
Abstract -- The Network Emulation Testbed project
provides a configurable network environment for the
performance analysis of distributed applications and
protocols. An emulation scenario consists of a net-
work topology, link parameters, and dynamic change
models. In order to set up a scenario automatically, it
has to be modeled in an appropriate description lan-
guage. In this paper, we analyze the requirements for
an emulation scenario description language and pro-
pose a possible solution.

Keywords: Network Emulation, Scenario Modeling,
Network Topologies

1 Introduction

Performance measurement of distributed systems
and network protocols requires the target environ-
ment of the respective system. In most cases,
though, this environment is not available to the
performance analyst. To allow a wide variety of
measurements, a synthetic, emulated network
environment is needed. The Network Emulation
Testbed (NET), which is currently being set up at
the University of Stuttgart, consists of a large
number of computing nodes (40+) connected by a
flexible network infrastructure. The network traf-
fic on each link can be affected by special traffic
shaper modules.

To set up a network scenario, an appropriate
specification language is required. The scenario
specification has to describe both the network
topology and certain link properties. The topology
description concept has to include point-to-point
connections as well as multipoint-connections like
LANs. Regarding the connections, all properties
affecting the network performance in any way
have to be modeled. Since in real networks, some
properties will change over time, a realistic net-
work model has to reflect such changes as well.

In this paper, we investigate the essential prop-
erties of a network modeling language to describe
an emulation scenario. As a possible solution, we
propose a modeling language that includes these
parameters and offers concepts for dynamic
changes. The proposed language will be the basis
for further research in building a comprehensive
network emulation testbed.

2 Related Work

Modeling the properties of computer networks is
the first step for both simulation and emulation.
Because network simulation predates emulation
approaches by a number of years, there are
already sophisticated network models for simula-
tion engines.

The most important general-purpose network
simulator today is ns-2 [1]. Since ns-2 is widely
used in network simulation, its modeling language
is extensive. Instead of using a general modeling
language, the ns-2 developers chose to model
their scenarios using a programming language. A
program in a script language (OTcl) is used to
instantiate the required simulation objects and to
set up their parameters and behavior. The parame-
ters can be either fixed or determined by a variety
of dynamic models. As a result, the execution of a
scenario declaration script yields a specialized
simulator instance for the desired purpose. If new
types of simulation objects are added to ns-2, they
can easily be referenced by scenario scripts just
like any predefined object.

Compared to simulation, network emulation
approaches are much less common. So far, the
majority of emulation projects just propose a tool
to intercept and affect network traffic. These
projects consider only small scenarios consisting
of a few machines. Therefore, it is sufficient for

Modeling Computer Networks for Emulation

Daniel Herrscher, Alexander Leonhardi, Kurt Rothermel
University of Stuttgart

Institute of Parallel and Distributed High-Performance Systems (IPVR)
Breitwiesenstr. 20-22

70565 Stuttgart, Germany



them to set up each instance of the respective tool
manually. In this case, there is no comprehensive
network model but only the combination of sev-
eral setup commands for each machine.

Existing emulation tools differ in the parameters
they can emulate. Delayline [4] can introduce
propagation delay and allows to specify a packet
loss probability. In addition to that, Dummynet [5]
comes with bandwidth limitation and an adjust-
able queue size. NISTNet [2] has a fixed queue
size, but adds delay variation, packet reordering,
and packet duplication.

The Utah Network Testbed [5] is an emulation
project that provides a larger testbed based on a
number of machines running traffic shaping tools.
Several local Dummynet instances are used to
emulate a comprehensive scenario. The desired
topology and the respective link parameters are
specified in a script language similar to ns-2 OTcl-
scripts. In fact, they use a subset of the ns-2 setup
language, extended by some special commands.
However, the dynamic models of ns-2 are not sup-
ported.

There are a number of general network topology
description languages that do not aim specifically
at emulation or simulation. Most of them are lim-
ited to node-link-structures, again with various
properties for the links. Some include the model-
ing of LANs, but transform them into stars or
complete connected graphs to fit in the node-link-
model [9]. Since these approaches aim at describ-
ing the state of a network at a specific time, they

do not include dynamic changes at all.

3 The Network Emulation Testbed

To make it clear in which context our network
modeling language will be used, we first give a
brief overview of the Network Emulation Testbed,
which is currently being set up at the University
of Stuttgart.

The testbed basically consists of a 40+ node PC
cluster system running Linux (see fig. 1). The
node PCs are connected with both a Gigabit
Ethernet switch and a Fast Ethernet switch. While
the Fast Ethernet connects the system for adminis-
trative purposes, the Gigabit switch can be used to
establish a number of VLANs (virtual LANs),
each containing arbitrary node PCs. A VLAN
with only two participating nodes would be equiv-
alent to a single connection between these two
nodes. A VLAN with more than two nodes is best
viewed as a separate, private LAN connecting
these nodes. If a node is part of several VLANs,
Linux can address each VLAN by a separate vir-
tual network device, transparent to protocols and
applications. Through this concept, VLANs can
be used to set up any virtual topology.

In addition to the desired topology, the proper-
ties of each connection have to be emulated. This
is done by traffic shaper modules running on the
nodes. Once configured, they introduce the speci-
fied link properties like delay, bandwidth limita-
tion, packet loss etc. Since they are running in

High-Performance
Network for
Emulation

Gigabit Switch
VLAN Support

PC Node

PC Node

PC Node

Administration
Network

Fast Ethernet
Switch

Control PC

Router

1000-T

1000-T

1000-T 100-T

100-T

100-T

100
0-

T 1000-T

Intranet Connection

Figure 1: The Network Emulation Testbed Hardware.



kernel space, the user space software on the nodes
is not aware of them. For the time being, we use
NISTNet [2] to shape traffic. Because of certain
limitations of existing tools, however, we are cur-
rently developing a traffic shaper on our own.

A central administrative node is responsible for
setting up the network scenario and controlling
the experiment. Once a network model is pro-
vided to the administrative node, the scenario cre-
ation will run automatically.

4 Modeling Language Requirements

In this paragraph, we will consider the require-
ments for a modeling language to describe a link-
based emulation scenario.

4.1 Topology

Topology modeling for emulation has to provide
node-link structures, of course. However, since
the common media in multipoint connections
(like LANs) have significant effects on perfor-
mance, it is not sufficient to model them as stars
or complete connected graphs. They have to be
modeled in their original connection topology to
emulate the performance properly. Therefore, the
model has to provide both point-to-point links and
multipoint links.

4.2 Parameters

The parameters considered in a network modeling
language for emulation depend on the granularity
of the emulation environment. Some tools aim at
emulating subnets, consisting of several links,
routers, etc. In this case, the emulation has to
reproduce parameters like packet reordering,
delay variation because of changing router
queues, etc.

Because the NET project provides each emu-
lated link with a separate traffic shaper, we can
concentrate on the parameters of a single network
connection, including multipoint connections like
LANs. This consideration leads to the following
set of parameters.

1) Bandwidth Limitation

The maximum bandwidth of a connection is one
of the most important parameters affecting net-
work performance. A reasonable approach to

introduce bandwidth limitation is a “leaky bucket”
[8]. A leaky bucket limits outgoing traffic to the
specified bandwidth. Surplus traffic is stored in a
FIFO queue. If the queue is full, incoming packets
are dropped. Leaky bucket behavior is determined
by the parameters bandwidth and the queue
length.

Note that there can be different types of band-
width limitation regarding a two-way connection.
The bandwidth can be limited for each direction
separately (with equal or unequal limits) or there
can be a common bandwidth limitation for both
directions. The bandwidth might also be shared by
all participants of a multipoint connection.

2) Delay

The delay a packet experiences between two adja-
cent hosts consists of several components: propa-
gation delay, serialization delay, medium access
delay, and queueing delay.

The propagation delay depends on the type and
the length of the propagation media. It may also
include some delay introduced by additional net-
work components that are part of a link (e.g.
repeaters). Unless a communication partner is
moving, the propagation delay will remain con-
stant.

The serialization delay is introduced by the lim-
ited bandwidth of a link and represents the time it
takes to send and receive a packet. It depends on
the bandwidth and the respective packet size.

Some link layer protocols may introduce an
additional medium access delay because they have
to wait before they can start sending bits. This
time may vary. For all common protocols, though,
stochastic models exist that describe this behav-
iour.

Queueing delay is the time packets wait in FIFO
queues to get on an occupied line. Queue lengths
vary over time and so does the queueing delay.
The queueing delay does not have to be modeled
separately, because the queueing mechanisms we
use for the bandwidth limitation include the delay
of packets (see above).

Summarizing the delay types to be modeled for
emulation, there is a fixed delay (the propagation
delay) and an additional variable delay (the
medium access delay). The other delay types can
be either computed from other parameters (serial-
ization delay) or come for free (queueing delay).



Note that, unlike the packet delay variation that
can be measured in subnets, the variable delay on
link level does never lead to packet reorderings.
Emulation tool implementations must take care of
this characteristic.

3) Packet Loss

Packets can be lost on network links for two rea-
sons: They are dropped because of link conges-
tion, or they are damaged due to transmission
errors. Our bandwidth limitation approach already
drops surplus packets in case an emulated link is
congested. Packet loss because of transmission
errors highly depends on the type of the network
link and has to be included in the emulation
model. The packet loss probability is a very
dynamic parameter: Since some lines tend to burst
losses, it may be not sufficient just to include a
single loss probability value in the model. A real-
istic emulation model has to provide a more flexi-
ble approach.

4) Parameters Summary

One could think about including further parame-
ters for the emulation of network links. Packet
reordering and duplicate packets happen in sub-
nets, as a result of packet loss or dynamic routing
algorithms. However, these effects do not appear
on link level. If an emulation scenario is set up
properly on link level, reordering and duplication
will automatically emerge from the interaction of
higher-level protocols and emulated packet loss.

Summarizing the set of parameters to be mod-
eled for a point-to-point or multipoint link:

• bandwidth limitation: maximum bandwidth
(bit/s), queue length (bytes or packets), type
of bandwidth sharing (simplex, half-duplex,
or duplex)

• delay: fixed delay (ms), variable delay (sto-
chastic function leading to a ms value)

• packet loss: probability value, additional
burst loss model

5) Dynamic Parameters

The variable delay component always has to be
modeled by a dynamic model. Though, the other
parameters could also be subject to change: The
packet loss, which may be a dynamic model itself,
can change significantly over time, especially in

wireless networks [6]. The bandwidth limitation
may also change (consider the adaptive bandwidth
in 802.11b). Even the propagation delay can
change if a communication partner is moving.

Therefore, a realistic emulation model has to
support both fixed values and dynamic models to
specify parameters.

5 XML-Based Approach

In this paragraph, we will propose a specification
language that includes the parameters stated
above. While the only existing modeling language
for network emulation [5] uses an ns-2-based pro-
gramming language, we decided to use an XML-
based description language rather than a program-
ming language for several reasons:

• XML code is easy to understand, process, and
extend.

• Descriptions in XML are more likely to be
interchanged with other projects than scripts
in a special language.

• The main reason why the ns-2 network speci-
fication is based on a programming language
is the seamless integration of the setup code
with the simulator code. This benefit does not
hold for the emulation case, because the emu-
lation tools are distributed on a number of
machines. There is no single “emulator
engine.”

5.1 Topology and Parameters

Because of space limits, we are not able to present
the whole XML DTD here. The documented DTD
can be found at our project webpage.1

Figure 2 shows the basic structure of the topol-
ogy description: A number of network links is
defined by a unique ID and the respective parame-
ters. Each parameter has a predefined unit (e.g.,
“Kbps” for the bandwidth). Units can be overrid-
den by explicitly specifying a unit. If parameters
are omitted, they are given reasonable default val-
ues (e.g., zero delay, no loss). Some parameters
may be given for each direction separately (cp. the
different bandwidths of an ADSL link). In addi-

1. http://www.informatik.uni-stuttgart.de/ipvr/
vs/en/projects/net/



tion to the specified parameters, the network type
can be specified optionally (e.g., “Token Ring”).
For some network types, certain properties can be
emulated by special algorithms rather than
described by general dynamic models (e.g., emu-
lated token passing can emulate the medium
access delay of a token ring better than a stochas-
tic approach).
Subsequently, hosts with one or more network
interfaces are defined. Each network interface is
given a symbolic network address and is linked to
a network by its unique ID. The relative position
of a host within a network is defined by an
optional attribute, if necessary (e.g., for asymmet-
ric links).

5.2 Dynamic Parameters

As stated above, a realistic network model must
include dynamic parameters. The variable delay
component is always a dynamic parameter (if
present). The other network parameters can be
either set to a fixed value, or be defined by a
dynamic model. There are two different
approaches to include dynamic parameter models:

• Time based: At certain times, the respective
value is changed, according to a change
model. This approach is suitable for most
trace-based models.

• Packet based: Dynamic models that describe
packet-level behavior (e.g. medium access)

may need to be evaluated for each packet sep-
arately.

Since both approaches have reasonable uses,
our dynamic models can be specified both time
and packet based.

There is a variety of conceivable models to
introduce dynamic changes. We propose three
basic models. Further models will be added when
new requirements arise. So far, our description
language supports a table model, the Gaussian
distribution, and Markov state models.

1) Table

The simplest dynamic model is the table model.
Instead of a static value, a table is provided that
consists of tuples with triggers and actions. Each
action can be a parameter change or another
dynamic model. Tables are especially suited to
replay parameters gathered from measurements.
For example, the changing bandwidth of a mobile
802.11b node can be easily modeled that way (see
fig. 3). The triggers can be either time values or
packet counts. In most cases, a time triggered
table will be appropriate.

2) Gaussian Distribution

Especially for the variable delay component, a
stochastic function is needed to specify the prop-
erties of the variation. The Gaussian distribution
will cover basic needs and is specified by the
combination of an expected value and the mean

A B
768 Kbps ->
128 Kbps <-

Token Ring:
16 Mbps

C

Ethernet: 10 Mbps

D E

ADSL:

<topology>
<network id="ADSL">
<bandwidth type="simplex" direction="up">

<value>128</value>
</bandwidth>
<bandwidth type="simplex" direction="down">

<value>768</value>
</bandwidth>

</network>
<network id="Ring" type="tokenring">
<bandwidth type="half-duplex">

<value>16 Mbps</value>
</bandwidth>

</network>
[...]

<host id="A">
<adaptor>
<dnsname>ModemA</dnsname>
<memberof position="0">ADSL</memberof>

</adaptor>
</host>
<host id="B">
<adaptor>
<dnsname>ModemB</dnsname>
<memberof position="1">ADSL</memberof>

</adaptor>
<adaptor>
<dnsname>RingB</dnsname>
<memberof position="0">Ring</memberof>

</adaptor>
</host>

<host id="C">
<adaptor>
<dnsname>RingC</dnsname>
<memberof position="1">Ring</memberof>

</adaptor>
<adaptor>
<dnsname>EtherC</dnsname>
<memberof>Ether</memberof>

</adaptor>
</host>

[...]
</topology>

Figure 2: Topology modeling example.



deviation (see fig. 4). Note that it is reasonable to
compute the variable delay per packet and not per
time unit.

3) Markov State Model

Single probability values are not sufficient to
describe all nondeterministic behavior, especially
traffic and loss patterns [3]. Markov state models
are much more powerful, yet easy to understand.
The example in fig. 5 uses an ON-OFF-model, the
simplest form of Markov state models, to describe
a burst loss behavior. Again, the state transition
probabilities can be either packet based (e.g., for
loss models) or time based (e.g. for changing
bandwidth over time).

4) Combination of Dynamic Models

Of course, the modeling possibilities become even
more interesting if several dynamic models are
combined. In our language, every occurrence of a
numerical value can be replaced by a dynamic
model. Therefore, it is possible to create combina-
tions like a table that switches between different
Markov models that define the packet loss behav-
ior, one loss model for a static and another one for
a moving node.

5.3 Dynamic Topologies

The dynamic models investigated above varied
the properties of existing connections only. We
did not address the modeling and emulation of
dynamic topologies so far. For the time being,
changes in the connection topology (e.g. a node
moving from one network to another) can be
modeled with our approach by a workaround: A
node moving from network A to B is set up with
connections to both networks initially. To cut off
inactive connections, a table is defined that simply
sets the bandwidth to zero at the appropriate
times.

6 Conclusion and Future Work

In order to set up and run a network emulation
environment, a comprehensive, dynamic network
model is needed. We identified the parameters
that have to be modeled for emulations at link
level. We proposed an XML-based approach to
model a network scenario with these parameters,

11

5.5

2
1

Mb/s

t
...
<bandwidth type = "half-duplex">
<table base="ms">

<action at="0"> <value>11000</value> </action>
<action at="2000"> <value>5500</value> </action>
<action at="4000"> <value>2000</value> </action>
<action at="8000"> <value>1000</value> </action>
<action at="10000"> <value>0</value> </action>

</table>
</bandwidth>
...

Figure 3: Modeling the bandwidth of a wireless
node moving away from a base station.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10

pr
ob

ab
ili

ty

variable delay in ms

...
<variable_delay>

<gaussian base=”packets” mean="5" deviation="1" />
</variable_delay>
...

Figure 4: Modeling variable delay by a probability
variable with Gaussian distribution.

p = 0.000001

p = 0.1

normal
loss

(0.001%)

burst
loss

(100%)

...
<loss>
<markov initial="normal" base="packets">

<state id="normal">
<value>0.00001</value>
<transition id="burst" probability="0.000001" />

</state>
<state id="burst">
<value>1</value>
<transition id="normal" probability="0.1" />

</state>
</markov>

</loss>
...

Figure 5: Markov state model to switch between
sporadic and burst loss.



and completed the model with a concept to model
dynamic changes during the emulation process.
Our modeling language will be the basis for fur-
ther research on building a comprehensive net-
work emulation environment for performance
measurement.

We named the parameters needed for realistic
link-based network emulation above. However,
existing traffic shaper tools are not yet able to
emulate all of these parameters. Models including
the dynamic change of parameters are also miss-
ing in current emulation tools. Therefore, a new
emulation tool has to be developed that suits the
needs for realistic link-based network emulation.

To ease the parallel use of simulation and emu-
lation tools, it would also be desirable to have a
compiler that generates XML-based emulation
topologies from ns-2 simulation scripts. For easy
(i.e. static) topologies, this should be feasible.

We presented a workaround to facilitate
dynamic connection topologies. However, a more
general approach to model and emulate mobility
in networks is needed. This approach has to con-
sider both deterministic and nondeterministic
movement models, managed either centralized or
distributed.

7 References

[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J.
Heidemann, A. Helmy, P. Huang, S. Mc-
Canne, K. Varadhan, Y. Xu, and H. Yu. Ad-
vances in Network Simulation. IEEE
Computer, Vol. 33, No. 5, pp. 59-67, 2000.

[2] M. Carson. NISTNet Network Emulation. ht-
tp://www.antd.nist.gov/itg/nistnet/

[3] D. Eckhardt and P. Steenkiste. Measurement
and analysis of the error characteristics of an
in-building wireless network. In Proceedings
of the ACM SIGCOMM ’96, pp. 243-254,
Stanford, 1996.

[4] D. Ingham and G. Parrington. Delayline: A
Wide-Area Network Emulation Tool. In
Computing Systems, Vol. 7, No. 3, pp. 313-
332, 1994.

[5] J. Lepreau, C. Alfeld, D. Andersen, K. van
Maren. A Large-Scale Network Testbed.
SIGCOMM '99 New Research Session, Cam-
bridge, 1999.

[6] B. Noble, M. Satyanarayanan, G. Nguyen,

and R. Katz. Trace-Based Mobile Network
Emulation. In Proceedings of the ACM SIG-
COMM ’97, pp. 51-61, Cannes, 1997.

[7] L. Rizzo. Dummynet: A simple approach to
the evaluation of network protocols. In ACM
Computer Communication Review, Vol. 27,
No. 1, pp. 31-41, 1997.

[8] J. Turner. New directions in communications
(or which way to the information age). IEEE
Communications Magazine, Vol. 24, No. 10,
pp. 8-15, 1986.

[9] E. W. Zegura, K. L. Calvert, and S. Bhatta-
charjee. How to Model an Internetwork. In
Proceedings of the IEEE INFOCOM ’96, pp.
594-602, San Francisco, 1996.


