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ABSTRACT
SQL-based data mining algorithms are rarely used in prac-
tice today. Most performance experiments have shown that
SQL-based approaches are inferior to main-memory algo-
rithms. Nevertheless, database vendors try to integrate anal-
ysis functionalities to some extent into their query execution
and optimization components in order to narrow the gap be-
tween data and processing. Such a database support is par-
ticularly important when data mining applications need to
analyze very large datasets or when they need access current
data, not a possibly outdated copy of it.

We investigate approaches based on SQL for the problem of
finding frequent itemsets in a transaction table, including an
algorithm that we recently proposed, called Quiver, which
employs universal and existential quantifications. This ap-
proach employs a table schema for itemsets that is similar
to the commonly used vertical layout for transactions: each
item of an itemset is stored in a separate row. We argue
that expressing the frequent itemset discovery problem us-
ing quantifications offers interesting opportunities to process
such queries using set containment join or set containment
division operators, which are not yet available in commer-
cial database systems. Initial performance experiments re-
veal that Quiver cannot be processed efficiently by commer-
cial DBMS. However, our experiments with query execution
plans that use operators realizing set containment tests sug-
gest that an efficient processing of Quiver is possible.

Keywords
association rule discovery, relational division, set contain-
ment join

1. INTRODUCTION
The frequent itemset discovery algorithms used in today’s
data mining applications typically employ sophisticated in-
memory data structures, where the data is stored into and
retrieved from flat files. This situation is driven by the
need for high-performance ad-hoc data mining in the ar-
eas of health-care or e-commerce, see for example [12] for
an overview. However, ad-hoc mining often comes at a high
cost because huge investments into powerful hardware and
sophisticated software are required.

1.1 Why Data Mining with SQL?
From a performance perspective, data mining algorithms
that are implemented with the help of SQL are usually con-
sidered inferior to algorithms that process data outside the
database system [21]. One of the most important reasons is
that offline algorithms employ sophisticated in-memory data
structures and try to scan the data as few times as possi-
ble while SQL-based algorithms either require several scans
over the data or require many and complex joins between
the input tables. However, DBMS already provide tech-
niques to deal with huge datasets. These techniques need to
be re-implemented in part if offline algorithms are used to
analyze data that is so large that the in-memory data struc-
tures grow beyond the size of the computer’s main-memory.

One can classify data mining model generation algorithms
along the following list of features:

• On-line vs. off-line mining: While the algorithm is
running, the user may change parameters and retrieve
intermediate or approximate results as early as possi-
ble.

• In-place vs. out-of-place mining: The algorithm re-
trieves original data from the database itself or it op-
erates on a copy of the original data, perhaps with a
data layout that is optimal for the algorithm.

• Database-coupled vs. database-decoupled mining: The
algorithm uses the DBMS merely as a file system, i.e.,
it stores and loads data using trivial queries or it ex-
ploits the query processor capabilities of the DBMS for
nontrivial mining queries.

Obviously, some algorithms lie somewhere in-between these
categories. For example, there are implementations of the
frequent itemset discovery method that allow a user interac-
tion only to some extent: a user can increase the minimum
support threshold but maybe not decrease it because this
would require revisiting some previously seen transactions.
Hence, such an implementation realizes on-line mining only
up to a certain degree.

We believe that there are datasets of high potential value
that are so large that the only way to analyze them in their
entirety (without sampling) is to employ algorithms that ex-
ploit the scalable query processing capability of a database
system, i.e., these datasets require in-place, database-coupled
mining, however, at the potential cost of allowing only off-
line mining. On-line mining can be achieved if the query
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execution plans are based on non-blocking operators along
the “critical paths” of the data streams from the input ta-
bles to the root operator of the plan. A framework for such
operators supporting queries within the knowledge discovery
process has been investigated for example in [5].

1.2 The Problem of Frequent Itemset Discov-
ery

We briefly introduce the widely established terminology for
frequent itemset discovery. An item is an object of analytic
interest, like a product of a shop or a URL of a document
on a web site. An itemset is a set of items and a k-itemset
contains k items. A transaction is an itemset representing
a fact, like a basket of distinct products purchased together
or a collection of documents requested by a user during a
web site visit.

Given a set of transactions, the frequent itemset discovery
problem is to find itemsets within the transactions that ap-
pear at least as frequently as a given threshold, called mini-
mum support. For example, a user can define that an itemset
is frequent if it appears in at least 2% of all transactions.

Almost all frequent itemset discovery algorithms consist of
a sequence of steps that proceed in a bottom-up manner.
The result of the kth step is the set of frequent k-itemsets,
denoted as Fk. The first step computes the set of frequent
items or 1-itemsets F1. Each of the following step consists
of two phases:

1. The candidate generation phase computes a set of po-
tential frequent k-itemsets from Fk−1. The new set
is called Ck, the set of candidate k-itemsets. It is a
superset of Fk.

2. The support counting phase filters out those itemsets
from Ck that appear more frequently in the given set
of transactions than the minimum support and stores
them in Fk.

All known SQL-based algorithms follow this “classical” two-
phase approach. There are other, non-SQL-based approaches
such as frequent-pattern growth [7], which do not require a
candidate generation phase. However, the frequent-pattern
growth algorithm employs a (relatively complex) main-memory
data structure called frequent-pattern tree, which disquali-
fies it for a straightforward comparison with SQL-based al-
gorithms.

1.3 Set Containment Tests
The set containment join (SCJ) �⊆ is a join between two
relations R and S on set-valued attributes R.a and S.b, the
join condition being that a ⊆ b. It is considered an impor-
tant operator for queries involving set-valued attributes [8;
9; 11; 15; 14; 17; 18; 25]. For example, set containment
test operations have been used for optimizing a workload of
continuous queries, in particular for checking if one query
is a subquery of another [4]. Another application area is
content-based retrieval in document databases, when one
tries to find a collection of documents containing a set of
keywords.

Frequent itemset discovery, one of the most important data
mining operations, is an excellent example of a problem that
can be expressed using set containment joins: Given a set of
transactions T and a single (candidate) itemset i, how many
transactions t ∈ T fulfill the condition i ⊆ t? If this number

transaction items

1001 {A, D}
1002 {A, B, C, D}
1003 {A, C, D}
(a) Transaction

itemset items

101 {A, B, D}
102 {A, C}
(b) Itemset

itemset items transaction items

101 {A, B, D} 1002 {A, B, C, D}
102 {A, C} 1002 {A, B, C, D}
102 {A, C} 1003 {A, C, D}

(c) Contains

Figure 1: An example set containment join:
Itemset �items⊆items Transaction = Contains

transaction item

1001 A
1001 D
1002 A
1002 B
1002 C
1002 D
1003 A
1003 C
1003 D

(a) Transaction (sin-
gle dividend)

itemset item

101 A
101 B
101 D
102 A
102 C

(b) Itemset (sev-
eral divisors)

transaction itemset

1002 101
1002 102
1003 102

(c) Contains (several
quotients)

Figure 2: An example set containment division:
Transaction ÷{item}⊇{item} Itemset = Contains

is beyond the minimum support threshold the itemset is
considered frequent. In general, we would like to test a whole
set of itemsets I for containment in T : Find the number of
tuples in I �⊆ T for each distinct transaction in T .

The set containment join takes unnormalized relations as
input, i.e., the relations are not in the first normal form
(1NF), which would require that the attributes have only
atomic values. We have recently introduced the set contain-
ment division (SCD) operator ÷⊇, which is equivalent to
SCJ but the relations are in 1NF [20]. It is a generalization
of the well-known relational division operator. Given two
relations R(A∪B) and S(C ∪D), where A = {a1, . . . , am},
B = {b1, . . . , bn}, C = {c1, . . . , cn}, and D = {d1, . . . , dp}
are sets of attributes and the attribute domains of bi are
compatible with ci for all 1 ≤ i ≤ n. The sets A, B, and
C have to be nonempty, while D may be empty. The set
containment division is defined by the algebra expression

R ÷B⊇C S =
⋃

x∈πD(S)

((R ÷ πC (σD=x (S))) × (x))

= T (A ∪ D) .

Note that the superset symbol (⊇) is used to contrast SCD
from the traditional division operator and to show its simi-
larity to the SCJ operator, which has a subset relation (⊆).
It does not mean that SCD compares set-valued attributes,
unlike SCJ.
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If D = ∅, i.e., if S consists of a single group or “set” of ele-
ments, then the set containment division becomes the nor-
mal division operator:

R ÷B⊇C S = R ÷ S = T (A) ,

where R is called dividend, S divisor, and T quotient.

To compare the two operators SCJ and SCD, Figures 1 and
2 sketch a simple example that uses equivalent input data
for the operators. SCJ is based on unnormalized data while
SCD requires input relations in 1NF. Each tuple of the result
relation Contains delivers the information on which itemset
is contained in which transaction.

In this paper, we argue that if SQL would allow expressing
SCJ and SCD problems in an intuitive manner and if several
algorithms implementing these operators were available in a
DBMS, this would greatly facilitate the processing of queries
for frequent itemset discovery.

1.4 Paper Overview
The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss frequent itemset algorithms that employ
SQL queries. Query execution plans that realize the queries
are discussed in Section 3. Section 4 explains algorithms for
the SCJ and SCD operators and their implementation based
on an open source Java class library for building query pro-
cessors. Several experiments that assess the performance of
the algorithms based on both synthetic and real-life datasets
are presented in Section 5. We conclude the paper in Sec-
tion 6 and give a brief outlook on future work.

2. FREQUENT ITEMSET DISCOVERY
WITH SQL

Algorithms for deriving association rules with SQL have
been studied in great detail in the past. Frequent itemset
discovery, a preprocessing phase of association rule discov-
ery, is more time-consuming than the subsequent rule gen-
eration phase [2]. Therefore, all association rule discovery
algorithms described in the literature strive to optimize the
frequent itemset generation phase.

2.1 Related Work
The SETM algorithm is the first SQL-based approach [10]
described in the literature. Subsequent work suggested im-
provements of SETM. For example, in [24] views are used in-
stead of some of the tables employed in SETM. The authors
also suggest a reformulation of SETM using subqueries. The
performance of SETM on a parallel DBMS has been stud-
ied [16]. The results have shown that SETM does not per-
form well on large datasets and new approaches have been
devised, like for example K-Way-Join, Three-Way-Join, Sub-
query, and Two-Group-Bys [22]. These new algorithms dif-
fer only in the statements used for support counting. They
use the same statement for generating Ck, as shown in Fig-
ure 3 for the example value k = 4. The statement creates a
new candidate k-itemset by exploiting the fact that all of its
k subsets of size k−1 have to be frequent. This condition is
called Apriori property because it was originally introduced
in the Apriori algorithm [2; 13]. Two frequent subsets are
picked to construct a new candidate. These itemsets must
have the same items from position 1 to k − 1. The new
candidate is further constructed by adding the kth items of
both itemsets in a lexicographically ascending order. In ad-

INSERT
INTO C4 (itemset, item1, item2, item3, item4)
SELECT newid(), item1, item2, item3, item4
FROM (

SELECT a1.item1, a1.item2, a1.item3, a2.item3
FROM F3 AS a1, F3 AS a2, F3 AS a3, F3 AS a4
WHERE a1.item1 = a2.item1 AND

a1.item2 = a2.item2 AND
a1.item3 < a2.item3 AND
-- Apriori property.
-- Skip item1.
a3.item1 = a1.item2 AND
a3.item2 = a1.item3 AND
a3.item3 = a2.item3 AND
-- Skip item2.
a4.item1 = a1.item1 AND
a4.item2 = a1.item3 AND
a4.item3 = a2.item3) AS temporary;

Figure 3: Candidate generation phase in SQL-92 for k = 4.
Such a statement is used by all known algorithms that have
a horizontal table layout.

dition, the statement checks if the k − 2 remaining subsets
of the new candidates are frequent as well, expressed by the
two “skip item” predicates in Figure 3.

Another well-known approach presented in [22] called K-
Way-Join uses k instances of the transaction table and joins
it k times with itself and with a single instance of Ck. The
support counting phase of K-Way-Join is illustrated in Fig-
ure 4(a), where we contrast it to an equivalent approach
using a vertical table layout in Figure 4(b) that is similar to
our Quiver approach, discussed below.

The algorithms presented in [22] perform differently for dif-
ferent data characteristics. The authors report that Sub-
query is the best algorithm overall compared to the other
approaches based on SQL-92. The reason is that it exploits
common prefixes between candidate k-itemsets when count-
ing the support.

More recently, an approach called Set-oriented Apriori has
been proposed [23]. The authors argue that too much re-
dundant computation is involved in each support counting
phase. They claim that it is beneficial to save the infor-
mation about which item combinations are contained in
which transaction, i.e., Set-oriented Apriori generates an
additional table Tk(transaction, item1, . . . , itemk) in the kth
step of the algorithm. The algorithm derives the frequent
itemsets by grouping on the k items of Tk and it generates
Tk+1 using Tk. Their performance results have shown that
Set-oriented Apriori performs better than Subquery, espe-
cially for high values of k.

2.2 The Quiver Algorithm
We have recently introduced a new SQL-based algorithm for
deriving frequent itemsets called Quiver (QUantified Item-
set discoVERy) [19]. The basic idea of the algorithm is to
use a vertical layout for representing itemsets in a relation
in the same way as transactions are represented, i.e., the
relations storing candidate and frequent itemsets have the
same schema (itemset, pos, item), similar to the schema for
transactions T(transaction, item). Table 1 (taken from [19])
illustrates the difference between the horizontal and the ver-
tical layout for transactions and itemsets.

Quiver’s SQL statements employ universal quantification in
both the candidate generation and the support counting
phase. Quiver constructs a candidate (k + 1)-itemset i from
two frequent k-itemsets f1.itemset and f2.itemset by check-
ing if for all item values of f1 at position 1 ≤ f1.pos =
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INSERT
INTO S4 (itemset, support)
SELECT c1.itemset, COUNT(*)
FROM C4 AS c1,

T AS t1, T AS t2, T AS t3, T AS t4
WHERE c1.item1 = t1.item AND

c1.item2 = t2.item AND
c1.item3 = t3.item AND
c1.item4 = t4.item AND
t1.transaction = t2.transaction AND
t1.transaction = t3.transaction AND
t1.transaction = t4.transaction

GROUP BY c.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F4 (itemset, item1, item2, item3, item4)
SELECT c1.itemset, c1.item1, c1.item2, c1.item3, c1.item4
FROM C4 AS c1, S4 AS s1
WHERE c1.itemset = s1.itemset;

(a) Original, horizontal version of K-Way-Join

INSERT
INTO S4 (itemset, support)
SELECT c1.itemset, COUNT(*)
FROM C4 AS c1, C4 AS c2, C4 AS c3, C4 AS c4,

T AS t1, T AS t2, T AS t3, T AS t4
WHERE c1.itemset = c2.itemset AND

c1.itemset = c3.itemset AND
c1.itemset = c4.itemset AND
t1.transaction = t2.transaction AND
t1.transaction = t3.transaction AND
t1.transaction = t4.transaction AND
c1.item = t1.item AND
c2.item = t2.item AND
c3.item = t3.item AND
c4.item = t4.item AND
c1.pos = 1 AND
c2.pos = 2 AND
c3.pos = 3 AND
c3.pos = 4

GROUP BY c1.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F4 (itemset, pos, item)
SELECT c1.itemset, c1.pos, c1.item
FROM C4 AS c1, S4 AS s1
WHERE c1.itemset = s1.itemset;

(b) Vertical version of K-Way-Join

Figure 4: Support counting phase of K-Way-Join for k = 4

f2.pos = i.pos ≤ k − 1 the condition f1.item = f2.item =
i.item holds. This is the prefix construction used in the
Apriori algorithm mentioned in Section 2.1. Similar predi-
cates are added to the WHERE clause of the SQL query to
realize the Apriori property, i.e., the “skip item” predicates
mentioned in the SQL query used for retrieving horizontal
candidates in Figure 3. The SQL statement used for this
phase is quite lengthy, therefore we do not present it in this
paper. It is shown in [19] together with an equivalent query
in tuple relational calculus to emphasize the use of universal
quantification (the universal quantifier “∀”).

The frequent itemset counting phase of Quiver uses uni-
versal quantification as well. It is used to express the set
containment test: For each candidate itemset i, find the
number of transactions where for each transaction t there is
a value t.item = i.item for all values of i.pos. Note that this
condition holds for itemsets of arbitrary size k. No further
restriction involving the parameter k is necessary. Hence,
the same SQL statement, depicted in Figure 5(a), can be
used for any iteration of the frequent itemset discovery al-
gorithm. The nested NOT EXISTS predicate realizes the
universal quantifier.

Unfortunately, there is no universal quantifier defined in the
SQL standard, not even in the upcoming standard SQL:2003.
It is difficult for an optimizer to recognize that the query

Layout Transactions Itemsets

horizontal
(single-
row/
multi-

column)

transaction item1 item2 item3
1001 A C NULL

1002 A B C

itemset item1 item2
101 A B

102 A C

vertical
(multi-
row/

single-
column)

transaction item

1001 A

1001 C

1002 A

1002 B

1002 C

itemset pos item

101 1 A

101 2 B

102 1 A

102 2 C

Table 1: Table layout alternatives for storing the items of
transactions and itemsets

for support counting in Figure 5(a) is actually a division
problem. Therefore, we suggest a set containment division
operator in SQL, whose syntax is illustrated in Figure 5(b).
Its semantics is equivalent to that of Figure 5(a).

Note that we cannot simply write

T AS t1 SET_CONTAINMENT_DIVIDE BY C AS c1

because the layout of the divisor table C(itemset, pos, item)
has the attribute pos, the lexicographical position of an item
within an itemset, that is needed when candidates are cre-
ated and that would incorrectly lead to grouping the divisor
table on the attributes (itemset, pos) instead of (itemset).
Hence, we omit this attribute in the SELECT clause of the
subquery.

3. QUERY EXECUTION STRATEGIES
In this section, we show query execution plans (QEPs) pro-
duced by a commercial DBMS for some example SQL state-
ments of the SQL-based frequent itemset discovery algo-
rithms K-Way-Join and Quiver. In addition, we show how
to realize the Quiver query for frequent itemset counting
using a SCDs operator.

We compare Quiver to K-Way-Join because of their struc-
tural similarity. Remember that Quiver uses a vertical table
layout for both itemsets and transactions while K-Way-Join
uses a horizontal table layout for itemsets and a vertical lay-
out for transactions. We are aware of the fact that K-Way-
Join is not the best algorithm based on SQL-92 overall, even
if our preliminary tests with a synthetic dataset has shown
the opposite (see Section 5). However, we decided to derive
first results by comparing these two approaches. Further
performance experiments with other approaches will follow.

In Figures 6(a) and (b), we sketch the query execution plans
that we derived during performance experiments with Mi-
crosoft SQL Server 2000 for several SQL algorithms dis-
cussed in Section 2.1. The plans (a) and (b) illustrate the
execution strategies chosen by the optimizer for a given
transaction table T and a candidate table C4 for the queries
shown in Figures 4(a) and 5(a). The operators in use are
sort, row count, retrieval of the first row only (Top1), re-
name (ρ), group (γ), join (�), left anti-semi-join (�), index
scan (IScan), and index lookup (ISeek).

The QEP (a) for the K-Way-Join query uses four hash-joins
to realize the Apriori trick. It joins the candidate table C4

four times with the transaction table.

The QEP (b) for the Quiver query using quantifications em-
ploys anti-semi-joins. Left anti-semi-join returns all rows of
the left input that have no matching row in the right input.
The top left anti-semi-join operator test for each combina-
tion of values (c1.itemset, c1.transaction) on the left if at
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INSERT
INTO S (itemset, support)
SELECT itemset, COUNT(DISTINCT transaction) AS support
FROM (

SELECT c1.itemset, t1.transaction
FROM C AS c1, T AS t1
WHERE NOT EXISTS (

SELECT *
FROM C AS c2
WHERE NOT EXISTS (

SELECT *
FROM T AS t2
WHERE NOT (c1.itemset = c2.itemset) OR

(t2.transaction = t1.transaction AND
t2.item = c2.item)))

) AS Contains
GROUP BY itemset
HAVING support >= @minimum_support;

INSERT
INTO F (itemset, pos, item)
SELECT c1.itemset, c1.pos, c1.item
FROM C AS c1, S AS s1
WHERE c1.itemset = s1.itemset;

(a) Quiver using quantifications

INSERT
INTO S (itemset, support)
SELECT c1.itemset, COUNT(*)
FROM T AS t1 SET_CONTAINMENT_DIVIDE BY (

SELECT itemset, item
FROM C

) AS c1
ON (t1.item = c1.item)

GROUP BY c1.itemset
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO F (itemset, pos, item)
SELECT c1.itemset, c1.pos, c1.item
FROM C AS c1, S AS s1
WHERE c1.itemset = s1.itemset;

(b) Quiver using a set containment division operation, speci-
fied by hypothetical SQL keywords

Figure 5: Support counting phase of Quiver for any value
of k. We write C (F ) instead of Ck (Fk) for the candidate
(frequent) itemset table because of the independence of the
parameter k.

least one row can be retrieved from the right input. If no,
then the combination qualifies for the subsequent grouping
and counting, otherwise the left row is skipped. A similar
processing is done for the left anti-semi-join with the outer
reference c2.item. An interesting point to note is that the
index scan (not the seek) of t2 on item, transaction is un-
correlated. Every access to this table is used to check if the
transaction table is empty or not. For our problem of fre-
quent itemset discovery this table is non-empty by default.

In addition to the QEPs that have been derived for real
SQL queries using a commercial DBMS, we illustrate a hy-
pothetical QEP for the version of the Quiver algorithm that
employs a set containment division operator in Figure 6(c).
The corresponding query using hypothetical SQL keywords
is specified in Figure 5(b).

4. ALGORITHMS FOR SCD AND SCJ
The term “hash” specified for the set containment division
operator in the QEP in Figure 6(c) was used to illustrate
that there may be several implementations (physical oper-
ators) in a DBMS realizing SCD, in this example based on
the hash-division algorithm [6]. Since SCD is based on the
division operator, as shown by the definition in Section 1.3,
many implementations of division come into consideration
for realizing SCD depending on the current data characteris-

TT

hash⋈ t4.transaction = t1.transaction AND
c4.item1 = t1.item

c4.itemset COUNT(*)

hashγ

hash⋈ t3.transaction = t4.transaction AND
t3.item = c4.item3

hash⋈ c4.item4 = t4.item AND
c4.item2 = t2.item

hash⋈ t2.transaction = t4.transaction

ρ t1ρ t3

C4

ρc4

T

ρ t2

T

ρ t4

IScanitem, transaction

IScantransaction

IScanitem, transactionIScanitem, transaction

IScan
clustered

itemset,
item1, item2,
item3, item4

(a) Original, horizontal version of K-Way-
Join with hash-joins

T

c1.itemset COUNT(*)

streamγ

NL⋈ t1.item = c4.item

ρ t1

C4

ρc1

Sort c1.itemset, t1.transaction

NLOuter References:
c1.itemset, t1.transaction

RowCount

NLOuter References:
c2.item

NL

c1.itemset ≠ c2.itemset

C4

ρc2

RowCount

Top 1

T

ρ t2

RowCount

Top 1

T

ρ t2

IScanitem, transaction IScanitemset

IScanitem, transaction

ISeek t2.item = c2.item AND
t2.transaction = t1.transaction

ordered, forward
item, transaction

c1.itemset, t1.transaction
streamγ

IScanitemset

(b) Quiver with nested-loops left anti-semi-joins

T

c1.itemset COUNT(*)

hashγ

ρ t1

C4

ρc1

t1.item⊇ c1.item

hash÷

c1.itemset,
c1.item

π

(c) Quiver with
hash-based SCD

Figure 6: Example query execution plans computing F4,
generated for the SQL queries in Figures 4(a), 5(a), and
5(b)

tics, e.g., the data may be grouped or even sorted on certain
attributes, as discussed in [20].

The SCD operator that we used for the performance tests
is based on the hash-division algorithm [6]. Hash-division
uses two hash tables. The divisor hash table stores all rows
of the divisor table (i.e., all rows of a single divisor group
for SCD) and assigns to each row an integer number that is
equal to k−1 for the kth row. The quotient hash table stores
all distinct values of the dividend’s quotient attributes (i.e.,
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attribute set A in Section 1.3). These values are a super-
set of the final quotients, i.e., they are quotient candidates.
For each quotient candidate value, a bitmap is kept, whose
length is the number of divisor rows. For each divisor, the
dividend table is scanned once. For each dividend row, the
algorithm looks up the value i in the divisor hash table as an
index for the the quotient bitmap. Then, the quotient can-
didate is looked up in the quotient hash table. If it is found,
the bit at position i is set to true, otherwise a new quotient
candidate and bitmap is inserted with all bits set to false.
After the scan, the quotient candidates in the quotient hash
table are returned whose bits are all true.

We have realized the QEPs shown in Figure 6 using the
open source Java class library XXL (eXtensible and fleXi-
ble Library for data processing) for building query proces-
sors [3]. Some example classes are BTree, Buffer, Hash-
Grouper, Join, and Predicate. Interestingly, they provide a
class called SortBasedDivision that implements the merge-
division algorithm. However, several necessary operators for
our purposes like nested-loops anti-semi-join and hash-join
had to be built from scratch.

Several algorithms for SCJs have been proposed, as men-
tioned in Section 1.3. It may seem curious that we only
show a QEP and experiments using Quiver realized with
our home-made SCD instead of the better-known SCJ oper-
ator. In fact, we have realized an implementation of SCJ us-
ing the Adaptive Pick-and-Sweep Join algorithm [15], which
is claimed to be the most efficient SCJ algorithm to date
and made initial performance tests, presented in Section 5.2.
However, we cannot yet report on a thorough comparison of
different implementations for SCD and SCJ as it is part of
our ongoing work. Note that an interesting recent publica-
tion [11] on SCJs did not investigate this algorithm.

5. EXPERIMENTS

5.1 Commercial DBMS
In Figure 7, we highlight some results of experiments on
a commercial database system to assess the query execu-
tion plans and performance of the SQL-based algorithms K-
Way-Join, Subquery, Set-oriented Apriori, and Quiver using
quantifications. We used Microsoft SQL Server 2000 Stan-
dard Edition on a 4-CPU Intel Pentium-III Xeon PC with
900 MHz, 4 GB main memory, and Microsoft Windows 2000
Server. Due to lack of space, we cannot give the details on
the indexes provided on the tables and what primary keys
were chosen. However, it was surprising that K-Way-Join
performed best for this (admittedly small) dataset, unlike
reports in related work mentioned in Section 2.1. We pro-
vide more information on this comparison in [19].

5.2 XXL Query Execution Plans
In addition to the experiments on a commercial DBMS, we
have executed the manual implementation of the QEPs with
Java and XXL using one synthetic and one real-life dataset
as the transactions table. Table 2 summarizes the character-
istics of the datasets. The synthetic data has been produced
using the SDSU Java Library, based on the well-known IBM
data generation tool mentioned in [2]. The real-life transac-
tion dataset called BMS-WebView-2 by Blue Martini Soft-
ware [26] contain several months of click-stream data of an
e-commerce web site.
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Figure 7: Experiments with SQL-based algorithms on a
commercial DBMS for the synthetic dataset T5.I5.D10k
with minimum support of 1% (100 transactions)

Type of Distinct Trans- Trans. size
data

Dataset
items

Rows
actions avg. max.

synthetic T5.I5.D5k 86 30,268 5,000 6.05 18
real-life BMS-WebView-2 3,340 358,278 77,512 4.62 161

Table 2: Overview of transaction datasets

5.2.1 Set Containment Division
The plans were executed on a dual-CPU Intel Pentium-
III PC with 600 MHz, 256 MB main memory, Microsoft
Windows 2000 Personal Edition, and JRE 1.4.1. The data
resided on a single local hard disk.

We used subsets of the transaction datasets and subsets of
the candidate 4-itemsets to derive frequent 4-itemsets for
certain minimum support values. The synthetic (real-life)
data candidates were generated for a minimum support of
1% (0.04%). Figure 8 shows some results of our experiments.
One can observe that the execution plan using SCD per-
formed best for small numbers of candidate sets. Of course,
this result is disappointing but it is simply the result of our
straightforward implementation of set containment division.
Our implementation follows strictly the logical operator’s
definition, which is a union of several divisions: each di-
vision takes the entire transaction table as dividend and a
single itemset group as divisor. We plan to develop more
efficient implementations of the operator in the future.

The plan chosen by the commercial DBMS based on anti-
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Figure 9: Experiments with set containment division for two
types of data sets

semi-join was always a bad solution for the given data sets.
K-Way-Join outperforms the other approaches for larger
numbers of candidates.

5.2.2 Set Containment Join
In addition to the experiments comparing different query
execution strategies, we have made initial performance tests
using a set containment join operator instead of a set con-
tainment division, illustrated in Figure 9. We used the adap-
tive pick-and-sweep join algorithm. The query execution
plan that we implemented using XXL is the same as in Fig-
ure 6(c), but a SCJ operator instead of the hash-based SCD.
In the nested layout, the sets of items were represented by
a Java vector of XXL tuples having a single item attribute.
The test platform was a single-CPU Intel Pentium-4 PC
with 1.9 GHz, 512 MB main memory, Microsoft Windows
XP Professional SP 1, and JRE 1.4.1. The data resided on
a single local hard disk. The experiments are based on the
synthetic data set T5.I5.D10k and a subset of size 10,000
transactions of the real-life data set BMS-WebView-2. The
candidate itemsets are similar to those used for the exper-
iments before. For these small data sets, the operator pro-
cessed the data with a linear performance for a growing num-
ber of candidate 4-itemsets.

6. CONCLUSIONS AND FUTURE WORK
We have shown that frequent itemset discovery is a promi-
nent example for queries involving set containment tests.
These tests can be realized by efficient algorithms for set
containment join when the input data have set-valued at-
tributes or by set containment division when the data are
in 1NF. A DBMS has more options to solve the frequent
itemset discovery problem optimally if it could choose to
employ such operators inside the execution plans for some
given data characteristics. No commercial DBMS offers an
implementation of these operators to date. We believe that
such a support would make data mining with SQL more
attractive.

We currently realize query execution plans using algorithms
for set containment joins and we compare them to plans in-
volving set containment division. In future work, we will
investigate also algorithms based on index structures sup-
porting efficient containment tests, in particular the algo-
rithms discussed in [8] and [11]. Furthermore, we will con-
tinue to study query processing techniques for switching be-
tween a vertical and a horizontal layout transparently (with-
out changing the SQL statements) for data mining problems.

Note that the investigation of the trade-offs of a horizontal
and vertical data representation is not new. For example,
the benefit of employing a vertical layout for querying e-
commerce data has been observed in [1]. The techniques
described there are generally applicable and we will study
them in the context of the frequent itemset discovery prob-
lem.
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