Guiding Feature Asset Mining for
Software Product Line Development

Thomas Eisenbarth Daniel Simon

Universitat Stuttgart
Breitwiesenstrafie 20—-22
70565 Stuttgart, Germany
{eisenbarth, simon}@informatik.uni-stuttgart.de

1 Introduction

Software product line architectures promise significant benefits over traditional
architectures such as shorter time-to-market, shorter and cheaper development
cycles, and higher exploitation of the reuse potential at hand. While the ideas
and concepts of product lines are well suited for developing new products, it is
not obvious if and how one can apply this technology in the presence of legacy
software.

Migrating legacy software systems to a product line provides ways for ex-
tending and developing successful products and offers a chance to protect and
preserve a company’s former investments. The legacy artifacts have been de-
signed under significantly different circumstances and typically for just one single
application domain. Therefore turning legacy software into a software product
line requires a new design aware of the old product’s key assets—assuming reuse
really pays. Consequently, reengineering efforts have to address a number of
issues unique to product line development.

The product line development frameworks of Bosch [5] and the SEI [11]
recognize a need for integration of existing assets. Bergey et al. [4, 12] discuss
how to exploit the reuse potential by means of traditional reverse engineering
methods and business process decisions in detail. Another effort integrating
legacy assets into a product line is described by Bayer et al. [3] in the context
of PuL.SE [2].

Our goal is to develop techniques that respect the specific reverse engineering
prerequisites of product lines. Recently, we introduced techniques that help to
derive feature-component maps [9] by means of mathematically founded concept
formation.



2 What'’s different?

A number of techniques have recently been developed that try to analyze legacy
software by focusing on features of the software. They are all based on dynamic
and static analyses as well as software metrics [6, 7, 8, 9, 10, 13, 14, 15].

When analyzing legacy source code in product line development context,
some aspects that will be discussed in the following gain prominent importance.

Early indication whether further investigation will pay By looking at
results of the early analysis steps over the system, early judgment about the
lucrativeness of feature asset mining is enabled. Our techniques [7, 8, 9, 10] are
incremental as they support judgment after each round whether it is benefical
to take the next step or cancel the reuse effort.

No overall architecture recovery of the legacy software Our new anal-
ysis techniques need no complete recovery of the legacy code’s architecture. Our
techniques incorporate domain knowledge of both users and programmers rather
than focusing on the source code only. Our method is opportunistic because it
allows the product line engineer to analyze the old code just as far as needed.
The support for partial analyses or quick and cheap ad-hoc decisions is an import
aspect since complete results usually require much time. (Why should someone
recover an architecture, just to decide he doesn’t need it anyway?)

Analysis according to the legacy software’s features We prepare legacy
software for reuse in software product lines by (a) feature location and (b) con-
nector recovery for handling the communication in the software artifact. On the
one hand side, we try to grasp the functional features. On the other hand side,
the communication between functional features organized via data or control
structures in the source is revealed so that the communication with the other
parts of the legacy system becomes explicit.

To gain the desired information, dynamic and static analyses complement
each other. Further, metrics that measure the disparity, concentration, and
dedication of features to program parts are computed [15]. Our domain oriented
approach serves the goals of product line engineering: the analysis is not limited
to classic programming paradigms but focuses on the user’s needs. Indeed, even
the users of the system may easily assist the product line engineer in analyzing
the code assets by giving hints on how-to-use the system (this might range from
typical usage to extremely rare cases).

Incremental shift towards product lines If the introduction of product line
technology is too disruptive because the legacy system at hand is too large and
too complex and the product is business critical to the company, then cautious
and incremental shift towards product line methods is advisable.



We believe that our techniques can support the integration of development
personal and avoid wrapping and decay of the competence encoded in the soft-
ware. The proposed proceeding for that case is

I As long as the structure of the legacy software prevents the identifica-
tion of sensible variation and commonality points, restructure according
to findings of feature analysis.

IT Identify variabilities and commonalities. Based upon that, identify inter-
faces.

3 Outlook

Currently, the Bauhaus system [1] at the Universtit Stuttgart provides means
for incremental architecture recovery and code validation. To satisfy the specific
needs of product line engineering, we are extending Bauhaus by the mentioned
techniques for spotting software features. In conjunction with information about
intra-software communication gained by connector recovery, we hope to find
methods that empower software engineers to quickly find interfaces and aid their
quest for reusable legacy assets. Cheap and quick reuse can help in convincing
companies to switch to product line architectures initially. Further, if the legacy
asset is on no account reusable, our approach will help to save much effort.

References

[1] The New Bauhaus Stuttgart. Available at  http://www.
bauhaus-stuttgart.de, 2001.

[2] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. PuLSE: A Method-
ology to Develop Software Product Lines. In Proceedings of the Fifth ACM
SIGSOFT Symposium on Software Reusability (SSR’99), pages 122-131,
Los Angeles, CA, USA, May 1999. ACM.

[3] Joachim Bayer, Jean-Francois Girard, Martin Wiirthner, Jean-Marc De-
Baud, and Martin Apel. Transitioning Legacy Assets to a Product Line
Architecture. In Proceedings of the Seventh FEuropean Software Engineering
Conference (ESEC’99), Lecture Notes in Computer Science 1687, pages
446-463, Toulouse, France, September 1999.

[4] John Bergey, Liam O’Brien, and Dennis Smith. Mining Existing Software
Assets for Software Product Lines. Technical Report CMU/SEI-2000-TN-
008, Software Engineering Institute (SEI), Carnegie Mellon University, May
2000.

[5] Jan Bosch. Design & Use of Software Architectures. Addison-Wesley and
ACM Press, 2000.



(6]

[10]

[14]

[15]

Kunrong Chen and Véclav Rajlich. Case Study of Feature Location Using
Dependence Graph. In Proceedings of the International Workshop on Pro-
gram Comprehension, pages 241-249, Limerick, Ireland, June 2000. IEEE
Computer Society Press.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Herleitung der
Feature-Komponenten-Korrespondenz mittels Begriffsanalyse. In Proceed-
ings of the 1. Deutscher Software-Produktlinien Workshop, pages 63—68,
Kaiserslautern, Germany, November 2000.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding Program
Comprehension by Static and Dynamic Feature Analysis. In Proceedings of
the International Conference on Software Maintenance, page To appear.,
Florence, Italy, November 2001. IEEE Computer Society Press.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Derivation of
Feature-Component Maps by Means of Concept Analysis. In Pedro Susa
and Jiirgen Ebert, editors, Proceedings of the Fifth Furopean Conference on
Software Maintenance and Reengineering, pages 176-179, Lisbon, Portugal,
March 2001.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Feature-Driven
Program Understanding Using Concept Analysis of Execution Traces. In
Proceedings of the International Workshop on Program Comprehension,
pages 300-309, Toronto, Canada, May 2001. IEEE Computer Society Press.

Linda M. Northrop. A Framework for Software Product Line Practice.
Available at http://www.sei.cmu.edu/plp/framework.html, 2001.

Nelson Weiderman, John Bergey, Dennis Smith, and Scott Tilley. Can
Legacy Systems Beget Product Lines? Lecture Notes in Computer Science,
1429, 1998.

Norman Wilde, Michelle Buckellew, Henry Page, and Viéclav Rajlich. A
Case Study of Feature Location in Unstructured Legacy Fortran Code. In
Pedro Susa and Jiirgen Ebert, editors, Proceedings of the Fifth European
Conference on Software Maintenance and Reengineering, pages 68—75, Lis-
bon, Portugal, March 2001.

Norman Wilde and Michael Scully. Software Reconnaissance: Mapping
Program Features to Code. Journal of Software Maintenance: Research
and Practice, 7:49-62, January 1995.

W. Eric Wong, Swapna S. Gokhale, and Joseph R. Hogan. Quantifying
the Closeness between Program Components and Features. The Journal of
Systems and Software, 54(2):87-98, October 2000.



