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Abstract

The need for changing a program frequently con-
fronts maintainers with the reality that no valid archi-
tectural description is at hand. To solve that problem,
we presented at ICSM 2001 o language-independent
and easy to use technique for opportunistic and demand
driven location of features in source code based on static
and dynamic analysis and concept analysis.

In order to further validate the technique, we re-
cently performed an industrial case study on a 1.2 mil-
lion LOC production system. The experiences we made
during that case study showed two problems of our ap-
proach: the growing complexity of concept lattices for
large systems with many features and the need for han-
dling compositions of features.

This paper extends our technique to solve these prob-
lems. We show how this method allows incremental ez-
ploration of features while preserving the “mental map”
the maintainer has gained through the analysis. The
second improvement is a detailed look at composing fea-
tures into more complex scenarios. Rather than assum-
ing a one-to-one correspondence between features and
scenarios as in earlier work, we can now handle sce-
narios that invoke many features.

1. Introduction

Our technique for feature location presented at
ICSM 2001 [4] identifies all components specific to a
set of related features using execution profiles for dif-
ferent usage scenarios. At first, concept analysis allows
us to locate the most feature-specific routines among
all executed routines. Then, a static analysis uses these
feature-specific routines to identify additional feature-
specific routines along the dependency graph. The
combination of dynamic and static information reduces

the search space drastically.

We have conducted a large scale industrial case
study and extended the technique presented in [4] by
two important aspects: if scenarios execute several fea-
tures, we can still identify the features in the lattice.
Further, we now can handle large and complex systems,
because our technique can be applied incrementally.

We assume that the reader is familiar with the basics
of formal concept analysis. A brief introduction can be
found in [4] whereas the mathematical background is
discussed in [5]. For the end-user of the technique, the
mathematical background can be hidden completely.

1.1 Terminology

A feature f is a realized functional requirement (the
term feature is intentionally defined weakly because its
exact meaning depends on the specific context). Gen-
erally, the term feature also subsumes non-functional
requirements. In the context of this paper only func-
tional features are relevant, i.e., we consider a feature
an observable result of value to the user.

A scenario s is a sequence of user inputs trigger-
ing actions of a system that yields an observable re-
sult. A scenario s executes a feature f if f’s result
can be observed by the user when the system is used
as described by the scenario. A scenario may execute
multiple features.

A component is a computational unit of a system.
In our case study, we consider routines as components.
A routine r is a function, procedure or subprogram
according to the programming language.

The execution trace lists the sequence of all per-
formed calls. The ezecution profile of a given program
is the set of all routines in the execution trace.

A feature-component map describes which compo-
nents implement a given set of relevant features.



2. Analysis Process

The process steps relevant here are the following;:
1. Perform dynamic analysis.

2. Interpret the lattice as a result of the dynamic
analysis.

3. Iterate through steps 1 to 2 until sufficient knowl-
edge about the system has been gained.

The basic interpretation of the concept lattice is de-
scribed in previous work [4]. The refinement of the
interpretation and the ideas required for the iteration
are explained in the following sections.

2.1. Dynamic Analysis

The dynamic analyses we perform make use of for-
mal concept analysis. The mathematical background
that is required to understand the following considera-
tions is provided in [4, 5]. The inputs to the process are
the source code and a set of initially relevant features.
We proceed as follows:

1. The source code is compiled with profiling infor-
mation.

2. Based on previously identified features, the do-
main expert creates scenarios.

3. The system is executed according to the scenarios,
and execution profiles are recorded.

4. A number of execution profiles is selected in order
to set up the context for concept analysis.

5. Concept analysis is performed.

In order to derive the feature-component map by
means of concept analysis, we have to define the formal
context C' = (0, A, R), i.e., the objects, the attributes,
and the relation, and to interpret the resulting concept
lattice accordingly.

The goal of the dynamic analysis is to find out which
routines contribute to a given set of features. For each
feature, a scenario is prepared that exploits this fea-
ture. The formal context for applying concept analysis
to derive the feature-component map will be laid down
as follows:

e O = R (the set of all routines),
e A =5 (the set of all scenarios),

e a pair (r € R, s € S) is in relation R if r is exe-
cuted when s is performed.
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Figure 1. Invocation relation R.
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Figure 2. Concept lattice for context in Fig. 1.

The system is used according to the set of scenarios,
one at a time, and the execution profiles are recorded.
Each system run yields all executed routines for a single
scenario, i.e., one column of the relation table. Apply-
ing all scenarios provides the complete relation table.

2.2. Interpretation of Concept L attice

How to identify relationships between scenarios and
routines based on the concept lattices is described
in [4]. There, we assumed a one-to-one correspondence
between scenarios and features. With real systems, we
rather have an m-to-n mapping. Therefore, we now de-
scribe how to identify relationships between scenarios
and features and thus between features and routines.

Despite an m-to-n relationship between features and
scenarios, there is a simple way to identify routines rel-
evant to the actual features in the concept lattice, al-
though an unambiguous identification may require ad-
ditional discriminating scenarios. The basic idea is to
isolate features in the concept lattice through combi-
nations of overlapping scenarios.

If a scenario executes several features, one can for-
mally model a scenario as a set of features s =
{f1,f2s--+y fm}, where f, € Ffor 1 <n <m (Fis
the set of all relevant features). This modeling is sim-
plifying because it abstracts from the exact order and
frequency of feature invocations in a scenario. On the
other hand, if two scenarios executing the same features
differ only in the order or frequency of feature invoca-
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Figure 3. Sparse concept lattice for Fig. 2 with
categorization.

tion, the scenarios may indeed be considered complex
features in their own right.

With the maintenance engineer’s additional knowl-
edge of which features are invoked by a scenario we
can identify the routines relevant to a certain feature.
Let us consider the invocation relation R in Fig. 1
(for better legibility, scenarios are listed as rows and
routines are listed as columns). The table contains
the called routines 7y, ..., 77 per scenario, and further-
more the executed features per scenario: s; = {f1, f3},
sa = {f1, f2}, and s3 = {f2, f3}. The corresponding
concept lattice for the invocation relation in Fig. 1 is
shown in Fig. 2. The feature part of the table is ignored
while constructing this lattice.

Assume we are interested in feature f;. Routines
specific to feature f; can be found in the intersection
of the executed routines of the two scenarios s; and s»
because fi is used for s; and s3. The intersection of the
routines executed for s; and sy can be identified as the
extent of the infimum of the concepts associated with
s1 and so: p(sy)Mu(s2) = ({s1,s2},{re,r7})t. Since
s1 and sg do not share any other feature, the routines
particularly relevant to f; are r4 and ry.

We notice that r; is also used in all other scenarios,
so that one cannot consider r; a specific routine for
either one of f1, f2, or f3. Routine r4, in contrast,
is only used in scenarios executing fi. We therefore
conclude that 74 is specific to f; whereas r7 is not.
Because there is no other scenario containing f; other
than s; and sy, routine 74 is the only routine specific
to fl-

Note that this is just an hypothesis because other
features might be involved to which r4 is truly spe-

TThe common attributes (o), attribute concept (u), object
concept (vv), and infimum (M) are defined as usual.

cific and that are not explicitly listed in the scenarios.
Another explanation could be that, by accident, r4 is
executed both for f> (in s3) and f3 (in s1); then, it ap-
pears in both scenarios but nevertheless is not specific
to fi. However, chances are high that r, is specific
to f1 because r4 is not executed when f, and f3 are
jointly invoked in s3, which suggests that r4 at least
comes only into play when f; interacts with f2 or fs.
At any rate, the categorization is hypothetic and needs
to be validated by the analyst.

Routines that are somehow related to but not spe-
cific for f; are such routines that are executed for sce-
narios containing f; amongst other features. Consider
all routines in our example executed for s; or s». Rou-
tines in extents of concepts which contain s; or s, are
therefore potentially relevant to fi. In our example,
this yields r1,72,r5 and rg in addition to r4 and r7.
Routine 73 is only executed for scenario s3, which does
not contain f;.

Altogether, we can identify five categories for rou-
tines with regard to feature f; (see Fig. 3):

SPEC: ry4 is specific to f; because it is used in all sce-
narios using f; but not in other scenarios.

RLVT: 77 is relevant to f; because 77 is used in all
scenarios using fi; but it is also more general than ry
because r7 is also used in scenarios not using f1 at all.
Cspc: r; and 72 are only called in scenarios using fi.
They are less specific than r4 because they are not used
in all scenarios that use f;. Whether r; and 72 are
more or less specific than r7 is not decidable based on
the concept lattice. On one hand, they are used in all
scenarios using f; and other scenarios, whereas ry7 is
also called in scenarios that do not require f;. On the
other hand, r7 is called whenever f; is required, whilst
r1 and ry are not called in some scenarios that do re-
quire fi.

SHRD: 15 and rg are called in scenarios using f; but
they are also called in scenarios not using fi. These
routines are presumably less relevant than r; and rs,
which are called only when f; is used, and also less rel-
evant than r7, which is called in all scenarios using fi.
IRLVT: rj3 is irrelevant to fi; because r3 is only called
in scenarios not containing fi.

These facts are more obvious in the sparse represen-
tation of the lattice. Using this representation, given
a feature f, one identifies the concept for which the
following condition holds:

c=(R,S)and [ s; ={f} (%)
s; €S

Based on the identified concept, one can categorize
the routines as follows:
SPEC: all routines r for which v(r) = ¢ holds.



RLvT: all routines r for which y(r) = ¢’ and ¢ < ¢
holds.

Cspc: all routines r for which v(r) = ¢ and ¢ < ¢
holds.

SHRD: all routines r for which r is in the intent of
concept ¢’ where ¢ < ¢’ holds and ¢ and 7(r) are in-
comparable.

IRLVT: all other routines not categorized by other cat-
egories.

When the distance between ¢ and ¢’ is considered,
there are additional nuances possible within categories
Rivr, Cspc, and SHRD. The distance measures the
size of the set of features a routine is potentially rele-
vant for. The larger the set, the less specific the rou-
tine.

As a matter of fact, there could be several concepts
for which condition (*) holds when different routines
are executed for the given feature depending on the
scenario contexts in which the feature is embedded.
For instance, let us assume we are analyzing a sym-
bolic debugger and we are interested in its features
to set and delete breakpoints. Three scenarios can
be provided to explore these two features: “set a new
breakpoint ({break})”, “set and delete a breakpoint
({break, delete})”, and “try to delete a breakpoint
never set ({delete})”.

For the overlapping scenarios {break, delete} and
{delete}, we may assume that different routines will
be called beyond those that are specific to command
break: Quite likely, additional routines will be called
to handle the erroneous attempt to delete a breakpoint
that was never set in the latter scenario.

In case of multiple concepts for which condition (x)
holds, we can unite the routines that are in cate-
gory SPEC with respect to these concepts. If the identi-
fied concepts are in a subconcept relation to each other,
the superconcept represents a strict extension of the be-
havior of the feature. If the concepts are incomparable,
these concepts represent varying context-dependent be-
havior of the feature.

If there is no concept for which condition (x) holds,
one needs additional scenarios that factor out feature
f. For instance, in order to isolate feature f, in sce-
nario s; = {fa, fc}, one can simply add a new scenario
s2 = {fa, fo}.- The routines specific to f, will be in
p(s1)Mp(s2)-

It is not necessary to consider all possible feature
combinations in order to isolate features in the lat-
tice. The lattice exactly tells which features are not
yet isolated and which scenarios invoke these features.
Slightly modified variants of these scenarios can be
added to isolate these features specifically.
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Figure 4. Subcontext.

2.3. Incremental Analysis

There are at least two reasons why an incremental
consideration of scenarios is desirable. First, one might
not get the suite of scenarios sufficiently discriminat-
ing the first time. New scenarios become necessary to
further differentiate scenarios into features.

Second, new scenarios are useful when trying to
understand an unfamiliar system incrementally. One
starts with a small set of relevant scenarios to localize
and understand a fundamental set of features by pro-
viding a small and manageable overview lattice. Then,
one successively increments the set of considered sce-
narios to widen the understanding.

Adding scenarios means adding attributes to the for-
mal context; but there are also situations in which ob-
jects are added incrementally: in cases where computa-
tional units need to be refined. For instance, routines
with low cohesion, i.e., routines with multiple, yet dif-
ferent functions will “sink” in the concept lattice if they
contribute to many features. A routine containing a
very large switch statement where only one branch is
actually executed for each feature is a typical exam-
ple. If the analyst encounters such a routine during
static analysis, she could lower the level of granularity
for computational units specifically for this routine to
basic blocks. Basic blocks as computational units dis-
entangle the interleaved code: For the example routine
with the large switch statement, the individual switch
branches would be more clearly assigned to the respec-
tive feature in the concept lattice.

In this section, we describe an incremental consid-
eration of attributes, namely, scenarios. Incremental
consideration of objects is analogous. If one starts
with a smaller set of scenarios and further increases
this set, all accumulated knowledge a maintenance en-
gineer gained while working with the smaller lattice
has to be preserved. The lattice—the mental map for
the engineer’s understanding—changes when new sce-
narios are added. Fortunately, the smaller lattice can
be mapped to the larger one (the smaller lattice is the
result of a so-called subcontext).

Let C = (0, A,R) a context, O’ C O, and A’ C A.
Then C' = (0", A", RN (0" x A")) is called a subcontext
of C and C is called a supercontext of C'.

In our application of concept analysis, we only add
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Figure 5. Lattice for the context in Fig. 4.

new attributes but never new objects to the relation ta-
ble. Adding new attributes leads to a new formal con-
text (O, A, R) in which relation R extends relation R'.
Proposition. Let C = (0,A,R) and C' =
(0,A",R"), where A’ C Aand R' = (RN (0 x A").
Then every extent of C' is an extent of C.

Proof. See [5].

According to this proposition, each extent within the
subcontext will show up in the supercontext. This can
be made plausible with the relation table: added rows
will never change existing rows, so the maximal rect-
angles forming concepts will only extend in vertical di-
rection (if scenarios are listed in rows).

This proposition on the invariability of extents of
subcontexts that only differ in the set of objects results
in a simple mapping of concepts from the subcontext
to the supercontext (for a formal proof see [5]):

(0,4) = (0,0(0))

The mapping is a M-preserving embedding, mean-
ing that the partial order relationship is completely
preserved. Consequently, the supercontext is basically
a refinement of the subcontext. By this mapping all
concepts of the subcontext can be found in the super-
context.

The supercontext may include new concepts not
found in the subcontext (e.g., the shaded concept in
Fig. 7 does not show up in Fig. 5). The consequence
for the visualization of the supercontext is that the
newly introduced concepts can be highlighted easily
in the visualized lattice of the supercontext and that
concepts in the subcontext can be mapped onto con-
cepts in the superconcept along with possible user an-
notations. Names and numbering schemes for existing
contexts can be reused. Additionally, an incremental
automatic graph layout can be chosen: Only additional
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Figure 7. Lattice for the context in Fig. 6.

nodes and edges may be introduced in the supercon-
text, nodes and edges of the subcontext are kept. Thus,
the position of concepts relatively to each other may be
preserved.

For instance, in Fig. 6, the new scenarios s; and sg
are added to the context of Fig. 4. The lattices in Fig. 5
and the extended lattice in Fig. 7 show the effects of
the transition from the sub- to the supercontext.

3. Case Study

This section reports on a case study conducted to
investigate the usefulness of the approach in a realistic
full-scale industrial setting. The case study stressed
the importance of incremental understanding of very
large concept lattices as described in Sect. 2.3 and the
modeling of scenarios as set of features as explained in
Sect. 2.1.

The system analyzed is part of the software of the
Agilent 93000 SOC Series, a semi-conductor test equip-
ment produced by Agilent Technologies.

3.1. Agilent 93000 SOC Series

The SmarTest software controls Agilent 93000 de-
vices. It lets a chip test engineer write test cases used
for chip testing. The software comprises several tools

({r1}, {53, 54, 85,56})
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Figure 8. Software architecture of Agilent
93000 firmware.

for test setup and result visualization. The interface
between the test software and the hardware is called
firmware. In this case study, we analyzed the firmware.

The firmware has evolved over 15 years and is writ-
ten in C. Today, it consists of 1.2 MLOC with com-
ments or about 500 KLOC non-commented. The static
call graph of the part of the firmware that was analyzed
for this case study had 9.988 routines.

Figure 8 depicts the software architecture of the
firmware as described by one of the software’s archi-
tects. The input to the firmware are the test cases
consisting of firmware commands. The firmware parses
and interprets each command, drives the Agilent 93000
device, and returns the result. In order to run a com-
mand, the firmware dispatches the corresponding C
routine (the executor) that acts as an entry point to
the implementation of the command.

As Fig. 8 suggests, the executors share a set of re-
usable utility routines. Which utility routines are ac-
tually shared by which executors is not shown in the
architectural sketch. As a matter of fact, the software
architect does currently not exactly know the relation
between executors and utility routines.

For this case study, we focused on the commands of
the digital part of the firmware:

o Configuration Setup Commands assign pin names
to a test or power supply channel, configuring pin
type and operation modes, specifying the series
resistor, and other things.

e Routing Setup Commands specify the signal mode
and connection for each pin, and the order of con-
nections.

o Level Setup Commands specify the required driver
amplifier and receiver comparator voltage levels,
as well as set termination via the active load or
set the clamp voltage.

o Timing Setup Commands define the length of the
device cycle, the shape of the waveforms making
up a device cycle, and the position of the timing
edges in a tester cycle for all configured pins.

o Vector Setup Commands are required to set up
and sequence test vectors.

e Relay Control Commands are used to set relay po-
sitions and the tester state.

The goal of our case study was to validate the ar-
chitecture sketch in Fig. 8 and to show which utility
routines are really shared. Given these classes of com-
mands, our hypothesis was that the executors for com-
mands of the same class share many utility routines.
On the other hand, for commands of different classes,
we expected less commonalities, in other words, one
would expect that only more general utility routines
are shared.

3.2. Scenariosfor the Firmware of Agilent 93000

The software architect at Agilent selected the com-
mands for digital tests that were to be investigated.
Three students of the University of Stuttgart created
the test cases—advised by the expert. For each rele-
vant firmware command, a test case was provided that
executes the command.

The execution of some commands is bound to cer-
tain preconditions that need to be fulfilled by calling
other commands first. Hence, a test case is gener-
ally not a single command but a sequence of firmware
commands, of which one is the relevant command
and the others are required preparing steps. As al-
ready described in Sect. 2.2, we can thus model a
test case (scenario) as set of commands (features)
s ={emdy, cmds, ..., cmdy}.

In order to identify the routines specific to the rele-
vant command only, one can factor out preparing steps
by additional test cases, which execute the preparing
commands but not the relevant command. For in-
stance, in order to call command UDPS, one needs to
execute DFPS first. Thus, the test case for UDPS is
{DFPS, UDPS} where only UDPS is relevant. In order
to identify the routines for UDPS specifically, one can



simply add another test case executing DFPS only. The
routines specific to UDPS can then be identified in the
concept lattice as described in Sect. 2.2.

Many commands come in pairs: the actual com-
mand and an additional command to fetch the result of
its execution. The latter is called the query command.
The firmware understands about 250 different actual
commands; most of them have a corresponding query
command. Altogether, there are about 450 different
commands.

If a command has a query command, two test cases
were created: one for the actual command and one
for the query command. The former contains only the
actual command but not the query command and the
latter only the query command but not the actual com-
mand (in all cases where the query command can be
called without calling the actual command before).

If a command has different options, the test case
executes the command with several different combina-
tions of options. The combination is aimed at covering
all possible equivalence classes of option settings.

For one pair of an actual and a query command,
namely, the command SDSC, four scenarios were cre-
ated: two for the actual and two for the query com-
mand varying in the setting of the specification param-
eter, that either relates to Timing or Level Setup. The
distinction was made to see whether the command re-
quires routines from different parts of the system, i.e.,
the timing setup and level setup parts.

Each test case represents a scenario. In total, 93 sce-
narios were provided (cf. Fig. 9). Among these, 76 sce-
narios correspond to one relevant firmware command
for digital tests. One additional scenario contained just
the no-operation (NOP) command, which has no effect
on the tester. Two additional scenarios were added to
call command SDCS and its query command with the
alternative parameter setting. The remaining scenar-
ios were used to refactor scenarios: The start-end sce-
nario was used to remove start-up and shutdown code
by simply starting the system, executing a reset com-
mand, and shutting down the system, and 13 factoring
scenarios were provided to factor out preparing steps
in real scenarios.

Agilent’s own large test suite for testing the firmware
could not be used since we needed scenarios that
explore preferably one command (or feature, respec-
tively) at a time. Agilent’s test cases use combinations
of commands. Moreover, the existing test driver of the
test suite executes all tests in one run so that the re-
sult would have been a single profile for all test cases
instead of an individual profile for each test case.

real 76 scenarios for relevant commands
1 scenario for NOP command

additional additional parameter combinations

factoring 1 start-end
13  scenarios for preparing steps

| total |93 scenarios

Figure 9. Test cases / scenarios.

3.3. Resulting Concept L attice

The resulting concept lattice is shown in Fig. 10.
It consists of 165 concepts and 326 non-transitive sub-
concept relations. Out of the 9.988 statically declared
routines, only 1.463 were actually executed by at least
one of the 92 considered scenarios (the start-end sce-
nario is used to remove those routines from the profiles
of the other scenarios that are executed for initializa-
tion, reset, and shutdown of the system only).

Another developer at Agilent (different from the
software architect who prepared the test cases) was
asked to validate the resulting concept lattice. To make
a clear distinction between this validating expert and
the expert who prepared the scenarios, the former will
be called developer and the latter software architect in
the following.

The developer was familiar with the firmware but
was not involved in the preparation of the test cases.
We explained the test cases that were selected and the
interpretation of the concept lattice as described in this
paper. We did not show the architecture sketch from
the software architect. We asked the developer to ex-
plain the general structure of the system with the con-
cept lattice and whether the lattice surprises him.

According to the developer, the concept lattice in
Fig. 10 maps well to the architecture sketch of Fig. 8.
He immediately spotted in the 65 direct subconcepts of
the top element—i.e., concepts in the first row below
the top element of the lattice—the individual execu-
tors for 65 commands (including the executor for NOP).
(The top element itself does not contain any scenario.)
Among these 65 concepts, 63 contain a single scenario
and two contain two scenarios. The ones with two sce-
narios are the two different parameter settings for the
SDSC command and the corresponding query command
(cf. Sect. 3.2). Consequently, the implementation of
the SDSC command executes the same routines inde-
pendently from the parameter that refers to timing or
level setup, respectively. Thus, 65 executors could im-
mediately be detected in the lattice.

The other twelve real scenarios can be found in sub-
concepts of the above mentioned 65 concepts. The
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twelve real scenarios cannot be found directly below the
top element because they represent commands that are
also needed as preparing steps for other commands. For
instance, before the commands PSLV and UDPS can be
called, one must call DFPS. The scenarios for PLSV and
UDPS are consequently {DFPS, PLSV} and {DFPS,UDPS},
respectively. The scenario that contains DFPS only
will therefore be part of the concept that is the com-
mon infimum of the scenarios for PLSV and UDPS since
{DFPS} = {DFPS,PLSV}N{DFPS,UDPS}. By representing
test cases (scenarios) as sets of commands (features)
and isolating commands through intersecting test cases
as described in Sect. 2.2, we could easily identify the
executors for the remaining twelve commands whose
test case is not directly located below the top element.
As described above, the firmware commands can be
categorized in different classes. In order to visualize the
jointly used routines by executors for commands of the
same class, we colored the concept lattice as follows:

e each concept representing an executor in the lat-
tice gets the color of the executor’s class; the col-
ored concept is the starting node for the traversal
in the next step;

e by top-down traversal starting at the colored con-
cept, the color of the respective executor is propa-
gated to all subconcepts of the executor’s concept
(until a different executor is reached).

The colored concept lattice for Agilent’s firmware
gives interesting insights. All concepts directly below
the top element in Fig. 10 have just one color because
these concepts actually represent just one executor of a
given command. If a concept ¢ has more than one color,
the routines r; for which (r;) = ¢ holds contribute to
commands of different classes.

As a matter of fact, there were only few concepts
above the bottom element with multiple colors show-
ing that there is substantial sharing of routines among

executors for the same class and that these utility rou-
tines seem to be specific to just one class of commands.
In other words, either a routine is specific to a class of
commands or it is used for all command classes in gen-
eral. The dynamic analysis in conjunction with con-
cept analysis, thus, has given important insight into
the internal structure of the black box labeled “utility
routines” in Fig. 8: 534 routines (out of 1.463 routines
executed for at least one test case and 9.988 statically
declared routines, respectively) could be related to the
executors, i.e., are not specifically attached to the bot-
tom element.

There are also executors for commands of the same
class that share only the most general routines in the
bottom element. The most remarkable example are the
executors for the configuration setup of single pins on
one hand and those for the configuration setup of whole
pin groups. Whereas the executors for single pins share
many routines specific to their class, the executors for
pin groups (which also belong to the same class Config-
uration Setup) do not share any routine beyond those
in the bottom element, neither with executors for sin-
gle pins nor with other executors for pin groups. Our
hypothesis was that there are many routines jointly
used by configuration setup commands for pin groups
similarly to commands for single pins. The developer
reviewing the concept lattice explained that macros are
heavily used for function inlining in the subsystem im-
plementing pin group configuration.

In general, the concepts just below the top element
contain only one routine, some of them contain more
than one but less than five. In these cases, a pro-
grammer has split a large executor into smaller pieces.
There is only one concept just below the top element
that contains a very large number of routines. This
concept represents the test execution. The developer
explained that the routines specifically attached to this
concept are strongly related but could have been fur-



ther grouped if more scenarios for test execution would
have been provided.

The developer also looked at another very large con-
cept located in the middle of the concept lattice. By
looking at the routines specifically attached to this con-
cept, he told us that about 70% of these routines deal
with memory management. Hence, this concept col-
lected a large number of semantically related routines.

There are 929 routines specifically attached to the
bottom element, i.e., routines that are used for all sce-
narios. For these routines, either the selection of test
cases failed to further structure this set of routines
or the routines are necessarily required for all pos-
sible usage scenarios, in which case other techniques
are needed to group these routines semantically. Since
our goal was to identify the executors and the routines
shared by the executors, we did not further investigate
the routines in the bottom element.

3.4. Lessons Learnt

In the beginning of our case study, we explained the
basic interpretation of the concept lattice to the devel-
oper without going into the formal mathematical de-
tails. The developer learnt how to read the concept lat-
tice surprisingly quickly in less than ten minutes, which
suggests that the technique can easily be adopted by
practitioners.

The developer confirmed that the technique could
be useful for maintenance programmers who are less
familiar with the system in order to quickly identify
the executors. However, since there was a naming con-
vention for executors in place, localizing the executors
could have been done with textual search tools, such as
grep, more easily, he noted. The developer agreed that
it would have been very difficult for him—using such
simple tools—to identify the firmware commands to
which a given routine contributes. Such kind of infor-
mation would help him at impact analysis of changes.
Moreover, it would also have been very difficult for him
to identify the sharing of utility routines among execu-
tors.

This case study also revealed some difficulties with
the proposed technique. Due to the use of inlining
of routines by way of macros, the profiler could not
identify the code sharing of commands for pin groups.

Another difficulty is the problem of handling param-
eterized scenarios, i.e., scenarios that are alike except
for values of certain parameters. For instance, most
commands of the firmware have options. The same
command may execute different routines for different
options.

Due to the dynamic analysis, only about 15% of

Figure 12. Timing and vector commands.

the almost 10,000 routines were present in the formal
context for concept lattice. Likewise, the number of
scenarios was realistic, yet trimmed to only the digital
part of the system. Nevertheless, the concept lattice
for the firmware was relatively large and complex. Such
large concept lattices are a challenge for visualization.

The experiences with size and complexity of the final
lattice in the Agilent case study lead us to develop sup-
port for incremental construction and understanding of
the concept lattice as described in Sect. 2.3. The visual
difference for considering scenarios incrementally is il-
lustrated by Fig. 11 and Fig. 12. Figure 11 contains
the concept lattice for all Timing Setup commands.
For the lattice in Fig. 12, all scenarios for Vector Setup
have been added. When all scenarios for all classes of
commands are added, the lattice in Fig. 10 is obtained.

4. Related Research

Primarily Snelting has recently introduced concept
analysis to software engineering. Since then it has been
used to evaluate class hierarchies [11], explore config-
uration structures of preprocessor statements [7, 10],
for re-documentation [8], and to recover components,
e.g., [2, 13, 12]. All of that research utilizes static in-
formation derived from source code.

Wilde et al. [15] pioneered in localizing features tak-
ing a fully dynamic approach. The goal of their Soft-
ware Reconnaissance is the support of maintenance
programmers when modifying or extending the func-



tionality of a legacy system. Another approach based
on dynamic information is taken by Wong et al. [16].
They analyze execution profiles of test cases imple-
menting a particular functionality. Chen and Ra-
jlich [3] propose a semi-automatic method for fea-
ture localization, in which the programmer browses
the statically derived abstract system dependency
graph. Recently, Wilde and Rajlich compared their
approaches [14]. The Software Reconnaissance showed
to be more suited to large infrequently changed pro-
grams, whereas Rajlich’s method is more effective if
further changes are likely and require deep and more
complete understanding.

5. Conclusions

Our technique presented at last year’s conference
identifies all components specific to a set of related
features using execution profiles for different usage sce-
narios. We validated the technique in a case study on
a 1.2 MLOC production system. The experiences we
made during that case study showed two problems of
our approach: the growing complexity of concept lat-
tices for large systems with many features and the need
for handling compositions of features.

In this paper, we extended our technique to solve
these problems. We showed how the method allows us
to incrementally explore features preserving the “men-
tal map” the maintainer has gained through the anal-
ysis.

The second improvement described in this paper is a
detailed look at composing features into more complex
scenarios. Rather than assuming a one-to-one corre-
spondence between features and scenarios as in earlier
work, we can now handle scenarios that invoke many
features.

Further, the implementation of our approach is
simple. For concept analysis we used the tool con-
cepts [9]. For visualization we used our graphical
Bauhaus front end [1]. The lattice layouts are gener-
ated by GraphViz [6]. The glue code is written in Perl,
for compiling and profiling we used gcc and gprof.
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