Universal Quantification in Relational Databases:
A Classification of Data and Algorithms

Ralf Rantzau', Leonard Shapiro®, Bernhard Mitschang', and Quan Wang’

! Computer Science Department, University of Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
{rantzau, mitsch}@informatik.uni-stuttgart.de

2 Computer Science Department, Portland State University,
P.O. Box 751, Portland, OR 97201-0751, Oregon, U.S.A.
len@cs.pdx.edu

3 Oracle Corporation
guan.wang@oracle.com

Abstract. Queries containing universal quantification are used in many applica-
tions, including business intelligence applications. Several algorithms have
been proposed to implement universal quantification efficiently. These algo-
rithms are presented in an isolated manner in the research literature — typically,
no relationships are shown between them. Furthermore, each of these algo-
rithms claims to be superior to others, but in fact each algorithm has optimal
performance only for certain types of input data. In this paper, we present a
comprehensive survey of the structure and performance of algorithms for uni-
versal quantification. We introduce a framework for classifying all possible
kinds of input data for universal quantification. Then we go on to identify the
most efficient algorithm for each such class. One of the input data classes has
not been covered so far. For this class, we propose several new algorithms. For
the first time, we are able to identify the optimal algorithm to use for any given
input dataset. These two classifications of input data and optimal algorithms
are important for query optimization. They allow a query optimizer to make the
best selection when optimizing at intermediate steps for the quantification prob-
lem.

1 Introduction

Universal quantification is an important operation in the first order predicate calculus.
This calculus provides existential and universal quantifiers, represented by 3 and V,
respectively. A universal quantifier that is applied to a variable x of a formula f'speci-
fies that the formula is true for all values of x. We say that x is universally quantified
in the formula f, and we write V x: f{x) in calculus.

In relational databases, universal quantification is implemented by the division op-
erator (represented by +) of the relational algebra. The division operator is important
for databases because it appears often in practice, particularly in business intelligence
applications, including online analytic processing (OLAP) and data mining. In this
paper, we will focus on the division operator exclusively.

enrollment (dividend) + course (divisor) = result (quotient)

student_id _| course_id course_id ‘student id ‘
Alice Compilers Compilers ‘ Bob ‘
Alice Theory Databases

Bob Compilers Theory

Bob Databases

Bob Graphics

Bob Theory

Chris Compilers

Chris Graphics

Chris Theory

Fig. 1. Division operation representing the query “Which students have taken all courses?”

1.1 Overview of the Division Operator

To illustrate the division operator we will use a simple example throughout the paper,
illustrated in Figure 1, representing data from one department at a university [7]. A
course Tow represents a course that has been offered by the department and an en-
rollment row indicates that a student has taken a particular course. The following
query can be represented by the division operator:

“Which students have taken a// courses offered by the department?”

As indicated in the table result, only Bob has taken all the courses. Bob is enrolled
in another course (Graphics) but this does not affect the result. Both Alice and Chris
are not enrolled in the Databases course. Therefore, they are not included in the re-
sult.

The division operator takes two tables for its input, the divisor and the dividend,
and generates one table, the quotient. All the data elements in the divisor must appear
in the dividend, paired with any element (such as Bob) that is to appear in the quo-
tient.

In the example of Figure 1, the divisor and quotient have only one attribute each,
but in general, they may have an arbitrary number of attributes. In any case, the set of
attributes of the dividend is the disjoint union of the attributes of the divisor and the
quotient. To simplify our exposition, we assume that the names of the dividend at-
tributes are the same as the corresponding attribute names in the divisor and the quo-
tient.

1.2 Input Data Characteristics

The goal of this paper is to identify optimal algorithms for the division operator, for
all possible inputs. Several papers compare new algorithms to previous algorithms
and claim superiority for one or more algorithms, but they do not address the issue of
which algorithms are optimal for which types of data [2] [3] [7]. In fact, the perform-
ance of any algorithm depends on the structure of its input data.

If we know about the structure of input data, we can employ an algorithm that ex-
ploits this structure, i.e., the algorithm does not have to restructure the input before it
can start generating output data. Of course, there is no guarantee that such an algo-
rithm is always “better” than an algorithm that requires previous restructuring. How-
ever, the division operator offers a variety of alternative algorithms that can exploit
such a structure for the sake of good performance and low memory consumption.

Suppose we are fortunate and the input data is highly structured. For example,
suppose the data has the schema of Figure 1 but is of much larger size, and suppose:

— enrollment is sorted by student id and course_id and resides on disk, and
— course is sorted by course_id and resides in memory.

Then the example query can be executed with one scan of the enrollment table.
This is accomplished by reading the enrollment table from disk. As each student
appears, the course_id values associated with that student are merged with the course
table. If all courses match, the student id is copied to the result.

The single scan of the enrollment table is obviously the most efficient possible al-
gorithm in this case. In the remainder of this paper, we will describe similar types of
structure for input datasets, and the optimal algorithms that are associated with them.
The notion of “optimality” will be further discussed in the next section.

How could such careful structuring of input data, such as sorting by student id and
course_id, occur? It could happen by chance, or for two other more commonly en-
countered reasons:

1. The data might be stored in tables, which were sorted in that order for other pur-
poses, for example, so that it is easy to list enrollments on a roster in ID order, or to
find course information when a course ID number is given.

2. The data might have undergone some previous processing, because the division
operator query is part of a more complex query. The previous processing might
have been a merge-join operator, for example, which requires that its inputs be
sorted and produces sorted output data.

1.3 Choice of Algorithms

A query processor of a database system typically provides several algorithms that all
realize the same operation. An optimizer has to choose one of these algorithms to
process the given data. If the optimizer knows the structure of the input data for an
operator, it can pick an algorithm that exploits the structure. Many criteria influence
the decision why one algorithm is preferred over others. Some of these criteria of
optimality are: the time to deliver the first/last result row, the amount of memory for
internal, temporary data structures, the number of scans over the input data, or the
ability to be non-blocking, i.e., to return some result rows before the entire input data
are consumed.

Which algorithm should we use to process the division operation, given the divi-
dend and divisor tables shown in Figure 1? Several algorithms are applicable but they
are not equally efficient. For example, since the dividend and divisor are both sorted
on the attribute course_id in Figure 1, we could select a division algorithm that ex-
ploits this fact by processing the input tuples in a way that is similar to the merge-join
algorithm, as we have sketched in the previous section.

What algorithm should we select when the input tables are not sorted on course_id
for each group of student id? One option is to sort both input tables first and then
employ the algorithm similar to merge-join. Of course, this incurs an additional com-
putational cost for sorting in addition to the cost of the division algorithm itself. An-
other option is to employ an algorithm that is insensitive to the ordering of input tu-

ples. One such well-known algorithm is hash-division and is discussed in detail in
Section 3.2.4.

We have seen that the decision, which algorithm to select among a set of different
division algorithms, depends on the structure of the input data. This situation is true
for any class of algorithms, including those that implement database operators like
join, aggregation, and sort algorithms.

1.4 Outline of the Paper

The remainder of this paper is organized as follows. In Section 2, we present a classi-
fication of input data for algorithms that evaluate division within queries. Section 3
gives an overview of known and new algorithms to solve the universal quantification
problem and classifies them according to two general approaches for division. In
section 4, we evaluate the algorithms according to both applicability and effectiveness
for different kinds of input data, based on a performance analysis. Section 5 gives a
brief overview of related work. Section 6 concludes this paper and comments on
future work.

2 Classification of Data

This section presents an overview of the input data for division. We identify all pos-
sible classes of data based on whether it is grouped on certain attributes. For some of
these classes, we will present optimal algorithms in Section 3 that exploit the specific
data properties of a class.

2.1 Grouping

Relational database systems have the notion of grouped rows in a table. Let us briefly
look at an example that shows why grouping is important for query processing. Sup-
pose we want to find for each course the number of enrolled students in the enroll-
ment table of Figure 1. One way to compute the aggregates involves grouping: after
the table has been grouped on course_id, all rows of the table with the same value of
course_id appear next to each other. The ordering of the group values is not speci-
fied, i.e., any group of rows may follow any other group. Group-based aggregation
groups the data first, and then it scans the resulting table once and computes the ag-
gregates during the scan.

Instead of grouping, one could use a nested-loops approach to process this query:
pick any course ID as the first group value and then search through the whole table to
find the rows that match this ID and compute the sum. Then, we pick a second course
ID, search for matching rows, compute the second aggregate, pick the third value, etc.
If no suitable search data structure (index) is available, this processing may involve
multiple scans over the entire dataset.

If the data is grouped, then the grouping algorithm is clearly more efficient. Even
if the data is not grouped, the aggregation approach is in general more efficient. For
large datasets, the (at most) n-log(n) cost of grouping and subsequent linear aggrega-
tion is typically cheaper than the n* cost of nested-loops.

Sorted data appears frequently in query processing. Note that sorting is a special
grouping operation. For example, grouping only requires that students enrolled in the

Table 1. A classification of dividend and divisor. Attributes are either grouped (G) or not
grouped (N). We use the same (a different) index of G; when D and the divisor have the same
(a different) ordering of groups in classes 3, 4, 9—12. In addition, when the dividend is grouped
on both O and D in classes 7-12, then G; (G,) denotes the attributes that the table is grouped on
first (second).

Class DQ1v1degd Divisor Description of Grouping
0 N | N N
1 N | N G
2 N | G N
3 N | G G, arbitrary ordering of groups in D and divisor
4 N | G G same ordering of groups in D and divisor
5 G | N N
6 G | N G
7 G | G N Q major, D minor
8 G, | Gy N D major, Q minor
9 G | G Gs Q major, D minor; arbitrary ordering of groups in D and divisor
10 G, | G G, O major, D minor; same ordering of groups in D and divisor
11 G, | G Gs D major, Q minor; arbitrary ordering of groups in D and divisor
12 |G |G G, D major, Q minor; same ordering of groups in D and divisor

same course are stored next to each other (in any order), whereas sorting requires
more effort, namely that they be in a particular order (ascending or descending). The
overhead of sort-based grouping is reflected by the time complexity O(n-log(n)) as
opposed to the nearly linear time complexity for hash-based grouping. Though sort-
based grouping algorithms do more than necessary, both hash-based and sort-based
grouping perform well for large datasets [6] [7].

2.2 Grouped Input Data for Division

Relational division has two input tables, a dividend and a divisor, and it returns a
quotient table. As a consequence of the definition of the division operator, we can
partition the attributes of the dividend S into two sets, which we denote D and Q,
because they correspond to the attributes of the divisor and the quotient, respectively.
The divisor’s attributes correspond to D, i.e., for each attribute in the divisor there is a
different attribute in D of the same domain. As already mentioned, for simplicity, we
assume that the names of attributes in the quotient R are the same as the correspond-
ing attribute names in the dividend S and the divisor 7. Thus, we write a division
operation as R(Q) = S(Q v D) + T(D). In Figure 1, Q = {student id} and D =
{course_id}.

Our classification of division algorithms is based on whether certain attributes are
grouped or even sorted. Several reasons justify this decision. Grouped input can
reduce the amount of memory needed by an algorithm to temporarily store rows of a
table because all rows of a group have a constant group value. Furthermore, grouping
appears frequently in query processing. Many database operators require grouped or
sorted input data (e.g., merge-join) or produce such output data (e.g., index-scan): If
there is an index defined on a base table, a query processor can retrieve the rows in
sorted order, specified by the index attribute list. Thus, in some situations, algorithms
may exploit for the sake of efficiency the fact that base tables or derived tables are
grouped, if the system knows about this fact.

In Table 1, we show all possible classes of input data based on whether or not in-
teresting attribute sets are grouped, i.e., grouped on one of O, D, or the divisor. As

Class 0: Class 2: Class 5: Class 10:

enrollment course enrollment course enrollment course enrollment course
student_id _| course_id course_id student_id__| course_id. course_id student_id | course_id course_id. student_id _| course_id. course_id.
Bob Theory Databases Alice Theory Databases Chris Graphics Databases Chris Theory Databases
Alice Compilers ‘Theory Chris Theory Theory Chris Compilers Theory Chris Graphics Theory
Chris Theory Compilers Bob Theory Compilers Chris Theory Compilers Chris Compilers Compilers
Chris Graphics Bob Databases Alice Theory Alice Theory
Alice Theory Bob Graphics Alice Compilers Alice Compilers
Bob Graphics Chris Graphics Bob Theory Bob Databases
Chris Compilers Bob Compilers Bob Compilers Bob Theory
Bob Databases Chris Compilers Bob Databases Bob Graphics
Bob Compilers Alice Compilers Bob Graphics Bob Compilers
notgrouped not grouped not grouped not grouped grouped not grouped grouped not grouped not grouped grouped grouped grouped

Fig. 2. Four important classes of input data, based on the example in Figure 1.

we will see later in this paper, some classes have no suitable algorithm that can ex-
ploit its specific combination of data properties. The classes that have at least one
algorithm exploiting exactly its data properties are shown in italics. In class 0, for
example, no table is grouped on an interesting attribute set. Algorithms for this class
have to be insensitive to whether the data is grouped or not. Another example sce-
nario is class 10. Here, the dividend is first grouped on the quotient attributes Q (de-
noted by G, the major group) and for each group, it is grouped on the divisor D (de-
noted by G,, the minor group). The divisor is grouped in the same ordering (G,) as
the dividend.

Our classification is based on grouping only. As we have seen, some algorithms
may require that the input is even sorted and not merely grouped. We consider this a
minor special case of our classification, so we do not reflect this data property in
Table 1, but the algorithms in Section 3 will refer to this distinction. We do not con-
sider any data property other than grouping in this paper because our approach is
complete and can easily and effectively be exploited by a query optimizer and query
processor.

Figure 2 illustrates four classes of input data for division, based on the example
data of Figure 1. These classes, which are shown in italics in Table 1, are important
for several algorithms that we present in the following section.

If we know that an algorithm can process data of a specific class, it is useful to
know which other classes are also covered by the algorithm. This information can be
represented, e.g., by a Boolean matrix like the one on the left in Figure 3. One axis
indicates a given class C; and the other axis shows the other classes C, that are also
covered by C;. Alternatively, we can use a directed acyclic graph representing the
input data classification, sketched on the right in Figure 3. If a cell of the matrix is
marked with “Y” (yes), or equivalently, if there is a path in the graph from class C; to
C,, then an algorithm that can process data of class C; can also process data of class
C,. The graph clearly shows that the classification is a partial order of classes, not a
strict hierarchy. The source node of the graph is class 0, which requires no grouping
of D, Q, or divisor. Any algorithm that can process data of class 0 can process data of
any other class. For example, an algorithm processing data of class 6 is able to proc-
ess data of classes 9—12.

For the subsequent discussion of division algorithms, we define two terms to refer
to certain row subsets of the dividend. Suppose the dividend S is grouped on Q (D),
i.e., suppose the dividend belongs to class 5 (2) and all its descendants in Figure 3.
Furthermore, suppose v is one specific value a group in D (Q). Then the set of rows
defined by 64-,(S) (op=(S)) is called the quotient group (divisor group) of v. For

Class C,

121110987654321‘
OYYYYYYYYYYYY‘
1]Y|Y|Y|Y Y Y|Y
21Y|Y Y Y|Y
3|1Y[Y Y
41Y

Class C, |5 Y|Y Y|y <:>
6 Y|Y
7 Y|Y
8{Y|Y
9 Y
10
(Y]

Fig. 3. A matrix and a directed acyclic graph representing the input data classification de-
scribed in Table 1. All algorithms to be discussed in Section 3 assume data properties of either
class 0, 2, 5, or 10.

example, in the enrollment table of class 5 in Figure 2, the quotient group of Alice
consists of the rows {(Alice, Theory), (Alice, Compilers)}. Similarly, the divisor
group of Databases in class 2 in Figure 2 consists of the single row (Bob, Databases).

3 Overview of Algorithms

In this section, we present algorithms for relational division proposed in the database
literature together with several new variations of the well-known hash-division algo-
rithm. In Section 4, we will analyze and compare the effectiveness of each algorithm
with respect to the data classification of Section 2.

Each division algorithm (analogous to other classes of algorithms, like joins, for
example) has performance advantages for certain data characteristics. No algorithm
is able to outperform the others for every input data conceivable.

The following algorithms assume that the division’s input consists of a dividend
table S(Q U D) and a divisor table 7(D), where Q is a set of quotient attributes and D
is the set of divisor attributes, as defined in Section 2.2.

3.1 Algorithm Classification

In this section, we present a classification of algorithms based on what kind of data
structures are employed. In addition, we illustrate how universal quantification is
expressed in a query language.

There are two fundamental approaches to processing relational division. The first
one relies on direct row matches between the dividend’s divisor attributes D and the
divisor table. We call this class of algorithms scalar to contrast them to the second
class, called aggregate algorithms. Aggregate algorithms use counters to compare the
number of rows in a dividend’s quotient group to the number of divisor rows. In [2],
scalar and aggregate algorithms are called direct and indirect algorithms, respectively.

Any query involving universal quantification can be replaced by a query that
makes use of counting [7]. However, formulating division queries that involve ag-
gregation is non-intuitive and error-prone because one has to take care of duplicates,
NULL values, and referential integrity.

3.2 Scalar Algorithms

This section presents division algorithms that use data structures to directly match
dividend rows with divisor rows.

3.2.1 Nested-Loops Division

This algorithm is the most naive way to implement division. However, like nested-
loops join, an operator using nested-loops division (NLD) has no required data
properties on the input tables and thus can always be employed, i.e., NLD can process
input data of class 0 and thus any other class of data, according to Figure 3.

We use two set data structures, one to store the set of divisor values of the divisor
table, called seen_divisors, and another to store the set of quotient candidate values
that we have found so far in the dividend table, called seen quotients. We first scan
the divisor table to fill seen_ divisors. After that, we scan the dividend in an outer
loop. For each dividend row, we check if its quotient value (Q) is already contained
in seen_quotients. If not, we scan the dividend iteratively in an inner loop to find all
rows that have the same quotient value as the dividend row of the outer loop. For
each such row found, we check if its divisor value is in seen divisors. If yes, we
mark the divisor value in seen_divisors. After the inner scan is complete, we add the
current quotient value to the output if all divisors in seen_divisors are marked. Before
we start processing the next dividend row of the outer loop, we unmark all elements
of seen_divisors and add the quotient value to seen_quotients.

Note that NLD can be very inefficient. For each row in the dividend table, we scan
the dividend at least partially to find all the rows that belong to the current quotient
candidate. All divisor rows and quotient candidate rows are stored in an in-memory
data structure. NLD can be the most efficient algorithm for small ungrouped datasets.

In the illustration in box (1) in Figure 4, we assume hash tables as the data struc-
tures used for matching. It shows the divisor/quotient hash tables that represent
seen_divisors and seen_quotients, respectively. The value setting in the hash tables is
shown for the time when all dividend rows of Alice and Bob (in this order) have been
processed and we have not yet started to process any rows of Chris in the outer loop.
We find that Bob is a quotient because all bits in the divisor hash table are equal to 1.

3.2.2 Merge-Sort Division
The merge-sort division (MSD) algorithm assumes that

— the divisor 7'is sorted, and that
— the dividend S is grouped on Q, and for each group, it is sorted on D in the same
order (ascending or descending) as T.

This data characteristic is a special case of class 10, where D and the divisor are
sorted and not only grouped.

The algorithm resembles merge-join for processing a single quotient group and is
similar to nested-loops join for processing all groups. Due to space restrictions we
refer to [12] for details on this algorithm.

Box (2) in Figure 4 illustrates the matches between rows of dividend and divisor.
Observe that the data is not sorted but only grouped on student id in an arbitrary
order.

(1) Nested-Loops Division (NLD) (2) Merge-Sort Division (MSD) (3) Merge-Group Division (MGD)

enrollment course
divisor quotient enrollment course

atribute it attribute student_id_ course_id course_id student id_ course_id course_id.
Chris Compilers - Compilers Chris Theory Databases
Chris Graphics 7 | Databases Chris Graphics
Chris Theory A2/ A Theory Chris Compilers Compilers

Alice Compilers Z Alice Theory
Alice Theory Alice Compilers

Databases | i[1]

H Bob Compilers Bob Databases
D Bob Databases Bob ‘Theory
Bob Graphics Bob Graphics
divisor hash table quotient hash table Bob Theory Bob Compilers
(4) Hash-Division (HD) (5) Transposed Hash-Division (HDT)
divisor divisor quotient divisor o quotient quotient
attribute number atribute 0P attribute tmay attribute number
— 012 — 012 M
H nonkimeE H
H n| H Ol 5%] [1]
B B H e
divisor hash table quotient hash table divisor hash table quotient hash table

6) Hash-Division for Quotient Groups (HDQ) 7) Transposed Hash-Division for Quotient Groups (HDTQ)

divisor divisor divisor
attribute number attribute bt

é
{ Daabases] [1]

divisor hash table current quotient candidate divisor hash table current quotient candidate

quotient
attribute

bitmap

Fig. 4. Overview of the data structures and processing used in scalar algorithms. The value
setting is based on the example from Figure 1. Except for boxes (2) and (3), broken lined boxes
indicate that a quotient is found.

3.2.3 Merge-Group Division

We can generalize merge-sort division to an algorithm that we call merge-group divi-
sion (MGD). In contrast to MSD, we assume that (1) both inputs are only grouped
and not necessarily sorted on the divisor attributes, but that (2) the order of groups in
each quotient group and the order of groups in the divisor are the same.

Note that each group within a quotient group and within the divisor consists of a
single row. This ordering can occur (or can be achieved) if, e.g., the same hash func-
tion is used for grouping the divisor and each quotient group.

In the MSD algorithm, we can safely skip a quotient candidate if the current value
of Q is greater (less) than that of the current divisor row, assuming an ascending (a
descending) sort order. Since we do not require a sort order on these attributes in
MGD, we cannot skip a group on unequal values, as we do in MSD. Due to space
restrictions we refer to [12] for details on this algorithm.

3.2.4 Classic Hash-Division

In this section, we present the classic hash-division (HD) algorithm [7]. We call this
algorithm “classic” to distinguish it from our variations of this approach in the follow-
ing sections.

The two central data structures of HD are the divisor and quotient hash tables,
sketched in box (4) in Figure 4. The divisor hash table stores divisor rows. Each such
row has an integer value, called divisor number, stored together with it. The quotient
hash table stores quotient candidates and has a bitmap stored together with each can-
didate, with one bit for each divisor.

In a first phase, hash-division builds the divisor hash table while scanning the divi-
sor. The hash function takes the divisor attributes as an argument and assigns a hash
bucket to each divisor row. A divisor row is stored into the hash bucket only if it is
not already contained in the bucket, thus eliminating duplicates in the divisor. When
a divisor row is stored, we assign a unique divisor number to it by copying the value
of a global counter. This counter is incremented for each stored divisor row and is
initialized with zero. The divisor number is used as an index for the bitmaps of the
quotient hash table.

The second phase of the algorithm constructs the quotient hash table while scan-
ning the dividend. For each dividend row, we first check if its D value is contained in
the divisor hash table, using the same hash function as before. If yes, we look up the
associated divisor number, otherwise we skip the dividend row. In addition to the
look-up, we check if the quotient is already present in the quotient hash table. If yes,
we update the bitmap associated with the matching quotient row by setting the bit to 1
whose position is equal to the divisor number we looked up. Otherwise, we insert a
new quotient row into the quotient hash table together with a bitmap where all bits are
initialized with zeroes and the appropriate bit is set to 1, as described before. Since
we insert only quotient candidates that are not already contained in the hash table, we
avoid duplicate dividend rows.

The final phase of hash division scans the quotient hash table’s buckets and adds
all quotient candidates to the output whose bitmaps contain only ones. In box (4) of
Figure 4, the contents of the hash tables are shown for the time when all dividend and
divisor rows of Figure 1 have been processed. We see that since Bob’s bitmap con-
tains no zeroes, Bob is the only quotient, indicated by a broken lined box.

3.2.5 Transposed Hash-Division

This algorithm is a slight variation of classic hash-division. The idea is to switch the
roles of the divisor and quotient hash tables. The fransposed hash-division (HDT)
algorithm keeps a bitmap together with each row in the divisor hash table instead of
the quotient hash table, as in HD. Furthermore, HDT keeps an integer value with
each row in the quotient hash table instead of the divisor hash table, as in the HD
algorithm.

Same as the classic hash-division algorithm, HDT first builds the divisor hash ta-
ble. However, we store a bitmap with each row of the divisor. A value of 1 at a cer-
tain bit position of a bitmap indicates which quotient candidate has the same values of
D as the given divisor row.

In a second phase, also same as HD, the HDT algorithm scans the dividend table
and builds a quotient hash table. For each dividend row, the D values are inserted
into the divisor hash table as follows. If there is a matching quotient row stored in the
quotient hash table, we look up its quotient number. Otherwise, we insert a new quo-
tient row together with a new quotient number. Then, we update the divisor row’s
bitmap by setting the bit at the position given by the quotient number to 1.

The final phase makes use of a new, separate bitmap. All bits of the bitmap, whose
size is the same as the bitmaps in the divisor hash table, are initialized with zero.
While scanning the divisor hash table, we apply a bit-wise AND operation between
each bitmap contained and the new bitmap. The resulting bit pattern of the new bit-
map is used to identify the quotients. The quotient numbers (bit positions) with a

value of 1 are then used to look up the quotients using a quotient vector data structure
that allows a fast mapping of a quotient number to a quotient candidate.

Boxes (4) and (5) of Figure 4 contrast the different structure of hash tables in HD
and HDT. The hash table contents is shown for the time when all enrollment rows of
Figure 1 have been processed. While a quotient in the HD algorithm can be added to
the output when the associated bitmap contains no zeroes, the HDT algorithm requires
a match of the bit at the same position of all bitmaps in the divisor table and it re-
quires in addition a look-up in the quotient hash table to find the associated quotient
row.

The time and memory complexities of HDT are the same as those of classic hash-
division.

3.2.6 Hash-Division for Quotient Groups

Both, classic and transposed hash-division can be improved if the dividend is
grouped on either D or Q. However, our optimizations based on divisor groups lead
to aggregate, not scalar algorithms. Hence, this section presents some optimizations
for quotient groups. The optimizations of hash-division for divisor groups are pre-
sented in Section 3.3.3.

Let us first focus on classic hash-division. If the dividend is grouped on Q, we do
not need a quotient hash table. It suffices to keep a single bitmap to check if the cur-
rent quotient candidate is actually a quotient. When all dividend rows of a quotient
group have been processed and all bits of the bitmap are equal to 1, the quotient row
is added to the output. Otherwise, we reset all bits to zero, skip the current quotient
row, and continue processing the next quotient candidate. Because of the group-by-
group processing of the improved algorithm, we call this approach hash-division for
quotient groups (HDQ).

The HDQ algorithm is non-blocking because we return a quotient row to the output
as soon as a group of (typically few) dividend rows has been processed. In contrast,
the HD algorithm has a final output phase: the quotient rows are added to the result
table after the entire dividend has been processed because hash-division does not
assume a grouping on Q. For example, the “first” and the “last” row of the dividend
could belong to the same quotient candidate, hence the HD algorithm has to keep the
state of the candidate quotient row as long as at least one bit of the candidate’s bitmap
is equal to zero. Note that it is possible to enhance HD such that it is not a “fully”
blocking algorithm. If bitmaps are checked during the processing of the input, HD
could detect some quotients that can be returned to the output before the entire divi-
dend has been scanned. Of course, we would then have to make sure that no dupli-
cate quotients are created, either by preprocessing or by referential integrity enforce-
ments or by keeping the quotient value in the hash table until the end of the process-
ing. In this paper, we do not elaborate on this variation of HD.

We have seen that the HDQ algorithm is a variation of the HD algorithm: if the
dividend is grouped on Q, we can do without a quotient hash table. Exactly the same
idea can be applied to HDT vyielding an algorithm that we call transposed hash-
division for quotient groups (HDTQ).

For grouped quotient attributes, we can do without the quotient hash table and we
do not keep long bitmaps in the divisor hash table but only a single bit per divisor.
Before any group is processed, the bit of each divisor attribute is set to zero. For each

group, we process the rows like in the HDT algorithm. After a group is processed, we
add a quotient to the output if the bit of every divisor row is equal to 1. Then, we
reset all bits to zero and resume the dividend scan with the next group.

We sketch the data structures used in the boxes (6) and (7) of Figure 4 for the time
when the group of dividend rows containing the quotient candidate Bob have been
processed.

3.3 Aggregate Algorithms

This class of algorithms compares the number of rows in each quotient candidate with
the number of divisor rows. In case of equality, a quotient candidate becomes a quo-
tient. All algorithms have in common that in a first phase, the divisor table is scanned
once to count the number of divisor rows. Each algorithm then uses different data
structures to keep track of the number of rows in a quotient candidate. Some algo-
rithms assume that the dividend is grouped on Q or D.

3.3.1 Nested-Loops Counting Division

Similar to scalar nested-loops division, nested-loops counting division (NLCD) is the
most naive way in the class of aggregate algorithms. This algorithm scans the divi-
dend multiple times. During each scan, NLCD counts the number of rows belonging
to the same quotient candidate.

We have to keep track of which quotient candidates we have already checked, us-
ing a quotient hash table as shown in box (1) of Figure 5. A global counter is used to
keep track of the number of dividend rows belonging to the same quotient candidate.
We fully scan the dividend in an outer loop: We pick the first dividend row, insert its
QO value into the quotient hash table, and set the counter to 1. If the counter’s value is
equal to the divisor count, we add the quotient to the output and continue with the
next row of the outer loop. Otherwise, we scan the dividend in an inner loop for rows
with the same Q value as the current quotient candidate. For each such row, the
counter is checked and in case of equality, the quotient is added to the output. When
the end of the dividend is reached in the inner loop, we continue with the next row of
the outer loop and check the hash table if this new row is a new quotient candidate.

The time and memory complexities are the same as for nested-loops division.

3.3.2 Merge-Count Division

Assuming that the dividend is grouped on Q, merge-count division (MCD) scans the
dividend exactly once. After a quotient candidate has been processed and the number
of rows is equal to those of the divisor, the quotient is added to the output. Note that
the size of a quotient group cannot exceed the number of divisor groups because we
have to guarantee referential integrity.

The aggregate algorithm merge-count division is similar to the scalar algorithms
MSD and MGD, described in Sections 3.2.2 and 3.2.3. Instead of comparing the
elements of quotient groups with the divisor, MCD uses a representative (the row
count) of each quotient group to compare it with the divisor’s aggregate. Box (2) in
Figure 5 illustrates the single scan required to compare the size of the each quotient
group with the divisor size.

(1) Nested-Loops Counting Division (NLCD) (2) Merge-Count Division (MCD) (3) Hash-Division for Divisor Groups (HDD)

quotient enrollment (dividend) course (divisor) quotient quotient
attribute P attribute counter
! student_id | course_id course_id ibute - cou
current quotient Chris Compilers 2 - Compilers i i
counter Chris Theory oo Databases
- Alice Compilers ¢ 2 Theory -
Bl Alice Theory L
= Bob Compilers =
Bob Databases | | ==
Bob Theory) .
divisor counter quotient hash table quotient counter divisor counter divisor counter quotient hash table
(4) Transposed Hash-Division for Divisor Groups (HDTD) (5) Stream-Join Division (SJD)
quotient quotient quotient .
attribute number attribute bit

] 1]

divisor counter vector quotient hash table divisor counter quotient hash table

Fig. 5. Overview data structures used in aggregate algorithms. Broken lined boxes indicate
that a quotient is found. Only Bob’s group has as many dividend rows as the divisor.

3.3.3 Hash-Division for Divisor Groups

In Section 3.2.6, we have analyzed optimizations of hash-division that require a divi-
dend that is grouped on Q. We now show some optimizations of hash-division for a
dividend that is grouped on D. Unlike the hash-division-like algorithms based on
quotient groups, the following two algorithms are blocking.

This algorithm does not need a divisor hash table because after a divisor group of
the dividend has been consumed, the divisor value will never reappear. We use a
counter instead of a bitmap for each row in the quotient hash table. We call this adap-
tation of the HD algorithm hash-division for divisor groups (HDD). The algorithm
maintains a counter to count the number of divisor groups seen so far in the dividend.
For each dividend row of a divisor group, we increment the counter of the quotient
candidate. If the quotient candidate is not yet contained in the quotient hash table, we
insert it together with a counter set to 1. When the entire dividend has been proc-
essed, we return those quotient candidates in the quotient hash table whose counter is
equal to the global counter.

The last algorithmic adaptation that we present is called transposed hash-division
for divisor groups (HDTD), based on the HDT algorithm. We can do without a divi-
sor hash table, but we keep an array of counters during the scan of the dividend. The
processing is basically the same as the previous algorithm (HDD): We return only
those quotient candidates of the quotient hash table whose counter is equal to the
value of the global counter. Because all divisor groups have to be processed before
we know all quotients, this algorithm is also blocking.

We sketch the data structures used in the boxes (3) and (4) of Figure 5 for the time
when the entire dividend has been processed. Note that the dividend contains only
three divisor groups (no Graphics rows), because we require that referential integrity
between enrollment and course is preserved, e.g., by applying a semi-join of the two
tables before division. Bob is the only student who is contained in all three divisor
groups.

3.3.4 Stream-Join Division

The new algorithm stream-join division (SJD) [11] is an improvement of hash-
division for divisor groups (HDD). As all other algorithms assuming a dividend that
is grouped on D as the only or the major set of group attributes, SJD is a blocking
algorithm. SJD is hybrid because it counts the number divisor rows, like all other
aggregate algorithms, and it maintains several bits to memorize matches between
dividend and divisor, like all other scalar algorithms. However, in this paper, we
consider SJD an aggregate algorithm due to its similarity to HDD.

The major differences between SJD and HDD are:

— SJD stores a bit instead of a counter together with each quotient candidate in the
quotient hash table.

— SJID is able to remove quotient candidates from the quotient hash table before the
end of the processing.

The SJD algorithm works as follows. As in HDD, we maintain a counter to count
the number of divisor groups seen so far in the dividend. First, we insert all quotient
candidates, i.e., Q values, of the first group in the dividend together with a bit initial-
ized with zero into the quotient hash table. We thereby eliminate possible duplicates
in the dividend. Then, we process each following group as follows. For each divi-
dend row of the current group, we look up the quotient candidate in the quotient hash-
table. In case of a match, the corresponding bit is set to 1. Otherwise, i.e., when the
O value of a given dividend row is not present in the quotient hash table, we skip this
row. After a group has been processed, we remove all quotient candidates with a bit
equal to zero. Then, we reset the bit of each remaining quotient candidate to zero.
Finally, when all groups have been processed, we compare the current group counter
with the number of rows in the divisor. In case of equality, all quotient candidates in
the quotient hash table with a bit equal to 1 are added to the output.

Box (5) of Figure 5 illustrates the use of the quotient hash table in SID. We as-
sume that the dividend is equal to the enrollment table of class 2 in Figure 2 with the
exception that the Graphics group {(Bob, Graphics), (Chris, Graphics)} is missing,
due to referential integrity.

The advantage of SJD lies in the fact that the amount of memory can decrease but
will never increase after the divisors have been stored in the quotient hash table.
However, the time and memory complexity is the same as for HDD. Observe that the
maximum amount of memory required is proportional to the number of rows of the
first group in the dividend. It may happen by chance that the first group is the small-
est of the entire dividend. In this case, we obtain a very memory-efficient processing.

This algorithm is called stream-join division because it joins all divisor groups of
the dividend (called streams in [11]) with each other on the attributes Q.

4 Evaluation of Algorithms

In this section, we briefly compare the division algorithms discussed in Section 3 with
each other and show which algorithm is optimal, with respect to time and memory
complexities, for each class of input data discussed in Section 2.

Table 2 characterizes the algorithms presented so far and shows the time and
memory complexities involved. We assigned the algorithms to those data classes that

have the least restrictions with respect to grouping. Remember that an algorithm of
class C can also process data of classes that are reachable from C in the dependency
graph in Figure 3. The overview of division algorithms in Table 2 shows that, despite
the detailed classification in Table 1 (comprising 13 classes and enumerating all pos-
sible kinds of input data), there are four major classes of input data that are covered
by dedicated division algorithms:

— class 0, which makes no assumption of grouping,

— class 2, which covers dividends that are grouped only or first on D,

— class 5, which covers dividends that are grouped only or first on O, and finally

— class 10, which specializes class 5 (and class 0, of course) by requiring that for
each quotient group, the rows of D and the divisor appear in the same order.
Hence, the dividend is grouped on Q as major and D as minor.

Note that algorithms for class 2, namely HDD, HDTD, and SJD, have not been
identified in the literature so far. They represent a new straightforward approach to
deal with a dividend that is grouped on D. Together with the other three major
classes, a query optimizer can exploit the information on the input data properties to
make an optimal choice of a specific division operator.

Suppose we are given input data of a class that is different from the four major
classes. Which algorithms are applicable to process our data? According to the graph
in Figure 3, all algorithms belonging to major classes, which are direct or indirect
parent nodes of the given class, can be used. For example, any algorithm of major
classes 0 and 5 can process data of the non-major classes 6, 7, and 9.

Several algorithms belong to each class of input data in Table 2. In class 0, both
HD and HDT have a linear time complexity (more precisely, nearly linear due to hash
collisions). However, they have a higher memory complexity than the other algo-
rithms of this class, NLCD and NLD.

We have designed three aggregate algorithms for class 2. They all have the same
linear time and memory complexities.

Class 5 has two scalar and one aggregate algorithm assigned to it, which all have
the same time complexity. The constant worst case memory complexity of MCD is
the lowest of the three.

The two scalar algorithms HDQ and HDTQ of class 10, which consists of two sub-
groups (sorted and grouped divisor values) have the same time complexity. The worst
case memory complexity of MSD is lower than that of MGD because MSD can ex-
ploit the sort order.

It is important to observe that one should not directly compare complexities of sca-
lar and aggregate algorithms in Table 2 to determine the most efficient algorithm
overall. This is because aggregate algorithms require duplicate-free input tables,
which can incur a very costly preprocessing step. There is one exception of aggregate
algorithms: SJD ignores duplicate dividend rows because of the hash table used to
store quotient candidates. It does not matter if a quotient occurs more than once in-
side a divisor group because the bit corresponding to a quotient candidate can be set
to 1 any number of times without changing its value (1). However, SJD does not
ignore duplicates in the divisor because it counts the number of divisor rows.

Table 2. Overview of division algorithms showing for each algorithm the class of required
input data, its algorithm class, and its time and memory complexities. Input data are either not
grouped (N), grouped (G), or sorted (S). Class 10 is first grouped on Q, indicated by G;. For
each quotient group, it is grouped (G,) or sorted (S;) on D in the same order as the divisor.

L . Abbre- | Algorithm | Data | Dividend S | Divisor Complexlty in O-Notation
Division Algorithm L . Time Memory
viation Class Class T
[9) D worst avg. worst avg.
Nested-Loops Counting Division NLCD | aggregate ISP+ 171 | ISP 1 1
Nested-Loops Division NLD | scalar 0 N N N ISP+ (11 | ISP S| 7 | |S]
Hash-Division HD scalar 1S|+ (71 | |S] ISIX|7] | |SIX|7]
Transposed Hash-Division HDT scalar 1S/ + 171 | |S] ISIX|7] | ISIX|7]
Hash-Division for Divisor Groups HDD | aggregate 1S+ 17 | 18] S| S|
Transp. Hash-Div. for Divisor Groups | HDTD | aggregate 2 N G N S|+ (1 | 18] 18| S|
Stream-Join Division SID aggregate NEIREN 18] S|
Merge-Count Division MCD | aggregate IS|+171 | 18] 1 1
Hash-Division for Quotient Groups HDQ | scalar 5 G N N 1S/ +171 | 18] |7 1
Transp. Hash-Div. for Quotient Groups | HDTQ | scalar IS|+171 | 18] |7 1
Merge-Group Division MGD | scalar 10 G G, G, ISXITT | ISIXIT] | 1T 1
Merge-Sort Division MSD | scalar S, S, 1S|+171 | 18] 1 1

In general, scalar division algorithms ignore duplicates in the dividend and the di-
visor. Note that the scan operations of MGD and MSD can be implemented in such a
way that they ignore duplicates in both inputs [7].

5 Related Work

Quantifiers in queries can be expressed by relational algebra. Due to the lack of effi-
cient division algorithms in the past, early work has recommended avoiding the rela-
tional division operator to express universal quantification in queries [2]. Instead,
universal quantification is expressed with the help of the well-known anti-semi-join
operator, or complement-join, as it is called in that paper.

Other early work suggests approaches other than division to process (universal)
quantification [4] [5]. Universal quantification is expressed by new algebra operators
and is optimized based on query graphs in a non-relational data model [5]. Due to the
lack of a performance analysis, we cannot comment on the efficiency of this ap-
proach.

The research literature provides only few surveys of division algorithms [3] [6] [7].
Some of the algorithms reviewed in this paper have been compared both analytically
and experimentally [7]. The conclusion is that hash-division outperforms all other
approaches. Complementing this work, we have shown that an optimizer has to take
the input data characteristics and the set of given algorithms into account to pick the
best division algorithm. The classification of four division algorithms in [7] is based
on a two-by-two matrix. One axis of the matrix distinguishes between algorithms
based on sorting or based on hashing. The other axis separates “direct” algorithms,
which allow processing the (larger) dividend table only once, from “indirect” algo-
rithms, which require duplicate removal (by employing semi-join) and aggregation.
For example, the merge-sort division algorithm of Section 3.2.2 falls into the category
“direct algorithm based on sorting,” while the hash-division for divisor groups algo-
rithm of Section 3.3.3 belongs to the combination “indirect algorithm based on hash-
ing.” Our classification details these four approaches and focuses on the fact that data

properties should be exploited as much as possible by employing “slim” algorithms
that are separated from preprocessing algorithms, like grouping and sorting. Our
analysis is more sensitive to the properties of input data. For example, if the input
data is in class 2 (where the data is grouped on the dividend’s divisor attributes), then
as shown in Section 3.3.4, the stream-join division algorithm is at least as efficient as
the hash-division algorithm of [7] but requires less memory.

Based on a classification of queries that contain universal quantification, several
query evaluation techniques have been analyzed [3]. The input data of this algorithm
analysis is stored in an object-oriented or object-relational database, where set-valued
attributes are available. Hence, the algorithms they examine can presuppose that the
input data is grouped on certain attributes. For example, the table enrollment in Fig-
ure 1 could be represented by a set-valued enrolled courses attribute of a student
class. The authors conclude that universal quantification based on anti-semi-join is
superior to all other approaches, similar to the conclusion of [2]. Note, however, that
paper has a broader definition of queries involving universal quantification than the
classic definition that involves the division operator. However, the anti-semi-join
approach requires a considerable overhead for preprocessing the dividend. An
equivalent definition of the division operator using anti-semi-join (X) as well as semi-
join (X) and left outer join (C), is: S+ 7= ((SXT) M T) XT.

In this paper, we focused on the universal (for-all) quantifier. Generalized quanti-
fiers have been proposed to specify quantifiers like “at least ten” or “exactly as many”
in SQL [9]. Such quantifiers can be processed by algorithms that employ multi-
dimensional matrix data structures [13]. In that paper, however, the implementation
of an operator called all is presented that is similar but different form relational divi-
sion. Unlike division, the result of the all operator contains some attributes of the
divisor. Hence, we have to employ a projection on the quotient attributes of the all
operator’s result to achieve a valid quotient.

Transformation rules for optimizing queries containing multiple (existential and
universal) quantifications are presented in [10]. Our contribution complements this
work by offering strategies to choose a single (division) operator, which may be one
element of a larger query processing problem.

6 Conclusion and Future Work

Based on a classification of input data properties, we were able to differentiate the
major currently known algorithms for relational division. In addition, we could pro-
vide new algorithms for previously not supported data properties. Thus, for the first
time, an optimizer has a full range of algorithms, separated by their input data proper-
ties and efficiency measures, to choose from.

We are aware of the fact that database system vendors are reluctant to implement
several alternative algorithms for the same query operator, in our case the division
operation. One reason is that the optimizer’s rule set has to be extended, which can
lead to a larger search space for queries containing division. Another reason is that
the optimizer must be able to detect a division in a query. This is a non-trivial task
because a division cannot be expressed in SQL:1999 [1]. No keyword similar to
“FOR ALL” [8] is available and division has to be expressed indirectly, for example
by using two negated “NOT EXISTS” clauses or by using the “division by counting”

approach on the query language level. To the best of our knowledge, there is no data-
base system that has an implementation of hash-division (or any of its improvements),
although this efficient algorithm has been known for many years [6]. However, we
believe that as soon as a dedicated keyword for universal quantification is supported
by a standard and its benefit is recognized and exploited by applications, many op-
tions and strategies are available today for database system vendors to implement an
efficient division operator.

Note that division requires a “constant” divisor. It is also common that queries in-
volve a correlated divisor, e.g. “Which students have taken all courses of their ma-
jor?” Unfortunately, such queries cannot be translated into a simple division query.
However, it may be possible to employ several divisions for such a single query, each
division having a single constant divisor. This could be a worthwhile strategy if the
number of divisors is low and if they can be easily computed in advance.

Our future work includes the analysis of further data properties that have an influ-
ence on optimization of division queries, like the current data distribution or the
availability of certain indexes. Furthermore, we will study the potential of paralleliz-
ing division algorithms, based on the detailed studies in [7] on parallelizing hash-
division and aggregate algorithms. Finally, we plan to investigate the potential of
using universal quantification in queries of business intelligence applications.

References

1. ANSI/ISO/IEC 9075-2: Information Technology — Database Language — SQL — Part 2:
Foundation (SQL/Foundation). (1999)

2. Bry, F.: Towards an Efficient Evaluation of General Queries: Quantifier and Disjunction
Processing Revisited. SIGMOD 1989: 193-204

3. Clauflen, J., Kemper, A., Moerkotte, G., Peithner, K: Optimizing Queries with Universal
Quantification in Object-Oriented and Object-Relational Databases. VLDB 1997: 286-295

4. Dayal, U.: Processing Queries with Quantifiers: A Horticultural Approach. PODS 1983:
125-136

5. Dayal, U.: Of Nests and Trees: A Unified Approach to Processing Queries that Contain
Nested Subqueries, Aggregates, and Quantifiers. VLDB 1987: 197-208

6. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing Surveys
25(2): 73170 (1993)

7. Graefe, G., Cole, R.: Fast Algorithms for Universal Quantification in Large Databases.
ACM Transactions on Database Systems 20(2): 187-236 (1995)

8. Gulutzan, P., Pelzer, T.: SQL-99 Complete, Really: An Example-Based Reference Manual
of the New Standard. R&D Books, Lawrence, Kansas, U.S.A., 1999

9. Hsu, P.-Y., Parker, D.: Improving SQL with Generalized Quantifiers. ICDE 1995: 298-305

10. Jarke, M., Koch, J.: Range Nesting: A Fast Method to Evaluate Quantified Queries. SIG-
MOD 1983: 196206

11. Nippl, C., Rantzau, R., Mitschang, B.: StreamJoin: A Generic Database Approach to Sup-
port the Class of Stream-Oriented Applications. IDEAS 2000: 83-91

12. Rantzau, R., Shapiro, L., Mitschang, B., Wang, Q.: Universal Quantification in Relational
Databases: A Classification of Data and Algorithms. Technical Report, Computer Science
Department, University of Stuttgart, 2002 (to appear)

13. Rao, S., Badia, A., van Gucht, D.: Providing Better Support for a Class of Decision Support
Queries. SIGMOD 1996: 217-227

