Erschienen in: Kurt Bauknecht, Wilfried Brauer und Thomas Miick (Herausgeber). Informatik 2001: Wirtschaft und Wissenschaft in der Network
Economy — Visionen und Wirklichkeit. Tagungsband der GI/OCG-Jahrestagung, 25.-28. September 2001, Universitdt Wien. Seiten 916-921. ISBN 3-

85403-157-2

Industrieller Einsatz von Application Server Technologie

Jochen Riitschlin™, Jiirgen Sellentin’, Bernhard Mitschang?

{jochen.ruetschlin|juergen.sellentin}@DaimlerChrysler.com
bernhard.mitschange@einformatik.uni-stuttgart.de

"DaimlerChrysler AG
Forschung und Technologie
Labor IT for Engineering
Abteilung Prozesskette
Produktentwicklung (FT3/EK)
Postfach 23 60 - D-89013 Ulm

Zusammenfassung

In diesem Beitrag wollen wir anhand einer Integra-
tionsarchitektur aus dem EAI-Umfeld motivieren und
aufzeigen, wie Application Server Technologie sinnvoll
bei der Zusammenfiihrung von Systemen in einer vernet-
zen Umgebung eingesetzt werden kann. Dazu stellen wir
erst unsere bisherige Integrationsarchitektur vor und
erldutern an dieser einige Nachteile des traditionellen
Vorgehens. Ein Abschnitt iiber Application Server und
die J2EE-Bestrebungen leiten iiber zu einem Neuvor-
schlag der Integrationsarchitektur, realisiert auf Basis
eben dieser Application Server Technologie.

Schliisselworter: Enterprise Application Integration
(EAI), Integrationsarchitektur, Middleware, Application
Server, J2EE.

1. Einleitung

Heutzutage fordert der Markt fiir eine wettbewerbsfahige
Positionierung immer kiirzer werdende Produktlebens-
zyklen, denen die Unternehmen mit einer zunehmenden
Vernetzung ihrer Software-Systeme begegnen. Histo-
risch bedingt sind diese Systeme nicht fiir einen inter-
operablen Einsatz ausgelegt, da sie oft nur fiir die Lo-
sung bestimmter Aufgaben ins Leben gerufen wurden
bzw. auf die Optimierung einzelner Prozesse in Teilbe-
reichen abzielen. Wiinschenswert ist dagegen vielmehr
eine einheitliche Sicht auf Daten und Prozesse (ein so-
genanntes Single-System-Image), um einen reibungslose-
ren Informationsfluss zu gewéhrleisten bzw. um aus den
bereits vorhandenen Daten neue Informationen zu ge-
winnen. Diese Zielsetzung wird héufig auch als Enter-
prise Application Integration (EAI) bezeichnet.

*Universitit Stuttgart
Institut fiir Parallele und Verteilte
Hochstleistungsrechner (IPVR)
Abteilung Anwendersoftware (AS)
Breitwiesenstrafle 20-22
D-70565 Stuttgart

Der alleinige Einsatz von Datenbank-Middleware-
Systemen [9] stellte sich als unzureichend heraus, da
oftmals an bestimmte Informationen nur mittels einer
Funktionsschnittstelle gelangt werden konnte [4]. Daher
wurde in der Abteilung FT3/EK der DaimlerChrysler-
Forschung eine Integrationsarchitektur auf Basis einer
klassischen 3-Schichten-Architektur entworfen. Als
Middleware-Losung diente hierbei CORBA, wodurch
plattform- und programmiersprachenunabhéngig beliebi-
ge Clients und vor allem Backend-Systeme zusammen-
gefiihrt werden sollten.

Gleichzeitig mit der Etablierung der Integrations-
architekturen kam die Welle der Application Server
auf. Verschiedene Software-Hersteller boten Produkte
an, mit denen die Unternehmen zukiinftig ihre Anwen-
dungen plattformunabhéngig entwickeln sollten. Unter
dem Schlagwort ,,Java auf dem Server” wurden Web-
Technologien wie Servlets ([16], [5]) und Java Server
Pages (JSP; [17], [1]) zusammen mit dem EJB-
Komponentenmodell (Enterprise JavaBeans; [15], [8])
als Produkt vermarktet. Verschiedene, gleich mitgelie-
ferte Konnektoren [14] ergédnzten das Paket und sollten
eine leichte Anbindung von Backend-Systemen garantie-
ren.

Nachdem unsere Integrationsarchitektur trotz aller Er-
folge noch einige Probleme im praktischen Einsatz zeigt,
wollen wir uns im Folgenden der Frage widmen, inwie-
weit eine Portierung auf Application Server Technologie
gewinnbringend und damit auch sinnvoll ist. Dafiir be-
ginnen wir in Abschnitt 2 zunichst mit einer kurzen Ein-
fiihrung in den urspriinglichen Ansatz unserer Integrati-
onsarchitektur. Anschliefend folgt eine Diskussion der
Application Server Technologie in Abschnitt 3. Der Fo-
kus liegt hierbei insbesondere auf der sogenannten J2EE-
Architektur. Auf Basis dieser Grundlagen folgt dann in
Abschnitt 4 die Diskussion unserer Kernfrage: Kann die

Application Server Technologie eine sinnvolle Basis fiir
Integrationsarchitekturen bilden? In Abschnitt 5 schlie-
Ben wir mit einer kurzen Zusammenfassung und einem
Ausblick auf zukiinftige Arbeiten unsere Betrachtungen
ab.

2. Szenario Integrationsarchitekturen

Gemaf der zuvor beschriebenen Zielsetzung der Errei-
chung einer Interoperabilitit zwischen verschiedenen,
heterogenen Einzelsystemen, wurden diese — dhnlich wie
bei der Verkniipfung verschiedener Datenquellen mit
einem Datenbank-Middleware-System — iiber eine eigen
entwickelte Integrations-Middleware zusammengefiihrt
(vgl. Abbildung 1); es sei dabei noch einmal betont, dass
auf Daten mancher Systeme nur iiber eine Funktions-
schnittstelle zugegriffen werden kann.

E (globaler) Client

lioP

1IoP lioP
Adapter Adapter
Backend- Backend-
System System

[

[

Abbildung 1: Integrationsarchitektur mit Middleware-
Ansatz (CORBA).

Um bei der Analogie der Datenbanken zu bleiben, ent-
sprach einer einheitlichen SQL-Schnittstelle aus der re-
lationalen Welt eine von uns definierte Zugriffsschnitt-
stelle, welche mittels eines individuell fiir jedes System
zugeschnittenen Adapters bedient wurde. Der Integra-
tions-Server (aus Performanzgriinden in C++ implemen-
tiert) realisierte in erster Linie das Single-System-Image:
der globale Client sieht sich einer einheitlichen Schnitt-
stelle und Datenmenge gegeniiber. Von ihm stammende
Anfragen werden entsprechend in Teilanfragen zerlegt
und iiber die Adapter an die Backend-Systeme weiter-
geleitet. Die zuriickgelieferten Teilergebnisse werden
schlieBlich im Server zu einer Antwort zusammengesetzt
und an den Client zuriickgegeben. Der (globale) Client
war zuerst eine Java-Applikation, wurde spéter aber aus
Distributionsgriinden in ein Java-Applet umgebaut.

Bei der Konzeption der Architektur wurde versucht,
soweit moglich Standards einzusetzen. Fiir die Kommu-
nikation zwischen den verschiedenen Ebenen der Archi-
tektur haben wir CORBA ausgewahlt. Entsprechend der
in [12] beschriebenen Probleme beim Einsatz von
CORBA in datenintensiven Umgebungen haben wir hier-
fiir eine generische Schnittstellenspezifikation benutzt.
Als Basis fiir das gemeinsame Datenmodell wurde das
STEP AP 214 gewihlt, ein international standardisiertes
Schema fiir die Automobilindustrie [7]. Neben diesem
Schema haben wir innerhalb des Clients weiterhin die im
STEP-Standard (ISO 10303) definierte Zugriffsschnitt-
stelle SDAI (standard data access interface) verwendet,
um von der verwendeten Middleware-Technologie zu
abstrahieren und ein umfangreiches Caching zu ermogli-
chen. In diesem Zusammenhang haben wir uns an der
Standardisierung des SDAI-Java-Binding beteiligt [11].

Als Vorteile unseres Ansatzes sehen wir die Eingangs
schon erwdhnte Unabhéngigkeit von den durch die ein-
gebundenen Systeme verwendeten Programmiersprachen
sowie die Unabhéngigkeit der Client-Plattform (einzige
Vorgabe ist ein applet-fahiger Browser). Des weiteren
steht uns durch den Einsatz von Java auf dem Client die
volle Funktionalitdt und Méachtigkeit einer Programmier-
sprache zur Verfligung, womit beispielsweise direkt auf
dem Client CAD-Daten komfortabel bearbeitet werden
konnen (drehen, spiegeln, rendern, etc.). Als ebenfalls
vorteilhaft erwies sich die generische Adapterschnitt-
stelle zur Middleware, die fiir alle eingebundenen Sy-
steme verwendet wurde (stubs und skeletons mussten
nicht jedes mal neu erzeugt werden).

Auf der Seite der Nachteile war uns schon wahrend
der Konzeption der Architektur bewusst, dass die einge-
setzten IDL-Schnittstellen der Adapter in Ermangelung
geeigneter Alternativen proprietéir ausfallen werden, was
dementsprechend dann auch in Kauf genommen wurde.
Negative praktische Erfahrungen machten wir bereits
»auf dem Weg nach drauBlen” an der Firewall: oft waren
die Firewalls nur fiir den Port 80 (HTTP) freigeschaltet,
nicht aber fiir das benoétigte IIOP, welches je nach In-
stallation einen anderen Port belegte. Es mussten Antra-
ge fur eine explizite Freischaltung gestellt werden, die
neben dem zeitlichen Aspekt eines solchen Antrags hidu-
fig auch den Nachteil hatten, dass sie nur fiir bestimmte
Maschinen wirksam waren. Hinzu kam, dass die GUI
(graphical user interface) des Client je nach eingesetz-
tem Browser bzw. der von diesem verwendeten JDK-
Version entweder generell Probleme machte oder aber
anders dargestellt wurde, womit der Aspekt der Platt-
formunabhéngigkeit verloren ging, da explizite Vorga-
ben fiir zu verwendende Browser- und JDK-Versionen
gemacht werden mussten.

Des weiteren stellte sich heraus, dass es schwierig
war, server-seitig eine modulare Programmierung in
C++ durchzuhalten. Das Ergebnis war eine monolithi-
sche Architektur, in der mit der Zeit Abhéngigkeiten
immer schwieriger nachvollziehbar wurden, was
zwangslaufig eine reduzierte Wartbarkeit zur Folge hatte
(die Einbindung neuer Systeme stellte sich als mehr und
mehr zeitintensiv heraus).

3. Application Server Technologie: J2EE

Mit dem Begriff der Application Server Technologie
wird auch sehr hiufig der Begriff J2EE (Java 2 Enter-
prise Edition) [13] in Zusammenhang gebracht. Tatsache
ist, dass ein Application Server mehr oder weniger den
J2EE-Standard umsetzt. Dabei handelt es sich um einen
Standard fiir die Entwicklung von mehrstufigen Unter-
nehmensanwendungen auf Basis von Java. Dieser Stan-
dard wurde neben Sun Microsystems von einer Kollabo-
ration aus filhrenden Herstellern von Unternehmens-
Software gepragt. Im Wesentlichen besteht er aus der
Zusammenfassung folgender (Einzel-) Technologien und
einem darauf aufbauenden Applikationsmodell (in
Abbildung 2 dargestellt).

= Enterprise JavaBeans™ Architecture

= JavaServer™ Pages

= Java™ Servlet

= J2EE™ Connector

= Java Naming and Directory Interface (JNDI)
= Java™ Interface Definition Language (IDL)
= JDBC™

= Java™ Message Service (JMS)

= Java™ Transaction API (JTA)

= JavaMail

= RMI-IIOP.

Auf die angefiihrten Technologien soll im Folgenden
nur partiell und in Bezug auf das in Abbildung 2 darge-
stellte Applikationsmodell eingegangen werden (der
interessierte Leser sei auf [13] verwiesen).
Applikationslogik wird im Wesentlichen in EJBs ab-
gebildet. Dies sind Objekte der Java Komponentenar-
chitektur, die dhnlich den JavaBeans eine definierte
Schnittstelle aufweisen und in einem sogenannten Con-
tainer ablaufen (dieser stellt die Laufzeitumgebung dar).
Je nach Anwendungsfall kann man bei der Programmie-
rung mit EJBs unterschiedliche Typen von Objekten
verwenden: Entity Beans mit container managed per-
sistence (CMP) oder bean managed persistence (BMP)
sowie stateful und stateless Session Beans. Session
Beans enthalten nur temporire Daten, die nach dem Be-
enden der Anwendung (der sog. Session) geloscht wer-

den. Entity Beans stellen hingegen Objekte mit einem
persistenten Zustand dar. Zur Erlangung von Persistenz
werden die relevanten Daten (Attribute) der EJB in einer
Datenquelle abgespeichert. Diese Speicherung kann
entweder der Container automatisch {ibernehmen (con-
tainer managed), wobei zuvor beim sogenannten De-
ployment der Bean die Datenquelle spezifiziert werden
muss, oder aber der Programmierer sieht die Speiche-
rung explizit vor (bean managed). Dabei sollte beachtet
werden, dass Entity Beans aller Regel nach langsamer
sind als Session Beans. Dabei ist BMP noch mal lang-
samer als CMP [3]. Wir fithren diesen Umstand auf die
gleichen Ursachen zuriick wie die bereits erwédhnten
Probleme von CORBA im Bereich datenintensiver An-
wendungen [12]. Ein wesentlicher Grund liegt in der
mangelhaften Fahigkeit der Application Server eine gro-
Be Menge feingranularer Objekte effizient zu verwalten.

J2EE

Application
Modell

client-side
presentation

Web-Server

Application ervlet-Engine 25
Server 95
ﬁ\, E g5
1S (=} 7]
s 1IEM

[Serviet o

w

w

N

=

J-B-Containe

server-side

mation Systems | business logic

Backend- Backend-
System System

Enterprise Infor-

=] - =

Abbildung 2: J2EE Applikationsmodell am Beispiel von
IBM WebSphere [6].

Die Geschéftslogik bedient sich der in den Backend-
Systemen (Enterprise Information Systems, EIS) gespei-
cherten Daten und Informationen. Thre Anbindung er-
folgt entweder direkt oder iiber sogenannte J2EE-
Konnektoren. Ein Konnektor stellt im Wesentlichen ei-
nen Ressourcenadapter zum Backend-System zur Verfii-
gung, welcher dessen API (application programming
interface) durch ein Java-basiertes kapselt; die Verbin-
dung zwischen dem Konnektor und dem Backend kann
damit tiber ein beliebiges Protokoll erfolgen. Der Adap-
ter wird geméB der J2EE Connector Architecture Spezi-

fikation [14] entweder direkt von einer Java-Anwendung
oder iiber eine EJB angesprochen.

Als Client sind Browser (HTML) oder Java-
Anwendungen (Applet bzw. reine Applikationen) vorge-
sehen. Die Mittlerschicht zwischen dem (Web-) Client
und der Geschéftslogik tibernimmt ein Web-Server, er-
weitert um Servlet- und JSP-Funktionalitdt. Ein Servlet
([16], [5]) ist im Wesentlichen nichts anderes als ein
Java-basiertes CGIl (common gateway interface). Es
nimmt einen HTTP-Request samt enthaltener Parameter
entgegen und hat durch den Einsatz einer Programmier-
sprache (in dem Fall Java) die Mdglichkeit, dynamische
HTML-Seiten zu erzeugen (ggf. unter Zuhilfenahme von
Daten, die aus den Backend-Systeme zugegriffen wer-
den), die quasi mittels einfacher Print-Befehle auf der
Standardausgabe an den Web-Server bzw. Browser zu-
riickgegeben werden. JSPs ([17], [1]) basieren auf
Servlet-Technologie und wurden eingefiihrt, um Layout
und ,,Anwendungslogik® einer HTML-Seite voneinan-
der zu trennen. Bei ihnen ist es moglich, in einer norma-
len HTML-Seite — durch bestimmte Tags eingeleitet —
direkt Java-Code fiir die dynamischen Anteile unterzu-
bringen (intern tiberfiihrt der JSP-Prozessor beim Aufruf
der Seite diese in ein Servlet, welches dann in der
Servlet-Engine zur Ausfiihrung kommt).

Derzeit werden Application Server typischerweise
beim Online-Geschift (Web-Shops) oder dem Aufbau
von Portalen eingesetzt, wobei hiufig nur die Bestand-
teile der Web-Applikationen (vgl. Abbildung 2) — also
keine EJBs — verwendet werden.

4. Integrationsarchitekturen auf Basis von
Application Server Technologie

Aufgrund des Eingangs erwéhnten Aufkommens von
Application Servern und den praktischen Erfahrungen
mit unserer Integrationsarchitektur (vgl. Abschnitt 2),
kam die Frage auf, ob man mit der Application Server
Technologie nicht die EAI-Aktivititen effektiver in den
Griff bekommen konne. Eine fast direkte Umsetzung der
bisherigen Integrationsarchitektur (bzgl. der drei
Schichtenarchitektur) bot sich an: der ehemals mehr oder
weniger monolithisch aufgebaute Integrations-Server
wurde in Form modularer EJBs nachgebildet (allerdings
unter ausschlieBlicher Verwendung von Session Beans,
siche Diskussion in Abschnitt 3); der Zugriff auf die
Adapter wurde ebenfalls als EJB realisiert (vgl.
Abbildung 3); der Client blieb vorerst mit kleineren An-
derungen als Applet realisiert.

Im Folgenden schlieB3t sich nun eine kurze Diskussion
dieser neuen, Application Server-basierten Integrati-
onsarchitektur an.

4.1. Fixierung auf Java

Durch Einfiihrung der Application Server Technologie,
die ja voll auf die Programmiersprache Java setzt, verlie-
ren wir mit diesem Ansatz die zuvor durch CORBA er-
zielte Programmiersprachenunabhingigkeit. Bei genaue-
rem Hinsehen stellt dies jedoch keine allzu grofle
Einschrankung dar, weil durch Adapter bzw. Konnekto-
ren weiterhin auf Systeme zugegriffen werden kann, die
auf unterschiedlichen Plattformen laufen und in beliebi-
gen Programmiersprachen entwickelt wurden.

Zudem soll im Application Server nur bedingt neue
Funktionalitét realisiert werden, da bei uns primdr der
Integrationsaspekt im Vordergrund steht, d.h. die Nut-
zung von bereits bestehender Funktionalitit.

SOAP [HTTP

Web-Server
ervi
HTM Serviet igp
Applet 0 - - JSP
ANe]e atlo < e
JB P g X EJB RESE
EJB EJB EJB X EJB
lloP lIoP
Adapter Adapter
Backend- Backend-
System "t System

[[

Abbildung 3: Integrationsarchitektur mit Application
Server Ansatz.

4.2. Nutzung von Konnektoren

Eine noch offene Frage ist die Nutzung kommerziell
verfiigbarer J2EE-Konnektoren [14] fiir den Zugriff auf
die Backend-Systeme. Vermutlich funktionieren diese
nur bedingt gut, da sie primér auf Standardinstallationen
von Systemen wie SAP oder Metaphase zugeschnitten
sind. In unserem Umfeld sind diese Software-Pakete
allerdings hochgradig angepasst (customized) wodurch
einige Probleme und daraus resultierende Anpassungen
entstehen. Dementsprechend haben wir unsere derzeitige
Architektur ohne die Verwendung von Konnektoren de-
finiert (siche Abbildung 3). Wir werden diesen Aspekt in
kiinftigen Arbeiten evaluieren.

4.3. Vom fat zum thin Client

Wihrend die Portierung des Integrations-Servers offen-
kundig ist und bisher recht vielversprechend aussieht,
sehen wir beim Client zwei, teilweise nicht unproblema-
tische Alternativen. Der Client bestand in der urspriing-
lichen Architektur aus einer Java-Anwendung bzw. — um
der Problematik der Software-Distribution zu entgehen —
aus einem Applet. Dieses Applet haben wir im Zuge
einer schnellen Portierung vorerst einmal beibehalten
und lediglich die Kommunikation von IIOP auf SOAP
iber HTTP [2] umgestellt, wodurch die Firewall-
Problematik umgangen werden konnte.

Anfingliche Anforderungen wie Portabilitdt und die
Erfordernis einer gewissen Maichtigkeit in der Anwen-
dung (beispielsweise zur Unterstiitzung von Caching
bzw. allgemeiner Bearbeitungs- oder Darstellungsfunk-
tionalitit von CAD-Daten) waren ausschlaggebend fiir
die Entscheidung, Java auf dem Client einzusetzen. Al-
lerdings hat es sich in der Praxis gezeigt, dass Frage-
stellungen wie die Firewall-Problematik viel ausschlag-
gebender sind, als das erwédhnte Caching auf dem Client
oder die Bearbeitung von CAD-Daten. Gerade im CAD-
Bereich hat sich herausgestellt, dass Konstruktionen und
Anderungen iiber das Web normalerweise gar nicht not-
wendig sind und somit die Nutzung des Web-Viewers
unseres strategischen CAD-Systems zum Betrachten und
Herunterladen der Dateien vollig ausreichend ist.

Die weiterhin bestehende Problematik der vorge-
schriebenen Browser- und JDK-Versionen zur korrekten
Ausfiihrung des Clients, sowie die anfinglichen langen
Ubertragungszeiten zum Laden des Applets liesen den
Gedanken an einen thin HTML client aufkommen. D.h.
durch Einsatz von Servlets und JSPs soll client-seitig nur
noch ein Browser mit reinem HTML (ggf. unter Zuhilfe-
nahme von JavaScript) erforderlich sein. Dies macht
allerdings eine geschickte Aufteilung der bisherigen Cli-
ent-Funktionalitdt auf Client und Server notwendig. Da-
bei miissen bisher bekannte und vor allem etablierte
Konzepte moderner Benutzeroberflichen wie z.B.
Strukturbdume, Register und Auswahlfelder zusammen
mit der an die Applikationslogik gekniipften Abfolge
von Bildschirmmasken mittels HTML nachgebildet wer-
den. Dafiir soll in einer weiteren Arbeit zuerst einmal
gepriift werden, ob und wie beispielsweise aus Java be-
kannte Grafikelemente nachgebildet werden kdnnen und
wie ein Sitzungskontext mit dem zustandslosen HTTP
gehalten werden kann (Stichworte URL-rewriting oder
state-machine). Dabei kann sicherlich teilweise auf be-
reits bekannte Konzepte und Techniken der Web-
Programmierung [18] zuriickgegriffen werden. In einem
zweiten Schritt ist zu iiberlegen, wie eine so geartete
GUI-Programmierung moglichst modular (also iiber-

sichtlich und gut wartbar) erfolgen kann. Das wire bei-
spielsweise denkbar durch den Einsatz einer abstrakten —
moglicherweise in XML gehaltenen — Beschreibung der
Bildschirmmaske, aus der dann mittels eines wie auch
immer gearteten ,,Prozessors“ eine entsprechende
HTML-Seite (bzw. ein Fragment von dieser) oder ein
Servlet generiert werden kann. Hintergedanke ist dabei
der Umstand, dass manche GUI-Elemente nicht rein ob-
jektorientiert programmiert werden konnen sondern da-
bei mehrere Faktoren einflieBen. Beispielsweise miissen
bei einer moglichen Realisierung eines Strukturbaumes
im Dateisystem abgelegte Grafiken, HTML-Code, Java-
Script-Code und Cascading-Stylesheet-Definitionen er-
zeugt und aufeinander abgestimmt werden. Aus der Pra-
xis ist bekannt, dass ein Grofteil des dabei anfallenden
Codes einem gewissen Muster folgt, der somit auch be-
quem maschinell erzeugt werden konnte (bei Festlegung
einiger weniger Bezeichner und Strukturen).

4.4. Einbettung in Portale

Mit dem Aufkommen des Portalgedankens (insbesonde-
re des Portlet-Konzepts) stellt sich auch bei unserer Ar-
chitektur die Frage, inwieweit sie in ein Portal integriert
werden kann. Die Verwendung von Application Server
Technologie steht dem erst einmal nicht im Wege, da
fast ausschlieBlich alle Portal-Produkte auf ebensolcher
Technologie aufgebaut sind (meist in Form mehrerer
Servlets und JSPs). Allerdings eignen sich diese kom-
merziellen Produkte eigentlich nur fiir die Einbettung
von Text bzw. reinem HTML-Content (vgl. dazu [10]).
Die Unterstiitzung von komplexen HTML-Anwendun-
gen — und in diese Kategorie fallt der globale Client un-
serer Integrationsarchitektur — ist nicht moglich (sicher-
lich bedingt durch das hiufig ohne Frames auskommen-
de Portlet-Konzept) bzw. kann nur in Form eines
sogenannten Launch-Links erfolgen. Dabei lduft die
Anwendung dann in einem extra, iiber den Link geoff-
netem Browser-Fenster. Die Einbettung unserer Archi-
tektur in Portale kann somit nicht als geldst betrachtet
werden und ist dementsprechend Gegenstand weiterer
Arbeiten.

5. Zusammenfassung und Ausblick

In diesem Artikel haben wir die Frage diskutiert, inwie-
weit sich klassische Integrationsarchitekturen auf die
relativ neue Technologie der Application Server portie-
ren lassen. Wir haben erkannt, dass sich die zugrunde-
liegenden Architekturkonzepte mehr oder weniger direkt
auf die J2EE-Architektur tibertragen lassen. Gleichzeitig

erhdlt man durch die Verwendung von EJBs eine modu-
larere Architektur innerhalb des Integrations-Servers.

Eine umfassende Untersuchung muss alle in der
J2EE-Architektur vorgeschlagenen (sieche Aufzahlung in
Abschnitt 3) Konzepte beriicksichtigen und deren Niitz-
lichkeit bewerten. Hinsichtlich der Untersuchung zu un-
serer Integrationsarchitektur konnten bisher noch nicht
alle J2EE-Konzepte betrachtet werden. Im Wesentlichen
haben wir uns auf die Verwendung von Session Beans
und den Einsatz von Servlet/JSP-Techniken beschrénkt.
Diese konnen als technologisch ausgereift bezeichnet
werden, so dass einem industriellen Einsatz nichts im
Wege steht. Bei Entity Beans und den J2EE-
Konnektoren sind noch Zweifel anzumelden, insbeson-
dere ob diese Konzepte nicht in die gleichen Fallen wie
z.B. CORBA laufen [12]. Hier sind mit Sicherheit weite-
re Untersuchungen notig, die wir demnichst angehen
werden.

Wirft man einen Blick auf die Details, so haben wir
im Vergleich zu dem relativ geringen Aufwand der Por-
tierung einige Vorteile erzielt. Zunichst einmal bewirkt
die Beschriankung auf Java innerhalb des Integrations-
Servers keine wirklichen Nachteile. Im Bezug auf Client
und Backends sind wir nach wie vor unabhingig von
Plattformen und Programmiersprachen. Zur Losung der
Firewall-Problematik haben wir unseren alten Java-
Client zunéchst beibehalten und nur die Kommunikation
von CORBA (IIOP) auf SOAP iiber HTTP umgestellt.
Langfristig ist hier wie erldutert an eine reine HTML-
Losung gedacht, die sich dann hoffentlich besser in Por-
tale integrieren ldsst. In diesem Zusammenhang werden
wir untersuchen, inwieweit sich Java-Oberflichen (semi-
) automatisch in HTML-Masken tiberfithren lassen. Da-
bei muss natiirlich die Logik auf den Integrations-Server
verlagert werden (voraussichtlich mittels JSP-Technolo-
gie).

Zusammenfassend ldsst sich sagen, dass die Techno-
logie der Application Server vielversprechend ist und
einem industriellen Einsatz generell nichts im Wege
steht. Allerdings muss man sehr wohl aufpassen, welche
Konzepte denn wirklich ausgereift und im jeweiligen
Fall angemessen sind. An dieser Stelle fehlen mit Si-
cherheit weitere Studien und Kriterienkataloge. Gleich-
zeitig entwickeln sich natiirlich sowohl die Technologien
der J2EE als auch die darauf basierenden Produkte kon-
tinuierlich weiter. Insofern kann dieser Beitrag nur als
ein Schnappschuss der aktuellen Lage gesehen werden.

6. Quellenverzeichnis

[11 H. Bergsten: JavaServer Pages. O’Reilly, 2000.

[12]

[13]

[14]

[15]

D. Box et.al.: Simple Object Access Protocol (SOAP)
1.1. W3C Note, World Wide Web Consortium, 2000.
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

C. Dorda: Verwaltung von Benutzerprofilen mit
Enterprise JavaBeans. Studienarbeit, Nr. 1799, Univer-
sitdt Stuttgart, 2001.

K. Hergula, T. Hérder: 4 Middleware Approach for
Combining Heterogeneous Datasources — Integration of
Generic Queries and Predefined Function Access. In:
Proc. 1¥ International Conference on Web Information
Sytems Engineering (WISE), Hongkong, 2000, S. 22-29.

J. Hunter with W. Crawford: Java Serviet Programming
(2™ edition). O’Reilly, 2001.

IBM WebSphere Application Server.
http://www.ibm.com/software/webservers/appserv/

ISO DIS 10303 Industrial automation systems and
integration: Product data representation and exchange —
Part 214: Application protocol: Core data for
automotive mechanical design processes, Draft Intl.
Standard, ISO TC184/ SC4/WG3 N765, 1999.

R. Monson-Haefel: Enterprise JavaBeans. O’Reilly,
2000.

Proceedings 4. Workshop ,,Foderierte Datenbanken®.
TU-Berlin, 1999.

J. Riitschlin: Ein Portal — Was ist das eigentlich?
Workshop E-Business Engineering auf der gemeinsamen
Jahrestagung der GI und OCG, Wien, 26.-28. Sep. 2001.

J. Sellentin, B. Mitschang: Data-Intensive Intra- and
Internet Applications Based on Java, CORBA, and the
World Wide Web, Invited Paper in: E. Bertino, and S.
Urban: “Object-Oriented Technology in Advanced
Applications”, Special Issue of Theory and Practice of
Object Systems (TAPOS), Vol. 5, No. 3, John Wiley &
Sons, 1999.

J. Sellentin: Konzepte und Techniken der Datenversor-
gung fiir Informationssysteme, Informatik Forschung
und Entwicklung (IFE), 15(2): 92-109, 2000.

Sun Microsystems, Inc.: Java 2 Enterprise Edition.
http://java.sun.com/j2ee/

Sun Microsystems, Inc.: J2EE Connector Architecture.
http://java.sun.com/j2ee/connector/

Sun Microsystems, Inc.: Enterprise JavaBeans.
http://java.sun.com/products/ejb/

Sun Microsystems, Inc.: Java Servlet Technology.
http://java.sun.com/products/servlet/

Sun Microsystems, Inc.: JavaServer Pages.
http://java.sun.com/products/jsp/

V. Turau: Techniken zur Realisierung Web-basierter
Anwendungen. Informatik-Spektrum 22(1): 3-12, 1999.

