
On Making RAMSES an Earth Observation Application Framework*

Marcello Mariucci, Bernhard Mitschang
Institute of Parallel and Distributed High-Performance Systems, University of Stuttgart

Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany
firstname.lastname@informatik.uni-stuttgart.de

* This work is partially supported by the European Space Agency

Keywords: Frameworks for Information Technologies,
Software Architectures for Information Systems, Compo-
nent-Based Designs, Service-Based Approaches.

Abstract
RAMSES is one of the first large-scale prototypes of an opera-
tional Earth Observation (EO) application system. It imple-
ments a complex infrastructure for the extensive support of a
thematic EO application system, which focuses on the detection
and monitoring of oil spills. Since EO application systems are
usually built on top of a set of generic functions, this paper
analyses and assesses the RAMSES infrastructure in order to
form a generic EO application framework. This framework
should mainly support the collaborative development and cus-
tomization of emerging EO application systems by maximizing
the use of already existing system facilities. Furthermore, it
should support the flexible extension and rapid reconfiguration
of workflows as the business changes. Results of our analyses
show that the RAMSES infrastructure does not cover all re-
quirements of an EO application framework. We therefore in-
troduce advanced design concepts and propose a new frame-
work architecture that structurally controls the inherent com-
plexity of the interdisciplinary domain of EO application sys-
tems.

1. INTRODUCTION
Earth Observation (EO) application systems are character-

ized by the provision of thematic, value-added services, which
are based on the intensive use of EO data from space. Single
EO data products contain geophysical parameters of our planet
and can reach sizes of several hundreds of MBytes. They are
acquired and stored in a set of distributed facilities, which man-
age and disseminate data according to their data policies. The
elaboration of these data products requires intensive computa-
tion across a series of complex processing steps, and involves
several scientific models and auxiliary information. Further-
more, the generation of thematic products requires the collabo-
ration of several competences, which are typically located on
geographically distributed sites (see [1]).

The purpose of an EO application framework is to provide
a reusable software infrastructure for the production of custom
EO application systems. It simplifies the access to generic EO

facilities (e.g. EO data archives and image processing modules)
and supports the collaborative development of EO application
services during the complete software lifecycle. To this end, it
breaks down EO application systems into a federation of
autonomous and interactive components, relies on their inter-
faces, and regulates the interactions that they can engage in.
Furthermore, it supports the maximal reuse and integration of
stabile software elements, workflows and architectures. An EO
application framework provides an ideal infrastructure for con-
trolling the inherent complexity of the interdisciplinary EO ap-
plication domain.

The European Space Agency (ESA) has approached with
several activity directions the development of such an EO
application framework. One of these activities was to analyze
and assess the suitability of one of the first thematic EO
application systems to form a generic EO application
framework. The idea was to reuse a set of generic functions and
to add specific features needed for new thematic EO application
services. In Section 2 this thematic EO application system,
RAMSES, is introduced, and related activities to analyze and
assess the suitability of RAMSES to form a generic EO
application framework are described. Furthermore, encountered
problems and limitations are pointed out. Based on these
experiences, in Section 3 advanced design concepts and a new
framework architecture to structurally control the inherent
complexity of the interdisciplinary domain of EO application
systems are proposed. Section 4 discusses the proposed
framework and refers to related work. Section 5 concludes the
paper and describes future work.

2. RAMSES
RAMSES (Regional earth observation Application for

Mediterranean Sea Emergency Surveillance) is a two-year re-
search project, which developed and validated one of the first
prototypes of an operational thematic EO application system.
Funded by the European Commission, it demonstrated the ef-
fectiveness of distributed, computer-supported EO environ-
mental services in detecting and monitoring oil spills in the
Mediterranean Sea. This section briefly summarizes the
RAMSES system architecture, and points out its limitations to
form an EO application framework.



2.1 System Architecture
The main service of the RAMSES system is to provide

customers, such as the Italian Costal Guard and the Egyptian
Authority, with thematic high-level products, which emphasize
the existence of oil slicks near their coasts. This service em-
braces the continuous acquisition and ingestion of data provid-
ers’ satellite data, the generation of marine and meteorological
forecasts, and the corresponding expert analysis. As soon as an
oil slick is detected, notifications are sent to subscribed custom-
ers, and appropriate product generation routines are activated.
In addition, the system offers off-line access to its catalogues,
which include a historical storage of all available oil slick re-
lated products.

The RAMSES computing infrastructure is based on a
modular, object-oriented design. It is divided into several mod-
ules, which are deployed on geographically distributed comput-
ing machines. The communication between modules is per-
formed by means of a CORBA-conform object request broker
(ORB), whereas large datasets are independently transferred by
using the file transfer protocol (FTP).

RAMSES actors (e.g. customers or scientific institutions)
interface the RAMSES computing infrastructure by means of
appropriate ‘Remote Access Clients’. These client applications
are mainly interactive graphical interfaces, which are directly
connected to the communication bus. To access services, they
refer to corresponding ‘Remote Application Servers’ (RAS),
which coordinate the workflow of requested services.

Figure 1: RAMSES production workflow scenario

The following scenario (see Figure 1) illustrates a simpli-
fied example of a RAMSES production workflow. A statistical
institution, in the role of a RAMSES customer, wants to re-
trieve all available satellite images of a specific region at a spe-
cific time that contain oil slicks. It therefore starts its local
‘Remote Access Client’ application, specifies the required pa-
rameters and requests the service �. The RAS, which encodes
the workflow model of the requested service, begins by verify-
ing if the user has sufficient rights �, it then orders the ‘Cata-
logue Dispatcher’ to gather all datasets, which correspond to
the user specified parameters �. The ‘Catalogue Dispatcher’
determinates the appropriate system catalogues, forwards the
request to them �, and sends the datasets back to the RAS �.
Based on the result, the RAS orders the corresponding archives
to retrieve the related images � and to send them to the user-

specified location �. After all images have been successfully
transferred, the RAS orders to the ‘Accounting’ to charge ac-
crued expenses on customer’s bill �, and notifies the ‘Remote
Access Client’ that the service has been executed	.

For a more detailed description of the RAMSES system
see [2-3].

2.2 Limitations to form an EO Application
Framework

The RAMSES infrastructure was originally conceived for
the support of a single thematic EO application. The main ob-
jective was to implement an extensive infrastructure, which
supports users during the complete EO value chain. The focus
was put on the efficient implementation of system functional-
ities, rather than on flexibility and openness properties of the
system. Thus, extensions and adaptations of the RAMSES in-
frastructure to support additional EO application services led to
several problems and limitations.

First limitations were encountered during the integration of
new remote application clients to the infrastructure. Each client
application required the implementation of a new server appli-
cation (i.e. RAS), which defines the workflow model of the
services requested by the client. Since the RAS hard-codes
these workflow models, implemented workflows could not be
easily reused. Furthermore, the approach of hard-wiring work-
flows in the RAS code showed to be a fragile and not scalable
mechanism prone to ambiguities. The larger the workflow and
the more actors involved, the more static the process became
and the harder it was to adapt the workflow to changes and new
conditions. Small modifications or adaptations of the workflow
required the recompilation of the RAS code and therefore could
only be performed by a small group of developers. Moreover,
RAMSES services were not executed under the control of an
appropriate workflow management system, which led to data
inconsistencies and loss of input information.

Further analyses showed that the modular approach in
RAMSES (and in general) was very restrictive to new EO ap-
plications. Modules (in the object-orientation paradigm also
known as packages) are structured units, which are linked to-
gether to form a complete program. Since there is no common
way to access modules’ content and functionality, their combi-
nation and assembling is application-specific and limited to a
small group of related developers. In addition, modules support
dependency relationships between one another, which makes
the substitution of single modules almost impossible and the
localization of errors difficult. Workflow descriptions are there-
fore not strictly separated from their implementations, which in
turn makes the RAMSES infrastructure a complex, monolithic
and twisted computing system.

Further it has been realized that the transparency of the
RAMSES infrastructure is very limited. Many aspects of the
EO application system (e.g. architectural design, availability or
deployment of software elements and services) are either hard-
coded within a wide rage of software packages or described in

Infrastructure (e.g. ORB, IIOP, FTP)

Catalogue
Remote
Access
Server

Remote
Access
Client

Archive
Catalogue
Dispatcher

User
Mgmt

…

Accounting

Catalogue

Local
Memory

Local
Memory

Local
Memory

Customer

3

44

67

9 1
5

2

8



some documents. This makes it hard for EO application devel-
opers to choose and reuse the right software elements and ser-
vices, and to perform modifications or extensions.

Last but not least, the concurrent and collaborative devel-
opment during RAMSES infrastructure extensions was awk-
ward and time-consuming. Software updates influenced the
whole system by affecting other already stable EO applications.
Operational activities of the complete EO application frame-
work were suspended and existing codes overwritten. Further-
more, there was no possibility to simply go back to older ver-
sions.

In summary, analyses turned out that the RAMSES infra-
structure is extremely inflexible and not particularly suitable to
form an EO application framework. The integration of new EO
application services introduces a huge amount of overhead,
leading to a twisted and hardly manageable software system.
Furthermore, required EO application framework facilities,
such as support of collaborative development and flexible modi-
fication of thematic EO application services, are not provided.
As a consequence, an appropriate architectural framework de-
sign that structurally controls the inherent complexity of the
interdisciplinary domain of EO application systems is required.

3. A SERVICE-BASED COMPONENT
FRAMEWORK

Based on the experience gained in the extension and
adaptation processes of the RAMSES infrastructure, we
propose a new design approach for an EO application
framework. To distinguish it from other EO application
framework design approaches, we call it ARSENAL
framework. ARSENAL (Study on a Repository Supported
Earth Observation Application Framework) is an ESA funded
project at the University of Stuttgart (see [4]).

Our vision includes a shared information database on the
structure and flows of EO applications. This knowledge data-
base mainly contains descriptions of the structured collection of
components, which are collaboratively assembled to provide
EO application services. Therefore, it also contains control and
data flow specifications, which can be flexibly extended and
rapidly reconfigured as the business changes. Furthermore, it
includes system architecture models, description of system be-
haviors, constraints, access structures and deployment informa-
tion required for the suitable management of today’s software
infrastructures.

In the following sections, basic elements of our approach
are introduced. First, EO application components which repre-
sent the primitive elements of the ARSENAL framework are
introduced. They are then assembled to EO application services,
which are (among others) managed by an EO application re-
pository. These concepts are finally combined to an overall
ARSENAL framework architecture, which is described and
discussed.

3.1 EO Application Components
EO application components (EO AppComps) of the

ARSENAL framework are isolated software blocks that
- offer a specific, common accessible functionality,
- represent reusable, logically self-contained application con-

cepts, and
- are independently developed, tested, maintained and de-

ployed.
EO AppComps are commonly accessed through interface

structures, and easily plugged and substituted within the
ARSENAL framework. Examples of EO AppComps are satel-
lite data archiving systems, invoicing systems, image process-
ing units, and GUIs for thematic analyses.

Typically, EO AppComps are coarse-grained components
that are built in total isolation by different companies. They
should not be interpreted as dynamic run-time instantiations
such as objects, but rather understood as complex systems (i.e.
applications) whose functionality is covered by stabile inter-
faces. EO AppComps are either implemented by human activ-
ity, or by a federation of implementation objects, procedures
and low-level components (e.g. CORBA components, Enter-
prise JavaBeans), or a combination of both.

EO AppComps are therefore prefabricated, interactive
units that offer certain functionalities. They do not act alone but
are employed in EO application services (see section 3.2) typi-
cally by arranging their functions in composites. Building ser-
vices by combining stabile EO AppComps improves quality
and supports rapid development, leading to a shorter market
time. At the same time, adaptations to changing requirements
can be achieved by investing only in key changes of a compo-
nent, rather than undertaking a major service release change.
Therefore, the EO AppComp approach seems to be ideal for
current service-based system architectures.

EO AppComps strictly separate their interface specifica-
tion from their implementation. These EO AppComp specifica-
tions structurally and semantically describe EO AppComps and
their functions, and link to the corresponding implementations.
Thus, EO AppComp specifications can be managed and ac-
cessed independently of their realization, which can be de-
ployed on several dispersed machines. In addition, EO
AppComp specifications are neutral to any technology and ven-
dor specific implementations. Consequently, EO AppComp
implementations can be substituted and maintained without
affecting the related specification. Furthermore, legacy systems
can be easily wrapped into EO AppComp specifications and
hence made available for EO application service composites.

3.2 EO Application Services
EO application services (EO AppServs) of the ARSENAL

framework are logically self-contained EO application-specific
production tasks. They are composed of three elements, namely
- an interface, which specifies the service access structure,
- a set of functions, which implements the service, and



- a flexible specification of control and data flows, which de-
fines the collaboration between functions in order to execute
the service.

As EO AppComps, EO AppServs represent reusable, logi-
cally self-contained application concepts, which are commonly
accessed through service structures. The difference between EO
AppComps and EO AppServs is that EO AppComps constitute
an implementation of a set of functions, whereas EO AppServs
typically specify relationships between functions in order to
provide a single service to customers. EO AppComps can be
seen as black boxes, which cover their internal representations
and implementations. EO AppServs, however, are more like
grey boxes, which indicate their internal composition and rela-
tionships. Examples of EO AppServs are user subscriptions,
thematic analyses, product requests, and activity plan deliver-
ies.

EO AppServs consist of a stabile interface and a descrip-
tion of an internal data flow and control flow. These ‘service
flow’ descriptions define relationships between function calls,
which are implemented by EO AppComps. EO AppServs are
neutral to any technology and vendor-specific implementation,
which enables different EO AppComps work together.

Primitive elements of EO AppServ compositions are EO
AppComps functions. EO AppServ compositions do not con-
sider user interactions, since human activities are always cov-
ered by EO AppComps. EO AppServ compositions are linked
structures, which include recursive, associative and transitive
relationships between EO AppServs. The EO AppServ process-
ing environment is responsible for their proper execution.

3.3 EO Application Repository
Repository technology (see [5]) provides an integrated

storage area and appropriate management and access services
for domain-specific metadata. It can be seen as an advanced
database management system responsible for the storage, shar-
ing and management of descriptive information, i.e. metadata.
Indeed, in addition to basic database management functions,
the repository manager provides indispensable functions for the
collaborative management of system metadata (e.g. work-
spaces, contexts). Furthermore, it offers functions for the seam-
less management of metadata throughout the complete software
lifecycle (e.g. versioning, configurations). The main value of the
repository technology and its functions are summarized in [6].

The ARSENAL framework EO application repository (EO
AppRep) provides repository functions in order to manage and
integrate EO application metadata. This metadata mainly con-
sists of EO AppServs and EO AppComp descriptions, as well
as administrative information (e.g. user profiles, accounting),
data structures, dependencies, and general descriptions of the
EO application architectural design. The intention is to form a
knowledge information base about the EO application frame-
work’s artifacts in order to foster agile and collaborative work
across the EO application development and operational lifecy-
cle. Furthermore, it supports metadata consistency, integrity

and reuse. Hence, it reduces the time needed to find the appro-
priate information, decreases the time to market, and, most im-
portantly, effectively shares the information across people, tools
and software components.

3.4 Repository-supported, Service-based Com-
ponent Framework for EO Applications

The proposed ARSENAL framework provides an ad-
vanced infrastructure for the seamless development, integration
and execution of responsive EO application system services. It
relies on a service-based component architecture, and manages
system metadata by means of a repository system. It includes an
access portal for client access, an EO AppRep for service de-
velopment and management, a workflow management system
for service execution, and a set of (interactive) EO AppComps
for service implementation. Furthermore, it integrates middle-
ware services for transparent, reliable and secure communica-
tion. Figure 2 depicts the ARSENAL framework architecture.
The highlighted EO AppServ describes the production work-
flow scenario of Figure 1. Each building block represents an
EO AppComp activity, which links to its related function im-
plementation through the middleware.

Whereas in RAMSES the client sends the service request
to a RAS, in the ARSENAL framework the client accesses the
portal to obtain the service�. The request is then forwarded to
the EO AppRep �, which identifies the related EO AppServ
flow model, and verifies that the customer is authorized to ac-
cess included EO AppComp functions. Afterwards, it sends
corresponding workflow instructions to the workflow manage-
ment system �. The control flow of the EO AppServ calls up
the ‘Catalogue Dispatcher’ and the other EO AppComps �. It
then gives the control back to the workflow management sys-
tem �. The workflow management system sends the results
back to the client by means of the access portal�.

Figure 2: ARSENAL framework production workflow scenario

The EO AppRep does not include the physical implemen-
tation of EO AppComps. It manages their metadata and sup-
ports retrieval and access to EO AppComp implementations.

ERS
Catalogue

EO AppComp

Subscription
Management
EO AppComp

Access
Portal

EO
AppRep

Workflow
Management

System
Delivery

EO AppComp

ERS
Archive

EO AppComp

Catalogue
Dispatcher

EO AppComp

SPOT
Catalogue

EO AppComp

Accounting
EO AppComp

Middleware

1

2
3

6 5

4

Customer

get_product_metadata
(ERS Catalogue)

get_products
(ERS Archive )

<coordinates>
<location>

get_products
(Catalogue Dispatcher)

get_product_metadata
(SPOT Catalogue)

local

remote

<date> <time>

<date> <time>

products == available

(get_products)
SPOT Archive

products == available

gather_products
(Catalogue Dispatcher)

<products_metadata>

<products_metadata>

send_products
(Delivery)

<products>
<location>

<products>

<products>

charge_user
(Accounting)

credits == enough

<products_metadata>



Even though this concept could have a negative impact on the
consistency and integrity of the framework (e.g. the EO Ap-
pRep still links to a removed EO AppComp), it is not feasible
to integrate huge EO AppComps like archive systems into the
EO AppRep. Furthermore, hardware dependencies and security
precautions of software providers often do not allow the modifi-
cation and flexible deployment of codes. For this reason EO
AppComp activities are linked to their implementation, and
functionalities are remotely accessed through their interfaces.

EO AppServs are completely managed by the EO
AppRep. Several EO AppServs configurations can thus be si-
multaneously treated and easily adapted to changes or exten-
sions. Furthermore, EO AppServ flows comply with workflow
descriptions. They can thus be executed by means of a general-
purpose workflow management system, which supports their
automation and consistent processing.

4. DISCUSSION AND RELATED WORK
The basic idea of the proposed ARSENAL framework is to

integrate coarse-grained components (i.e. applications), and to
seamlessly support the so-called programming in the large (see
[7]) in EO application systems. For this purpose it relies on a
model driven architecture (see [8]), and controls relationships
between components by means of a workflow management
system.

We claim that the ARSENAL framework represents an
advanced platform for supporting multiple, interdisciplinary EO
application systems during the complete software lifecycle.
Unlike the RAMSES infrastructure, the ARSENAL framework
provides an integrated mechanism to manage the complexity of
EO application systems. Specifications of available system
components and their relationships are consistently stored and
managed by means of an application repository system. System
components can therefore be easily reused and put in different
contexts, i.e. EO application services. Furthermore, EO applica-
tion services can be collaboratively created, as well as flexibly
modified, extended and customized. Whereas in the RAMSES
approach the extension or modification of application services
implies a recompilation of software codes, the ARSENAL
framework separates service and component specification from
their implementations. In this way, application services can be
dynamically reconfigured and reliably executed by means of a
workflow management system.

The drawback of the ARSENAL framework compared to
the RAMSES approach is the loss of performance in executing
EO application services. Whereas in RAMSES workflows are
hard-coded and precompiled, in the ARSENAL framework first
EO application services have to be retrieved in the EO AppRep
and then sent to the workflow management system for execu-
tion. However, the execution of EO application services is gen-
erally not time critical. EO application services typically inte-
grate complex, time-consuming processing steps and involve
several EO application component activities including user
interactions. Consequently, this drawback does not considera-

bly influence the overall system and therefore can be left out of
consideration. Table 1 summarizes the comparison between the
ARSENAL framework and the RAMSES approach.

Table 1: RAMSES approach vs. ARSENAL framework

Rather than a new technology, the proposed ARSENAL
framework represents an architecture, which combines techno-
logical concepts for the flexible management of the complex
structure of EO applications. The analysis of related implemen-
tation aspects and development methodologies is beyond the
scope of this paper.

Component-based application frameworks have attracted
attention from many researchers and software engineers. Thus,
component-based application frameworks have been evaluated,
defined and successfully employed in many domains (see [9-
11]). However, the proposed ARSENAL framework mainly
distinguishes from them by the definition and granularity of its
components and services, as well as by the integration of a re-
pository and a control-based workflow management system.
System metadata is extracted from code and uniformly man-
aged by advanced database technology. In addition, system
services are collaboratively developed, and their control and
data flows managed by workflow technology.

Components, as defined in the ARSENAL framework, are
similar to ‘system-level components’ as described in [12]. The
conceptual difference between these two approaches is their
transparency. Whereas EO AppComps are seen as black boxes,
system-level components are also concerned with their internal
composition.

Finally, the ARSENAL framework can be compared to
current application integration platforms as described in [13-
15]. However, these process driven platforms typically include
“build-in” repositories based on files or LDAP trees. Interfaces
to these proprietary repository implementations are optimized to
their applications, and are not designed to interoperate with
external repositories. Furthermore, the metadata model is spe-
cific to some tools (e.g. workflow system) and do not represent
a uniform view of the system.

5. CONCLUSION AND FUTURE WORK
In this paper we showed that the RAMSES infrastructure

is extremely inflexible and not particularly suitable to form an
EO application framework. Based on the experience gained in
this analysis, we proposed a new architectural design of an EO
application “integration” framework (we called it ARSENAL

RAMSES approach ARSENAL framework

Manageability -- ++
Reuse + ++
Integration + ++
Extensibility - ++
Flexibility -- ++
Collaborative Development -- +
Reliability (execution control) -- ++
Fault tolerance (recovery) - +
Execution efficiency + -



framework) for managing the complexity of the interdiscipli-
nary domain of EO applications. Our main contribution is the
service-based component architecture that builds on compo-
nent, service, repository and workflow concepts. We see our
framework architecture as offering significant advantages over
the RAMSES solution, as it provides a better flexibility and
collaboration support in developing and customizing EO appli-
cation systems. Main benefits are described in more detail in
the following list.
- Management of complexity: The ARSENAL framework di-

vides large-scale applications into well-defined, logically
self-contained software components, and enables the rapid
and efficient assembly and deployment of new applications. It
is therefore a good mechanism to manage complex systems
such as EO applications ones. Furthermore, it defines stan-
dards for EO software component interfaces.

- Flexibility/Agility: The ARSENAL framework strictly sepa-
rates service and component specifications from their imple-
mentations. Therefore, EO application systems can be inde-
pendently engineered by using any implementation technol-
ogy, and services can be easily reconfigured and customized
as the business changes.

- Reuse and Integration: EO AppServs describe their internal
composition by linking to EO AppComp implementations
through their interfaces. Therefore, EO AppComp implemen-
tations can easily be substituted and shared. Furthermore, any
legacy system can be easily wrapped and integrated in the EO
application framework.

- Metadata resource management: ARSENAL framework
metadata, such as EO AppComp descriptions and EO
AppServs, are managed by an application repository system.
This ensures metadata consistency and integrity, and allows
the establishment and query of relationships between struc-
tures.

- Collaboration: The EO AppRep supports the management of
concurrent activities in the EO AppServ design and develop-
ment. Thus, EO application developers can asynchronously
work together by exchanging results across the entire devel-
opment lifecycle.

- Execution control: EO AppServs are executed, monitored
and controlled by means of a workflow management system.
EO AppServs are therefore reliably executed by enforcing and
monitoring the processing of each specified step.

Future work is related to several issues of the ARSENAL
framework. We are defining the required functions and infor-
mation model of the EO AppRep that properly fits to the EO
application framework. Furthermore, we will analyze imple-
mentation aspects of the ARSENAL framework by using the
“Service Web” [16] and Grid [17] technologies.

ACKNOWLEDGMENT
The ideas described in this paper are the result of the re-

search effort carried out within the ARSENAL project (see [6]).

We would like to thank Luigi Fusco, Günther Landgraf and
Christoph Mangold for their financial and intellectual support.

REFERENCES
[1] Möller, H.L.; Mariucci, M.; B. Mitschang. 1999. “Architec-

ture Considerations for Advance Earth Observation Applica-
tion Systems.” In Proceedings of the Second Interoperating
Geographic Information Systems Conference (Zurich, CH,
March 10-12). INTEROP’99, Springer, 75-90.

[2] Mariucci M.; Caspar, C.; Fusco, L.; Henaff, Y.; M. Forte.
2000. “RAMSES: An Operational Thematic EO-Application
on Oil Spill Monitoring. System description.” In Proceedings
of the Earth Observation & Geo-Spatial Web and Internet
Workshop 2000 Conference (London, UK, April 17-19).
EOGEO2000, http://webtech.ceos.org/eogeo2000.

[3] Matra Systems & Information. 1998. “Regional earth obser-
vation Application for Mediterranean Sea Emergency Sur-
veillance: RAMSES.” EC ESPRIT Program, Project pro-
posal, ESPRIT-1998-28245, http://ramses.esrin.esa.it.

[4] European Space Agency. 2001. “study on A Repository Sup-
ported Earth observatioN AppLication framework:
ARSENAL.” ESA Program, Ref. GRID-GSR-001-SOW,
http://www.informatik.uni-stuttgart.de/ipvr/as.

[5] Bernstein, P.A.; U. Dayal. 1994. “An Overview of Repository
Technology.” In Proceedings of the 1994 On Very Large Da-
tabases Conference (Santiago, Chile, Sep.12-15). VLDB,
Morgan Kaufmann, 705-713.

[6] Bernstein, P.A. 1997. “Repositories and Object Oriented
Databases.” In Proceedings of the Datenbanksysteme in
Büro, Technik und Wissenschaft Conference. BTW, Springer,
34-46.

[7] Brown, A.W. 2000. Large-scale, Component-based Devel-
opment. Prentice-Hall.

[8] Soley, R. et al. Model Driven Architecture. White Paper.
Object Management Group. http://www.omg.org.

[9] Fingar, P. 2000. “Component-based Frameworks for E-
Commerce.” Communications of the ACM 43, No 10, Octo-
ber:61-67.

[10] Larsen, G. 2000. “Component-based Enterprise Frame-
works.” Communications of the ACM 43, No 10, October:24-
26.

[11] Fayad, M.E.; R.E. Johnson. 2000. Domain-Specific Applica-
tion Frameworks. John Wiley & Sons.

[12] Herzum, P.; O. Sims. 2000. Business Component Factory. A
Comprehensive Overview of Component-based Development
for the Enterprise. John Wiley & Sons.

[13] Microsoft Corporation. BizTalk Server 2000 Product Over-
view. http://www.microsoft.com/biztalk.

[14] IBM Corporation. Websphere Software Platform Product
Overview. http://www.ibm.com/websphere.

[15] SAP Corporation. Integrated E-Business Platform Product
Overview. http://www.sap.com

[16] Ryman, A. 2000. Understanding Web Services. IBM report.
http://www7.software.ibm.com.

[17] Foster, I.; C. Kesselman. 1999. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann.


