
A SYSTEM FOR DATA CHANGE PROPAGATION IN
HETEROGENEOUS INFORMATION SYSTEMS

Carmen Constantinescu∗ , Uwe Heinkel∗ , Ralf Rantzau, Bernhard Mitschang
Institute of Parallel and Distributed High-Performance Systems, University of Stuttgart,

Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany
Email: {Carmen.Constantinescu, Uwe.Heinkel, Ralf.Rantzau, Bernhard.Mitschang}@informatik.uni-stuttgart.de

Keywords: Information systems, integration of heterogeneous data sources, XML technology

Abstract: Today, it is common that enterprises manage several mostly heterogeneous information systems to supply
their production and business processes with data. There is a need to exchange data between the information
systems while preserving system autonomy. Hence, an integration approach that relies on a single global en-
terprise data schema is ruled out. This is also due to the widespread usage of legacy systems. We propose a
system, called Propagation Manager, which manages dependencies between data objects stored in different
information systems. A script specifying complex data transformations and other sophisticated activities,
like the execution of external programs, is associated with each dependency. For example, an object update
in a source system can trigger data transformations of the given source data for each destination system that
depends on the object. Our system is implemented using current XML technologies. We present the archi-
tecture and processing model of our system and demonstrate the benefit of our approach by illustrating an
extensive example scenario.

∗ This work was partially supported by the German Research Society (DFG/SFB 467)

1. INTRODUCTION

Corporate IT infrastructures typically comprise
distributed heterogeneous information systems. In
this paper, we focus on the management of data
stored in these systems. In particular, we present a
mechanism to transform and deliver data from one
system to the needs of the receiving systems. The
mechanism developed generates output data based
on a collection of data dependencies between the
distributed information systems and the transforma-
tion specifications associated with each dependency.
This approach increases system autonomy, because
specific system features are treated within a depend-
ency only, and the usage of global structures is aban-
doned.

In this section, we give some background infor-
mation on data change management for enterprise
information systems and the motivation for develop-
ing our system. Then, we briefly introduce the main
concepts used in our approach, which are further
detailed in Section 2.

1.1 The Problem of Data Change
Management

Most enterprises are forced to innovate their
products and services and to improve their business
processes ever more quickly to remain competitive.
This is due to the turbulences observed on the mar-
kets: the supply of and demand for resources change
more radically and abruptly than in the past. The
ability to adapt to market changes is a key success
factor.

1.1.1 Data Producers and Consumers

An enterprise can be viewed as a set of business
units that are connected by information flows and
resource flows. A business unit, characterized by the
autonomy to manage its own resources, is responsi-
ble to deliver services or goods, which are further
processed by other business units. Furthermore,
business units frequently run their own information
systems to manage the data tailored for the respec-
tive business processes.

Business units act as producers and consumers of
information. Hence, change propagation between

business units means, among other things, the
propagation of data between the corresponding in-
formation systems. However, due to the autonomy
of business units, not all information systems store
information using the same data representation. Fur-
thermore, some data is relevant only to a single in-
formation system, while other data is relevant to
several systems and is stored locally, possibly using
different representations. Thus, data changes in one
system have different effects on data stored in other
systems. Consider, for example, a manufacturing
enterprise with several business units. Let us focus
on the two service-oriented business units Order
Management (OM) and Facility Layout Design
(FLD). Suppose that a customer orders a large
number of certain products. The OM business unit
is responsible to generate optimal plans using pro-
duction planning and control methods (Wiendahl &
Westkämper, 2001). This may lead to a capacity
increase of machines. The FLD business unit is re-
sponsible to generate factory plans that are used to
adapt the real factory layout (Westkämper & von
Briel, 2001).

Because of the need for additional machines, the
FLD may have to position them in the factory lay-
out. This causes a change of the material flow, af-
fecting the processing of other orders as well. The
information about new transportation times has an
effect on OM, thus establishing a mutual informa-
tion dependency between OM and FLD. Data
changes in one of the information systems have to be
reflected in the data of the other system. In general,
an information system of a business unit produces
data which is consumed by one or more other infor-
mation systems, i.e., there is a 1-to-N data depend-
ency. In our example, the OM business unit changes
or creates data describing production plans. The
FLD business unit then receives data on new pro-
duction plans and adapts its data describing the fac-
tory layout. This example is further detailed in Sec-
tion 3, showing technical aspects of the internal
processing of our data change management system.

1.1.2 System Heterogeneity

Due to the autonomy of business units and the
heterogeneity of their IT infrastructures, it is often
infeasible or too expensive to manage a single, inte-
grated enterprise information system that feeds all
business units with their data. Hence, enterprise
change management should be supported by a ge-
neric approach to solve data change management.
Such an approach should be able to manage data
dependencies and help to transform data stored in a
source information system into data stored in the
depending information systems.

1.2 A Generic Approach for Data
Change Propagation

We first briefly discuss our approach using gen-
eral terms and concepts that we introduce in this
section. In Section 2, we present the architecture and
details on the technologies employed in the proposed
system.

A data model is a description of data structures.
For example, in the object-oriented model, data
structures are classes, and relations in the relational
model. Classes also specify methods but we focus on
the data aspect, only. Therefore, we are only inter-
ested in the attributes of the classes.

A data schema is an instance of a data model,
i.e., the specification of data structures for an appli-
cation. For example, in the relational model, an em-
ployee can be represented by a relation with the at-
tributes (and types) empno (integer), name (string),
birth (date), etc.

We define a system as an application or an in-
formation system. A system can act as a producer
and/or consumer of data.

A directed relationship from a single data pro-
ducer, named source system, to a single data con-
sumer, named destination system, is called depend-
ency. We say that the destination system is depend-
ent on the source system.

A data change occurring in one system has an
impact on all dependent systems. For example, two
systems store data objects that represent the same
information but possibly using different data models
and data schemas. Thus, a change of such data in
one system requires a change in the other, some-
times involving complex adaptations.

In this paper, we merely consider updates of in-
stances of a data schema but we do not consider
changes of the schema itself. For example, in the
relational data model, our approach manages the
update of attribute values in tuples of a relation but
not the manipulation of attribute data types, the addi-
tion of attributes, etc. The management of schema
(meta data) changes remains as our future work.

A change propagation is the process of forward-
ing a data change from a source system to a depend-
ent system. The process of change propagation in-
cludes transformations and filtering of the changed
data that is delivered to the dependent system.

A transformation is an operation that maps given
input data into output data according to a specifica-
tion. The specification defines how the contents and
schema of the input data have to be adapted to repre-
sent valid target data.

Filtering is an operation that accepts or rejects
the execution of a transformation according to a
constraint, which is an expression (a set of condi-

tions) over the contents of the input data of a trans-
formation.

1.3 Overview of a Data Change
Management System

We develop a data change management system,
called Stuttgart Information and Exploration System
(SIES) (Constantinescu, Heinkel, Rantzau &
Mitschang, 2001), illustrated in Figure 1, which
manages the change propagation between several
systems. It consists of two main components, called
Propagation Manager and Federation Manager.
We use the term propagation dependency to de-
scribe a dependency as defined in Section 1.2. A
propagation dependency specifies a source system, a
single dependent system, and a propagation script.
The propagation script contains information required
for transformations (defined by transformation
scripts), filtering, and routing. The Propagation
Manager transforms, filters, and routes changed data
using the dependencies that have been created,
stored, and updated by the Federation Manager. The
Repository stores propagation dependencies, schema
descriptions of the systems, and propagation and
transformation scripts.

We designed our system to have the following
features. It must be possible to add new systems
without much effort, i.e., SIES has to provide soft-
ware, called wrappers, that is able to track data up-
dates in a system and to map between its own data
model and the Propagation Manager data model.

Another requirement is to support the addition,
removal, and update of dependencies and transfor-
mation specifications. SIES needs to provide a user-
friendly graphical user interface that allows to ma-
nipulate the dependencies and the associated scripts
and to register them in a repository. Furthermore,
SIES should offer a library of simple and frequently
used transformations that can be called within newly
created propagation scripts, tailored for a new sys-
tem. Of course, the user interface should also allow
to adapt given transformations, or to create new ones
and to add them to the library for future reuse.

SIES has to provide a high degree of reliability
and availability. For example, failures in participat-

ing systems have to be handled in a way that other
systems are unaffected.

Finally, SIES has to be scalable, i.e., the re-
sources (time and memory) required to manage de-
pendencies should grow (linearly) in proportion to
the number of dependencies and, of course, also in
proportion to the amount and size of data to be trans-
formed and propagated.

In this paper, we focus on one component of
SIES, the Propagation Manager.

2. THE PROPAGATION MANAGER

The central component of our data change man-
agement approach is the Propagation Manager. This
section describes this component regarding its func-
tionality, architecture, and processing model.

2.1 Functionalities

The task of the Propagation Manager is to trans-
form a source data object into a destination data ob-
ject. Such a transformation has to be triggered auto-
matically whenever the value of the source data ob-
ject changes. Thus, the Propagation Manager com-
bines two functionalities: a) the processing of a
transformation and b) the propagation of updated
data object values from one system to several de-
pendent systems. The second functionality can be
seen as a way to provide (some degree of) consis-
tency between data stored in different systems.

2.2 Architecture

In this section, we describe the architecture of
the Propagation Manager, which is responsible for
change propagation. The Propagation Manager con-
sists of several sub-components, sketched in Figure
2. One of them is the Transformation Manager,
which itself is composed of the Script Engine, the
Mapper, and the Filter. The Script Engine interprets
a propagation script, associated with a propagation
dependency. The script specifies several operations
for transforming, filtering and routing the changed
data. The Script Engine calls the Mapper to perform
the transformation of a source data object (based on
a change) into a destination data object. If the desti-
nation system requires special constraints, specified
in the propagation script, the Script Engine invokes
the Filter. The Filter then informs the Propagation
Manager if a data change should be ignored or if the
destination system has to be updated. The Queue
Manager is used to exchange messages between the
involved systems. It manages the Propagation Man-

Figure 1: SIES, a data change management system

System S

System D1

...
Repository

System D2

System DN

Data Schemas
Propagation Dependencies
Propagation Scripts
Transformation Scripts

Federation Manager

Propagation Manager

System S

System D1

...
Repository

System D2

System DN

Data Schemas
Propagation Dependencies
Propagation Scripts
Transformation Scripts

Federation Manager

Propagation Manager

ager’s input queue, the systems’ output queues and
several internal queues of the Transformation Man-
ager.

2.3 Processing Model

In the following, we describe the internal flow of
information needed to propagate a change, illus-
trated in Figure 2. The figure shows a sequence of
processing steps which belong to four main stages:

1. Fetch a new message from the input queue
(steps 1 and 2),

2. select applicable propagation dependencies
(3, 4, 5),

3. execute corresponding propagation scripts (6,
7, 8), and

4. put processed messages into the output
queues (9, 10).

In the following subsections, we explain these
stages in detail.

2.3.1 Message In- and Output

The Queue Manager has a single input queue
and for each connected system one output queue. It
also manages the internal queues of the Transforma-
tion Manager to store intermediate transformation
results. Whenever a system connects to the Propaga-
tion Manager, it is assigned an output queue where it
can fetch messages from. We assume that an aver-
age system stays connected for a relatively long
time.

All systems connected to the Propagation Man-
ager have to be extended by wrappers. The wrapper
is responsible to detect a change in the source sys-
tem, called System S in Figure 2, to create a message
according to a given format, and to send it to the
input queue of the Propagation Manager (step 1 in
Figure 2). A dependent system, named System Di, is

responsible for fetching the propagated message
from its queue (10).

2.3.2 Dependency Selection

The dependency selection is initiated by the
Queue Manager, which notifies the Script Engine
about a new message in the input queue (2). Then,
the Script Engine fetches the new message and in-
teracts with the Mapper and the Filter components to
transform and filter the given source data object ac-
cording to each propagation script. The repository
stores, among other things, propagation dependency
specifications. They have the following structure:
(SourceSystem, PropagationScript, DestinationSys-
tem). The parameter PropagationScript denotes the
name of a propagation script stored in and managed
by the repository. The propagation script contains
information regarding the transformation scripts and
the output queue of the destination. The Script En-
gine extracts from the message header the name of
the source system that has sent the message (3).
Based on this information, the Script Engine re-
trieves all propagation dependencies matching the
message’s source from the repository (4). A match-
ing dependency contains information about the
propagation script and indicates the destination out-
put queue.

A propagation script is a template, i.e., it con-
tains the code to be interpreted by the Script Engine
and placeholders that are replaced (using a simple
parser) by textual values of the current dependency,
like the actual names of the source and destination
system. The code also specifies the names of one or
more transformation scripts, which are stored in the
repository. The use of templates allows a propaga-
tion script to be employed for various dependencies
that require the same transformations. Hence the
code of a propagation script does not have to be rep-
licated for each dependency. A transformation script
is a piece of code that is interpreted by the Mapper.
The Script Engine retrieves the transformation
scripts from the repository (5).

2.3.3 Propagation Script Execution

The propagation script execution consists of
transforming, filtering and routing steps. It is trig-
gered by the Script Engine which calls the Mapper
(6). The Mapper performs the transformations cor-
responding to the retrieved transformation scripts.
All messages exchanged between the Transforma-
tion Manager’s components are temporarily stored
in internal queues (7).

If the Script Engine detects a filter expression (a
constraint) in a transformation script, it calls the Fil-
ter (8). The Filter decides if the message is routed to

Figure 2: Propagation Manager architecture. The technolo-
gies employed are shown in brackets.

Filter

Repository

System S

System D1

System DN

...

(XSLT)(XPath)

(JMS)

(XML)

(XRL)

1
2

4 68

9
10

Transformation Manager

Script Engine
Input

Output S

Output D1

Output DN

...

Queue Manager

Internal 1

Internal M

...

Mapper

5 7

3

(XML)

Propagation Dependency
Propagation Script (XRL)

Transformation Script (XSLT)

Propagation Manager

the destination system or discarded. A filter expres-
sion can appear anywhere in a transformation script
because the decision whether to skip a change can be
based on results of transformations. If the Filter con-
cludes that there be an output message, the Script
Engine puts the message into the output queue of the
dependent system (9).

2.4 Implementation

So far, we have introduced the general concepts
and the architecture of our approach. In this section,
we discuss the implementation of our concepts using
various state of the art technologies.

2.4.1 Messages and JMS

The sources and destinations of data dependen-
cies may have different data models and data sche-
mas. We use XML to specify the schemas of the
connected systems because of its flexibility to adapt
it to ones needs. Suppose that a source system uses
the relational data model to manage its data objects.
For instance, consider a table (source object)
consisting of many rows where only a single row has
changed. We suggest using XML Fragment Inter-
change to send only a fragment of the original XML
document, representing the changed row in the
source data, together with some context information.

The communication between the Propagation
Manager components as well as between the Propa-
gation Manager and the external systems is imple-
mented using the Java Message Service (JMS). The
body of a message received from a source system
contains the changed data according to the XML
format. We employ for communication the message-
oriented middleware which provides a means for
asynchronous application-to-application communi-
cation via message queuing (Leymann, 1999).

2.4.2 Transformation Scripts and XSLT

We use an XML-based language, called eXten-
sible Stylesheet Language Transformations (XSLT),
to transform XML documents in the Mapper com-
ponent. During a complex propagation, several
XSLT files can be involved. For a single transforma-
tion, an XSLT processor reads the XML document
representing the source data and interprets it accord-
ing to the specified transformation script. The calls
of transformation scripts are embedded in propaga-
tion scripts.

2.4.3 Propagation Scripts and XRL

We use the eXchangeable Routing Language
(XRL) (van der Aalst & Kumar, 2000; Kumar &

Zhao, 1998) for propagating changed data between
dependent systems. This is an XML dialect and can
thus be processed by any XML parsers, which are
widely available. XRL is aimed at asynchronous,
flow-type applications and provides a mechanism to
describe processes at an instance level.

We extended XRL according to our propagation
purposes by three new elements: transform, propa-
gate and message_event. A transform element
specifies a subject message, transformed using a
given transformation script, named template, and a
result. The routing schema manages a processed
message using an internal name. The propagate
element puts a subject message into a specified des-
tination queue. A message_event element defines an
event. This allows to fire an action if a certain mes-
sage arrives in an input queue. An example XRL file
that contains these new elements is presented in Sec-
tion 3.2 and illustrated in Figure 4.

2.4.4 Repository and UML

We specify the systems’ data schemas using the
Unified Modeling Language (UML), which it is be-
coming a de-facto standard for object-oriented mod-
eling. We use a repository system as a common
place to store systems’ data schemas and the propa-
gation and transformation scripts because of the fol-
lowing advantages: a) a repository is a shared data-
base with value-added services like versioning, con-
figuration management and context-management,
and b) it is a valuable basis for the reuse of the
stored objects.

3. EXAMPLE SCENARIO

In the following sections we describe an exten-
sive example that illustrates the usage of our tech-
nologies introduced before. It highlights our main
concepts for data change management: the transfor-
mation, filtering and routing of data changes.

3.1 Data Change Management in
Manufacturing

Our scenario refers to a manufacturing enterprise
that receives a new order. At least two systems of
the enterprise are affected by the new order: OM and
FLD, which store, among other things, data about
the resources needed to manufacture products, like
human resources and machines.

As a result of a new order from a customer, the
OM System, the source system, creates a new, opti-
mized production order. This describes the manufac-
turing process plan in terms of transportation and

manufacturing operations containing data regarding
parts, machines, transportation and manufacturing
lead times. The FLD System manages a database of
the geometry (width, length, height) of machines as
well as the current layout of the factory, i.e., the po-
sitions of the facilities. Several dependencies are
defined between these systems. In order to create a
new facility layout, based on simulation and optimi-
zation techniques, the FLD System processes the
changed order data, potentially enriched by addi-
tional data from other systems. For example, if the
changed production order involves a new machine,
the FLD System will retrieve from its local data the
corresponding geometry/size of the machine and an
optimal position has to be computed.

In our scenario, the additional data represents the
qualification and the hourly wage of the employee
involved in operating a new machine, stored in a
third system, the Strategic Management System
(SM). In our approach, the additional data is not part
of a propagation dependency. As a result, our sce-
nario involves three systems: the OM and FLD Sys-
tems are dependent on each other, while the SM
System has the role of a supplier of additional data.

We assume that the Federation Manager has al-
ready created the schema descriptions of these three
systems and the propagation dependencies between
them, including the propagation and transformation
scripts. All this information is stored in the reposi-
tory. The source system wrapper has to notify SIES
about the change of some source data as well as to
provide the changed data itself. The Propagation
Manager then triggers the change propagation, based
on the stored dependencies among the systems. The
propagated change, enriched by the additional data,
is then sent to the destination system, FLD, which
computes a new facility layout.

3.2 Change Propagation

Based on this overall view of the scenario, we
now present details of the scripts used to process our
example change propagation.

We assume that the OM System changes data re-
lated to production orders. A production order con-
sists of transportation and manufacturing operations
applied to a part. A part is specified by its number
and the ordered quantity. A manufacturing operation
selects the machine corresponding to a specified
processing step, i.e., drilling, milling, and the corre-
sponding manufacturing lead time. A transportation
operation specifies a start and a destination machine.

A change in the OM System is specified as an
XML message that has to be propagated to the de-
pendent system, FLD. Figure 3 presents the XML
document (om.xml) representing the changed pro-
duction order, extended by a drilling and a milling
manufacturing process. As a result, two new ma-
chines are added, machines M001 and M003, and
the associated manufacturing lead times and trans-
portation operations are specified.

This message has to be transformed, filtered and
routed. First, the message is put into the input queue
of the Queue Manager. The Script Engine fetches
the message and retrieves the propagation depend-
encies that match the specified OM source in the
message header. One XRL propagation script
(om2fld.xrl), is retrieved from the repository (Figure
4). It consists of the following routing schema:

1. Wait for an event representing a message
from the OM System. It contains the
changed production order (om.xml), man-
aged internally under a specified name, om.

2. Transform the received message om using
the transformation script (om2fld.xslt),
specified as a template. The resulting mes-
sage is assigned an internal name, here t1.

3. Propagate the subject t1 to the specified
destination output queue, here FLD queue.

<?xml version=”1.0” encoding=”ISO8859-2”?>
<production_order>

<operation>
<transport start=”M002” dest=”M001” ual=”A12”>

<part no=”P001” amount=”5000”/>
</transport>

</operation>
<operation>

<drilling unit=”M001” cost_center=”DM1”>
<part no=”P001” amount=”5000”/>
<manufacturing_lead_time days=”0” hours=”3”

mins=”40”/>
</drilling>

</operation>
<operation>

<transport start=”M001” dest=”M003” qual=”C13”>
<part no=”P001” amount=”5000”/>

</transport>
</operation>
<operation>

<milling unit=”M003” cost_center=”BM2” >
<part no=”P001” amount=”5000”/>
<manufacturing_lead_time days=”0” hours=”1”

mins=”13”/>
</milling>

</operation>
</production_order>

Figure 3: Changed production order (om.xml)

<?xml version=”1.0” encoding=”ISO8859-2”?>
<xrl:ROUTE id=”ex” created_by=”script_designer”

creation_date=”29-10-2001”>
<xrl:SEQUENCE>

<xrl:WAIT sync=”1”>
<xrl:MESSAGE_EVENT source=”OM”

type=”production_order” name=”om”/>
</xrl:WAIT>
<xrl:TRANSFORM subject=”om” template=”om2fld.xslt”

name=”t1”/>
<xrl:PROPAGATE subject=”t1” destination=”FLDQ”/>

</xrl:SEQUENCE>
</xrl:ROUTE>

Figure 4: Propagation script (om2fld.xrl)

The Script Engine interprets the propagation
script and retrieves the specified transformation
script (om2fld.xslt) from the repository (Figure 5).
This matches the transport node of the source
document (om.xml) and retrieves its corresponding
attributes (start, destination, qualification, part num-
ber, and part amount). These are used to define in
the result document (fld.xml) (Figure 6) the associ-
ated transport node with the attributes start and des-
tination, and the elements part and employee. The
attributes of the part element (number and amount),
are selected from the source document. The attrib-
utes of the employee element (qualification and
hourly_wage) represent the required additional data
from the SM System, specified by the URL of the
document, http://www.SM.com/employee.xml.

The Mapper performs the transformation, illus-
trated before, using an XSLT processor, and sends
the result to the Script Engine. In our example, no
filter expression is involved. The resulting XML file
is put into the body of a message that is delivered to
the FLD System’s output queue. It contains the fol-

lowing data: a) the transportation operations from
machine M002 to M001 and from M001 to M003,
respectively and b) the employees’ qualifications
and hourly wages corresponding to the manufactur-
ing operations.

4. RELATED WORK

Our approach is designed to propagate changed
data between dependent autonomous and heteroge-
neous systems. One of the main objectives is to pro-
vide support for routing of changed data between
dependent systems. We envision two directions that
achieve this objective. One is to use a language
comprising routing constructs required to design a
routing schema. This approach belongs to the field
of workflow definition and workflow management
systems (van der Aalst & Kumar, 2000; Kumar &
Zhao, 1998). Our Propagation Manager implementa-
tion is based on XRL, a simple routing language,
which is less powerful than a workflow definition
language.

The second strategy is to build (heterogeneous)
agent systems that can communicate intelligently
with one another (Nwana, 1996). Heterogeneous
agent systems are represented by the integration of
two or more agents which belong to two or more
different agent classes (collaborative, interface, mo-
bile, information/Internet, reactive, hybrid and smart
agents).

Another field related to our approach is replica-
tion, which is the process of maintaining several
copies of the same data in several systems. The ob-
jective is to access data locally in order to improve
response times and to reduce the communication
overhead with other systems.

There are two main techniques to update repli-
cated tables: table snapshots (Adiba & Linfsay,
1980) and triggers (Hanson & Widom, 1993). Table
snapshots allow an asynchronous update of replicas,
while the processing of triggers is synchronous. The
trigger approach is more flexible than table snap-
shots since it allows defining actions being applied
to replicas that are different from the update opera-
tions applied to the original copy. Furthermore, other
objects/tables besides the replicas can be manipu-
lated as well. The concept of triggers is a character-
istic of active database systems. Triggers are closer
to our approach than table snapshots due to their
flexibility for transformations. Furthermore, our ap-
proach is designed to preserve the local autonomy of
the data sources as much as possible. For example,
we require the data sources to provide a mechanism
to detect changes. If a data source happens to be a
database system then triggers could be used to notify

<?xml version=”1.0” encoding=”ISO8859-2”?>
<xslt:transform version=”1.0”

xmlns:xslt=”http://www.w3.org/1999/XSL/Transform”>
<xslt:output method=”xml” encoding=”ISO8859-2”

indent=”yes”/>

<xslt:template match=”/production_order”>
<material_flow>

<xslt:apply-templates select=”.”/>
</material_flow>

</xslt:template>

<xslt:template match=”//transport”>
<xslt:element name=”transport”>

<xslt:attribute name=”start”>
<xslt:value-of select=”@start”/>

</xslt:attribute>
<xslt:attribute name=”dest”

<xslt:value-of select=”@dest”/>
</xslt:attribute>
<xslt:element name=”part”>

<xslt:attribute name=”no”>
<xslt:value-of select=”part@no”/>

</xslt:attribute>
<xslt:attribute name=”amount”

<xslt:value-of select=”part@amount”/>
</xslt:attribute>

</xslt:element>
<xsl:variable name=”qual” select=”@qual”/>
<xslt:element name=”employee”>

<xslt:attribute name=”qualification”>
<xslt:value-of select=”@qual”/>

</xslt:attribute>
<xslt:attribute name=”hourly_wage”

<xslt:value-of select=
”document(‘http://www.SM.com/employee.xml’)

//employee[qual@q=$qual]h_wage@h_w”/>
</xslt:attribute>

</xslt:element>
</xslt:element>

</xslt:template>
</xslt:transform>

Figure 5: Transformation script (om2fld.xslt)

...
<material_flow>

<transport start=”M002” dest=”M001”>
<part no=”P001” amount=”5000”/>
<employee qualification=”A12” hourly_wage=”129”/>

</transport>
<transport start=”M001” dest=”M003”>

<part no=”P001” amount=”5000”/>
<employee qualification=”C13” hourly_wage=”45”/>

</transport>
</material_flow>
...

Figure 6: Propagated production order (fld.xml)

the local wrapper about the data change, which is
then responsible to generate an input message for the
Propagation Manager.

5. CONCLUSION AND FUTURE
WORK

Current IT infrastructures need a flexible,
loosely coupled approach to propagate data changes
between enterprise information systems while pre-
serving their data management autonomy. We sug-
gest a software component, called Propagation Man-
ager, that manages dependencies between data
stored in potentially different schemas and models.
The data is not replicated in the Propagation Man-
ager but only the data schemas of the systems con-
nected to the Propagation Manager are stored in a
repository. The Propagation Manager transforms an
XML input message into an XML output message
based on a transformation specification that has been
defined for a data dependency. Such a transforma-
tion can be composed of several smaller transforma-
tion activities (XSLT scripts). By employing script
templates, our approach allows for a reuse of trans-
formation code for many dependencies.

In some situations it is useful to prevent data
propagation. This can be achieved by applying con-
straints (XPath expressions) on the message input or
on the intermediate results of transformations.

Our current propagation approach and system
implementation manages 1-to-1 data dependencies.
We currently investigate how to manage 1-to-N and
M-to-N dependencies using a single XRL script in-
stead of employing several 1-to-1 XRL scripts. This
may have positive performance effects for the
Propagation Manager because only one script in-
stead of several would have to be processed. We
intend to employ the XQuery language to query the
repository. Furthermore, we plan to integrate
XQuery statements into the transformation scripts to
offer even more flexibility for transformations. This
would add another XML technology to our system,
thus making it an XML-dominated middleware
component.

Meta data changes do not occur as frequently as
changes of operational data. However, it is important
to support the change of data schemas in our ap-
proach. As we have mentioned in Section 1.2, the
Propagation Manager does not cover such changes
but we intend to extend our system into this direc-
tion.

REFERENCES

van der Aalst, W., & Kumar, A. (2000). XML Based
Schema Definition for Support of Inter-organizational
Workflow. In Proceedings of 21st International Con-
ference on Application and Theory of Petri Nets
(ICATPN 2000), Aarhus, Denmark.

Adiba, M., & Lindsay, B. (1980). Database Snapshots. In
VLDB, Montreal, Quebec, Canada, pp. 86-91.

Constantinescu, C., Heinkel, U., Rantzau, R., & Mit-
schang, B. (2001). SIES – An Approach for a Feder-
ated Information System in Manufacturing. In Pro-
ceedings of the International Symposium on Informa-
tion Systems and Engineering (ISE 2001), Las Vegas,
Nevada, USA, pp. 269-275.

Gray, J., Helland, G., O’Neill, P., & Sasha, D. (1996).
The Dangers of Replication and a Solution. In Pro-
ceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Can-
ada, pp. 173-182.

Hanson, E., & Widom, J. (1993). An Overview of Pro-
duction Rules in Database Systems. In The Knowl-
edge Engineering Review, Vol.8, No.2.

Kumar, A., & Zhao, Z. (1998). Workflow Support for
Electronic Commerce Applications. In International
Conference on Telecommunications and Electronic
Commerce, Nashville, TN, USA.

Leymann, F. (1999). A Practitioners Approach to Data
Federation. In 4. Workshop Föderierte Datenbanken,
Berlin, Germany, CEUR-WS/Vol. 25.

Nwana, H. (1996). Software Agents: An Overview. In
Knowledge Engineering Review, Vol. 11, No. 3, pp.
205-244.

Westkämper, E., & von Briel, R. (2001). Continuous Im-
provement and Participative Factory Planning by
Computer Systems. In CIRP Annals Manufacturing
Technology, Nancy, France, pp. 347-352.

Wiendahl, H.-H., & Westkämper, E. (2001). Situation-
Based Selection of PPC Methods: Fundamentals and
Approaches. In CIRP 34th International Seminar on
Manufacturing Systems, Athens, Greece, pp. 241-246.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., &
Alonso, G. (2000). Understanding Replication in Da-
tabases and Distributed Systems. In Proceedings of
20th International Conference on Distributed Comput-
ing Systems (ICDS 2000), Taipei, Taiwan, Republic of
China, pp. 264-274.

