after act..[Performed tr .|
[|oo S(PRO) 0 0 S(PRO)
l[= E(REFXE(ACF... [(:propesal =...| (:proposal <...| E(REF)
“l[o1 S(REF) [{proposal <...||{_proposal <...| S(REF)
il EX E(REFYE(ACP... [(:proposal <...[(:proposal <...| E(REF)
|f[o S(REF) (:propasal =...| [praposal <. S(REF)
£ E3) E(REF)EACP... [(:praposal =...|| (_propesal <...| E(REF)
o1 S(REF) [{proposal =...||_proposal <. S(REF)
[l E(REFXE(ACP... [(:proposal <...|[(proposal <..| E(ACP)
Fo (isenderag...|| { sender ag..

Figure 14. Screenshot: conversation history

The situation is before activating the S(PRO) transition,
which starts the negotiation phase. After sending a mes-
sage, the counterpart client changes the state accordingly
and offers the user valid replies. A protocol of a full con-
versation is listed in Figure 14. As can be seen, multiple
refinement messages (S(REF), E(REF)) have been
exchanged to modify theinitial proposal until an agreement
was reached (E(ACP)).

An advantage of this client is that human users can be
integrated into protocols. The implementation can offer a
user choices of answers (or requests) valid in a protocol, as
presented in the list of transitions in Figure 13. Thus the
proposed approach allows direct interaction between users
and/or entities. We are able to realize protocols between
entities, which are automated as far as possible. But when a
point is reached where human interaction is required a cor-
responding choice of messages can be presented to the
users. Through this we can integrate the them more tightly
into the process, while till relying on system support.
Hence, less coordination and cooperation has to be exe-
cuted outside the system.

5. Summary and outlook

Our approach integrates existing systems and tools,
(cooperative) data sharing, and flexible cooperations pat-
terns by exploiting a protocol engine. Hence, an implemen-
tation of the ADM can be adapted to many application
scenarios by customization, like object modelling and pro-
tocol definitions. Even at runtime, protocols can be dynam-
icaly invoked to confront newly arising situations. We
don’'t go the way of autonomous agent systems in comput-
ing each interaction on demand, instead we do rely on pre-
defined protocols, which roughly corresponds to the con-
cept of conversation plans (e.g., [1]). We use a protocol res-
ervoir to build interaction patterns as needed without
implementing agent “intelligence’. For sure, approaches
which implement complex systems by using only agent
technology (e.g., like some workflow management sys-
tems) are very interesting. But our aim was to build a
framework which can easily integrate various legacy sys-
tems and can be applied to many application areas.

Because of the positive results from the current proto-
type we continue to implement a more sophisticated ver-
sion. JATLite might not be fully sufficient for CASSY,
since we want to more easily support the nesting and reuse
of protocols. Also our implementation didn’t support the
conversation between more than two participants in a sin-
gle protocol. For the next version an even more intuitive
GUI isto bereadlized to better support integration of human
users. Finally we're thinking of using some higher degree

of customization regarding the state implementation by
applying ECA (event condition action) constructs.

6. Acknowledgements

This project is partly funded by DFG grant Mi 311. Fur-
ther thanks go to Kerstin Schneider and the reviewers for
their helpful suggestions.

7. References

[1] Barbuceanu, M., Lo, W.-K.: Conversation Oriented Program-
ming in COOL: Current State and Future Directions. Work-
shop on Specifying and Implmenting Conversation Policies of
the Autonomous Agents 99, Seattle, Washington, May, 1999

[2] Bozak, E.: Integration of Autonomous Agents in to the
Designflow System CASSY; semestral thesis (in German),
Univ. of Stuttgart, Studienarbeit Nr. 1769, 2000

[3] Brockman, J.B., Cobourn JB., Jacome M.F, Director SW.:
The Odyssey CAD Framework; |EEE DATC Newsletter on
Design Automation, 1992

[4] CoCreate Software et al.: Workflow Management Facility,
1997 OMG Document: bom/97-08-05, 1997

[5] Finin, T., et a.: KQML: A Language and Protocol for Knowl-
edge and Information Exchange. In: Fuchi, K., Yokoi, T.:
Knowledge Building and Knowledge Sharing. Ohmsha and
10S Press, 1994

[6] Frank, A.: Towards an Activity Model for Design Applica-
tions. ISCA 14th Intern. Conference on Computers and Their
Applications, April 7-9, Cancun, Mexico, 1999

[7] Frank A., Mitschang, B.: On Sharing of Objectsin Concurrent
Design; accepted for the 6th International Conference on
CSCW in Design, London, ON, Canada, 2001

[8] Frank, A., Sellentin J., Mitschang, B.: TOGA - A Customiz-
able Service for Data-Centric Collaboration. Information Sys-
tems Journal, Vol. 25, No. 2, Elsevier Science Ltd., UK, 2000

[9] Jeon, H., Petrie, C., Cutosky, M. R.: JATLite: A Java Agent
Infrastructure with Message Routing. |EEE Internet Comput-
ing, |EEE, 2000

[10]Ritter, N., Mitschang, B., Harder, T., Gesmann, M., Schéning,
H.: Capturing Design Dynamics - The CONCORD Approach,
Proc. 10th Int. IEEE Data Engineering Conf., Houston, US,
1994, pp. 440-451.

[11]Ritter, N.: Group-Authoring in CONCORD - A DB-based
Approach; 12th Annua Symposium on Applied Computing
(SAC'97), San Jose, U.SA., 1997

[12]Winogard, T., Flores, F.: Understanding Computers and Cog-
nition: A New Foundation for Design; Ablex, U.S.A., 1986

[13]van der Wolf, P, Bingley, P, Dewilde, P.: On the Architecture
of a CAD Framework: The NELSIS Approach; Proc. Euro-
pean Design Automation Conference, pp. 29-33, March 1990

