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Abstract With the increasing popularity of mobile computing devices, the need
to access information in mobile environments has also grown rapidly. In order
to support such mobile information accesses, location-based services and mobile
information systems often rely on location-aware data management mechanisms
like location-aware caching, data dissemination or prefetching. As we explain in
this paper, the location-awareness of such mechanisms is only useful, if the ac-
cessed information is location-dependent, i.e. if the probability with that a certain
information object is accessed depends on the user’s location.

Although the location-dependency of the accessed information is crucial for the
efficiency of location-aware data management mechanisms and the benefit they
can get out of their location-awareness, no metric to measure the location-depen-
dency of information has been proposed so far. In this paper, we describe such a
metric together with a second one for a further important characteristic of mobile
information accesses, the so-called focus.

1 Introduction

Location-based services provide their users with local information depending on their
current geographic position. For example, a user can ask for nearby restaurants or the
shopping centers in his proximity. An important requirement for such location-based
services to be beneficial is that the offered information is location-dependent, i.e. that
the relevance of each information object for the user depends on his location.

Such a location-dependency is not only exploited for the pre-selection of informa-
tion in location-based services but also in many other data management mechanisms
supporting mobile information systems. Since they consider a user’s location, these
mechanisms are called location-aware. Examples are location-aware caching [11,5],
dissemination [6], prefetching [4], and hoarding mechanisms [8].

So far, the location-dependency has been mostly considered as a binary character-
istic of an information system, i.e. an information system respectively the information
offered by the system was said to be location-dependent or not. However, we claim that
there is a complete spectrum of mobile information systems, which differ in the degree
of their location-dependency. This spectrum ranges from inherently location-dependent
systems to location-independent systems with many nuances in between.

In inherently location-dependent systems each information object belongs to a fixed
location and is only accessed when the user is located there. An example for such a sys-



tem is a map application showing the user a map of his environment [13]. A browser-
based mobile tourist guide is an example of a system that is neither inherently location-
dependent nor location-independent. Although the user can potentially access all infor-
mation objects available in the information space from any location, he will in most
cases preferably access information about his current environment. In contrast, wireless
web browsers [3] will mostly be used in a location-independent manner. For example,
if a user looks for his stock quotes, his location will usually have no influence on which
quotes he requests.

The location-dependency of the information available in a mobile information sys-
tem strongly influences the amount of data a user needs at a certain location and with
it the amount of data that has to be cached, disseminated or prefetched for a certain
location. Therefore, the location-dependency is crucial for the efficiency of location-
aware data management mechanisms. In this paper, we propose a metric that allows
to quantify the location-dependency of a single information object as well as that of
a whole information space. Thereby we provide a means to better understand what
location-dependency is and to decide whether using a location-aware data management
mechanism is suitable or not.

In addition to the location-dependency, we discuss a further characteristic of mobile
information systems, which we call the focus. It also has a strong effect on the efficiency
of location-aware data management mechanisms.

Finally, we use a hoarding mechanism [8], which we developed for a platform sup-
porting location-aware applications [7], as an example to illustrate how the discussed
characteristics influence the efficiency of a location-aware mobile data management
mechanism.

The remainder of this paper is structured as follows: in the following section, we
discuss the related work, before we introduce two metrics to measure the disparity of
frequency distributions in Section 3. Next, in Section 4 and Section 5, we describe our
metrics for the location-dependency and the focus. Afterwards, we evaluate the metrics
and give an example for their application in Section 6. Finally, Section 7 concludes our
paper.

2 Related Work

To our knowledge, no measure for the location-dependency of an information space has
been proposed so far. For the location-dependency it is important, how information re-
quests are distributed over the area, in which the information system is accessible. Such
a spatial distribution also plays an important role in wireless ad hoc sensor networks.
There, the distribution of the sensors strongly influences the coverage of the sensor
network.

However, most work in this area is focused on the question of how to arrange a set of
sensors to observe an area, room, or building as good as possible. Only a few work has
been done on measuring the coverage [9,10]. In these articles, coverage is measured in
terms of how well an object that crosses the area covered by the sensor network can be
observed. The inequalities in the spatial distribution of the sensors are not considered.
In contrast, the inequalities in the spatial distribution of the information requests have



a strong impact on the location-dependency and must therefore be considered when
measuring this dependency.

Inequalities in spatial distributions are often considered in social sciences, e.g. in-
come or wealth inequalities [1,12]. There, the Herfindahl coefficient and the Gini coef-
ficient are widely used to measure the inequalities. These two coefficients are also the
basis of our metric. In the following section, they are discussed in detail.

3 Preliminaries

Basically, our idea to measure the location-dependency of an information object is to
consider how the requests for the object are distributed over the area in which the infor-
mation system can be accessed. If many requests are concentrated on a few locations,
the object is obviously only relevant at certain locations, i.e. it is strongly location-
dependent. However, if the requests are equally distributed over the plane, the object’s
relevance for the users does not depend on their location, i.e. the object is location-
independent.

In spatial statistics two coefficients, namely the Herfindahl and the Gini coefficient,
are commonly used to describe such inequalities in frequency distributions. Since we
also use these coefficients for our metrics, we describe them in this section.

A frequency distribution is a functioif : O — N that assigns to each unit of
observatiorv € O the absolute frequency with that it occurred during an observation.
An example for a frequency distribution is a function that assigns to each information
object within an information space the number of requests that occurred for the object
during a certain period of time. In the followindy = |O| denotes the number of
different units of observation that might occur. We assume that the units of observation
are consecutively numbered from 18 Hence,f (i) denotes the frequency with that
the unit of observation occurred.

3.1 Herfindahl Coefficient

The Herfindahl coefficient/C is defined as the sum of the squares of the relative fre-
quencies with which the units of observation occur:
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For the Herfindahl coefficient values betweﬁnand 1 are possible. It is minimal,

when the frequencies are equally distributed, whereas the maximum value is reached,
when only one certain unit of observation occurs at all.

3.2 Gini Coefficient

The Gini coefficient is based on the Lorenz curve, which can be used to depict inequal-
ities in frequency distributions. To construct a Lorenz curve, the frequerfi€iggirst
have to be sorted in an increasing order, i.e. we have to ensure that

F) < F@) << F(N=1) < f(N).



The Lorenz curve is then constructed as polygon through the points
(0,0), (u1,v1), (u2,v2), ..., (un—1,VN-1), (UN,VN)-

The coordinates of each poifit;, v,) are calculated as follows:

uj = 7 and  v; = Zj: —Nf(i)
N S S (k)

This means that the Lorenz curve is obtained by plotting the cumulative relative fre-
quencies with that the units of observation occur during the observation period against
the share of considered units of observation. If the considered frequencies are equally
distributed, the Lorenz curve is equivalent to the 45 degree line. The bigger the area
between the Lorenz curve and the 45 degree line is, the higher is the inequality in the
corresponding frequency distribution.

In Table 1 an example for a frequency distribution is given. It shows how 100 infor-
mation requests might be distributed over an information space containing 10 informa-
tion objects, i.eN = 10. Besides the absolute request frequengigs, the share of the
considered units of observation, and the cumulative relative frequencies are included in
the table. Figure 1 shows the corresponding Lorenz curve together with the 45 degree
line.

Object Number of Share cumulative rel.

ID Requests frequencies
1 4 0.1 0.04
2 5 0.2 0.09
3 5 0.3 0.14
4 6 0.4 0.20
5 7 0.5 0.27
6 8 0.6 0.35
7 9 0.7 0.44
8 12 0.8 0.56
9 16 0.9 0.72
10 28 1.0 1.0

Table 1. A frequency distribution.

The Gini coefficientGC' is defined as the ratio of the area enclosed by the Lorenz
curve and the 45 degree line to the area enclosed by the 45 degree line and the x-axis.
It can be calculated as follows:

2.3 i f@) N+1
GC = i -
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Figure 1. Lorenz curve.

Like the Herfindahl coefficient, the Gini coefficient is minimaf¢ = 0) when
the frequencies are equally distributed, and maxindéal'(= %), when only one
certain unit of observation occurs at all. Often the normalized Gini coeffici&rit =
% - GC'is used in order to get values ranging from 0 to 1.

3.3 Comparison

The difference between the two coefficients is that the Gini coefficient solely reflects
relative concentrations, whereas the Herfindahl coefficient also expresses the absolute
concentration of a frequency distribution.

Thereby, absolute concentration means that the observed incidences are distributed
over a small seD of possible units of observation, e.g. if an information space only
contains a few information objects. Thus, the absolute concentration can be high, al-
though the frequencies are equally distributed. Whereas relative concentration means,
that a big part of the observed incidences is distributed over a small part of all possible
units of observation. This implies an unequal frequency distribution.

4 Location-Dependency

In this section, we describe our metrics for the location-dependency of a single informa-
tion object and that of a complete information space. In both metrics we assume that the
coverage area of the information system, i.e. the area where the system can be accessed,
is separated into a sstof equally sized squares, which do not overlap each other.

4.1 Definitions

As explained above, the location-dependency of an information object should describe,
how strong the requests for this object are concentrated on certain locations. Thus, we
define the location-dependency of a single information object as follows:

Definition 1. Let: be an information object andl : S — N a frequency distribution
that assigns to each squasec S the frequency with that the information objedias



been accessed in the squateThen, the normalized Gini coefficient of the distribution
f is called the location-dependency of the information object

We chose the Gini coefficient for the definition of the location-dependency because
we want our metric to reflect solely the distribution of the information accesses over the
grid. The Herfindahl coefficient would also reflect the number of considered squares.

In order to make estimations about the benefit of location-awareness for a mobile
data management mechanism, it is not enough to analyze only one single information
object. Therefore the whole information space has to be considered. Thus, we also
define the location-dependency of an information space:

Definition 2. Let IS be an information space anfl: IS — N a frequency distribution

that assigns to each object in the information space the number of requests that oc-
curred for this object during the observation period. Let furthermlordS — [0, 1] be

a function that assigns to each object in the information space its location-dependency.
Then, the location-dependenéyof the information space is defined as the weighted
average of the location-dependencies of the objects in the information space:

f(@)
iclS Zje]s f(])
According to our definition, the location-dependency of an information space lies

between 0 and 1, where 0 indicates a location-independent information space and 1
indicates an inherently location-dependent information space.

L= 1(3)

4.2 Discussion

Unfortunately, a high location-dependency is only a necessary condition for a beneficial

effect of a data management mechanism’s location-awareness. That it is not a sufficient
condition can be seen from the access matrix given in Figure 2. The matrix shows how

often each of the five considered information objeg¢ts. . , i5 are accessed in each of

the five considered squares, .. ., s5. The value given in rown and columm. states

how often the information objeét, is accessed in squasg,.

Since each information object is only accessed in one square, we have a strongly
location-dependent information acceés< 1). However, a location-aware mobile data
management mechanism can not profit from this location-dependency, because all ob-
jects are accessed in the same squard-or example, a location-aware filter mecha-
nism could not filter out any information objects, if the user is located in square
A location-aware caching strategy also can not profit from knowledge about the user’s
position, since in all squares each information object is of the same value. Hence, a
strong location-dependency is only a hint that exploiting location-awareness might be
beneficial.

So far we have not made any assumption about the size of the squares inShe set
However, it has to be reasonably chosen. If the squares are too big, i.e. the resolution of
the grid is too small, inequalities in the frequency distributions are hardly recognized.
The worst case is, if the whole coverage area of the information system consists of just
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Figure 2. Strongly location-dependent

access matrix. Figure 3. Location-dependencies observed with

different grid resolutions.

one square. Then, inequalities can not be observed at all. Because, if only one square is
considered, the access frequencies are trivially the same in all squares.

In Figure 3 this effect is illustrated. It shows the observed location-dependencies
for a certain information object, which we got using different grid sizes. Although we
always used the same, quite location-dependent, access pattern, we got different values
for the observed location-dependency. As expected, the observed location-dependency
decreases with a decreasing grid resolution, i.e. an increasing length of the squares’
sides. For a length of a square side of up®@m, what corresponds to 100 squares
in the considered 000m x 1000m coverage area, we get acceptable values for the
location-dependency. For bigger squares the accuracy becomes poor and the observed
location-dependency is noticeably lower than the actual one.

However, the square size should not be too small either because smaller squares
obviously imply higher storage costs and computational costs for the determination
of the location-dependency. Moreover, if the squares are smaller, more requests for an
information object have to be observed to make a general statement on how the requests
to the object are distributed over the squares. This means that the observation periods
have to be longer.

5 Focus

In this section, we introduce the focus of a mobile information system as a second
characteristic that has a strong impact on the efficiency of location-aware mobile data
management mechanisms.

5.1 Definitions

As shown in the previous section, a high location-dependency alone is not enough to
guarantee a high benefit from considering a user’s location. In addition, it is also impor-
tant that at each location, only a specific part of all available information is accessed.
This means, that we also have to consider, how the information requests originating
from each location are distributed over the information space. Therefore, we define the
focus as follows:



Definition 3. Lets € S be asquare and lef : IS — N be a frequency distribution that
assigns to each information object i§ the frequency with that it has been accessed
within the squares during the observation period. Then, the focus within the square
is the Herfindahl coefficient of the distributigh

This time we chose the Herfindahl coefficient for our definition, since now the abso-
lute number of information objects requested in a square is also important, not only the
inequality in the frequency distribution. For example, the number of objects that should
be cached or prefetched for a certain square grows with the absolute number of objects
that the average user requests there.

For a good estimation of a location-aware mechanism’s performance, all squares
have to be considered. The contribution of each square should correlate with the number
of requests originating from this square, because the focus in a square with only a few
requests will have less impact on the performance of a location-aware mechanism than
that of a square with many requests will have. Thus, we define the the focus of an
information system as the weighted average of the focuses observed in each square
seS:

Definition 4. Let fr : S — N be a frequency distribution that assigns to each square
s € S the number of information requests that occurred there during the observation
period. Furthermore, lefo : S — [%, 1] be a function that assigns to each square

s € S the focus observed there. Then, the foEusf the according information system

is defined as follows:

RS ORI
F_;qzqzesfr(i) fols)

With this definition values betwee%, where N is the number of objects in the
information space, and 1 are possible for the focus of an information system. The value
% indicates that within each considered square all objects of the information space are
accessed with the same frequency. A value of 1 for the focus indicates that within each
square only one information object is requested.

5.2 Discussion

Similar to the location-dependency, a high focus alone is also no guarantee for a ben-
eficial use of a location-aware mechanism. For an example, consider the access matrix
in Figure 4. With this access pattern, we will get a high focus, since in each square
only one information object is accessed. However, a location-aware mechanism can not
profit from the knowledge of a user’s position, since information objec preferred

at any location, what can easily be observed without any location-awareness.

Note, that the location-dependency is O for the access pattern given in Figure 4. In
fact, if both the location-dependency and the focus are high (see Figure 5) the benefit
from using location-awareness will also be high. Because then, at each location many
requests are concentrated on a small part of the available information objects (high fo-
cus) and the preferred information objects will differ between different locations (high
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Figure 4. Highly focused access ma- Figure 5. Highly focused and strongly
trix. location-dependent access matrix.

location-dependency). Thus, location-awareness can then be used to identify the objects
which are specifically preferred at each location. Without considering a user’s location,
all information objects could seem to be of equal popularity. This would be, for exam-
ple, the case with the access pattern given in Figure 5.

6 Evaluation

In this section, we determine the location-dependency and the focus of some typical
access patterns in order to give an idea about the meaning of concrete values obtained
with the metrics. We also analyse how important parameters of the access patterns in-
fluence these values. Finally, we use a location-aware hoarding mechanism as an exam-
ple to show how the location-dependency and the focus may effect the efficiency of a
location-aware mobile data management mechanism.

6.1 Location-Dependency

For the analysis of the location-dependency, we assume that the considered informa-
tion system covers a quadratic areal060m x 1000m. For the determination of the
location-dependency the coverage area was separated into 1600 squares mgasuring

x 25m. We always considered the requests for one single information object. In order
to specify the origin of an information request we used a coordinate system with a reso-
lution of 1 meter, with(0, 0) representing the upper left corner of the coverage area and
(1000, 1000) the lower right corner.

Location-Independent Acce$=or the simulation of a location-independent access, we
assumed that the coordinates from which the requests for the considered information
object originate are both equally distributed over the range from 0 to 1000. In Figure
6(a) a graphical representation of this access pattern is given. It shows the number of
requests for the considered information object that occurred in each square during the
observation period. The brighter a square is depicted the higher is the number of re-
quests originating from this square. Since in all squares approximately the same num-
ber of requests occurred, the brightness of the squares does not differ much. And, as
expected, we get a very low value for the location-dependency: 0.023.
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Figure 6. The considered access patterns.

Hot Spot Access-or the simulation of the wide spectrum of location-dependent infor-
mation accesses, we used an access pattern, which we call the hot spot access pattern.
In this pattern, the requests for the considered information object primarily originate
from one or more hot spots. If there is more than one hot spot, we first randomly select
one of the hot spots as the origin of a request. Each hot spot is selected with the same
probability. Afterwards, the coordinates, where the information object was requested,
are determined. Therefore, we assume that the x- and y-coordinate are distributed ac-
cording to a gaussian distribution around the coordinates of the selected hot spot.

Thus, this pattern has two important parameters, which allow to simulate informa-
tion accesses with quite different location-dependencies. These two parameters are the
number of hot spots and the standard deviatiaof the gaussian distribution. Figures
6(b) and 6(c) show examples for the hot spot access pattern, with three hot spots and
a standard deviation of 100, and with one hot spot and a standard deviation of 50. The
plots in Figure 7 show the location-dependencies we get with one and three hot spots
for different values of.
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Figure 7. Location-dependencies with differ- Figure 8. Effect of the number of hot spots on
ent standard deviations. the location-dependency.

In Figure 8 the location-dependencies are shown, which we got for different num-
bers of hot spots. The hot spots were evenly distributed over the information system’s
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coverage area. The three plots show the results for standard deviatiens=o£5,
o =50, ando = 75.

Inherently Location-Dependent Accedéth an inherently location-dependent informa-

tion access, all requests for a certain information object are done at the same location,
thus they all originate from the same square (see Figure 6(d)) and, not surprisingly, the
location-dependency is 1.

6.2 Focus

In the previous section, we had to consider the whole coverage area of the informa-
tion system but only one information object to make statements about the location-

dependency. In contrast, we now have to consider only one square of the coverage
area, but all information objects requested there. Analogously to our examinations of

the location-dependency, we now determine the focus of typical access patterns and
analyze the effect of the patterns’ parameters on the focus.

Uniform Distribution As mentioned above, the focus does not only reflect inequalities
in the frequency distributions of the information requests but also the absolute number
of locally accessed information objects. Hence, we can get high focuses, although the
local access frequencies are equally distributed, if only a small nuiikafrdifferent
objects is locally requested at all. For a uniform distribution the fdcusll be F' = %

Zipf-like Distribution In [2] it has been shown that the distribution of the requests over
single web pages follows a Zipf-like distribution. In such a distribution the relative prob-
ability of a request for thé'th most popular page is proportional ﬁ:) The observed
value ofa varies between the different considered traces, ranging from 0.64 to 0.83.
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Figure 9. Focus depending on the parameteFigure 10.Focus depending on the total num-
« of a Zipf-like distribution. ber of different objects accessed locally.

We assumed such a distribution for the information requests observed within the
considered square. We experimented with different values of the paramétdrgher
value fora means a stronger concentration on the most popular information objects.
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Figure 9 shows the focus depending on the parameté&/e assumed that a total of 10
different objects is accessed in the considered square.

As mentioned above, the focus also reflects an absolute concentration, i.e. the total
number of different objects that are accessed in a square is reflected in our metric. Figure
10 shows how this number influences the focus. To get these results, we simulated a
Zipf-like distributed information access and varied the total number of locally requested
objects. The parameterof the Zipf-like distribution was this time set to a fixed value
of 0.8.

6.3 An Example Application

In this section, we illustrate the effects that the location-dependency and the focus might
have on location-aware mobile data management mechanisms using a hoarding mech-
anism, we proposed in [8], as an example.

This mechanism aims to allow the users of a mobile information system to access
information during disconnections, i.e. when no network is available. Therefore, the
mechanism tries to predict the information objects a user will probably access during
a future disconnection and transfers them to the user’'s device as long as there is a
connection. Thus, the information is already locally available, when the user accesses it
during the disconnection. In order to predict the objects that a certain user will probably
need, the mechanism uses knowledge about the objects’ popularities at each location
and predictions of the user’s future movement (for details see [8]).

A measure often used to rate the efficiency of hoarding and caching mechanisms
is the hit ratio. This is the ratio between the number of requests that can be answered
with information objects that are stored locally and the total number of requests a user
makes.

If there is no location-dependency and no focus, i.e. if all objects are requested ev-
erywhere with the same probability, the hoarding mechanism will not be able to benefit
from its location-awareness. In this worst case scenario, the user will only get an aver-
age hit ratio of”, wherem is number of information objects that can be stored locally
on the user’s device andis the total number of objects in the whole information space.
Usually,m will be much smaller tham. If m is bigger tham or equal ton, we will
trivially get a hit ratio of one.

Finally, let us consider an example with a location-dependency of 1 and a high
focus. In this example, at each squara specific set of information objects; is re-
quested, wher®,; N O; = 0, if i # j and|O,| = 87 is again the total number of
objects in the information space afidhe set of all squares within the information sys-
tems’ coverage area. Furthermore, let us assume that a user located inssEpEEgses
all objects inO; with the same probability. Then, we will get an average hit ratio of
min(”j%_'f' , 1), wherek is the number of squares the user will visit during the discon-
nection. Figure 11 shows the hit ratios for this and the previous example depending on
the number of squares a user visits during a disconnection. The parameters were chosen
as follows:|.S| = 100, m = 100, n = 5000.

12
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7 Conclusion

In this paper, we claimed that there are not only inherently location-dependent and
location-independent information systems, but that there is a complete spectrum of sys-
tems differing in their degree of location-dependency. We supported this claim by giving
examples of information systems with different location-dependencies.

Furthermore, we proposed a metric, which can be used to measure the location-de-
pendency of an information system and which helps to better understand what location-
dependent information is. We explained why considering only the location-dependency
of an information system is not enough in order to estimate the benefit a location-aware
data management mechanism can get from its location-awareness. Additionally, we
proposed a second metric, the focus, which together with the metric for the location-
dependency finally provides a good means for this estimation.

In the evaluation part of the paper, we analyzed the location-dependency and the
focus of various access patterns to give an idea of the values that can be expected
with typical access patterns. Finally, we used a location-aware hoarding mechanism to
show how the location-dependency and the focus can effect the efficiency of a mobile
location-aware data management mechanism.

For the near future, we plan to combine the two metrics into only one metric com-
pletely characterizing an information space. To do so, we first have to further analyze
the proposed metrics with a simulation tool which allows to directly manipulate the
location-dependency and the focus of a considered information space. With such a
tool we could more exactly analyze how the proposed metrics effect different typical
location-aware mechanisms. This will also help us to further refine our metrics such that
they also distinguish access patterns, which are, with our current metrics, considered as
equivalent.

Finally, we plan to adjust our metrics to other fields of application, e.g. the mea-
surement of coverage in a wireless ad-hoc sensor network (see Section 2). In contrast to
existing metrics, our metric would measure the expected coverage for an average object,
not the maximal or minimal possible coverage. Another field of application for our met-
rics are mobile ad-hoc networks. There, inequalities in the average spatial distribution
of the network nodes are crucial for the delay and the throughput of the network.
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