
SIES: An Approach for a Federated Information System in
Manufacturing

Carmen Constantinescu∗ , Uwe Heinkel∗ , Ralf Rantzau, Bernhard Mitschang
Institute of Parallel and Distributed High-Performance Systems
Applications of Parallel and Distributed Systems Department

University of Stuttgart, Stuttgart, Germany

∗ This work was partially supported by the German Research Society (DFG/SFB 467).

Abstract. Many problems encountered in providing
enterprise-wide information are related to the integra-
tion of databases and systems that have been inde-
pendently developed and also to the management of
changes and transformations of data from one data-
base (or system) into another. A major requirement is
to accommodate heterogeneity and at the same time to
preserve the autonomy of the components. This paper
presents our approach to a repository-driven feder-
ated system based on a propagation mechanism. The
Stuttgart Information and Exploration System (SIES),
is characterized by its main components: the Federa-
tion Manager, the Propagation Manager and the Re-
pository System.

Keywords: Interoperability, Manufacturing Ap-
plication System, Federation, Repository, Propa-
gation

1. Introduction

Due to an increasingly turbulent environment,
transformability has turned out to be an important
success factor for manufacturing enterprises.
Transformable, flexible processing systems are
characterized by a high degree of manufacturing
flexibility and productivity, and, at the same time,
by the ability to adapt quickly to a new produc-

tion situation expressed in terms of, e.g., shop
orders and capacity requirements. In this paper,
according the results of special research field 467
“Transformable Business Structures for Multiple-
Variant Series Production” [15], we approach the
envisioned transformable manufacturing enter-
prise as a dynamic network of similar fundamen-
tal entities named Transformable Business Units
(TBUs). A TBU is viewed as a complex of main
and support processes, tasks, resources and tech-
nology that fit in an appropriate structure and it is
mainly characterized by its own potential of
transformability. The behaviour of the TBU and
its potential of transformability are strongly af-
fected by the external environment, represented
by a change, a new and unusual order, and by the
internal environment of the enterprise, being here
the inputs from the similar TBUs involved in the
network.

In Figure 1 we present the transformable
manufacturing enterprise by instantiating two of
its main TBUs. For example, TBU1 is the infor-
mation system for Order Management, and TBU2

is the information system for Facility Layout De-
sign. An environment change will cause the
transformation of TBU1 from state11 to state12.
Based on the dependencies between these TBUs,
by propagation, TBU2 will be transformed from



state21 to state22. In our example a considerable
increase in the amount of ordered products re-
quires a greater production capacity, achievable
e.g. by adding new equipments, which leads to a
new, appropriate facility layout. In order to reach
this transformability goal, the development of
new concepts and frameworks capable to support
the business structure transformability has be-
come high-priority in many research fields. Ac-
cording to these challenges, we have set up as
objective for our research the development of a
repository-driven federation architecture that is
able to coordinate and to integrate the functional-
ity of the application information systems that
represent, in our vision, the TBUs. The proposed
system, Stuttgart Information and Exploration
System (SIES), is based on concepts related to the
propagation of changes between such federated
systems.

change
TBU1

State12State11

TBU2

State22State21

Propagation

Figure 1. Transformability by propagation

This paper presents SIES by making two main
contributions. First, we argue that many of the
problems encountered when building applications
on top of database systems involve the manipula-
tion of models. We are using the term “model” to
describe a discrete structure that represents a de-
sign artifact, a UML model, an XML DTD or
Schema, a relational schema, or even a database
transformation script. The manipulation of mod-
els involves managing changes in model struc-
tures and dependencies between them as well as
transformations of model instances, i.e., data
from one model into another. Managing changes
requires an explicit representation and manipula-
tion of “mappings” between models. In order to
improve flexibility and adaptiveness, we propose
to treat “model” and “mapping” as first-class ob-
jects with specific operations like create, store
and update. Thus, SIES can be regarded as a
model management system. The second contribu-
tion is the approach of managing changes in

models and transformations of data from one
model into another by propagation techniques. At
the moment, we focus mainly on structure and
semantics, whilst implementation being the pro-
ject’s next step.

Since SIES is based on repository technology
that offers to our federated system flexibility and
extensibility, every model and every dependency
between models is explicitly represented and thus
available for further usage. Hence, we can imag-
ine that this information is subject to further
analysis of enterprise internal processes. An ex-
ploration of this information with the help of
analysis tools might help to optimise internal
processes, to reduce overhead and thus further to
enhance flexibility to quickly react to market
changes.

The remainder of the paper is organized as
follows. Section 2 introduces the federation con-
cepts, our federation framework SIES, its main
components and their roles. Section 3 presents
the Federation Manager and the Propagation
Manager as SIES components and their responsi-
bilities in managing the models, their transforma-
tions and data propagation between them. A
comprehensive example is used to clarify the
concepts introduced. Section 4 concludes the pa-
per with a short summary and gives an outlook on
future work.

2. Federation Concepts

Many problems encountered in providing enter-
prise-wide information are related to the integra-
tion of databases and systems that have been de-
veloped independently and also to the manage-
ment of changes and transformations of data from
one database (or system) into another. A major
requirement is to accommodate heterogeneity and
at the same time to preserve the autonomy of
each component. The solution, a federated infor-
mation system, offers access to autonomous het-
erogeneous databases and systems in an inte-
grated way. Several federated database systems
have already been prototyped since the beginning
of the 80s [6, 12, 16, 7, 9, 1]. Recently, some re-
search projects have used an object-oriented
model [8]. The object-oriented paradigm brings
new solutions in several dimensions, including
the modelling of local data sources as objects



with a well-defined and published interface, the
use of a semantically rich common object model
to ease the application integration, the develop-
ment of standards to interoperate among objects,
the use of advanced transaction models, etc.
Main contributions in clarifying definitions and
terms in the research area of integration of het-
erogeneous and distributed information systems
have been reported by [5] and [4]. The first work
have given classification criteria for such systems
and particularly defined mediator-based informa-
tion systems. The definition of terms is accompa-
nied by the identification of relevant concepts and
reference architectures. The second research ana-
lyse two basic strategies for the development of
tightly coupled, federated information systems:
top-down and bottom-up and proposes a com-
bined strategy based on the intensive use of ob-
ject-oriented modelling concepts.

Our research proposes a federation approach
based on propagation techniques. In developing
our framework, we are using System and Partial
Model as main concepts. We consider a System
as an application or an information system, and a
Partial Model (PM) is considered as its model.
Thus, instead of a global schema, we are federat-
ing local schemata named Partial Models. In a
federation, these models are associated with each
other. Associations may show up as the partial
overlap of PMs or by direct correspondence from
one PM with another. All these cases are further
on referred to as dependencies among PMs. As a
consequence, changes to any PM are to be propa-
gated to the dependent PMs. Figure 2 presents the
source system (System S) and the dependent sys-
tems (Systems Di) as inputs and outputs of the
change propagation based on the dependencies
between the source PM and the dependent sys-
tems’ PMs. Dashed arrows represent the depend-
encies not used in the current situation.

System S

System D1

...

System D2

System Dn

PM

PM

PM

PM

dependency

Figure 2. The generic approach of changes
propagation in federated systems

Our system has to be easily extended by a
new source system, a new destination system and
a new dependency between them. In order to cre-
ate such a flexible and extensible system that is
able to efficiently manage the change propaga-
tions, we use a repository as a central unit of our
proposed federation architecture, SIES (Figure 3).
SIES is a repository-driven system that manages
the PMs of the federated systems, the dependen-
cies between them and the change propagations.
It consists of three main components: the Federa-
tion Manager, the Propagation Manager, and the
Repository.

System S

System D1

...

System D2

System Dn

PMs
Dependencies

Repository

Federation Manager

Propagation Manager

Figure 3. The Stuttgart Information and Ex-
ploration System

The role of the Federation Manager is to cre-
ate and to manipulate the PMs and the dependen-
cies between them. The management of change
propagations between models, based on the
above-mentioned dependencies, determines the
functionality of the Propagation Manager. The
central unit, the Repository, stores the models and
the dependencies, adding flexibility and extensi-
bility to the entire system.

In order to motivate the benefits of SIES, we
present as an example two important information
systems of an enterprise, Order Management and
Facility Layout Design. The first one is the
source system and the second the destination sys-
tem. Our example assumes that the PMs for Or-
der Management and Facility Layout Design as
well as their dependencies have been created and
stored in the repository. Based on these depend-
encies, a change in the source system, for exam-
ple a higher volume of orders for one product
variant, will be propagated to the destination sys-
tem, the Facility Layout Design. As a result, the
facility layout will be adapted according to the
new production requirements, for example by
reflecting a position of the equipment that better
responds to the new situation.



3. Repository-Driven Approach

A main contribution of our approach is the re-
pository-driven SIES. The federation framework
includes a repository not only as a shared data-
base of models and mappings. We investigate the
usage of a Repository Manager that will support
the check-in/check-out, version, configuration
management, notification, context management
and workflow control for the models and map-
pings [2, 3].

3.1. Federation

The Federation Manager, a main component of
SIES, offers two functions. The first supports the
creation, storage and update operations regarding
the models. The second function is related to the
dependencies between models, called mappings.
The model management presented here is a meta
model management, using meta data in manipu-
lating models and mappings. An immediate effect
of this approach is that it does not determine any
implementation details, nor specify interoperabil-
ity semantics, information interchange and so on.
All these can be added by additional information
as needed.

Since we intend to present SIES as a model
management system, it is necessary to start with
defining the model and the mapping. A model M
is the simplified view of the real world. Figure 4
presents the models of two PMs, here PM1 and
PM2.

PM1 PM2

g

f

PMs of enterprise
information systems

Mapping represented
in the repository

Models represented
in the repository

Figure 4. The model and mapping concepts

A mapping from a model M1 to a model M2 is
a model itself that contains only the dependencies
between the involved models. Each dependency
in a mapping is based on a function that is an ex-
pression over the objects of M1 and M2. The two
dependencies between the model objects pre-
sented in Figure 4, represented by the functions f
and g, respectively, define the mapping between
PM1 and PM2. With this approach, we are able to
flexibly define also complex mappings that con-
sist of a number of those primitive mappings.
This aspect seems to be necessary in view of the
various types and complexities of dependencies
among PMs.

A fundamental challenge in our work is re-
lated to the development of a mechanism for rep-
resenting models and storing these representa-
tions. A key issue here is how much semantic
information of a model is necessary to be ex-
pressed in its representation. Aspects related to
physical operations on models like storing and
indexing also raise challenges.

In this section we present a scenario in which
the Federation Manager plays a central role as a
model management system for SIES. The first
activity of Federation Manager is the check-in of
PMs as stored repository models (Figure 5a).

UML

Repository

Model 1 Model 2

Mapping

1. Retrieve Models

2. Create Model Mapping

3. Store Model Mapping

UML

Model

PM

2. Store Model

1. Create Model

a) Model creation b) Mapping creation

Federation Manager

Figure 5. The Federation Manager: the steps
of mapping creation

Due to its rich set of modelling concepts and
its broad application spectrum, we propose the
Unified Modeling Language (UML [13], [11]) to
specify the models that describe the PMs of the
enterprise information systems that are to be fed-
erated via SIES. We intend to use the Unified
Modeling Language and supplementing tech-



niques within the object-oriented paradigm. The
object-oriented approach supports the design and
evolution of federated systems in different direc-
tions:

• In (reverse) modelling of relevant parts
of information systems as well as in the
(forward) analysis and design of new
components.

• In relating information structures and
their use within business processes by in-
tegrating structural and behavioural
modelling.

• In relating conceptual and architectural
design within a component-based engi-
neering approach – one important aspect
in continuous engineering of the system
regarding all engineering viewpoints.

Due to its object-orientation, UML offers a
large set of structural modelling elements includ-
ing class structures and several options to define
the semantics of relationships, a necessary feature
on which we based the creation of the dependen-
cies between models. In this case, for managing
the UML models, we have to implement our own
UML repository or to use an available system
[14]. One of our future research goals is to find
out whether or not ORDBMSs provide adequate
mechanisms for managing UML models.

The second activity of the Federation Manager
is the creation of the dependencies between
stored UML models, referred to as the mapping
creation (Figure 5b). This functionality consists
of the following steps: 1) retrieving the models
involved in a dependency from the repository, 2)
creating the mapping and 3) storing the mapping
in the repository, in a way that is appropriate for
the Propagation Manager activity.

3.2. Propagation

To implement the propagation technique in SIES,
we propose that the Propagation Manager is re-
sponsible of notifying all the systems involved in
a dependency on a change in a model. In order to
fulfill its role, the Propagation Manager consists
of the following main components: the Router,
the Mapping Module and the Filter Module. In
this paper we assume that the Propagation Man-
ager is built on message communication.

In Figure 6 we present the flow of a change in
a Partial Model administrated by the Propagation
Manager. The Propagation Manager activity
starts (step1) when the source system (System A)
puts the change notification into the input queue.
This message is read by the Router which, based
on its knowledge about stored dependencies rele-
vant to the given change, forwards the change to
all dependent systems. It accesses the dependency
knowledge from the repository, in which all de-
pendencies are stored. As we presented above,
the Federation Manager administrates this reposi-
tory. Before the update message reaches the tar-
get system, it will be transformed according to
the model of the destination system.

System A

System B

System C

System Z

Propagation Manager

Change

...

Filters

Router

Mapper

Mapper

Mapper

Step 1 Step 2 Step 3

Queue

Queues

Figure 6. The Propagation Manager: the flow
of update propagation

A Mapping Module, using a mapping func-
tion, achieves the second step, the transformation.
A mapping function inputs the notification mes-
sage in the format of system A and outputs a
message relative to a target format. All informa-
tion regarding the mapping functions is also
stored in the repository. In the last step, a Filter
can be used to send into the input queue of the
dependent system only those messages on which
the target system is really interested in. In using
queues the receiving systems are decoupled from
the source system as well as the Propagation
Manager and vice versa. Thus, a system is free to
issue a message or to receive messages at any
preferred time. Additionally, the receiving system
can be unavailable at the time when the message
arrives.

In the following paragraph we propose some
implementation ideas. For the recognition of
modifications in the source system, the system
must be extended with a mechanism that detects
changes in the Partial Model. If the system is
built on the top of a RDBMS, the trigger mecha-



nism in combination with Stored Procedures can
be used to detect changes in the database and
forward them to the Propagation Manager. We
propose the Extensible Markup Language (XML
[17]) for describing the messages. This gives us
the opportunity to implement the mapping func-
tion by using the Extensible Stylesheet Language
Transformation (XSLT [18]). XSLT allows the
implementation of simple transformation from
one XML-document to another. The XSLT-File
describes the transformation process that is used
by an XSLT-Processor. There is already an ex-
tension mechanism in XSLT, that can be used to
implement more complex transformations.

3.3. Example Scenario

In order to motivate our work, related to the goal
of achieving the transformability and the flexibil-
ity of the manufacturing production systems, we
present in this section an example which operates
with the concepts already explained: federation,
repository and propagation.

Our scenario refers to a manufacturing enter-
prise that receives a new order. To quickly re-
spond to this market change, the enterprise must
activate two main systems of the enterprise that
process this new demand: Order Management
and Facility Layout Design. According to the
concepts already introduced, these are viewed
here as two TBUs. As a result to this new market
situation, Order Management System will process
the new information. A possible consequence of
this change might be an increase of the enterprise
capacity. This output represents the input for Fa-
cility Layout Design System, which, based on
simulation and optimisation techniques, outputs
possible alternatives of facility layout.

Figure 7 presents the integration of Order
Management and Facility Layout Design Systems
supported by our federation framework SIES.
This is a global view that reveals in an integrated
way, the responsibilities of Federation Manager,
Repository and Propagation Manager.

We assume that the Federation Manager has
already created the models of these two systems,
the mappings between them, and that it has stored
all this information in the repository. Both sys-
tems are in the initial state, before receiving the

new order. The new situation (1) induces the
transition of Order Management System state.
This transition between states activates a change
notification (2) to SIES. Being informed on this
notification, the Propagation Manager triggers the
change propagation, based on the stored map-
pings (3) among systems. The propagated change
is then handed over (4) to the destination system,
Facility Layout Design System, which, based on
this notification, computes a new facility layout.
Thus, based on federation and repository tech-
niques, the facility layout is adapted to the new
production requirements as defined by the initial
“New order” change (1).

New Order

f

Order Management
System (OMS)

State2State1

Facility Layout Design
System (FLDS)

State2State1

Repository

S I E S

OMS
Model

FLDS
Model

(3) dependency function

(1) change

(2) change
notification

to SIES

(4) propagated
change

Figure 7. Scenario of change propagation in
SIES

4. Conclusions and Future Work

In this paper we presented a concept for integrat-
ing information systems in manufacturing by
means of a federation system. Our approach,
Stuttgart Information and Exploration System
(SIES), consists of the following three main
components: the Federation Manager, the Propa-
gation Manager and the Repository. We focused
in our research on concepts like model and map-
ping and less on implementation details.

The Federation Manager’s role is oriented in
two directions: a) to create and manage the mod-
els and b) to install the dependencies in between
them. All this is supported by a repository ap-
proach for extensibility and flexibility reasons.
The dependencies are managed by the Propaga-
tion Manager, involving components like routers,
mappers and filters.

Future work will be focused on implementing
the conceptual techniques developed at this stage.
As pointed out in this paper, there are many tech-



nical challenges in implementing the SIES man-
agers. In the long term, we expect that a solution
for these challenges will result in a valuable sys-
tem that can be properly used as a federation so-
lution for integrating independent technical data-
bases or systems.

References

[1] W. Benn, Y. Chen and I. Gringer. FMS: A
Federated System Manager. In Technical
Report SFB 786, Technical University of
Chemnitz-Zwickau, Germany, 1995.

[2] P. A. Bernstein. Repositories and Object-
Oriented Databases. In SIGMOD Record,
pp. 311-322, 1998.

[3] P. A. Bernstein and U. Dayal. An Overview
of Repository Technology. In Proceedings
of 20th VLDB Conference, pp. 705-715,
1997.

[4] S. Busse, R-D. Kutsche and U. Leser.
Strategies for the Conceptual Design of Fed-
erated Information Systems. In Proceedings
of the 3rd Workshop EFIS 2000, pp. 23-32,
June 2000.

[5] S. Busse, R-D. Kutsche, U. Leser and H.
Weber. Federated Information Systems:
Concepts, Terminology and Architectures.
In Technical Report, Nr. 99-9, Technical
University of Berlin, Germany, 1999.

[6] Y. Breitbart, P. Olson and G. Thompsom.
Database Integration in a Distributed Het-
erogeneous Information Environment. In
Proceedings of 2nd IEEE Conference Data
Engineering, pp. 301-310, 1986.

[7] S. Ceri and J. Widom. Managing Semantic
Heterogeneity with Production Rules and
Persistent Queues. In Proceedings of 19th

VLDB Conference, Dublin, Ireland, pp. 108-
119, 1993.

[8] P. Fankhauser, G. Gardarin and M. Lopez.
Experiences in Federated Databases: From
IRQ-DB to MIRO-WEB. In Proceedings of
24th VLDB Conference, pp. 655-713, 1998.

[9] G. Harhalakis, C. P. Lin, L. Mark and P. R.
Muro-Medrano. Implementation of Rule-
Based Information Systems for Integrated
Manufacturing. In IEEE Transaction on
Knowledge and Data Engineering, Vol. 6,
No. 6, pp. 82-908, 1994.

[10] S. Iyengar, D. Ravi and D. E. Baisley. A
Software Architecture for the Design and
Implementation of Entire Distributed Object
Systems: UML, MOF and XMI. In XML
Journal, Volume: 1, Issue 3/2000.

[11] C. Kobryn. UML 2001: A Standardization
Odyssey. In Communications of the ACM,
Vol. 42, No. 10, pp. 29-37, October 1999.

[12] W. Litwin and A. Abdellatif. Multidatabase
Interoperability. In IEEE Computing
Magazine, Vol. 19, No. 12, pp. 10-18, 1986.

[13] Object Management Group. The Unified
Modeling Language (UML) Specification –
Version 1.3, 1999, available at http://www.

omg.org/.

[14] N. Ritter and H.-P. Steiert. Enforcing Mod-
eling Guidelines in an ORDBMS-based
UML-Repository. In Research Report of
Subproject A3: Supporting Software Engi-
neering Processes by Object-Relational Da-
tabase Technology, SFB 501, University of
Kaiserslautern, Germany, 2000.

[15] Sonderforschungsbereich 467, Teilprojekt
A5, Modellierung von und Exploration in
komplexen Unternehmensinformationen,
2000, available at http://www.sfb467.uni-
stuttgart.de/projekte/a5/ta5.html.

[16] A. P. Sheth and J.A. Larson. Federated Da-
tabase Systems for Managing Distributed,
Heterogeneous and Autonomous Databases.
In ACM Computing Survey, Vol. 22, Nr. 3,
pp. 183-236, September 1990.

[17] World Wide Web Consortium. Extensible
Markup Language (XML) 1.0 (Second
Edition) - W3C Recommendation 6 October
2000, available at http://www.w3.org /TR/2000/REC-
xml-20001006.

[18] World Wide Web Consortium. XSL Trans-
formations (XSLT) Version 1.0 - W3C Rec-
ommendation 16 November 1999, available
at http://www.w3.org/TR/1999/REC-xslt-19991116


