The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

Divide et Impera: A Flexible Integration of Layout Planning and Logistics
Simulation through Data Change Propagation

B. Mitschang®, E. Westkamper?, C. Constantinescu’, U. Heinkel, B. Loffler®, R. Rantzau®, R. Winkler?
! Institute of Parallel and Distributed Systems
ZInstitute of Industrial Manufacturing and Management
University of Stuttgart, Germany

Abstract

The turbulent markets lead to new challenges for today’s enterprises, they have to be transformable
to stay competitive. Therefore, we developed a new approach that integrates Logistic Simulation
and Layout Planning to fulfil the goal of improving the production system. Our approach is based on
propagation and transformation of data changes concerning the continuous adaptation tasks
among the Layout Planning and Logistics Simulation systems. Instead of relying on a tightly
integrated global data schema, we connect systems only as far as required by building “bridges”
between them. The systems that participate in the integration are kept autonomous. We use
several state-of-the-art XML technologies in our integration system.

Keywords:

integration of information systems, XML technologies, facility layout planning, logistics simulation

1 MOTIVATION

Increased reliance on agile manufacturing techniques
has created a demand for production systems to
integrate the business processes organised along the
value chain, leading to “islands of integration” within the
enterprise. The actual level of integration within each
island can significantly vary from one enterprise to
another and important progress still remains to be made.
This highly challenging process has recently evolved
through several levels of integration from isolated legacy
silos of enterprise information to agile and cooperative
information systems, capable of effectively supporting
the Agile Manufacturing Enterprise.

Technical challenges in supporting integrated layout
planning and logistics simulation decisions in a complex
and turbulent environment are manifold. The major
challenges include: (1) the presence of multiple sources
of uncertainty, both internal (e.g. machine breakdown)
and external (e.g. new order arrivals, delay in tool
production or raw material delivery), (2) the difficulty in
accurately accounting for the finite capacity of a large
number of resources operating according to complex
constraints, and (3) the needs to take into account the
multiple resource requirements of various operations
(e.g. tools, raw materials, human operators).

From a process planning perspective, a considerable
progress has been made by incorporating continuous
adaptation of layout planning and manufacturing
systems to new situations as mentioned above (e.g.
machine breakdown, new order processing).

Simultaneously, important steps forward have been
made in the development of agile and cooperative
solutions for supporting the information systems
integration. From an information system perspective, it is
increasingly difficult to draw a line around an application
system and then to own and control it. As the enterprise
value chain extends along several business processes,
multiple systems become part of each others
information systems. Furthermore, in many application

areas, data is distributed over a multitude of
heterogeneous, often autonomous information systems,
and an exchange of data among them is difficult.

We present an innovative approach and a complex and
detailed scenario of integrating the layout planning
process and the logistics simulation process through a
Data Change Propagation System. We suggest a
flexible solution to this problem, based on the
propagation and transformation of data concerning the
continuous adaptation tasks among the layout planning
and logistics simulation systems, using several state-of-
the-art XML technologies.

We developed our layout planning/logistics simulation
solutions and propagation system prototype as part of a
larger research project on innovative concepts and
techniques to enable highly flexible series production
systems in the manufacturing industry.

The remaining paper is structured as follows. In Section
2 and 3 we introduce the Order Management Bench and
the Facility Layout Planning System. Section 4 gives an
overview of the Data Change Propagation System. A
complex scenario of integrating the two systems is
presented in Section 5. Section 6 outlines the future
direction of our research and concludes the paper.

2 ORDER MANAGEMENT BENCH

The Order Management Bench — referred to as OMB
hereafter — is a tool for designing, dimensioning and
parameterising the complete order processing flow
across distributed sites. The use of this tool allows users
to model and analyse planning and manufacturing
processes for production in variable environments. The
OMB helps to analyse the dynamic interactions between
planning, control methods, parameters and market
behaviour on one hand, and manufacturing capacities as
well as logistic efficiency of a production system on the
other. The OMB is particularly useful in a turbulent

" This work is partially supported by the German Research Foundation (DFG/SFB 467)

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

environment where mean values are no longer
applicable to production planning and control (PPC).

The detection of bottlenecks of different types is a
central requirement when dealing with the analysis of as-
is and to-be scenarios. In many cases, those bottlenecks
affect the logistic goals only by means of a long event
chain. Therefore, an approach is suggested that
analyses the event chain on an event basis. It relates
reason to impact and generates bottleneck indicators
from that information. Those are called ‘logistic
opponents’.

The OMB enables the analysis of both the logistical
interrelations and the impact of turbulence. Moreover, it
can be used for the quick and reliable modelling,
simulation, quantification, evaluation and implementation
of the measures intended for goal-oriented change. The
simulation model has a ‘perfect’ production data
capturing system (PDC). This fact enables extended
analysis based on event data that is usually unavailable
without simulation.

2.1 Fields of Application

The OMB can be used in a variety of ways. Its main
focus is on decision support and analysis of to-be
scenarios during the design phase of a logistic system:

e As a design tool to change existing factories or to
plan new ones: to design processes, capacities and
order management strategies in consideration of cost
and logistic efficiency.

e As a design tool to support the configuration of
supply chains: to select production sites, and to
define transportation capacities, disposition
strategies, and production and warehousing
capacities regarding the cost and efficiency of
logistics.

e To dimension the customer order decoupling point:
scenarios can be created to shift order decoupling
points and parameters and highlight the resulting
service quality. Thus, the interrelation between
material planning type and/or parameter, inventory
costs, guaranteed delivery date and schedule
performance can be demonstrated.

2.2 Modules of the OMB

Modelling

The structural data and all parameters can be entered
either directly into the database or via a specific
graphical front-end. There are several versions of the
‘modelling’ module. On the one hand, the ‘team based
computer supported planning environment’ [1] can be
used as an input medium. On the other, a modelling
environment was created employing the value stream
symbols [2].

Simulation

The tool OMB is based on the paradigm of discrete
event simulation. As simulation environment, eM-Plant
(formerly known as ‘Simple++’, originally developed at
the IPA [3]) is used. On top of that platform, a library of
complex building blocks was developed. To give two
examples, there is a building block ‘PPC’, that
encapsulates all the backward scheduling mechanism
and bill of material explosion used for MRP based
planning. Another building block is the supplier, which
encapsulates the delivery performance for different
articles. There has been similar work done, but the
special requirements for turbulent environments (e.g.
capacity flexibility) have been omitted [4].

Model creation

During the modelling of a scenario, a descriptive,
relational model is generated in the database. Based on

the predefined simulation building blocks and during the
automatic generation of the simulation model, the
database information is used to create the complex
structure of the simulation model. This approach was
already applied in other environments [5][6]. The result is
a model consisting of suppliers, producers, customers
having on the upper level the material flow restrictions.
The producer nodes consist of the configured planning
level and an execution level comprising all work centres
and stocks.

3 FACILITY LAYOUT PLANNING SYSTEM

Facility layout planning is usually the task of one or two
experts in a company. Thus, the knowledge of the
people from areas actually concerned is only
insufficiently considered and their approval neglected.
Small wonder that acceptance is low and the expertise of
the shop floor workers remains by and large untapped.
Often, the facility layout planning software (e.g. CAD
applications) can only be used by experts. As a result,
planning is first done on paper before being entered into
the data processing environment, causing media
discontinuities and bringing waiting time after it.

The team-based approach makes it possible to optimise
factory planning and achieve staff participation, reduce
waiting time and planning time, and simplify usage. The
solution is to let all persons concerned jointly solve the
planning task with the help of one software environment.
This kind of support is provided by the planning table,
which allows to visualise and document the planning
process with 2D and 3D images, thus making it available
for further internal data processing activities.

2-D Projection
A beamer is used to project an
image of the planning area on
to an ordinary table

3-D Projection e ///
Athree-dimensional

view of the planning
area will be projected

oihe wall

2-D-Projeltip

Image Return

The picture reflected on the
table is then retumed via a
camera mounted beside
the projector

Figure 1: The planning table.

The use of the planning table (Figure 1) reduces
planning time and simplifies coordination between
persons involved and concerned, avoids media
discontinuities, cuts down the error rate, and eliminates
any coordination effort in transferring planning results
from paper to digital media.

The resulting layout — generated by the planning table —
has to be evaluated against production data. Therefore,
the Facility Layout Planning System (FLPS) uses a
simulation tool. The material flow matrix acts as input for
the simulation, which describes how much of a product
in tons have been transported from one machine to
another. This material flow data is calculated by the
product data acquisition information contained in the
product orders of the OMB. For this purpose an
integration of both systems is necessary. Before the
integration scenario is explained, the data integration
system is presented that integrates both systems (OMB
and FLPS).

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

4 THE DATA CHANGE PROPAGATION SYSTEM

4.1 Motivation for Data Change Propagation

The integration of the systems introduced above can be
achieved by two approaches. The first one is to manage
a central data store that feeds the two systems with their
data. This approach is often infeasible or too expensive.
The second one is to keep the autonomy of the systems
by storing the data locally and managing the changes of
overlapping data, so that the integrated systems can
operate on the same data. Such an approach should be
able to process the data changes through a data change
mechanism. We call a system, which implements this
flexible approach Data Change Propagation System
[71(8][9]-

The weakness of the first approach is the difficulty to
agree on a common model for the integrated systems,
derived from the heterogeneity of their IT infrastructures.
For two systems it is still possible to find the common
model, but in an enterprise with many applications and
information systems it is difficult to find a global model.
As described before, a transformable enterprise has to
react quickly to turbulent market changes in order to
attain the competitive advantage. These changes have
an effect on the applications and information systems
and their stored data. An adaptation to a global and rigid
model is often difficult and costly.

The second approach, the integration of the systems by
propagating the changed data, is appropriate for our
purposes. The integrated systems remain autonomous
ensuring that the systems are flexible enough to handle
the required changes in a turbulent environment.

4.2 Overview of the Data Change Propagation
System

The goal of the data change propagation process is to
handle the data changes in one system and to forward
the changed data to interested systems. A system is
interested in a data change if it has to manage the same
information locally. Due to system heterogeneity the data
can vary in structure and the type of data storage. As we
explain in the integration scenario in Section 5, the data
can even have different granularity, e.g., one system
stores the price of products and another system
maintains the sum of these prices. The system where
the data change occurred is called source system and
the system, which is the recipient of a data change, is
named destination system. A system can be a source
and a destination at the same time. Based on the
necessity to manage the same data, a dependency is
defined as the “path of a propagation” from a source
system to several destination systems.

There are three kinds of changes that can occur in the
data: insert, update and delete. The destination systems
have to be notified on the changed data and change
type (insert, update and delete), so that the destination
system can adapt their data accordingly.

4.3 System Architecture

Based on the approach presented above we developed
a system called Data Change Propagation System. It
consists of the following main components (Figure 2):
the Repository, the Dependency Manager, the
Propagation Manager, and the Queue Manager. The
integrated systems are connected to the Propagation
System by components called adaptors.

We envision now another component called Exploration
Manager, subject for our future work, which analyses the
propagated data by using business intelligence methods.
The goal of such a component is to find chains of
propagation, i.e., the fact that a propagation is followed
by another one. These chains are the underlying
business processes.

’—‘| System ||—’—‘| System ||—

Adaptor Adaptor
~
Dependency Propagation PN Queue
Manager Manager Manager

~—
Repository

Figure 2: The architecture of the Data Change
Propagation System.

The Repository

The Repository, the core component of the architecture,
stores all information required for the data change
propagation: the dependencies between systems, the
associated propagation scripts and transformation
scripts, the XML Schemas [10] of the systems and other
relevant information about the connected systems.

The dependencies describe the paths of change
propagation from a source system to multiple destination
systems. The propagation scripts define the steps of
processing the changed data: filtering, transforming and
routing. These propagation scripts are explained in detail
in Section 4.4. The transformation from the source data
to the destination data is specified by the transformation
scripts, described in Section 4.5. The structure of the
propagated data is defined by the XML Schemas of the
systems. The usage of XML Schemas allows the
detection of errors in the transformation scripts and
wrong data propagation from the source systems by
checking the propagated data against these schemas.
The system information contains basic data about the
connected systems like the name and description of the
system.

The Dependency Manager

The Dependency Manager is the design-time tool of the
Data Change Propagation System. It handles the
creation and updates of the information stored in the
Repository. The Propagation Manager uses this
information to propagate the changed data.

The Dependency Manager consists of two components,
the Schema Editor and the Dependency Editor.

The Schema Editor manages the systems, the queues
and the XML Schemas and stores them in the
Repository. Like the Dependency Editor it has a
graphical user interface that can be used to easily create
all needed information.

The Dependency Editor is used to create and update all
information related to a dependency. This information is
the dependency itself, the propagation scripts and the
associated transformation scripts. Additionally, it stores
information about the connections among the scripts.
This information must be kept consistent with the
information stored in the scripts. Therefore, the
Dependency Manager parses the edited scripts, extracts
the information and writes this information in the tables
of the repository.

The Dependency Manager is a tool that creates all
scripts in text format. The propagation scripts can also
be edited in a graphical notation. This notation is intuitive
and easily to use and understand.

The Propagation Manager

The architecture of the Propagation Manager is
illustrated in Figure 3. It consists of three main

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

components: the Propagation Engine, the Filter and the
Transformer.

Propagation Engine

(XRL+)
Filter Transformer
(XPath) (XSLT)

Figure 3: The architecture of the Propagation Manager.
The terms in parenthesis show the technology
employed.

The core component is the Propagation Engine, which
executes the propagation scripts. Before these scripts
are executed, a message from the source system has to
be written into the input queue of the Queue Manager.
The Propagation Manager reads the message and loads
the appropriate dependency. This dependency is
selected based on information from the message header
regarding the source system and the schema. The
associated propagation script is also read from the
Repository. Then the Propagation Manager delivers the
script to the Propagation Engine for execution. If the
engine encounters instructions for filtering or
transformation, then the Propagation Engine calls the
Filter or Transformer. The transformation scripts are
obtained from the Repository.

The Queue Manager

The Queue Manager manages three types of queues:
the input queue, where the systems or the adaptors
store the changed data, the output queues, where each
system receives the changed data and processes it
accordingly, and the internal queues, used to store
intermediate results of the propagation process.

A queue is a data store used to exchange messages
asynchronously, i.e., the receiver of such a message
does not have to be available or waiting for a message
when a message is sent. The message is stored
persistently in the queue, with the advantage that a
system crash can occur and the message is still
available.

The Java Message Service (JMS) [11] implements the
interface to these queues. For the implementation of
JMS and the queues, the reference implementation from
SUN Microsystems is used.

A JMS message contains three parts: the header, the
properties and the body. The header consists of a
predefined set of attributes, which describes the
message. For instance, JMSDestination and
JMSTimestamp are attributes that are defined in the
header. The JMSDestination defines the name of the
destination system and JMSTimestamp, the time when a
message has been sent. Attributes that are important to
describe a message, but are different from the header’s
default attributes are set in the properties part. An
example of such an attribute is the type of change. As
already mentioned, there are three different types of
change: insert, update and delete of an object. The body
of the message contains the data of the changed object.
The contents of this message body is an eXtensible
Markup Language (XML) document.

4.4 Propagation Scripts

The propagation scripts are created by using the
eXchangeable Routing Language Plus (XRL+). This is
an extension and adaptation of the workflow description
language XRL [12][13], developed at the University of
Eindhoven, according to the purposes of the data
change propagation process. Before we describe the

constructs of this language, we highlight the newly
introduced elements:

¢ TRANSFORM (xml_in, xml_out, xslt),
e FILTER (xml_in, xml_out, xslt),

e MESSAGE_EVENT (system, schema, xml_out,
change_type), and

o PROPAGATE (system, schema, xml, change_type)

The attributes of the elements above have the following
meaning: xml, xml_in and xml_out refer to XML
documents that are processed by the command. Xslt
represents the name of the transformation script. System
refers to the identifier of the source or destination system
and schema to the corresponding identifier of the XML
Schema, which describes the propagated data changes.

These new elements have the following meaning.
TRANSFORM converts a source document into a
destination document described by the transformation
script. The FILTER instruction discards all XML
documents that do not fulfi a specified Boolean
expression. The Boolean expression is formulated in
XPath [14], a language for accessing and evaluating
XML documents. MESSAGE_EVENT represents an
event, fired when a message from the specified system
and schema has been written in the input queue of the
propagation manager. Furthermore, an optional attribute
for the type of change can be specified. This attribute
indicates to wait for a message with a certain type of
change (insert, update or delete). PROPAGATE writes
the specified XML document into the output queue
belonging to the destination system specified in the
statement. The optional attribute change_type overwrites
the change type. For example, this can be used to
implement a propagation of bills of materials (BOM) from
a Product Data Management System (PDM-System) to
an ERP-System. The PDM-System stores BOMs through
all steps of the product development life-cycle, while the
ERP-System stores just the BOM involved in the
production process. The update of a BOM in the PDM-
System from the development state to production state
will lead to an insert of this BOM in the ERP-System.

The XRL statements used for our approach are:
e waiting for events,

e timer events,

o parallel and sequential execution,

e conditional execution,

¢ |oops, and

e termination of propagation processes.

The waiting instruction indicates to wait for one of two
types of events: the message events and timer events.
Message events have been presented above. The timer
events represent events that are fired when the specified
time interval has been finished or the specified point in
time has been reached. The timer events make it
possible to realise timeouts for message events. The
instructions can be executed in sequential or parallel
order. The execution of instructions can be associated
with a condition that is realised as the implementation of
the filter element using XPath. There are two branches
of the conditional execution, one if the condition is true
and one if false. There is also a while construct, which
can be used to realise loops. This instruction is
combined with a condition. If this expression is false the
loop will stop the execution.

An example of a propagation script and its usage is
given in Section 5.

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

4.5 The Transformation Scripts

The transformation scripts are implemented using the
eXtensible Stylesheet Language Transformations
(XSLT) [15]. XSLT is a language, which describes the
transformation from XML documents to other XML
documents or HTML documents. This is based on
transformation rules specifying how an XML-Tag is
transformed. Such an XSLT document contains a set of
these rules and is processed by an XSLT-processor, e.g.
Apache Xalan, which is used in our approach. The
XSLT-processor tries to find a transformation rule for the
root tag. The transformation rule can contain a command
for selecting other rules. This makes it possible to
process the XML tree representing the source document
recursively.

An advantage of using XSLT is the wide availability of
processors and tools like debuggers and graphical
mapping tools. The debugger allows a step by step
execution of a transformation script and the graphical
mapping tool enables a user to create these scripts by
drag and drop mechanism from the source schema to
the destination schema.

XSLT can handle powerful transformations as is shown
in the integration scenario. Additionally, the XSLT
stylesheet can be extended with new functionality like
Java methods invocations.

5 INTEGRATION SCENARIO

This section details the integration of our two systems of
a transformable enterprise: the Order Management
Bench (OMB) and the Facility Layout Planning System
(FLPS). These two systems operate partly on the same
data, but on a different granularity. First, we give an
overview of the integration process. Second, we
describe the processing of the production orders. Third,
we give an example for a production order in XML and
the resulting procedure call based on the Simple Object
Access Protocol (SOAP) [16]. Finally, we present the
used propagation and transformation scripts.

5.1 Overview of the Integration Scenario

There is a certain amount of information that can
logically be shared between the Order Management
Bench and the Facility Layout Planning System, e.g.,
information about the capacity of the resources needed
in both systems. Having a closer look at the nature of the
two problems brings up the differences: While layout
planning works on “rough data”, the order management
process needs much more detailed information. While
the layout planning regards capacity of a machine as a
static mean value that is used to calculate the overall
output of a machine, the Order Management Bench has
to deal with capacity flexibility and therefore needs
information about different possible shift models.

As a general effect, the data processed by both tasks is
very similar, but has differences regarding the
granularity.

Since both tools are tailored to their problem domain, the
underlying data models are different. For an online
exchange of data, a transformation and adaptation of the
changed data is needed.

Vital information for both systems represents the
material flow: While layout planning usually needs
information about the material flow between machines in
terms of e.g. tons per day, represented as a material
flow matrix, order management bench requires much
more in depth analysis of the structure of the material
flow and therefore handles individual work orders of the
production site.

The situation becomes more complex when the tools
(OMB and FLPS) need to have an online connection to
reflect the results. We assume, that the OMB is used to
simulate the basic decisions of layout planning and order
management in an abstract way, without visualisation.
During the simulation, the dynamic behaviour has to be
presented in the visual environment of the FLP system.
For this purpose, the volume or weight of individual
orders in the OMB have to be aggregated for a short
interval.

This example is used to give an impression of the
problem domain and how our Data Change Propagation
System solves this problem.

Propagation

OMB Manager FLD

Figure 4: The general flow of an order from the OMB to
the FLP system.

Figure 4 illustrates the flow of a production order from
the Order Management Bench to the Facility Layout
Planning System. A new order arrives and the OMB
processes it. An order contains information about the
processing steps and the associated machines. The
Propagation Manager uses this information to provide an
appropriate material flow matrix. The Propagation
Manager calls a function of the interface implemented by
Facility Layout Planning System. The pure data from the
production order is transformed into the call of the
function add2MFM (add to material flow matrix) with a
material flow list as its argument. The FLP system adds
this new information about the material flow of the new
order to the material flow of all orders. Additionally, the
Facility Layout Planning System offers functionality to
initialise and clear the material flow matrix.

The following sections detail the scenario of the
production order transformation.

5.2 The processing of production orders

Before the processing of production orders starts, the
FLP system has to initialise the material flow matrix. This
is done by the call of the init function of the interface,
offered by the FLP system. This function clears all
entries in the material flow matrix. This function call is
handed over to the FLP system without any further
processing in the Propagation Manager.

While the condition of processing production orders is
true, a loop is executed. The first task in this loop is to
send a reset event to the FLP system. This event is also
sent to the FLP system without any further processing.
The second task is to execute another loop for a certain
time period. This period was specified by the FLP
system in an initial message to the OMB. Thus, the FLP
system can specify the time interval for the material flow
matrix calculation.

As a first step of this loop the actual production order is
sent to the FLP system. But the destination system does
not know what to do with the production orders.
Therefore further processing is needed in the
Propagation Manager. First, it filters out all orders that
are not needed for the calculation of the material flow
matrix. These are represented by orders with low priority.
Afterwards, the Propagation Manager calculates a
material flow list (MFL) by using the transformation script
“Order2MaterialFlowList”. We use a material flow list
instead of a material flow matrix, because matrices
cannot be encoded directly in an XML document. These
data have to be added to the temporal matrix stored in
the FLP system. There is a need for a procedure call that

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

implements the adding, but the calculated MFL
represents pure data, so the Propagation Manager has
to transform this data into a procedure call. This is done
by a second transformation script. The result is
forwarded to the FLP system. The FLP system uses the
propagated information to add the transport information
to the local stored material flow matrix. The loop is
repeated as long as orders arrive for the specified time
span.

The algorithm for calculating the material flow matrix in
pseudo code is sketched in Figure 5.

CalculateMaterialFlowMatrix()
Send InitProcessing();
While(ProcessingProductionOrders)
Send Reset_Event;
While(ProcessingInATimeWindow)
Send Order;
Filter low priority orders;
Transform Order2MaterialFlowList;
Transform to FunctionCall;
Send to FLP-System;
End While
End While

Figure 5: The calculation of the material flow matrix.

5.3 From Data Propagation to Procedure Calls

As mentioned before, the Order Management Bench
(OMB) needs to call a procedure like add2MFM, which is
not called directly by the OMB. Instead the OMB sends
new production orders to the Propagation Manager,
which transforms it into a procedure call.

Since the Propagation Manager uses XML technologies
for its implementation, we decided to employ further XML
technologies for calling procedures in the Facility Layout
Planning System. There are two specifications for
executing remote procedure calls (RPC) that are using
XML for procedure marshalling. These technologies are
the Simple Object Access Protocol (SOAP) [16] and
XML-RPC [17].

XML-RPC is a lightweight protocol for calling RPCs over
HTTP. It contains the name of the called procedure and
a list of parameters, which are just specified by a data
type and a value. The names of the parameters are not
specified. The parameters can be of a scalar type or
structures. Additionally, the specification defines how a
procedure returns values that are written in a HTTP-
Response and how errors are handled to the client.

A more complex protocol for calling RPC encoded in
XML is SOAP. The advantage of SOAP over XML-RPC
is that SOAP is not fixed to one protocol. It can be used
together with HTTP or other protocols and transport
mechanism. So the SOAP RPC can be used in
conjunction with our transportation system, i.e., the
message queues.

Another possible way is to develop an own approach for
encoding an RPC. This can be done for example by
using the header and properties fields of the propagated
messages. Such a field can be the ProcedureName and
a field for highlighting if the transported message is a
RPC. This approach has two significant disadvantages:
first, our transformation approach cannot be used to
transform from data to a procedure call by the usage of
transformation scripts, and second, there is no tool
support available. These are the main reasons based on
which we are using a standard for encoding RPCs. As
we show later, the transformation scripts can be used to

transform from data to RPCs encoded in SOAP, but it is
also possible to have XML-RPC as target encoding style.

As already mentioned we can use SOAP together with
our message queues. This is not possible for XML-RPC.
A further weakness of using XML-RPC is represented by
the use for parameters descriptions only the data types
and their corresponding values. The missing parameter
names induce here ambiguity on the semantic.
Additionally, SOAP offers advanced features, like
support for transactions and client state. An advantage
of XML-RPC is the simple encoding of RPCs. Based on
the arguments presented above we decided to use
SOAP for RPC encoding.

5.4 Example for a Production Order and the
Resulting Procedure Call

<ProductionOrder>
<Planned_Due>11.02.2002</Planned_Due>
<Planned_Start>09.02.2002</Planned_Start>

<Product> ... <Weight>20 kg</Weight></Product>

<Amount>200</Amount>
<BillOfMaterial>... </BillOfMaterial>
<Routing>

<Operation seqNo="01" Resource="M001"
start="09.02.2002” finish="09.02.2002" ... />

<Operation seqNo="02" Resource="M005"
start="10.02.2002” finish="11.02.2002" ... />

<Operation seqNo="03" Resource="M007"
start="11.02.2002” finish="11.02.2002" ... />

</Routing>
</ProductionOrder>

Figure 6: An example of a production order.

Figure 6 illustrates an example of a production order that
is sent from the Order Management Bench to the
Propagation Manager. At the Propagation Manager the
production order is transformed into a MaterialFlowList.
This list is used by the Facility Layout Planning System
to calculate the material flow matrix. For this calculation
of transportations the sequence of operations is
analysed.

Figure 7 illustrates the encoding of a procedure call for
the procedure “Add2MaterialFlowMatrix” using SOAP. It
consists of three parts: the envelope, the header and the
body. The envelope contains the two other parts. The
envelope root tag defines the SOAP namespace
(xmIns:soap="..."), used to group element tags that
belong to each other. Additionally, the envelope defines
the type of encoding.

The header block of the SOAP document can contain
information about transactions, client state and more.
This extra information is not needed in our scenario and
since the header block is optional, we omit it here.

The body contains the payload of the transported RPC.
The RPC is encoded by the name of the procedure
(“Add2MaterialFlowMatrix”) and the arguments. Here we
have one argument “MaterialFlowList”. This list is
calculated by a transformation from the corresponding
production order and consists of multiple entries with
transport information. The transport information
represents the source and destination of a transportation
step, the transported part and the amount of transported
parts.

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

<?xml version="1.0"?>
<soap:Envelope
xmins:soap=
"http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle=
"http://www.w3.0rg/2001/12/soap-encoding”>
<soap:Body>
<Add2MaterialFlowMatrix>
<MaterialFlowList>
<MFLEntry start="M001”
destination="M005™
amount="4000 kg"/>
<MFLEntry start="M005”
destination="M007"
amount="4000 kg"/>

</MaterialFlowList>
</Add2MaterialFlowMatrix>
</soap:Body>
</soap:Envelope>

Figure 7: Resulting procedure call.

5.5 The Propagation and Transformation Scripts

Figure 8 illustrates the propagation script in a graphical
notation. The propagation script implements a part of the
algorithm that has been introduced above. It implements
the tasks done by the Propagation Manager.

Wait for
MessageEvent
OMB.PO

Filter
PO.priority != low

Transform
PO2MFL

'

Transform
MFL2Procedure

Propagate
FLD-System.add2MFM

Figure 8: The propagation script.

The first statement in this propagation script is a wait for
a message arrival in the input queue from the OMB
system. It contains the type of data representing a
production order (PO). If such a message has been put
in the input queue, it will be read and the filter statement
will be processed on this input data. The input data is
discarded when the priority of the production order is
low. This statement is followed by a transformation that
is used to calculate the material flow list. The

transformation is followed by another one, which
transforms the pure data in a procedure call using the
SOAP mechanism. This step encodes the procedure call
in an XML format. Finally, the propagation statement
writes the SOAP document into the output queue of the
FLP system.

The simplified transformation script for the calculation is
presented in Figure 9. This script is formulated in a
pseudo code for ease of presentation. There is one
transformation rule defined for the element
“ProductionOrder”. In this rule, the output element
“MaterialFlowList” is generated. Then the total weight is
calculated from the amount of products that has been
produced and the weight of the product. This information
is used as a hint for the transportation weight. After this
calculation a loop is executed over all operations starting
from the second operation. Then the transport path is
calculated by getting the previous machine (resource)
and the current resource. For this transformation script
we assume that the operations of the production order
are in sequence order. If not the operations have to be
sorted by the sequence number.

TransformationRule match="ProductionOrder”
<MaterialFlowList>
TotalWeight= Amount*"Product/Weight”
Foreach “Routing/Operation” StartPosition=2
<MFLEntry start="./preceding/Resource”
destination="./Resource”
amount="$TotalWeight"/>
End Foreach
</MaterialFlowList>
End TransformationRule

Figure 9: The transformation script PO2MFL.

The transformation script MFL2Procedure (Figure 10) is
composed of one transformation rule that handles the
addition of SOAP specific elements. In our example, this
consists of the procedure name
(Add2MaterialFlowMatrix). Inside the procedure name
the argument MaterialFlowList is obtained, respectively
copied, from the source document.

TransformationRule match="MaterialFlowList”
<soap:Envelope
xmins:soap=
"http://www.w3.0rg/2001/12/soap-envelope”
soap:encodingStyle=
"http://www.w3.0rg/2001/12/soap-encoding">
<soap:Body>
<Add2MaterialFlowMatrix>
CopyFromSource “MaterialFlowList”
</Add2MaterialFlowMatrix>
</soap:Body>
</soap:Envelope>
End TransformationRule

Figure 10: Transformation script MFL2Procedure.

6 CONCLUSION AND FUTURE WORK

Based on the new agile manufacturing techniques, the
production systems need a flexible, loosely coupled
approach to propagate data changes between
information systems while preserving their data
management autonomy. We suggest a software
component, called Data Change Propagation System,
that manages dependencies between data stored in

The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June 2003, Saarbruecken, Germany

potentially different schemas, but only the data schemas
of the systems connected to the Propagation Manager
are stored in a repository. The Propagation Manager
transforms an XML input message into an XML output
message based on a transformation specification that
has been defined for a data dependency. Such a
transformation can be composed of several smaller
transformation activities (XSLT scripts). By employing
script templates, our approach allows for a reuse of
transformation code for many dependencies.

In some situations it is useful to prevent data
propagation. This can be achieved by applying
constraints (XPath expressions) on the message input or
on the intermediate results of transformations.

Furthermore, we developed a way of transforming
propagated data into procedure calls by employing the
Simple Object Access Protocol (SOAP). This is used to
integrate to production systems: the Order Management
Bench and the Facility Layout Planning System. These
systems are integrated by propagating and transforming
production orders, which are used to calculate a material
flow matrix.

Our current propagation approach and system
implementation manages one-to-one and one-to-many
data dependencies. We currently investigate how to
manage many-to-many dependencies using a single
XRL script. This may have positive performance effects
for the Propagation Manager because only one script
instead of several would have to be processed. We
intend to employ the XQuery language to query the
Repository. Furthermore, we plan to integrate XQuery
statements into the transformation scripts to offer even
more flexibility to the transformation process. This would
add another XML technology to our system, thus making
it an XML-dominated middleware component. As already
mentioned we are going to design a further component
of the Data Change Propagation System, called
Exploration Manager, which analyses the propagation
processes using business intelligence techniques.

7 REFERENCES

[1] Sihn, W., von Briel, R., 2000, Interactive Factory
Planning, International Conference on Manu-
facturing Engineering ICM.

[2] Mittelhuber, B., 2002, Simulationsbasiertes Wert-
stromdesign, Industrie-Management, 2002/1: 44-
47.

[3] Becker, B., 1991, Gegenstandsorientiertes Si-
mulationssystem mit parametrisierter Netz-
werkmodellierung fir Fertigungsprozesse mit
Stuckgutcharakter, IPA — IAO Forschung und
Praxis (PhD Thesis).

[4] Scholtissek, P., Glaessner, J., 1997, Exploiting
logistic potentials with a simulation-aided test of
PPC methods, Production Planning and Control,
Taylor & Francis, 8/1: 56-61.

[5] Biethahn et. al, 1999, Simulation als betriebliche
Entscheidungshilfe, Physica-Verlag.

[6] Richter, H., Marz, L., 2001, Generic simulation:
Creating the model's structure from a database,
Proc. 20th IASTED Conference Modelling,
Identification and Control, 740-744.

[7]1 Constantinescu, C., Heinkel, U., Rantzau, R.,
Mitschang, B., 2002, A System for Data Change
Propagation in Heterogeneous Information
Systems, Proc. 4th International Conference on
Enterprise Information Systems (ICEIS), 73-80

[8] Constantinescu, C., Heinkel, U., Meinecke, H.,
2002, A Data Change Propagation System for
Enterprise Application Integration, Proc. 2nd

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

International Conference on Information Systems
and Engneering (ISE), 129-134.

Rantzau, R., Constantinescu, C., Heinkel, U.,
Meinecke, H., 2002, Champagne: Data Change
Propagation for Heterogeneous Information
Systems, Proc. of the International Conference on
Very Large Databases (VLDB), Demonstration
Paper, 1099-1102.

World Wide Web Consortium, 2001, XML Schema
Part 0: Primer, available at
http://mww.w3c.org/TR/xmIschema-0

Hapner, M., Burridge, R., Sharma, R., Fialli, J.,
Stout, K., 2002, Java Message Service — Version
1.1, Sun Microsystems.

van der Aalst, W., Kumar, A., 2000, XML Based
Schema Definition for Support of Inter-
organizational Workflow. Proc. of 21st International
Conference on Application and Theory of Petri Nets
(ICATPN 2000).

Kumar, A., Zhao, Z., 1998, Workflow Support for
Electronic Commerce Applications. Proc. of
International Conference on Telecommunications
and Electronic Commerce.

World Wide Web Consortium, 1999, XML Path
Language (XPath) — Version 1.0, available at:
http://www.w3c.org/TR/xpath.

World Wide Web Consortium, 1999, XSL
Transformations — Version 1.0, available at:
http://www.w3c.org/TR/xslt.

Scribner, K., Stiver, M., 2000, Understanding SOAP
— The Authoritative Solution, Sams Publishing.
Winer, D.: XML-RPC Specification, available at:
http://www.xml-rpc.org/spec

