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Abstract. Queries containing universal quantification are used in many applica-
tions, including business intelligence applications.  Several algorithms have 
been proposed to implement universal quantification efficiently.  These algo-
rithms are presented in an isolated manner in the research literature – typically, 
no relationships are shown between them.  Furthermore, each of these algo-
rithms claims to be superior to others, but in fact each algorithm has optimal 
performance only for certain types of input data.  In this paper, we present a 
comprehensive survey of the structure and performance of algorithms for uni-
versal quantification.  We introduce a framework for classifying all possible 
kinds of input data for universal quantification.  Then we go on to identify the 
most efficient algorithm for each such class.  One of the input data classes has 
not been covered so far.  For this class, we propose several new algorithms.  For 
the first time, we are able to identify the optimal algorithm to use for any given 
input dataset.  These two classifications of input data and optimal algorithms 
are important for query optimization.  They allow a query optimizer to make the 
best selection when optimizing at intermediate steps for the quantification prob-
lem. 

1 Introduction 
Universal quantification is an important operation in the first order predicate calculus.  
This calculus provides existential and universal quantifiers, represented by ∃ and ∀, 
respectively.  A universal quantifier that is applied to a variable x of a formula f speci-
fies that the formula is true for all values of x.  We say that x is universally quantified 
in the formula f, and we write ∀x: f(x) in calculus. 

In relational databases, universal quantification is implemented by the division op-
erator (represented by ÷) of the relational algebra.  The division operator is important 
for databases because it appears often in practice, particularly in business intelligence 
applications, including online analytic processing (OLAP) and data mining.  In this 
paper, we will focus on the division operator exclusively. 



 

 

Bob
student_id
Bob
student_id

=enrollment (dividend) course (divisor)

Compilers

Theory
Databases

course_id
Compilers

Theory
Databases

course_id
CompilersAlice

TheoryChris
GraphicsChris
CompilersChris
TheoryBob
GraphicsBob
DatabasesBob
CompilersBob
TheoryAlice

course_idstudent_id
CompilersAlice

TheoryChris
GraphicsChris
CompilersChris
TheoryBob
GraphicsBob
DatabasesBob
CompilersBob
TheoryAlice

course_idstudent_id

result (quotient)÷

1.1 Overview of the Division Operator 

To illustrate the division operator we will use a simple example throughout the paper, 
illustrated in Figure 1, representing data from one department at a university [7].  A 
course row represents a course that has been offered by the department and an en-
rollment row indicates that a student has taken a particular course.  The following 
query can be represented by the division operator: 

“Which students have taken all courses offered by the department?” 

As indicated in the table result, only Bob has taken all the courses.  Bob is enrolled 
in another course (Graphics) but this does not affect the result.  Both Alice and Chris 
are not enrolled in the Databases course.  Therefore, they are not included in the re-
sult. 

The division operator takes two tables for its input, the divisor and the dividend, 
and generates one table, the quotient.  All the data elements in the divisor must appear 
in the dividend, paired with any element (such as Bob) that is to appear in the quo-
tient. 

In the example of Figure 1, the divisor and quotient have only one attribute each, 
but in general, they may have an arbitrary number of attributes.  In any case, the set of 
attributes of the dividend is the disjoint union of the attributes of the divisor and the 
quotient.  To simplify our exposition, we assume that the names of the dividend at-
tributes are the same as the corresponding attribute names in the divisor and the quo-
tient. 

1.2 Input Data Characteristics 

The goal of this paper is to identify optimal algorithms for the division operator, for 
all possible inputs.  Several papers compare new algorithms to previous algorithms 
and claim superiority for one or more algorithms, but they do not address the issue of 
which algorithms are optimal for which types of data [2] [3] [7].  In fact, the perform-
ance of any algorithm depends on the structure of its input data. 

If we know about the structure of input data, we can employ an algorithm that ex-
ploits this structure, i.e., the algorithm does not have to restructure the input before it 
can start generating output data.  Of course, there is no guarantee that such an algo-
rithm is always “better” than an algorithm that requires previous restructuring.  How-
ever, the division operator offers a variety of alternative algorithms that can exploit 
such a structure for the sake of good performance and low memory consumption. 

 

Fig. 1.  Division operation representing the query “Which students have taken all courses?” 



 

 

Suppose we are fortunate and the input data is highly structured.  For example, 
suppose the data has the schema of Figure 1 but is of much larger size, and suppose: 

− enrollment is sorted by student_id and course_id and resides on disk, and 
− course is sorted by course_id and resides in memory. 

Then the example query can be executed with one scan of the enrollment table.  
This is accomplished by reading the enrollment table from disk.  As each student 
appears, the course_id values associated with that student are merged with the course 
table.  If all courses match, the student_id is copied to the result. 

The single scan of the enrollment table is obviously the most efficient possible al-
gorithm in this case.  In the remainder of this paper, we will describe similar types of 
structure for input datasets, and the optimal algorithms that are associated with them.  
The notion of “optimality” will be further discussed in the next section. 

How could such careful structuring of input data, such as sorting by student_id and 
course_id, occur?  It could happen by chance, or for two other more commonly en-
countered reasons: 

1. The data might be stored in tables, which were sorted in that order for other pur-
poses, for example, so that it is easy to list enrollments on a roster in ID order, or to 
find course information when a course ID number is given. 

2. The data might have undergone some previous processing, because the division 
operator query is part of a more complex query.  The previous processing might 
have been a merge-join operator, for example, which requires that its inputs be 
sorted and produces sorted output data. 

1.3 Choice of Algorithms 

A query processor of a database system typically provides several algorithms that all 
realize the same operation.  An optimizer has to choose one of these algorithms to 
process the given data.  If the optimizer knows the structure of the input data for an 
operator, it can pick an algorithm that exploits the structure.  Many criteria influence 
the decision why one algorithm is preferred over others.  Some of these criteria of 
optimality are: the time to deliver the first/last result row, the amount of memory for 
internal, temporary data structures, the number of scans over the input data, or the 
ability to be non-blocking, i.e., to return some result rows before the entire input data 
are consumed. 

Which algorithm should we use to process the division operation, given the divi-
dend and divisor tables shown in Figure 1?  Several algorithms are applicable but they 
are not equally efficient.  For example, since the dividend and divisor are both sorted 
on the attribute course_id in Figure 1, we could select a division algorithm that ex-
ploits this fact by processing the input tuples in a way that is similar to the merge-join 
algorithm, as we have sketched in the previous section. 

What algorithm should we select when the input tables are not sorted on course_id 
for each group of student_id?  One option is to sort both input tables first and then 
employ the algorithm similar to merge-join.  Of course, this incurs an additional com-
putational cost for sorting in addition to the cost of the division algorithm itself.  An-
other option is to employ an algorithm that is insensitive to the ordering of input tu-



 

 

ples.  One such well-known algorithm is hash-division and is discussed in detail in 
Section 3.2.4. 

We have seen that the decision, which algorithm to select among a set of different 
division algorithms, depends on the structure of the input data.  This situation is true 
for any class of algorithms, including those that implement database operators like 
join, aggregation, and sort algorithms. 

1.4 Outline of the Paper 

The remainder of this paper is organized as follows.  In Section 2, we present a classi-
fication of input data for algorithms that evaluate division within queries.  Section 3 
gives an overview of known and new algorithms to solve the universal quantification 
problem and classifies them according to two general approaches for division.  In 
section 4, we evaluate the algorithms according to both applicability and effectiveness 
for different kinds of input data, based on a performance analysis.  Section 5 gives a 
brief overview of related work.  Section 6 concludes this paper and comments on 
future work. 

2 Classification of Data 
This section presents an overview of the input data for division.  We identify all pos-
sible classes of data based on whether it is grouped on certain attributes.  For some of 
these classes, we will present optimal algorithms in Section 3 that exploit the specific 
data properties of a class. 

2.1 Grouping 

Relational database systems have the notion of grouped rows in a table.  Let us briefly 
look at an example that shows why grouping is important for query processing.  Sup-
pose we want to find for each course the number of enrolled students in the enroll-
ment table of Figure 1.  One way to compute the aggregates involves grouping:  after 
the table has been grouped on course_id, all rows of the table with the same value of 
course_id appear next to each other.  The ordering of the group values is not speci-
fied, i.e., any group of rows may follow any other group.  Group-based aggregation 
groups the data first, and then it scans the resulting table once and computes the ag-
gregates during the scan. 

Instead of grouping, one could use a nested-loops approach to process this query: 
pick any course ID as the first group value and then search through the whole table to 
find the rows that match this ID and compute the sum.  Then, we pick a second course 
ID, search for matching rows, compute the second aggregate, pick the third value, etc.  
If no suitable search data structure (index) is available, this processing may involve 
multiple scans over the entire dataset. 

If the data is grouped, then the grouping algorithm is clearly more efficient.  Even 
if the data is not grouped, the aggregation approach is in general more efficient.  For 
large datasets, the (at most) n·log(n) cost of grouping and subsequent linear aggrega-
tion is typically cheaper than the n2 cost of nested-loops. 

Sorted data appears frequently in query processing.  Note that sorting is a special 
grouping operation.  For example, grouping only requires that students enrolled in the 



 

 

same course are stored next to each other (in any order), whereas sorting requires 
more effort, namely that they be in a particular order (ascending or descending).  The 
overhead of sort-based grouping is reflected by the time complexity O(n·log(n)) as 
opposed to the nearly linear time complexity for hash-based grouping. Though sort-
based grouping algorithms do more than necessary, both hash-based and sort-based 
grouping perform well for large datasets [6] [7]. 

2.2 Grouped Input Data for Division 

Relational division has two input tables, a dividend and a divisor, and it returns a 
quotient table.  As a consequence of the definition of the division operator, we can 
partition the attributes of the dividend S into two sets, which we denote D and Q, 
because they correspond to the attributes of the divisor and the quotient, respectively.  
The divisor’s attributes correspond to D, i.e., for each attribute in the divisor there is a 
different attribute in D of the same domain.  As already mentioned, for simplicity, we 
assume that the names of attributes in the quotient R are the same as the correspond-
ing attribute names in the dividend S and the divisor T.  Thus, we write a division 
operation as R(Q) = S(Q ∪ D) ÷ T(D).  In Figure 1, Q = {student_id} and D = 
{course_id}. 

Our classification of division algorithms is based on whether certain attributes are 
grouped or even sorted.  Several reasons justify this decision.  Grouped input can 
reduce the amount of memory needed by an algorithm to temporarily store rows of a 
table because all rows of a group have a constant group value.  Furthermore, grouping 
appears frequently in query processing.  Many database operators require grouped or 
sorted input data (e.g., merge-join) or produce such output data (e.g., index-scan):  If 
there is an index defined on a base table, a query processor can retrieve the rows in 
sorted order, specified by the index attribute list.  Thus, in some situations, algorithms 
may exploit for the sake of efficiency the fact that base tables or derived tables are 
grouped, if the system knows about this fact. 

In Table 1, we show all possible classes of input data based on whether or not in-
teresting attribute sets are grouped, i.e., grouped on one of Q, D, or the divisor.  As 

Table 1.  A classification of dividend and divisor.  Attributes are either grouped (G) or not 
grouped (N). We use the same (a different) index of Gi when D and the divisor have the same 
(a different) ordering of groups in classes 3, 4, 9–12.  In addition, when the dividend is grouped 
on both Q and D in classes 7–12, then G1 (G2) denotes the attributes that the table is grouped on 
first (second). 

Dividend Class Q D Divisor Description of Grouping 

0 N N N  
1 N N G  
2 N G N  
3 N G1 G2 arbitrary ordering of groups in D and divisor 
4 N G1 G1 same ordering of groups in D and divisor 
5 G N N  
6 G N G  
7 G1 G2 N Q major, D minor 
8 G2 G1 N D major, Q minor 
9 G1

 G2 G3
 Q major, D minor; arbitrary ordering of groups in D and divisor 

10 G1
 G2 G2 Q major, D minor; same ordering of groups in D and divisor 

11 G2
 G1 G3

 D major, Q minor; arbitrary ordering of groups in D and divisor 

12 G2
 G1 G1 D major, Q minor; same ordering of groups in D and divisor  



 

 

we will see later in this paper, some classes have no suitable algorithm that can ex-
ploit its specific combination of data properties.  The classes that have at least one 
algorithm exploiting exactly its data properties are shown in italics.  In class 0, for 
example, no table is grouped on an interesting attribute set.  Algorithms for this class 
have to be insensitive to whether the data is grouped or not.  Another example sce-
nario is class 10.  Here, the dividend is first grouped on the quotient attributes Q (de-
noted by G1, the major group) and for each group, it is grouped on the divisor D (de-
noted by G2, the minor group).  The divisor is grouped in the same ordering (G2) as 
the dividend. 

Our classification is based on grouping only.  As we have seen, some algorithms 
may require that the input is even sorted and not merely grouped.  We consider this a 
minor special case of our classification, so we do not reflect this data property in 
Table 1, but the algorithms in Section 3 will refer to this distinction.  We do not con-
sider any data property other than grouping in this paper because our approach is 
complete and can easily and effectively be exploited by a query optimizer and query 
processor. 

Figure 2 illustrates four classes of input data for division, based on the example 
data of Figure 1.  These classes, which are shown in italics in Table 1, are important 
for several algorithms that we present in the following section. 

If we know that an algorithm can process data of a specific class, it is useful to 
know which other classes are also covered by the algorithm.  This information can be 
represented, e.g., by a Boolean matrix like the one on the left in Figure 3.  One axis 
indicates a given class C1 and the other axis shows the other classes C2 that are also 
covered by C1.  Alternatively, we can use a directed acyclic graph representing the 
input data classification, sketched on the right in Figure 3.  If a cell of the matrix is 
marked with “Y” (yes), or equivalently, if there is a path in the graph from class C1 to 
C2, then an algorithm that can process data of class C1 can also process data of class 
C2.  The graph clearly shows that the classification is a partial order of classes, not a 
strict hierarchy.  The source node of the graph is class 0, which requires no grouping 
of D, Q, or divisor.  Any algorithm that can process data of class 0 can process data of 
any other class.  For example, an algorithm processing data of class 6 is able to proc-
ess data of classes 9–12. 

For the subsequent discussion of division algorithms, we define two terms to refer 
to certain row subsets of the dividend.  Suppose the dividend S is grouped on Q (D), 
i.e., suppose the dividend belongs to class 5 (2) and all its descendants in Figure 3.  
Furthermore, suppose v is one specific value a group in D (Q).  Then the set of rows 
defined by σQ=v(S) (σD=v(S)) is called the quotient group (divisor group) of v.  For 
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Fig. 2.  Four important classes of input data, based on the example in Figure 1. 



 

 

example, in the enrollment table of class 5 in Figure 2, the quotient group of Alice 
consists of the rows {(Alice, Theory), (Alice, Compilers)}.  Similarly, the divisor 
group of Databases in class 2 in Figure 2 consists of the single row (Bob, Databases). 

3 Overview of Algorithms 
In this section, we present algorithms for relational division proposed in the database 
literature together with several new variations of the well-known hash-division algo-
rithm.  In Section 4, we will analyze and compare the effectiveness of each algorithm 
with respect to the data classification of Section 2. 

Each division algorithm (analogous to other classes of algorithms, like joins, for 
example) has performance advantages for certain data characteristics.  No algorithm 
is able to outperform the others for every input data conceivable. 

The following algorithms assume that the division’s input consists of a dividend 
table S(Q ∪ D) and a divisor table T(D), where Q is a set of quotient attributes and D 
is the set of divisor attributes, as defined in Section 2.2. 

3.1 Algorithm Classification 

In this section, we present a classification of algorithms based on what kind of data 
structures are employed.  In addition, we illustrate how universal quantification is 
expressed in a query language. 

There are two fundamental approaches to processing relational division.  The first 
one relies on direct row matches between the dividend’s divisor attributes D and the 
divisor table.  We call this class of algorithms scalar to contrast them to the second 
class, called aggregate algorithms.  Aggregate algorithms use counters to compare the 
number of rows in a dividend’s quotient group to the number of divisor rows.  In [2], 
scalar and aggregate algorithms are called direct and indirect algorithms, respectively. 

Any query involving universal quantification can be replaced by a query that 
makes use of counting [7].  However, formulating division queries that involve ag-
gregation is non-intuitive and error-prone because one has to take care of duplicates, 
NULL values, and referential integrity. 
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Fig. 3.  A matrix and a directed acyclic graph representing the input data classification de-
scribed in Table 1.  All algorithms to be discussed in Section 3 assume data properties of either 
class 0, 2, 5, or 10. 



 

 

3.2 Scalar Algorithms 

This section presents division algorithms that use data structures to directly match 
dividend rows with divisor rows. 

3.2.1 Nested-Loops Division 
This algorithm is the most naïve way to implement division.  However, like nested-
loops join, an operator using nested-loops division (NLD) has no required data 
properties on the input tables and thus can always be employed, i.e., NLD can process 
input data of class 0 and thus any other class of data, according to Figure 3. 

We use two set data structures, one to store the set of divisor values of the divisor 
table, called seen_divisors, and another to store the set of quotient candidate values 
that we have found so far in the dividend table, called seen_quotients.  We first scan 
the divisor table to fill seen_divisors.  After that, we scan the dividend in an outer 
loop.  For each dividend row, we check if its quotient value (Q) is already contained 
in seen_quotients.  If not, we scan the dividend iteratively in an inner loop to find all 
rows that have the same quotient value as the dividend row of the outer loop.  For 
each such row found, we check if its divisor value is in seen_divisors.  If yes, we 
mark the divisor value in seen_divisors.  After the inner scan is complete, we add the 
current quotient value to the output if all divisors in seen_divisors are marked.  Before 
we start processing the next dividend row of the outer loop, we unmark all elements 
of seen_divisors and add the quotient value to seen_quotients. 

Note that NLD can be very inefficient.  For each row in the dividend table, we scan 
the dividend at least partially to find all the rows that belong to the current quotient 
candidate.  All divisor rows and quotient candidate rows are stored in an in-memory 
data structure.  NLD can be the most efficient algorithm for small ungrouped datasets. 

In the illustration in box (1) in Figure 4, we assume hash tables as the data struc-
tures used for matching.  It shows the divisor/quotient hash tables that represent 
seen_divisors and seen_quotients, respectively.  The value setting in the hash tables is 
shown for the time when all dividend rows of Alice and Bob (in this order) have been 
processed and we have not yet started to process any rows of Chris in the outer loop.  
We find that Bob is a quotient because all bits in the divisor hash table are equal to 1. 

3.2.2 Merge-Sort Division 
The merge-sort division (MSD) algorithm assumes that 

− the divisor T is sorted, and that 
− the dividend S is grouped on Q, and for each group, it is sorted on D in the same 

order (ascending or descending) as T. 

This data characteristic is a special case of class 10, where D and the divisor are 
sorted and not only grouped. 

The algorithm resembles merge-join for processing a single quotient group and is 
similar to nested-loops join for processing all groups.  Due to space restrictions we 
refer to [12] for details on this algorithm. 

Box (2) in Figure 4 illustrates the matches between rows of dividend and divisor.  
Observe that the data is not sorted but only grouped on student_id in an arbitrary 
order. 



 

 

3.2.3 Merge-Group Division 
We can generalize merge-sort division to an algorithm that we call merge-group divi-
sion (MGD).  In contrast to MSD, we assume that (1) both inputs are only grouped 
and not necessarily sorted on the divisor attributes, but that (2) the order of groups in 
each quotient group and the order of groups in the divisor are the same. 

Note that each group within a quotient group and within the divisor consists of a 
single row.  This ordering can occur (or can be achieved) if, e.g., the same hash func-
tion is used for grouping the divisor and each quotient group. 

In the MSD algorithm, we can safely skip a quotient candidate if the current value 
of Q is greater (less) than that of the current divisor row, assuming an ascending (a 
descending) sort order.  Since we do not require a sort order on these attributes in 
MGD, we cannot skip a group on unequal values, as we do in MSD.  Due to space 
restrictions we refer to [12] for details on this algorithm. 

3.2.4 Classic Hash-Division 
In this section, we present the classic hash-division (HD) algorithm [7].  We call this 
algorithm “classic” to distinguish it from our variations of this approach in the follow-
ing sections. 

The two central data structures of HD are the divisor and quotient hash tables, 
sketched in box (4) in Figure 4.  The divisor hash table stores divisor rows.  Each such 
row has an integer value, called divisor number, stored together with it.  The quotient 
hash table stores quotient candidates and has a bitmap stored together with each can-
didate, with one bit for each divisor. 
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Fig. 4.  Overview of the data structures and processing used in scalar algorithms.  The value 
setting is based on the example from Figure 1.  Except for boxes (2) and (3), broken lined boxes 
indicate that a quotient is found. 



 

 

In a first phase, hash-division builds the divisor hash table while scanning the divi-
sor.  The hash function takes the divisor attributes as an argument and assigns a hash 
bucket to each divisor row.  A divisor row is stored into the hash bucket only if it is 
not already contained in the bucket, thus eliminating duplicates in the divisor.  When 
a divisor row is stored, we assign a unique divisor number to it by copying the value 
of a global counter.  This counter is incremented for each stored divisor row and is 
initialized with zero.  The divisor number is used as an index for the bitmaps of the 
quotient hash table. 

The second phase of the algorithm constructs the quotient hash table while scan-
ning the dividend.  For each dividend row, we first check if its D value is contained in 
the divisor hash table, using the same hash function as before.  If yes, we look up the 
associated divisor number, otherwise we skip the dividend row.  In addition to the 
look-up, we check if the quotient is already present in the quotient hash table.  If yes, 
we update the bitmap associated with the matching quotient row by setting the bit to 1 
whose position is equal to the divisor number we looked up.  Otherwise, we insert a 
new quotient row into the quotient hash table together with a bitmap where all bits are 
initialized with zeroes and the appropriate bit is set to 1, as described before.  Since 
we insert only quotient candidates that are not already contained in the hash table, we 
avoid duplicate dividend rows. 

The final phase of hash division scans the quotient hash table’s buckets and adds 
all quotient candidates to the output whose bitmaps contain only ones.  In box (4) of 
Figure 4, the contents of the hash tables are shown for the time when all dividend and 
divisor rows of Figure 1 have been processed.  We see that since Bob’s bitmap con-
tains no zeroes, Bob is the only quotient, indicated by a broken lined box. 

3.2.5 Transposed Hash-Division 
This algorithm is a slight variation of classic hash-division.  The idea is to switch the 
roles of the divisor and quotient hash tables.  The transposed hash-division (HDT) 
algorithm keeps a bitmap together with each row in the divisor hash table instead of 
the quotient hash table, as in HD.  Furthermore, HDT keeps an integer value with 
each row in the quotient hash table instead of the divisor hash table, as in the HD 
algorithm. 

Same as the classic hash-division algorithm, HDT first builds the divisor hash ta-
ble.  However, we store a bitmap with each row of the divisor.  A value of 1 at a cer-
tain bit position of a bitmap indicates which quotient candidate has the same values of 
D as the given divisor row. 

In a second phase, also same as HD, the HDT algorithm scans the dividend table 
and builds a quotient hash table.  For each dividend row, the D values are inserted 
into the divisor hash table as follows.  If there is a matching quotient row stored in the 
quotient hash table, we look up its quotient number.  Otherwise, we insert a new quo-
tient row together with a new quotient number.  Then, we update the divisor row’s 
bitmap by setting the bit at the position given by the quotient number to 1. 

The final phase makes use of a new, separate bitmap.  All bits of the bitmap, whose 
size is the same as the bitmaps in the divisor hash table, are initialized with zero.  
While scanning the divisor hash table, we apply a bit-wise AND operation between 
each bitmap contained and the new bitmap.  The resulting bit pattern of the new bit-
map is used to identify the quotients.  The quotient numbers (bit positions) with a 



 

 

value of 1 are then used to look up the quotients using a quotient vector data structure 
that allows a fast mapping of a quotient number to a quotient candidate. 

Boxes (4) and (5) of Figure 4 contrast the different structure of hash tables in HD 
and HDT.  The hash table contents is shown for the time when all enrollment rows of 
Figure 1 have been processed.  While a quotient in the HD algorithm can be added to 
the output when the associated bitmap contains no zeroes, the HDT algorithm requires 
a match of the bit at the same position of all bitmaps in the divisor table and it re-
quires in addition a look-up in the quotient hash table to find the associated quotient 
row. 

The time and memory complexities of HDT are the same as those of classic hash-
division. 

3.2.6 Hash-Division for Quotient Groups 
Both, classic and transposed hash-division can be improved if the dividend is 

grouped on either D or Q.  However, our optimizations based on divisor groups lead 
to aggregate, not scalar algorithms.  Hence, this section presents some optimizations 
for quotient groups.  The optimizations of hash-division for divisor groups are pre-
sented in Section 3.3.3. 

Let us first focus on classic hash-division.  If the dividend is grouped on Q, we do 
not need a quotient hash table.  It suffices to keep a single bitmap to check if the cur-
rent quotient candidate is actually a quotient.  When all dividend rows of a quotient 
group have been processed and all bits of the bitmap are equal to 1, the quotient row 
is added to the output.  Otherwise, we reset all bits to zero, skip the current quotient 
row, and continue processing the next quotient candidate.  Because of the group-by-
group processing of the improved algorithm, we call this approach hash-division for 
quotient groups (HDQ). 

The HDQ algorithm is non-blocking because we return a quotient row to the output 
as soon as a group of (typically few) dividend rows has been processed.  In contrast, 
the HD algorithm has a final output phase: the quotient rows are added to the result 
table after the entire dividend has been processed because hash-division does not 
assume a grouping on Q.  For example, the “first” and the “last” row of the dividend 
could belong to the same quotient candidate, hence the HD algorithm has to keep the 
state of the candidate quotient row as long as at least one bit of the candidate’s bitmap 
is equal to zero.  Note that it is possible to enhance HD such that it is not a “fully” 
blocking algorithm.  If bitmaps are checked during the processing of the input, HD 
could detect some quotients that can be returned to the output before the entire divi-
dend has been scanned.  Of course, we would then have to make sure that no dupli-
cate quotients are created, either by preprocessing or by referential integrity enforce-
ments or by keeping the quotient value in the hash table until the end of the process-
ing.  In this paper, we do not elaborate on this variation of HD. 

We have seen that the HDQ algorithm is a variation of the HD algorithm: if the 
dividend is grouped on Q, we can do without a quotient hash table.  Exactly the same 
idea can be applied to HDT yielding an algorithm that we call transposed hash-
division for quotient groups (HDTQ). 

For grouped quotient attributes, we can do without the quotient hash table and we 
do not keep long bitmaps in the divisor hash table but only a single bit per divisor.  
Before any group is processed, the bit of each divisor attribute is set to zero.  For each 



 

 

group, we process the rows like in the HDT algorithm.  After a group is processed, we 
add a quotient to the output if the bit of every divisor row is equal to 1.  Then, we 
reset all bits to zero and resume the dividend scan with the next group. 

We sketch the data structures used in the boxes (6) and (7) of Figure 4 for the time 
when the group of dividend rows containing the quotient candidate Bob have been 
processed. 

3.3 Aggregate Algorithms 

This class of algorithms compares the number of rows in each quotient candidate with 
the number of divisor rows.  In case of equality, a quotient candidate becomes a quo-
tient.  All algorithms have in common that in a first phase, the divisor table is scanned 
once to count the number of divisor rows.  Each algorithm then uses different data 
structures to keep track of the number of rows in a quotient candidate.  Some algo-
rithms assume that the dividend is grouped on Q or D. 

3.3.1 Nested-Loops Counting Division 
Similar to scalar nested-loops division, nested-loops counting division (NLCD) is the 
most naïve way in the class of aggregate algorithms.  This algorithm scans the divi-
dend multiple times.  During each scan, NLCD counts the number of rows belonging 
to the same quotient candidate. 

We have to keep track of which quotient candidates we have already checked, us-
ing a quotient hash table as shown in box (1) of Figure 5.  A global counter is used to 
keep track of the number of dividend rows belonging to the same quotient candidate.  
We fully scan the dividend in an outer loop:  We pick the first dividend row, insert its 
Q value into the quotient hash table, and set the counter to 1.  If the counter’s value is 
equal to the divisor count, we add the quotient to the output and continue with the 
next row of the outer loop.  Otherwise, we scan the dividend in an inner loop for rows 
with the same Q value as the current quotient candidate.  For each such row, the 
counter is checked and in case of equality, the quotient is added to the output.  When 
the end of the dividend is reached in the inner loop, we continue with the next row of 
the outer loop and check the hash table if this new row is a new quotient candidate. 

The time and memory complexities are the same as for nested-loops division. 

3.3.2 Merge-Count Division 
Assuming that the dividend is grouped on Q, merge-count division (MCD) scans the 
dividend exactly once.  After a quotient candidate has been processed and the number 
of rows is equal to those of the divisor, the quotient is added to the output.  Note that 
the size of a quotient group cannot exceed the number of divisor groups because we 
have to guarantee referential integrity. 

The aggregate algorithm merge-count division is similar to the scalar algorithms 
MSD and MGD, described in Sections 3.2.2 and 3.2.3.  Instead of comparing the 
elements of quotient groups with the divisor, MCD uses a representative (the row 
count) of each quotient group to compare it with the divisor’s aggregate.  Box (2) in 
Figure 5 illustrates the single scan required to compare the size of the each quotient 
group with the divisor size. 



 

 

3.3.3 Hash-Division for Divisor Groups 
In Section 3.2.6, we have analyzed optimizations of hash-division that require a divi-
dend that is grouped on Q.  We now show some optimizations of hash-division for a 
dividend that is grouped on D. Unlike the hash-division-like algorithms based on 
quotient groups, the following two algorithms are blocking. 

This algorithm does not need a divisor hash table because after a divisor group of 
the dividend has been consumed, the divisor value will never reappear.  We use a 
counter instead of a bitmap for each row in the quotient hash table.  We call this adap-
tation of the HD algorithm hash-division for divisor groups (HDD).  The algorithm 
maintains a counter to count the number of divisor groups seen so far in the dividend.  
For each dividend row of a divisor group, we increment the counter of the quotient 
candidate.  If the quotient candidate is not yet contained in the quotient hash table, we 
insert it together with a counter set to 1.  When the entire dividend has been proc-
essed, we return those quotient candidates in the quotient hash table whose counter is 
equal to the global counter. 

The last algorithmic adaptation that we present is called transposed hash-division 
for divisor groups (HDTD), based on the HDT algorithm.  We can do without a divi-
sor hash table, but we keep an array of counters during the scan of the dividend.  The 
processing is basically the same as the previous algorithm (HDD):  We return only 
those quotient candidates of the quotient hash table whose counter is equal to the 
value of the global counter.  Because all divisor groups have to be processed before 
we know all quotients, this algorithm is also blocking. 

We sketch the data structures used in the boxes (3) and (4) of Figure 5 for the time 
when the entire dividend has been processed.  Note that the dividend contains only 
three divisor groups (no Graphics rows), because we require that referential integrity 
between enrollment and course is preserved, e.g., by applying a semi-join of the two 
tables before division.  Bob is the only student who is contained in all three divisor 
groups. 
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Fig. 5.  Overview data structures used in aggregate algorithms.  Broken lined boxes indicate 
that a quotient is found.  Only Bob’s group has as many dividend rows as the divisor. 



 

 

3.3.4 Stream-Join Division 
The new algorithm stream-join division (SJD) [11] is an improvement of hash-
division for divisor groups (HDD).  As all other algorithms assuming a dividend that 
is grouped on D as the only or the major set of group attributes, SJD is a blocking 
algorithm.  SJD is hybrid because it counts the number divisor rows, like all other 
aggregate algorithms, and it maintains several bits to memorize matches between 
dividend and divisor, like all other scalar algorithms.  However, in this paper, we 
consider SJD an aggregate algorithm due to its similarity to HDD. 

The major differences between SJD and HDD are: 

− SJD stores a bit instead of a counter together with each quotient candidate in the 
quotient hash table. 

− SJD is able to remove quotient candidates from the quotient hash table before the 
end of the processing. 

The SJD algorithm works as follows.  As in HDD, we maintain a counter to count 
the number of divisor groups seen so far in the dividend.  First, we insert all quotient 
candidates, i.e., Q values, of the first group in the dividend together with a bit initial-
ized with zero into the quotient hash table.  We thereby eliminate possible duplicates 
in the dividend.  Then, we process each following group as follows.  For each divi-
dend row of the current group, we look up the quotient candidate in the quotient hash-
table.  In case of a match, the corresponding bit is set to 1.  Otherwise, i.e., when the 
Q value of a given dividend row is not present in the quotient hash table, we skip this 
row.  After a group has been processed, we remove all quotient candidates with a bit 
equal to zero.  Then, we reset the bit of each remaining quotient candidate to zero.  
Finally, when all groups have been processed, we compare the current group counter 
with the number of rows in the divisor.  In case of equality, all quotient candidates in 
the quotient hash table with a bit equal to 1 are added to the output. 

Box (5) of Figure 5 illustrates the use of the quotient hash table in SJD.  We as-
sume that the dividend is equal to the enrollment table of class 2 in Figure 2 with the 
exception that the Graphics group {(Bob, Graphics), (Chris, Graphics)} is missing, 
due to referential integrity. 

The advantage of SJD lies in the fact that the amount of memory can decrease but 
will never increase after the divisors have been stored in the quotient hash table.  
However, the time and memory complexity is the same as for HDD.  Observe that the 
maximum amount of memory required is proportional to the number of rows of the 
first group in the dividend.  It may happen by chance that the first group is the small-
est of the entire dividend.  In this case, we obtain a very memory-efficient processing. 

This algorithm is called stream-join division because it joins all divisor groups of 
the dividend (called streams in [11]) with each other on the attributes Q. 

4 Evaluation of Algorithms 
In this section, we briefly compare the division algorithms discussed in Section 3 with 
each other and show which algorithm is optimal, with respect to time and memory 
complexities, for each class of input data discussed in Section 2. 

Table 2 characterizes the algorithms presented so far and shows the time and 
memory complexities involved.  We assigned the algorithms to those data classes that 



 

 

have the least restrictions with respect to grouping.  Remember that an algorithm of 
class C can also process data of classes that are reachable from C in the dependency 
graph in Figure 3.  The overview of division algorithms in Table 2 shows that, despite 
the detailed classification in Table 1 (comprising 13 classes and enumerating all pos-
sible kinds of input data), there are four major classes of input data that are covered 
by dedicated division algorithms: 

− class 0, which makes no assumption of grouping, 
− class 2, which covers dividends that are grouped only or first on D, 
− class 5, which covers dividends that are grouped only or first on Q, and finally 
− class 10, which specializes class 5 (and class 0, of course) by requiring that for 

each quotient group, the rows of D and the divisor appear in the same order.  
Hence, the dividend is grouped on Q as major and D as minor. 

Note that algorithms for class 2, namely HDD, HDTD, and SJD, have not been 
identified in the literature so far.  They represent a new straightforward approach to 
deal with a dividend that is grouped on D.  Together with the other three major 
classes, a query optimizer can exploit the information on the input data properties to 
make an optimal choice of a specific division operator. 

Suppose we are given input data of a class that is different from the four major 
classes.  Which algorithms are applicable to process our data?  According to the graph 
in Figure 3, all algorithms belonging to major classes, which are direct or indirect 
parent nodes of the given class, can be used.  For example, any algorithm of major 
classes 0 and 5 can process data of the non-major classes 6, 7, and 9. 

Several algorithms belong to each class of input data in Table 2.  In class 0, both 
HD and HDT have a linear time complexity (more precisely, nearly linear due to hash 
collisions).  However, they have a higher memory complexity than the other algo-
rithms of this class, NLCD and NLD. 

We have designed three aggregate algorithms for class 2.  They all have the same 
linear time and memory complexities. 

Class 5 has two scalar and one aggregate algorithm assigned to it, which all have 
the same time complexity.  The constant worst case memory complexity of MCD is 
the lowest of the three. 

The two scalar algorithms HDQ and HDTQ of class 10, which consists of two sub-
groups (sorted and grouped divisor values) have the same time complexity. The worst 
case memory complexity of MSD is lower than that of MGD because MSD can ex-
ploit the sort order. 

It is important to observe that one should not directly compare complexities of sca-
lar and aggregate algorithms in Table 2 to determine the most efficient algorithm 
overall.  This is because aggregate algorithms require duplicate-free input tables, 
which can incur a very costly preprocessing step.  There is one exception of aggregate 
algorithms: SJD ignores duplicate dividend rows because of the hash table used to 
store quotient candidates.  It does not matter if a quotient occurs more than once in-
side a divisor group because the bit corresponding to a quotient candidate can be set 
to 1 any number of times without changing its value (1).  However, SJD does not 
ignore duplicates in the divisor because it counts the number of divisor rows. 



 

 

In general, scalar division algorithms ignore duplicates in the dividend and the di-
visor.  Note that the scan operations of MGD and MSD can be implemented in such a 
way that they ignore duplicates in both inputs [7]. 

5 Related Work 
Quantifiers in queries can be expressed by relational algebra.  Due to the lack of effi-
cient division algorithms in the past, early work has recommended avoiding the rela-
tional division operator to express universal quantification in queries [2].  Instead, 
universal quantification is expressed with the help of the well-known anti-semi-join 
operator, or complement-join, as it is called in that paper. 

Other early work suggests approaches other than division to process (universal) 
quantification [4] [5].  Universal quantification is expressed by new algebra operators 
and is optimized based on query graphs in a non-relational data model [5].  Due to the 
lack of a performance analysis, we cannot comment on the efficiency of this ap-
proach. 

The research literature provides only few surveys of division algorithms [3] [6] [7].  
Some of the algorithms reviewed in this paper have been compared both analytically 
and experimentally [7].  The conclusion is that hash-division outperforms all other 
approaches.  Complementing this work, we have shown that an optimizer has to take 
the input data characteristics and the set of given algorithms into account to pick the 
best division algorithm.  The classification of four division algorithms in [7] is based 
on a two-by-two matrix.  One axis of the matrix distinguishes between algorithms 
based on sorting or based on hashing.  The other axis separates “direct” algorithms, 
which allow processing the (larger) dividend table only once, from “indirect” algo-
rithms, which require duplicate removal (by employing semi-join) and aggregation.  
For example, the merge-sort division algorithm of Section 3.2.2 falls into the category 
“direct algorithm based on sorting,” while the hash-division for divisor groups algo-
rithm of Section 3.3.3 belongs to the combination “indirect algorithm based on hash-
ing.”  Our classification details these four approaches and focuses on the fact that data 

Table 2.  Overview of division algorithms showing for each algorithm the class of required 
input data, its algorithm class, and its time and memory complexities.  Input data are either not 
grouped (N), grouped (G), or sorted (S).  Class 10 is first grouped on Q, indicated by G1.  For 
each quotient group, it is grouped (G2) or sorted (S2) on D in the same order as the divisor. 
 

Complexity in O-Notation Dividend S 
Time Memory Division Algorithm Abbre-

viation 
Algorithm

Class 
Data
Class 

Q D 

Divisor 
T 

worst avg. worst avg. 
Nested-Loops Counting Division NLCD aggregate |S|2 + |T| |S|2 1 1 

Nested-Loops Division NLD scalar |S|2 + |T| |S|2 |S| +|T| |S| 
Hash-Division HD scalar |S| + |T| |S| |S|×|T| |S|×|T| 
Transposed Hash-Division HDT scalar 

0 N N N 

|S| + |T| |S| |S|×|T| |S|×|T| 
Hash-Division for Divisor Groups HDD aggregate |S| + |T| |S| |S| |S| 
Transp. Hash-Div. for Divisor Groups HDTD aggregate |S| + |T| |S| |S| |S| 
Stream-Join Division SJD aggregate 

2 N G N 
|S| + |T| |S| |S| |S| 

Merge-Count Division MCD aggregate |S| + |T| |S| 1 1 
Hash-Division for Quotient Groups HDQ scalar |S| + |T| |S| |T| 1 
Transp. Hash-Div. for Quotient Groups HDTQ scalar 

5 G N N 
|S| + |T| |S| |T| 1 

Merge-Group Division MGD scalar G2 G2 |S|×|T| |S|×|T| |T| 1 
Merge-Sort Division MSD scalar 

10 G1 S2 S2 |S| + |T| |S| 1 1 



 

 

properties should be exploited as much as possible by employing “slim” algorithms 
that are separated from preprocessing algorithms, like grouping and sorting.  Our 
analysis is more sensitive to the properties of input data.  For example, if the input 
data is in class 2 (where the data is grouped on the dividend’s divisor attributes), then 
as shown in Section 3.3.4, the stream-join division algorithm is at least as efficient as 
the hash-division algorithm of [7] but requires less memory. 

Based on a classification of queries that contain universal quantification, several 
query evaluation techniques have been analyzed [3].  The input data of this algorithm 
analysis is stored in an object-oriented or object-relational database, where set-valued 
attributes are available.  Hence, the algorithms they examine can presuppose that the 
input data is grouped on certain attributes.  For example, the table enrollment in Fig-
ure 1 could be represented by a set-valued enrolled_courses attribute of a student 
class.  The authors conclude that universal quantification based on anti-semi-join is 
superior to all other approaches, similar to the conclusion of [2].  Note, however, that 
paper has a broader definition of queries involving universal quantification than the 
classic definition that involves the division operator.  However, the anti-semi-join 
approach requires a considerable overhead for preprocessing the dividend.  An 
equivalent definition of the division operator using anti-semi-join ( ) as well as semi-
join ( ) and left outer join ( ), is: S ÷ T = ((S T)  T) T. 

In this paper, we focused on the universal (for-all) quantifier.  Generalized quanti-
fiers have been proposed to specify quantifiers like “at least ten” or “exactly as many” 
in SQL [9].  Such quantifiers can be processed by algorithms that employ multi-
dimensional matrix data structures [13].  In that paper, however, the implementation 
of an operator called all is presented that is similar but different form relational divi-
sion.  Unlike division, the result of the all operator contains some attributes of the 
divisor.  Hence, we have to employ a projection on the quotient attributes of the all 
operator’s result to achieve a valid quotient. 

Transformation rules for optimizing queries containing multiple (existential and 
universal) quantifications are presented in [10].  Our contribution complements this 
work by offering strategies to choose a single (division) operator, which may be one 
element of a larger query processing problem. 

6 Conclusion and Future Work 
Based on a classification of input data properties, we were able to differentiate the 
major currently known algorithms for relational division.  In addition, we could pro-
vide new algorithms for previously not supported data properties.  Thus, for the first 
time, an optimizer has a full range of algorithms, separated by their input data proper-
ties and efficiency measures, to choose from. 

We are aware of the fact that database system vendors are reluctant to implement 
several alternative algorithms for the same query operator, in our case the division 
operation.  One reason is that the optimizer’s rule set has to be extended, which can 
lead to a larger search space for queries containing division.  Another reason is that 
the optimizer must be able to detect a division in a query.  This is a non-trivial task 
because a division cannot be expressed in SQL:1999 [1].  No keyword similar to 
“FOR ALL” [8] is available and division has to be expressed indirectly, for example 
by using two negated “NOT EXISTS” clauses or by using the “division by counting” 



 

 

approach on the query language level.  To the best of our knowledge, there is no data-
base system that has an implementation of hash-division (or any of its improvements), 
although this efficient algorithm has been known for many years [6].  However, we 
believe that as soon as a dedicated keyword for universal quantification is supported 
by a standard and its benefit is recognized and exploited by applications, many op-
tions and strategies are available today for database system vendors to implement an 
efficient division operator. 

Note that division requires a “constant” divisor.  It is also common that queries in-
volve a correlated divisor, e.g. “Which students have taken all courses of their ma-
jor?”  Unfortunately, such queries cannot be translated into a simple division query.  
However, it may be possible to employ several divisions for such a single query, each 
division having a single constant divisor.  This could be a worthwhile strategy if the 
number of divisors is low and if they can be easily computed in advance. 

Our future work includes the analysis of further data properties that have an influ-
ence on optimization of division queries, like the current data distribution or the 
availability of certain indexes.  Furthermore, we will study the potential of paralleliz-
ing division algorithms, based on the detailed studies in [7] on parallelizing hash-
division and aggregate algorithms.  Finally, we plan to investigate the potential of 
using universal quantification in queries of business intelligence applications. 
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