
Erschienen in: Kurt Bauknecht, Wilfried Brauer und Thomas Mück (Herausgeber). Informatik 2001: Wirtschaft und Wissenschaft in der Network
Economy – Visionen und Wirklichkeit. Tagungsband der GI/OCG-Jahrestagung, 25.-28. September 2001, Universität Wien. Seiten 916-921. ISBN 3-
85403-157-2

Industrieller Einsatz von Application Server Technologie

Jochen Rütschlin†‡, Jürgen Sellentin†, Bernhard Mitschang‡

{jochen.ruetschlin|juergen.sellentin}@DaimlerChrysler.com
bernhard.mitschang@informatik.uni-stuttgart.de

†DaimlerChrysler AG
Forschung und Technologie

Labor IT for Engineering
 Abteilung Prozesskette

Produktentwicklung (FT3/EK)
Postfach 23 60 · D-89013 Ulm

‡Universität Stuttgart
Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)

Abteilung Anwendersoftware (AS)
Breitwiesenstraße 20-22

D-70565 Stuttgart

Zusammenfassung
In diesem Beitrag wollen wir anhand einer Integra-
tionsarchitektur aus dem EAI-Umfeld motivieren und
aufzeigen, wie Application Server Technologie sinnvoll
bei der Zusammenführung von Systemen in einer vernet-
zen Umgebung eingesetzt werden kann. Dazu stellen wir
erst unsere bisherige Integrationsarchitektur vor und
erläutern an dieser einige Nachteile des traditionellen
Vorgehens. Ein Abschnitt über Application Server und
die J2EE-Bestrebungen leiten über zu einem Neuvor-
schlag der Integrationsarchitektur, realisiert auf Basis
eben dieser Application Server Technologie.

Schlüsselwörter: Enterprise Application Integration
(EAI), Integrationsarchitektur, Middleware, Application
Server, J2EE.

1. Einleitung

Heutzutage fordert der Markt für eine wettbewerbsfähige
Positionierung immer kürzer werdende Produktlebens-
zyklen, denen die Unternehmen mit einer zunehmenden
Vernetzung ihrer Software-Systeme begegnen. Histo-
risch bedingt sind diese Systeme nicht für einen inter-
operablen Einsatz ausgelegt, da sie oft nur für die Lö-
sung bestimmter Aufgaben ins Leben gerufen wurden
bzw. auf die Optimierung einzelner Prozesse in Teilbe-
reichen abzielen. Wünschenswert ist dagegen vielmehr
eine einheitliche Sicht auf Daten und Prozesse (ein so-
genanntes Single-System-Image), um einen reibungslose-
ren Informationsfluss zu gewährleisten bzw. um aus den
bereits vorhandenen Daten neue Informationen zu ge-
winnen. Diese Zielsetzung wird häufig auch als Enter-
prise Application Integration (EAI) bezeichnet.

Der alleinige Einsatz von Datenbank-Middleware-
Systemen [9] stellte sich als unzureichend heraus, da
oftmals an bestimmte Informationen nur mittels einer
Funktionsschnittstelle gelangt werden konnte [4]. Daher
wurde in der Abteilung FT3/EK der DaimlerChrysler-
Forschung eine Integrationsarchitektur auf Basis einer
klassischen 3-Schichten-Architektur entworfen. Als
Middleware-Lösung diente hierbei CORBA, wodurch
plattform- und programmiersprachenunabhängig beliebi-
ge Clients und vor allem Backend-Systeme zusammen-
geführt werden sollten.

Gleichzeitig mit der Etablierung der Integrations-
architekturen kam die Welle der Application Server
auf. Verschiedene Software-Hersteller boten Produkte
an, mit denen die Unternehmen zukünftig ihre Anwen-
dungen plattformunabhängig entwickeln sollten. Unter
dem Schlagwort „Java auf dem Server“ wurden Web-
Technologien wie Servlets ([16], [5]) und Java Server
Pages (JSP; [17], [1]) zusammen mit dem EJB-
Komponentenmodell (Enterprise JavaBeans; [15], [8])
als Produkt vermarktet. Verschiedene, gleich mitgelie-
ferte Konnektoren [14] ergänzten das Paket und sollten
eine leichte Anbindung von Backend-Systemen garantie-
ren.

Nachdem unsere Integrationsarchitektur trotz aller Er-
folge noch einige Probleme im praktischen Einsatz zeigt,
wollen wir uns im Folgenden der Frage widmen, inwie-
weit eine Portierung auf Application Server Technologie
gewinnbringend und damit auch sinnvoll ist. Dafür be-
ginnen wir in Abschnitt 2 zunächst mit einer kurzen Ein-
führung in den ursprünglichen Ansatz unserer Integrati-
onsarchitektur. Anschließend folgt eine Diskussion der
Application Server Technologie in Abschnitt 3. Der Fo-
kus liegt hierbei insbesondere auf der sogenannten J2EE-
Architektur. Auf Basis dieser Grundlagen folgt dann in
Abschnitt 4 die Diskussion unserer Kernfrage: Kann die

Application Server Technologie eine sinnvolle Basis für
Integrationsarchitekturen bilden? In Abschnitt 5 schlie-
ßen wir mit einer kurzen Zusammenfassung und einem
Ausblick auf zukünftige Arbeiten unsere Betrachtungen
ab.

2. Szenario Integrationsarchitekturen

Gemäß der zuvor beschriebenen Zielsetzung der Errei-
chung einer Interoperabilität zwischen verschiedenen,
heterogenen Einzelsystemen, wurden diese – ähnlich wie
bei der Verknüpfung verschiedener Datenquellen mit
einem Datenbank-Middleware-System – über eine eigen
entwickelte Integrations-Middleware zusammengeführt
(vgl. Abbildung 1); es sei dabei noch einmal betont, dass
auf Daten mancher Systeme nur über eine Funktions-
schnittstelle zugegriffen werden kann.

Backend-
System

Adapter

. . .
Backend-
System

Adapter

Integrations-Server
(Middleware)

IIOP

IIOP IIOP

(globaler) Client

Abbildung 1: Integrationsarchitektur mit Middleware-
Ansatz (CORBA).

Um bei der Analogie der Datenbanken zu bleiben, ent-
sprach einer einheitlichen SQL-Schnittstelle aus der re-
lationalen Welt eine von uns definierte Zugriffsschnitt-
stelle, welche mittels eines individuell für jedes System
zugeschnittenen Adapters bedient wurde. Der Integra-
tions-Server (aus Performanzgründen in C++ implemen-
tiert) realisierte in erster Linie das Single-System-Image:
der globale Client sieht sich einer einheitlichen Schnitt-
stelle und Datenmenge gegenüber. Von ihm stammende
Anfragen werden entsprechend in Teilanfragen zerlegt
und über die Adapter an die Backend-Systeme weiter-
geleitet. Die zurückgelieferten Teilergebnisse werden
schließlich im Server zu einer Antwort zusammengesetzt
und an den Client zurückgegeben. Der (globale) Client
war zuerst eine Java-Applikation, wurde später aber aus
Distributionsgründen in ein Java-Applet umgebaut.

Bei der Konzeption der Architektur wurde versucht,
soweit möglich Standards einzusetzen. Für die Kommu-
nikation zwischen den verschiedenen Ebenen der Archi-
tektur haben wir CORBA ausgewählt. Entsprechend der
in [12] beschriebenen Probleme beim Einsatz von
CORBA in datenintensiven Umgebungen haben wir hier-
für eine generische Schnittstellenspezifikation benutzt.
Als Basis für das gemeinsame Datenmodell wurde das
STEP AP 214 gewählt, ein international standardisiertes
Schema für die Automobilindustrie [7]. Neben diesem
Schema haben wir innerhalb des Clients weiterhin die im
STEP-Standard (ISO 10303) definierte Zugriffsschnitt-
stelle SDAI (standard data access interface) verwendet,
um von der verwendeten Middleware-Technologie zu
abstrahieren und ein umfangreiches Caching zu ermögli-
chen. In diesem Zusammenhang haben wir uns an der
Standardisierung des SDAI-Java-Binding beteiligt [11].

Als Vorteile unseres Ansatzes sehen wir die Eingangs
schon erwähnte Unabhängigkeit von den durch die ein-
gebundenen Systeme verwendeten Programmiersprachen
sowie die Unabhängigkeit der Client-Plattform (einzige
Vorgabe ist ein applet-fähiger Browser). Des weiteren
steht uns durch den Einsatz von Java auf dem Client die
volle Funktionalität und Mächtigkeit einer Programmier-
sprache zur Verfügung, womit beispielsweise direkt auf
dem Client CAD-Daten komfortabel bearbeitet werden
können (drehen, spiegeln, rendern, etc.). Als ebenfalls
vorteilhaft erwies sich die generische Adapterschnitt-
stelle zur Middleware, die für alle eingebundenen Sy-
steme verwendet wurde (stubs und skeletons mussten
nicht jedes mal neu erzeugt werden).

Auf der Seite der Nachteile war uns schon während
der Konzeption der Architektur bewusst, dass die einge-
setzten IDL-Schnittstellen der Adapter in Ermangelung
geeigneter Alternativen proprietär ausfallen werden, was
dementsprechend dann auch in Kauf genommen wurde.
Negative praktische Erfahrungen machten wir bereits
„auf dem Weg nach draußen“ an der Firewall: oft waren
die Firewalls nur für den Port 80 (HTTP) freigeschaltet,
nicht aber für das benötigte IIOP, welches je nach In-
stallation einen anderen Port belegte. Es mussten Anträ-
ge für eine explizite Freischaltung gestellt werden, die
neben dem zeitlichen Aspekt eines solchen Antrags häu-
fig auch den Nachteil hatten, dass sie nur für bestimmte
Maschinen wirksam waren. Hinzu kam, dass die GUI
(graphical user interface) des Client je nach eingesetz-
tem Browser bzw. der von diesem verwendeten JDK-
Version entweder generell Probleme machte oder aber
anders dargestellt wurde, womit der Aspekt der Platt-
formunabhängigkeit verloren ging, da explizite Vorga-
ben für zu verwendende Browser- und JDK-Versionen
gemacht werden mussten.

Des weiteren stellte sich heraus, dass es schwierig
war, server-seitig eine modulare Programmierung in
C++ durchzuhalten. Das Ergebnis war eine monolithi-
sche Architektur, in der mit der Zeit Abhängigkeiten
immer schwieriger nachvollziehbar wurden, was
zwangsläufig eine reduzierte Wartbarkeit zur Folge hatte
(die Einbindung neuer Systeme stellte sich als mehr und
mehr zeitintensiv heraus).

3. Application Server Technologie: J2EE

Mit dem Begriff der Application Server Technologie
wird auch sehr häufig der Begriff J2EE (Java 2 Enter-
prise Edition) [13] in Zusammenhang gebracht. Tatsache
ist, dass ein Application Server mehr oder weniger den
J2EE-Standard umsetzt. Dabei handelt es sich um einen
Standard für die Entwicklung von mehrstufigen Unter-
nehmensanwendungen auf Basis von Java. Dieser Stan-
dard wurde neben Sun Microsystems von einer Kollabo-
ration aus führenden Herstellern von Unternehmens-
Software geprägt. Im Wesentlichen besteht er aus der
Zusammenfassung folgender (Einzel-) Technologien und
einem darauf aufbauenden Applikationsmodell (in
Abbildung 2 dargestellt).

� Enterprise JavaBeans™ Architecture
� JavaServer™ Pages
� Java™ Servlet
� J2EE™ Connector
� Java Naming and Directory Interface (JNDI)
� Java™ Interface Definition Language (IDL)
� JDBC™
� Java™ Message Service (JMS)
� Java™ Transaction API (JTA)
� JavaMail
� RMI-IIOP.

Auf die angeführten Technologien soll im Folgenden
nur partiell und in Bezug auf das in Abbildung 2 darge-
stellte Applikationsmodell eingegangen werden (der
interessierte Leser sei auf [13] verwiesen).

Applikationslogik wird im Wesentlichen in EJBs ab-
gebildet. Dies sind Objekte der Java Komponentenar-
chitektur, die ähnlich den JavaBeans eine definierte
Schnittstelle aufweisen und in einem sogenannten Con-
tainer ablaufen (dieser stellt die Laufzeitumgebung dar).
Je nach Anwendungsfall kann man bei der Programmie-
rung mit EJBs unterschiedliche Typen von Objekten
verwenden: Entity Beans mit container managed per-
sistence (CMP) oder bean managed persistence (BMP)
sowie stateful und stateless Session Beans. Session
Beans enthalten nur temporäre Daten, die nach dem Be-
enden der Anwendung (der sog. Session) gelöscht wer-

den. Entity Beans stellen hingegen Objekte mit einem
persistenten Zustand dar. Zur Erlangung von Persistenz
werden die relevanten Daten (Attribute) der EJB in einer
Datenquelle abgespeichert. Diese Speicherung kann
entweder der Container automatisch übernehmen (con-
tainer managed), wobei zuvor beim sogenannten De-
ployment der Bean die Datenquelle spezifiziert werden
muss, oder aber der Programmierer sieht die Speiche-
rung explizit vor (bean managed). Dabei sollte beachtet
werden, dass Entity Beans aller Regel nach langsamer
sind als Session Beans. Dabei ist BMP noch mal lang-
samer als CMP [3]. Wir führen diesen Umstand auf die
gleichen Ursachen zurück wie die bereits erwähnten
Probleme von CORBA im Bereich datenintensiver An-
wendungen [12]. Ein wesentlicher Grund liegt in der
mangelhaften Fähigkeit der Application Server eine gro-
ße Menge feingranularer Objekte effizient zu verwalten.

Backend-
System . . .

Backend-
System

HTTP

EJB-Container
EJB EJB EJB

EJB
EJB

Servlet-Engine

Web-Application
JSP

Servlet
Servlet HTMLJSP

KonnektorKonnektor

Web-Server

se
rv

er
-s

id
e

pr
es

en
ta

tio
n

cl
ie

nt
-s

id
e

pr
es

en
ta

tio
n

J2
EE

 P
la

tfo
rm

se
rv

er
-s

id
e

bu
si

ne
ss

 lo
gi

c
E

nt
er

pr
is

e
In

fo
r-

m
at

io
n

Sy
st

em
s

J2EE
Application

Modell

Application
Server

RMI-IIOP

Java HTMLApplet

Abbildung 2: J2EE Applikationsmodell am Beispiel von
IBM WebSphere [6].

Die Geschäftslogik bedient sich der in den Backend-
Systemen (Enterprise Information Systems, EIS) gespei-
cherten Daten und Informationen. Ihre Anbindung er-
folgt entweder direkt oder über sogenannte J2EE-
Konnektoren. Ein Konnektor stellt im Wesentlichen ei-
nen Ressourcenadapter zum Backend-System zur Verfü-
gung, welcher dessen API (application programming
interface) durch ein Java-basiertes kapselt; die Verbin-
dung zwischen dem Konnektor und dem Backend kann
damit über ein beliebiges Protokoll erfolgen. Der Adap-
ter wird gemäß der J2EE Connector Architecture Spezi-

fikation [14] entweder direkt von einer Java-Anwendung
oder über eine EJB angesprochen.

Als Client sind Browser (HTML) oder Java-
Anwendungen (Applet bzw. reine Applikationen) vorge-
sehen. Die Mittlerschicht zwischen dem (Web-) Client
und der Geschäftslogik übernimmt ein Web-Server, er-
weitert um Servlet- und JSP-Funktionalität. Ein Servlet
([16], [5]) ist im Wesentlichen nichts anderes als ein
Java-basiertes CGI (common gateway interface). Es
nimmt einen HTTP-Request samt enthaltener Parameter
entgegen und hat durch den Einsatz einer Programmier-
sprache (in dem Fall Java) die Möglichkeit, dynamische
HTML-Seiten zu erzeugen (ggf. unter Zuhilfenahme von
Daten, die aus den Backend-Systeme zugegriffen wer-
den), die quasi mittels einfacher Print-Befehle auf der
Standardausgabe an den Web-Server bzw. Browser zu-
rückgegeben werden. JSPs ([17], [1]) basieren auf
Servlet-Technologie und wurden eingeführt, um Layout
und „Anwendungslogik“ einer HTML-Seite voneinan-
der zu trennen. Bei ihnen ist es möglich, in einer norma-
len HTML-Seite – durch bestimmte Tags eingeleitet –
direkt Java-Code für die dynamischen Anteile unterzu-
bringen (intern überführt der JSP-Prozessor beim Aufruf
der Seite diese in ein Servlet, welches dann in der
Servlet-Engine zur Ausführung kommt).

Derzeit werden Application Server typischerweise
beim Online-Geschäft (Web-Shops) oder dem Aufbau
von Portalen eingesetzt, wobei häufig nur die Bestand-
teile der Web-Applikationen (vgl. Abbildung 2) – also
keine EJBs – verwendet werden.

4. Integrationsarchitekturen auf Basis von
Application Server Technologie

Aufgrund des Eingangs erwähnten Aufkommens von
Application Servern und den praktischen Erfahrungen
mit unserer Integrationsarchitektur (vgl. Abschnitt 2),
kam die Frage auf, ob man mit der Application Server
Technologie nicht die EAI-Aktivitäten effektiver in den
Griff bekommen könne. Eine fast direkte Umsetzung der
bisherigen Integrationsarchitektur (bzgl. der drei
Schichtenarchitektur) bot sich an: der ehemals mehr oder
weniger monolithisch aufgebaute Integrations-Server
wurde in Form modularer EJBs nachgebildet (allerdings
unter ausschließlicher Verwendung von Session Beans,
siehe Diskussion in Abschnitt 3); der Zugriff auf die
Adapter wurde ebenfalls als EJB realisiert (vgl.
Abbildung 3); der Client blieb vorerst mit kleineren Än-
derungen als Applet realisiert.

Im Folgenden schließt sich nun eine kurze Diskussion
dieser neuen, Application Server-basierten Integrati-
onsarchitektur an.

4.1. Fixierung auf Java

Durch Einführung der Application Server Technologie,
die ja voll auf die Programmiersprache Java setzt, verlie-
ren wir mit diesem Ansatz die zuvor durch CORBA er-
zielte Programmiersprachenunabhängigkeit. Bei genaue-
rem Hinsehen stellt dies jedoch keine allzu große
Einschränkung dar, weil durch Adapter bzw. Konnekto-
ren weiterhin auf Systeme zugegriffen werden kann, die
auf unterschiedlichen Plattformen laufen und in beliebi-
gen Programmiersprachen entwickelt wurden.

Zudem soll im Application Server nur bedingt neue
Funktionalität realisiert werden, da bei uns primär der
Integrationsaspekt im Vordergrund steht, d.h. die Nut-
zung von bereits bestehender Funktionalität.

Integrations-Server
(Application Server)

. . .

EJB

HTTP

JSP

EJBEJB
EJB

EJB
EJB

EJBEJB

Backend-
System

Adapter
Backend-
System

Adapter

IIOP IIOP

JSP

Servlet
ServletHTML

Applet

Web-Server

Applet HTML

SOAP / HTTP

Abbildung 3: Integrationsarchitektur mit Application
Server Ansatz.

4.2. Nutzung von Konnektoren

Eine noch offene Frage ist die Nutzung kommerziell
verfügbarer J2EE-Konnektoren [14] für den Zugriff auf
die Backend-Systeme. Vermutlich funktionieren diese
nur bedingt gut, da sie primär auf Standardinstallationen
von Systemen wie SAP oder Metaphase zugeschnitten
sind. In unserem Umfeld sind diese Software-Pakete
allerdings hochgradig angepasst (customized) wodurch
einige Probleme und daraus resultierende Anpassungen
entstehen. Dementsprechend haben wir unsere derzeitige
Architektur ohne die Verwendung von Konnektoren de-
finiert (siehe Abbildung 3). Wir werden diesen Aspekt in
künftigen Arbeiten evaluieren.

4.3. Vom fat zum thin Client

Während die Portierung des Integrations-Servers offen-
kundig ist und bisher recht vielversprechend aussieht,
sehen wir beim Client zwei, teilweise nicht unproblema-
tische Alternativen. Der Client bestand in der ursprüng-
lichen Architektur aus einer Java-Anwendung bzw. – um
der Problematik der Software-Distribution zu entgehen –
aus einem Applet. Dieses Applet haben wir im Zuge
einer schnellen Portierung vorerst einmal beibehalten
und lediglich die Kommunikation von IIOP auf SOAP
über HTTP [2] umgestellt, wodurch die Firewall-
Problematik umgangen werden konnte.

Anfängliche Anforderungen wie Portabilität und die
Erfordernis einer gewissen Mächtigkeit in der Anwen-
dung (beispielsweise zur Unterstützung von Caching
bzw. allgemeiner Bearbeitungs- oder Darstellungsfunk-
tionalität von CAD-Daten) waren ausschlaggebend für
die Entscheidung, Java auf dem Client einzusetzen. Al-
lerdings hat es sich in der Praxis gezeigt, dass Frage-
stellungen wie die Firewall-Problematik viel ausschlag-
gebender sind, als das erwähnte Caching auf dem Client
oder die Bearbeitung von CAD-Daten. Gerade im CAD-
Bereich hat sich herausgestellt, dass Konstruktionen und
Änderungen über das Web normalerweise gar nicht not-
wendig sind und somit die Nutzung des Web-Viewers
unseres strategischen CAD-Systems zum Betrachten und
Herunterladen der Dateien völlig ausreichend ist.

Die weiterhin bestehende Problematik der vorge-
schriebenen Browser- und JDK-Versionen zur korrekten
Ausführung des Clients, sowie die anfänglichen langen
Übertragungszeiten zum Laden des Applets liesen den
Gedanken an einen thin HTML client aufkommen. D.h.
durch Einsatz von Servlets und JSPs soll client-seitig nur
noch ein Browser mit reinem HTML (ggf. unter Zuhilfe-
nahme von JavaScript) erforderlich sein. Dies macht
allerdings eine geschickte Aufteilung der bisherigen Cli-
ent-Funktionalität auf Client und Server notwendig. Da-
bei müssen bisher bekannte und vor allem etablierte
Konzepte moderner Benutzeroberflächen wie z.B.
Strukturbäume, Register und Auswahlfelder zusammen
mit der an die Applikationslogik geknüpften Abfolge
von Bildschirmmasken mittels HTML nachgebildet wer-
den. Dafür soll in einer weiteren Arbeit zuerst einmal
geprüft werden, ob und wie beispielsweise aus Java be-
kannte Grafikelemente nachgebildet werden können und
wie ein Sitzungskontext mit dem zustandslosen HTTP
gehalten werden kann (Stichworte URL-rewriting oder
state-machine). Dabei kann sicherlich teilweise auf be-
reits bekannte Konzepte und Techniken der Web-
Programmierung [18] zurückgegriffen werden. In einem
zweiten Schritt ist zu überlegen, wie eine so geartete
GUI-Programmierung möglichst modular (also über-

sichtlich und gut wartbar) erfolgen kann. Das wäre bei-
spielsweise denkbar durch den Einsatz einer abstrakten –
möglicherweise in XML gehaltenen – Beschreibung der
Bildschirmmaske, aus der dann mittels eines wie auch
immer gearteten „Prozessors“ eine entsprechende
HTML-Seite (bzw. ein Fragment von dieser) oder ein
Servlet generiert werden kann. Hintergedanke ist dabei
der Umstand, dass manche GUI-Elemente nicht rein ob-
jektorientiert programmiert werden können sondern da-
bei mehrere Faktoren einfließen. Beispielsweise müssen
bei einer möglichen Realisierung eines Strukturbaumes
im Dateisystem abgelegte Grafiken, HTML-Code, Java-
Script-Code und Cascading-Stylesheet-Definitionen er-
zeugt und aufeinander abgestimmt werden. Aus der Pra-
xis ist bekannt, dass ein Großteil des dabei anfallenden
Codes einem gewissen Muster folgt, der somit auch be-
quem maschinell erzeugt werden könnte (bei Festlegung
einiger weniger Bezeichner und Strukturen).

4.4. Einbettung in Portale

Mit dem Aufkommen des Portalgedankens (insbesonde-
re des Portlet-Konzepts) stellt sich auch bei unserer Ar-
chitektur die Frage, inwieweit sie in ein Portal integriert
werden kann. Die Verwendung von Application Server
Technologie steht dem erst einmal nicht im Wege, da
fast ausschließlich alle Portal-Produkte auf ebensolcher
Technologie aufgebaut sind (meist in Form mehrerer
Servlets und JSPs). Allerdings eignen sich diese kom-
merziellen Produkte eigentlich nur für die Einbettung
von Text bzw. reinem HTML-Content (vgl. dazu [10]).
Die Unterstützung von komplexen HTML-Anwendun-
gen – und in diese Kategorie fällt der globale Client un-
serer Integrationsarchitektur – ist nicht möglich (sicher-
lich bedingt durch das häufig ohne Frames auskommen-
de Portlet-Konzept) bzw. kann nur in Form eines
sogenannten Launch-Links erfolgen. Dabei läuft die
Anwendung dann in einem extra, über den Link geöff-
netem Browser-Fenster. Die Einbettung unserer Archi-
tektur in Portale kann somit nicht als gelöst betrachtet
werden und ist dementsprechend Gegenstand weiterer
Arbeiten.

5. Zusammenfassung und Ausblick

In diesem Artikel haben wir die Frage diskutiert, inwie-
weit sich klassische Integrationsarchitekturen auf die
relativ neue Technologie der Application Server portie-
ren lassen. Wir haben erkannt, dass sich die zugrunde-
liegenden Architekturkonzepte mehr oder weniger direkt
auf die J2EE-Architektur übertragen lassen. Gleichzeitig

erhält man durch die Verwendung von EJBs eine modu-
larere Architektur innerhalb des Integrations-Servers.

Eine umfassende Untersuchung muss alle in der
J2EE-Architektur vorgeschlagenen (siehe Aufzählung in
Abschnitt 3) Konzepte berücksichtigen und deren Nütz-
lichkeit bewerten. Hinsichtlich der Untersuchung zu un-
serer Integrationsarchitektur konnten bisher noch nicht
alle J2EE-Konzepte betrachtet werden. Im Wesentlichen
haben wir uns auf die Verwendung von Session Beans
und den Einsatz von Servlet/JSP-Techniken beschränkt.
Diese können als technologisch ausgereift bezeichnet
werden, so dass einem industriellen Einsatz nichts im
Wege steht. Bei Entity Beans und den J2EE-
Konnektoren sind noch Zweifel anzumelden, insbeson-
dere ob diese Konzepte nicht in die gleichen Fallen wie
z.B. CORBA laufen [12]. Hier sind mit Sicherheit weite-
re Untersuchungen nötig, die wir demnächst angehen
werden.

Wirft man einen Blick auf die Details, so haben wir
im Vergleich zu dem relativ geringen Aufwand der Por-
tierung einige Vorteile erzielt. Zunächst einmal bewirkt
die Beschränkung auf Java innerhalb des Integrations-
Servers keine wirklichen Nachteile. Im Bezug auf Client
und Backends sind wir nach wie vor unabhängig von
Plattformen und Programmiersprachen. Zur Lösung der
Firewall-Problematik haben wir unseren alten Java-
Client zunächst beibehalten und nur die Kommunikation
von CORBA (IIOP) auf SOAP über HTTP umgestellt.
Langfristig ist hier wie erläutert an eine reine HTML-
Lösung gedacht, die sich dann hoffentlich besser in Por-
tale integrieren lässt. In diesem Zusammenhang werden
wir untersuchen, inwieweit sich Java-Oberflächen (semi-
) automatisch in HTML-Masken überführen lassen. Da-
bei muss natürlich die Logik auf den Integrations-Server
verlagert werden (voraussichtlich mittels JSP-Technolo-
gie).

Zusammenfassend lässt sich sagen, dass die Techno-
logie der Application Server vielversprechend ist und
einem industriellen Einsatz generell nichts im Wege
steht. Allerdings muss man sehr wohl aufpassen, welche
Konzepte denn wirklich ausgereift und im jeweiligen
Fall angemessen sind. An dieser Stelle fehlen mit Si-
cherheit weitere Studien und Kriterienkataloge. Gleich-
zeitig entwickeln sich natürlich sowohl die Technologien
der J2EE als auch die darauf basierenden Produkte kon-
tinuierlich weiter. Insofern kann dieser Beitrag nur als
ein Schnappschuss der aktuellen Lage gesehen werden.

6. Quellenverzeichnis

[1] H. Bergsten: JavaServer Pages. O’Reilly, 2000.

[2] D. Box et.al.: Simple Object Access Protocol (SOAP)
1.1. W3C Note, World Wide Web Consortium, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[3] C. Dorda: Verwaltung von Benutzerprofilen mit
Enterprise JavaBeans. Studienarbeit, Nr. 1799, Univer-
sität Stuttgart, 2001.

[4] K. Hergula, T. Härder: A Middleware Approach for
Combining Heterogeneous Datasources – Integration of
Generic Queries and Predefined Function Access. In:
Proc. 1st International Conference on Web Information
Sytems Engineering (WISE), Hongkong, 2000, S. 22-29.

[5] J. Hunter with W. Crawford: Java Servlet Programming
(2nd edition). O’Reilly, 2001.

[6] IBM WebSphere Application Server.
http://www.ibm.com/software/webservers/appserv/

[7] ISO DIS 10303 Industrial automation systems and
integration: Product data representation and exchange –
Part 214: Application protocol: Core data for
automotive mechanical design processes, Draft Intl.
Standard, ISO TC184/ SC4/WG3 N765, 1999.

[8] R. Monson-Haefel: Enterprise JavaBeans. O’Reilly,
2000.

[9] Proceedings 4. Workshop „Föderierte Datenbanken“.
TU-Berlin, 1999.

[10] J. Rütschlin: Ein Portal – Was ist das eigentlich?
Workshop E-Business Engineering auf der gemeinsamen
Jahrestagung der GI und OCG, Wien, 26.-28. Sep. 2001.

[11] J. Sellentin, B. Mitschang: Data-Intensive Intra- and
Internet Applications Based on Java, CORBA, and the
World Wide Web, Invited Paper in: E. Bertino, and S.
Urban: “Object-Oriented Technology in Advanced
Applications”, Special Issue of Theory and Practice of
Object Systems (TAPOS), Vol. 5, No. 3, John Wiley &
Sons, 1999.

[12] J. Sellentin: Konzepte und Techniken der Datenversor-
gung für Informationssysteme, Informatik Forschung
und Entwicklung (IFE), 15(2): 92-109, 2000.

[13] Sun Microsystems, Inc.: Java 2 Enterprise Edition.
http://java.sun.com/j2ee/

[14] Sun Microsystems, Inc.: J2EE Connector Architecture.
http://java.sun.com/j2ee/connector/

[15] Sun Microsystems, Inc.: Enterprise JavaBeans.
http://java.sun.com/products/ejb/

[16] Sun Microsystems, Inc.: Java Servlet Technology.
http://java.sun.com/products/servlet/

[17] Sun Microsystems, Inc.: JavaServer Pages.
http://java.sun.com/products/jsp/

[18] V. Turau: Techniken zur Realisierung Web-basierter
Anwendungen. Informatik-Spektrum 22(1): 3-12, 1999.

