A Data Change Propagation System for Enterprise Application I ntegration

Carmen Constantinescu®,Uwe Heinkel*, Holger Meinecke
Ingtitute of Parallel and Distributed High-Perfor mance Systems, Univer sity of Stuttgart,
Breitwiesenstr. 20-22, D-70565 Stuttgart, Ger many
Email: {Carmen.Constantinescu, Uwe.Heinkel} @infor matik.uni-stuttgart.de

Keywords: Information systems, integration of heterogeneous
data sources, XML technology

Abstract

Most enterprises have a diverse environment of heterogeneous
and autonomous information systems. If the same data is rele-
vant for several information systems, then data changes in one
supplier system affect data stored in other demander systems.
The process of exchanging changed data between systems,
named change propagation, is based on dependencies estab-
lished between these systems. The management of a single,
integrated enterprise information system is often infeasible or
too expensive, due to the autonomy of business units and the
heterogeneity of their IT infrastructures. The solution is to sup-
port the enterprise by a generic approach able to manage data
dependencies and to transform data stored in a source informa-
tion system into data stored in the dependent information sys-
tems. We propose a loosely coupled system, called Stuttgart
Information and Exploration System. Our prototype mainly
consists of a data dependency specification tool, a propagation
engine and a repository that stores all relevant objects for these
components.

1 INTRODUCTION

1.1 TheProblem of Enterprise Application
Integration

It is an understatement by far to say that the new infor-
mation economy is changing the way enterprises do business.
More specifically, it is changing the way enterprises manage
the information they need for their production and business
processes. Vauable information once produced and then
stored in corporate I T infrastructures is distributed to all new
groups of information consumers. remote employees, busi-
ness partners and customers. As a result, the enterprise re-
mains competitive and achieves huge benefits in terms of
cost savings and improved customer relationship. In order to
fulfill these objectives, the enterprise leverages their existing

business applications by integrating them into new applica-
tions, a practice commonly referred to as Enterprise Applica-
tion Integration or EAI. In this paper, we offer a solution to
EALI involving heterogeneous information systems. The prob-
lem of integrating heterogeneous and autonomous informa-
tion systems is approached from the perspective of managing
data stored in these systems.

Our approach presents a system, called Suttgart Infor-
mation and Exploration System (SIES), which manages the
exchange of data between the involved information systems.
This section presents the background of our approach and the
motivation of our work. Section 2 introduces our system,
SIES, by its main concepts, architecture and implementation
details. The propagation manager, the dependency manager,
the systems' adaptors and the repository are presented in
Sections 3, 4, 5 and 6. The last two sections present the re-
lated work and the conclusions.

1.2 Motivation Scenario

The motivation of our approach is the manufacturing en-
terprise, which manages several autonomous, and heteroge-
neous information systems and legacy systems. Our scenario
focuses on two IT-oriented business units Order Manage-
ment (OM) and Facility Layout Design (FLD) involved in
processing a considerable increase in product demand.

The OM business unit is responsible to generate optimal
plans using production planning and control methods (Wien-
dahl & Westkémper, 2001). As a possible result, the enter-
prise has to increase its capacity by purchasing new equip-
ment. This is reflected in the FLD business unit, which is
concerned with generating factory plans that are used to
adapt the real factory layout (Westkédmper & von Brid,
2001). The newly produced factory layouts involve changes
of the material flow, which affect the transportation times
and the processing of other orders by the OM as wdll. Thus, a
bi-directional information dependency between OM and FLD
business units is established. Data changes in one informa-
tion system have to be reflected in the data of other systems.
In general, an information system of a business unit pro-

* This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG/SFB 467)



duces/supplies data, which is consumed/demanded by one or
more information systems, i.e,, thereis a 1-to-N data depend-
ency. In our example, the OM business unit changes or cre-
ates data describing production plans received by the FLD
business unit, which adapts its data describing the factory
layout.

2 A DATA CHANGE MANAGEMENT
SYSTEM

2.1 Basic Concepts

Our approach is based on several concepts that we intro-
ducein this section:

We define an information system as any software system
that offers access to data.

A data model is a description of data structures. For ex-
ample in the object-oriented model, data structures are
classes, and in the relational model, data structures are rela-
tions. Classes can also specify methods (the behavior of ob-
jects). As we focus on the data aspect, we are only interested
in the attributes of the classes.

A data schema is an instance of a data modd, i.e,, the
specification of data structures for an information system. For
example, in the relational model, an employee can be repre-
sented by a relation with the attributes (and types) empno
(integer), name (string), birth (date), etc.

A 1-to-N relationship between a source system/schema
combination and one or more destination system/schema
combinations is called a dependency. We say that a destina-
tion system is dependent on the source system.

A data change occurring in one system has an impact on
all dependent systems. For example, two systems store data
objects that represent the same information but possibly us-
ing different data models and data schemas. Thus, a change
of such datain one system requires a change in the dependent
system, sometimes involving complex adaptations of the
data. In our approach, we merely consider updates of in-
stances of a data schema, but we do not consider changes of
the schema itself. For example, in the relational data model,
our approach manages the update of attribute values in tuples
of a relation, but not the manipulation of attribute data types,
the addition of attributes, etc.

Change propagation is the process of forwarding a data
change from a source system to all dependent systems. The
process of change propagation includes transformations and
filtering of the changed data that is delivered to the depend-
ent systems.

A transformation is an operation that maps given input
data to output data according to a specification which defines
how the contents and schema of the input data has to be
adapted to represent valid destination data. A filter is an op-
eration that applies a boolean expression to input data. If the

Information
Systems

Queue
Manager
(IMSs)

Propagation Manager Dependency Manager

Propag. Engine (XRL+)

® @ AN
i A

Schema Editor Dependency Editor

(XML Schema) (XRL+, XSLT)

| Graphical User Interface
E AN

Filter Transformer
(XPath) (XSLT)

Repository

I Dependencies |

£ Propagation Scripts (XRL+) |

£ Transformation Scripts (XSLT) |
{1 Systems & Schemas (XML Schema) |

\
Figure 1. SIES, a data change management system

J

condition is true, the result represents the input data; other-
wise, no output datais returned. A system which takes bene-
fit of change propagation offered by our data change man-
agement system is named coupled or connected system.

2.2 Stuttgart Information and Exploration
System

2.2.1. Architecture

We develop a data change management system, called
Stuttgart Information and Exploration System (SIES) (Con-
stantinescu, Heinkel, Rantzau & Mitschang, 2001), which
manages the change propagation between any connected
systems. In Figure 1, we present the architecture of SIES as
well as the control flow during the processing of data change
propagation between the source system S, and the dependent
system S.

Our prototype consists of the following main compo-
nents, the propagation manager, the dependency manager,
the adaptors and the repository. An adaptor maps data be-
tween the local schemas of the connected systems and the
corresponding XML schema representation. The propagation
manager transforms, filters, and routes changed data using
the dependencies that have been created and stored by the
dependency manager. The repository stores the XML sche-



mas of the systems, the dependencies and their associated
propagation and transformation scripts, adding flexibility and
extensibility to the entire system.

2.2.2. Implementation

In this section, we discuss the implementation of our
concepts using various state of the art technologies.

The objective of our work is to enable interoperability
between heterogeneous information systems. We address two
fundamental interoperability issues. The first issue, semantic
interoperability, is to define and agree on the semantics of the
content and logical structures of data. The second issue, syn-
tactic interoperability, is to define a platform-independent
data structure that can represent data corresponding to the
system model. We use the Extensible Markup Language
(XML) as data interchange format because of its simplicity
and extensive tool support. We specify the data schemas of
the connected systems according to their XML schemas.

For communication, we employ message-oriented mid-
dieware, which provides a means for asynchronous applica-
tion-to-application communication via message queuing
(Leymann, 1999). We implement the communication be-
tween SIES components as well as between SIES and the
connected systems using the Java Message Service (M S).

We use the eXchangeable Routing Language (XRL)
(van der Aalst & Kumar, 2000; Kumar & Zhao, 1998) for
propagating changed data between dependent systems. This
is an XML based-language and can therefore be processed by
any XML parser, which are widely available. Our approach
implements a propagation script as an XRL file. XRL pro-
vides a mechanism to describe processes at an instance level
and is thus mainly used in asynchronous, flow-type applica-
tions.

We employ the XML-based language eXtensible
Stylesheet Language Transformations (XSLT) to transform
XML documents in the propagation manager. We implement
a transformation script as an XSLT file. Several XSLT files
can be involved in a complex propagation. For asingle trans-
formation, an XSLT processor reads the XML document
representing the source data and interprets it according to the
specified transformation script. The calls of transformation
scripts are embedded in propagation scripts.

2.2.3. Features

We designed our system to have several features. The
requirement to connect (add) new systems to SIES is pro-
vided by adaptors, components which can track data updates
in a system and map between the data model of SIES and the
connected systems.

SIES supports the addition, removal, and update of de-
pendencies and transformation specifications by providing a
user-friendly graphical interface. It facilitates the manage-
ment of dependencies and associated scripts and increases

the reusability by offering built-in reusable transformation
scripts, which are stored in the repository.

Our system has to manage the failures in connected sys-
tems in order to protect other systems, providing a high de-
gree of reliability and availability. As a fina requirement,
SIES has to be scalable, i.e, the resources (time and mem-
ory) required to manage dependencies should grow (linearly)
in proportion to the number of dependencies and, of course,
also in proportion to the amount and size of data to be trans-
formed and propagated.

3 PROPAGATION MANAGER

The central component of our approach is the propaga-
tion manager. This section presents its functionalities and
architecture, the propagation and transformation scripts as a
base for the processing modd.

3.1 Functionalitiesand Architecture

The propagation manager combines two functionalities:
the transformation of a source data object into a destination
data object and the propagation of updated data object values
from one system to several dependent systems. The second
functionality can be seen as a way to provide consistency
between data stored in different systems. The propagation
manager consists of several sub-components, presented in
Figure 1: the propagation engine, the transformer, and the
filter. The propagation engine interprets a propagation script,
associated with a dependency. The script specifies severa
operations for transforming, filtering and routing the changed
data. The propagation engine calls the transformer to perform
the transformation of a source data object into a destination
data object. If the destination system requires special con-
straints, specified in the propagation script, the propagation
engine invokes the filter. Thefilter then informs the propaga-
tion engine if a data change should be ignored or if the desti-
nation system has to be updated. The queue manager is used
to exchange messages between the connected systems. It
manages the propagation manager’s input queue, the adap-
tors’ output queues and several internal queues of the propa-
gation engine.

3.2 Propagation and Transformation Scripts

The processing of an input XML document is specified
as a propagation script. This conforms to the eXchangeable
Routing Language (XRL). We extended the language, called
XRL+, with constructs for parallel and sequential execution,
propagations, transformations, filtering, as well as event wait
conditions:

TRANSFORM (xml_in, xml_out, xslt)

FILTER (xml_in, xml_out, xpath),

MESSAGE_EVENT (system, schema, xml_out) and

PROPAGATE (system, schema, xml).



The attributes xml, xml_in, and xml_out are IDs of XML
documents, xslt is the ID of a transformation script, xpath is
an XML Path Language (Xpath) expression, and system and
schema are the IDs of the source and destination system and
schema used.

Our XRL+ engine interprets a propagation script. It de-
livers a transformation script to the transformer, an XSLT
processor, whenever it encounters an XRL+ TRANSFORM
element. If the engine processes a FILTER element, the fil-
ter's Xpath expression is evaluated with an XML document
as input. The MESSAGE_EVENT element waits for the arri-
val of a specific message, belonging to a given sys
tem/schema combination, and fetches it from the input queue.
The PROPAGATE element sends a message containing a
data change to a destination system’s output queue.

A transformation is specified in an XSLT file, called
transformation script. Such a script consumes and produces
an XML document, offering powerful mapping operations.
The input/output document conforms to an input/output
XML schema that is defined in the repository. An extended
example scenario including these scripts is presented in Con-
stantinescu, Heinkel, Rantzau, & Mitschang (2002).

3.3 Processing M odél

In the following, we describe the internal flow of infor-
mation needed to propagate a change, illustrated in Figure 1.
The figure shows a sequence of processing steps, which be-
long to four main stages: fetch a new message from the input
queue (steps 1 and 2), select applicable propagation depend-
encies (3, 4), execute corresponding propagation scripts (5, 6,
7), and put processed messages into the output queues (8, 9).

The gueue manager administrates a single input queue
for the propagation manager, one output queue for each adap-
tor corresponding to a connected system and several internal
queues necessary to store intermediate transformation results.
Whenever a system connects to the propagation manager, it
is assigned an output queue from where its adaptor can fetch
messages. A message consists of three parts: header, proper-
ties and body. The message properties specify the action that
has occurred in the data source (update, insertion, deletion).
The message body includes the XML representation of the
changed data object: the values of a newly inserted object,
the new values of an updated object, or the values of a de-
leted object.

The communication between the connected systems and
the propagation manager is facilitated by adaptors, presented
in Section 5. First, the adaptor A, of system S, either detects a
changed data object or is notified by S, (1). Then, A, maps
the changed data object into an XML representation
conforming to an XML schema, which has been stored in the
repository using the dependency manager’s schema editor.
Next, the adaptor puts a message containing the XML repre-
sentation of the changed object into the input queue of the

sourceand destination
+«{ XML schemadisplay

transformation script editor

L

Figure 2. The graphical user interface of the dependency editor

queue manager (2). The adaptor of each destination system
fetches the message from its output queue (8), maps the
XML representation of the data object into its local represen-
tation, and performs or triggers the operations (inser-
tion/update/del etion), which are specified in the properties of
the output message (9).

The dependency selection is initiated by the queue man-
ager, which notifies the propagation engine about a new
message in the input queue (2). Then, the propagation engine
fetches the new message from the input queue (3) and re-
trieves all dependencies from the repository where the source
matches the specified system/schema combination (4).

The propagation script associated with each dependency
is interpreted by the propagation engine, which interacts with
the filter and the transformer components to transform and
filter the given source data object according to specifications
in the propagation script (5, 6). During the processing, inter-
mediate transformation results are stored in temporary
queues. Thefinal data objects that result from the transforma-
tions are put into the output queues of each dependent desti-
nation system (7).

4 DEPENDENCY MANAGER

Another component of our data change management sys-
tem is the dependency manager. The main task of the de-
pendency manager is to register and update the content of the
repository, i.e., the XML schemas of the systems, the de-
pendencies, and their associated propagation and transforma-
tion scripts. In this section, we present the functionalities of
the dependency manager and detail its main component, the
dependency editor.



4.1 Functionalitiesand Components

The dependency manager is the design-time component
of our approach, which brings together two functionalities.
The first one is to create the XML schemas of the connected
systems, and to store and update them in the repository. This
is achieved by the schema editor. The dependency editor
accomplishes the second functionality, the creation and man-
agement of the dependencies and their associated scripts.

4.2 Dependency Editor

The dependency editor provides a user-friendly graphical
user interface that allows to manipulate the dependencies and
their associated scripts and to register them in the repository.
Furthermore, it offers a library of simple and frequently used
transformations that can be called within newly created
propagation scripts, tailored for a new system. The user inter-
face also allows to adapt given transformations, to create new
ones and to add them to the library for future reuse. A de-
pendency is created through a sequence of steps mainly rep-
resenting two stages: select the source system and access its
XML schema, and create or update the propagation script
and the associated transformation scripts.

We introduce these stages by using the graphical user in-
terface presented in Figure 2. This illustrates the dependency
created for our example systems, the source OM and the des-
tination FLD.

The dependency editor performs source selection in sev-
eral steps. First, sdects the source system and one of its
schemas (system display pand in Figure 2). The retrieved
XML schema from the repository is displayed in the source
XML schema display window. In our example, OM repre-
sents the source system and Transportation the selected and
displayed schema.

This second activity deals with propagation and trans-
formation scripts creation or update. The scripts are created
as new ones or by using the reusable built-in scripts regis-
tered in the repository. The first step of this stage retrieves al
dependencies (propagation scripts) for the specified source
system and schema. Then, the propagation script names and
the schema names of the destination systems are displayed in
the propagation script display panel. The selected propaga-
tion script and its associated destination schemas and trans-
formation scripts are retrieved from the repository and dis-
played in their related windows. There is a window for each
destination schema and an editor for each transformation
script referenced in the propagation script. In Figure 2, the
retrieved and displayed propagation script names are
om2fld_transportation_1.xrl, om2fld_transportation_2.xrl
and om2fld_transportation_3.xrl. The XML schemas Trans-
portation and Transport are displayed and the selected propa-
gation script, om2fld_transportation_1.xrl, and its associated
transformation script, om2fld_transportation_1.xdlt, are dis-
played for editing purposes.

By accepting the referenced transformation script or edit-
ing it according to the desired transformation, the depend-
ency creation process continues. In case of an update, a new
transformation script is created and stored into the scripts
library, in the repository. The last action updates the current
propagation script as well, and stores it in the repository.

5 ADAPTORS

The communication between the connected systems and
the propagation manager is facilitated through a set of soft-
ware components, hamed adaptors in Figure 1. We define an
adaptor as software that handles the communication between
the connected systems and the propagation manager. It pro-
vides a bi-directional translation between a local data repre-
sentation and a representation that conforms to an XML
schema. An adaptor is responsible for putting a message
containing changed data objects of its associated information
system into the input queue of propagation manager, and or
fetching a message for its system from the corresponding
output queue. Suppose, for example, that the information
system is a relational database system. If a table of a data-
base is the source of a dependency then triggers can be em-
ployed to deliver the changed data objects (set of records) to
the adaptor. If the database system is the destination of a
dependency, then the adaptor may use SQL DML statements
to update/insert/delete the affected records in the database.
We differentiate two types of adaptors, depending on the
requirements of the dependency and the characteristics of the
data source: active adaptors that are able detect a change and
passive adaptors that are notified by the data source.

6 REPOSITORY

Our system uses a repository, based on an object-
relational database system, as a common place for all objects
that need to be stored persistently: information system ID
and names and their associated XML schemas, dependen-
cies, consisting of the IDs of the source and destination sys-
tems and schemas, as wel as the ID of the propagation
script, propagation scripts involved in any dependency, trans-
formation scripts referenced in any propagation script, and
authentication information needed when systems connect to
SIES. Weintend to store even more data in our repository, for
example the time when a system has connected to or discon-
nected from SIES, or alog of (a subset of) the messages ex-
changed. Such a data collection will then be subject to analy-
sis with business intelligence tools and it may reveal a poten-
tial for communication optimizations. A possible result may
illustrate that currently distributed data should better be inte-
grated into a single schema because of a considerable com-
munication overhead observed for propagations.



7 RELATED WORK

Our system propagates changed data between dependent

autonomous and heterogeneous systems. We envision two
directions on providing support for routing changed data. The
first is related to the fiedld of workflow definition and work-
flow management systems (van der Aast & Kumar, 2000;
Kumar & Zhao, 1998). Our implementation uses XRL+, a
simple workflow definition language which offers routing
constructs required to design a propagation schema. The sec-
ond strategy is to build (heterogeneous) agent systems that
can intelligently communicate with one another (Nwana,
1996).
Related to our approach is the field of replication. Between
the two main techniques to update replicated tables, table
snapshots (Adiba & Lindsay, 1980) and triggers (Hanson &
Widom, 1993), triggers are closer to our approach than table
snapshots due to their flexibility for transformations. Table
snapshots allow an asynchronous update of replicas, while
the processing of triggers is synchronous. Furthermore, our
approach is designed to preserve the local autonomy of the
data sources as much as possible by providing a mechanism
to detect changes in a data source. We have to mention here
two other approaches: IBM DB2 DataPropagator, a solution
designed for database replication, and Microsoft BizTalk
Server, which offers transformation facilities for business
data. Our system, positioned between IBM DB2 DataPropa-
gator and BizTalk Server, creates the XML schemas of the
connected systems and offers a more flexible specification of
dependencies.

8 CONCLUSION AND FUTURE WORK

Corporate IT infrastructures consist of distributed het-
erogeneous information systems. In this paper, we focus on
the management of data stored in these systems and propose
a method to transform and deliver changed data from one
system to the needs of the receiving systems. We present a
loosely coupled approach to propagate data changes between
enterprise information systems while preserving their auton-
omy. By generating output data based on a collection of data
dependencies between the involved information systems and
on the transformation specifications associated with each
dependency, our solution retains system autonomy.

We offer essential data interchange and interoperability
features by employing XML as the interchange format and
data schema. The propagation manager administrates de-
pendencies between data stored according different schemas
and models. We do not replicate the data; we maintain data
schemas of the involved information systems in a repository
system, adding flexibility and extensibility to the entire sys-
tem. The propagation manager transforms an XML input
message into XML output messages based on the transfor-
mation specifications (XSLT scripts) defined for a depend-
ency by the dependency manager. In order to prevent, in

some cases, the data propagation, we apply filter constraints
(XPath expressions) on initial message input or on interme-
diate transformation results.

We orient our future work into the direction of optimiz-
ing the access of the objects stored in the repository. For que-
rying the repository, we intend to employ the XQuery lan-
guage. Furthermore, we plan to use XQuery instead of the
XSLT scripts, thus offering more flexibility to the
transformation processes.

In the redl life of an information system, the meta data
changes do not occur as frequently as changes of operational
data. However, our system has to offer support to the change
of data schemas of the involved systems. While our current
prototype does not implement such changes, we plan to direct
our work into this direction, as well.

9 REFERENCES

van der Aalst, W., & Kumar, A. (2000). XML Based Schema Definition
for Support of Inter-organizational Workflow. In Proceedings of 21st
International Conference on Application and Theory of Petri Nets
(ICATPN 2000). Aarhus, Denmark.

Adiba, M,. & Lindsay, B. (1980). Database Snapshots. In VLDB, Mont-
real, Quebec, Canada, pp. 86-91.

Constantinescu, C., Heinkel, U., Rantzau, R., & Mitschang, B. (2001).
SIES — An Approach for a Federated Information System in Manufac-
turing. In Proceedings of the International Symposium on Informa-
tion Systems and Engineering (ISE), Las Vegas, Nevada, USA, pp.
269-275.

Constantinescu, C., Heinkel, U., Rantzau, R., & Mitschang, B. (2002). A
System for Data Change Propagation in Heterogeneous Information
Systems. In Proceedings of the 4th International Conference on En-
terprise Information Systems, Ciudad Real, Spain, Vol 1, pp. 73-80.

Gray, J., Héland, G., O'Neill, P,, & Sasha, D. (1996). The Dangers of
Replication and a Solution. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Mont-
real, Canada, pp. 173-182.

Hanson, E., & Widom, J. (1993). An Overview of Production Rules in
Database Systems. In The Knowledge Engineering Review, Vol .8,
No.2.

Kumar, A., & Zhao, Z. (1998). Workflow Support for Electronic Com-
merce Applications. In International Conference on Telecommuni-
cations and Electronic Commerce, Nashville, TN, USA.

Leymann, F. (1999). A Practitioners Approach to Data Federation. In 4.
Workshop Foderierte Datenbanken, Berlin, Germany, CEUR-
WS/Vol. 25.

Nwana, H. (1996). Software Agents: An Overview. In Knowedge Engi-
neering Review, Val. 11, No. 3, pp. 205-244.

Westkdmper, E., & von Brid, R. (2001). Continuous Improvement and
Participative Factory Planning by Computer Systems. In CIRP Annals
Manufacturing Technology, Nancy, France, pp. 347-352.

Wiendahl, H.-H., & Westkamper, E. (2001). Situation-Based Selection of
PPC Methods: Fundamentals and Approaches. In CIRP 34th Interna-
tional Seminar on Manufacturing Systems, Athens, Greece, pp. 241-
246.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., & Alonso, G. (2000).
Understanding Replication in Databases and Distributed Systems. In
Proceedings of 20" International Conference on Distributed Com-
puting Systems (ICDS 2000), Taipei, Taiwan, Republic of China, pp.
264-274.



