ContextCube - Providing Context Information Ubiquitously

Martin Bauer!, Christian Becker, J org Hahner?, Gregor Schiele
University of Stuttgart, IPVS,
Universitdtsstr. 38
70569 Stuttgart, Germany
+49 711 7816 (218 | 357 | 275 | 441)
{bauer | becker | haehner | schiele}@informatik.uni-stuttgart.de

Abstract

Sensing the state of the environment is an important
source for context-aware applications. Several approaches
exist to provide sensor information to mobile application
nodes. As the extreme cases we have pure infrastructures
and pure ad hoc networks. In order to allow sensor
platforms to serve both of these approaches, we have
designed a universal sensor platform and integrated it into
an infrastructure-based approach as well as into ad hoc
networks. In this paper we discuss the requirements on
such a platform, the design, and the experiences.

1. Introduction

Sensing environmental conditions, such as tempera-
ture, humidity or light conditions, 1s - besides location
information - an important source of context information.
Several approaches exist to provide sensor information to
mobile application nodes. As the extreme cases we differ-
entiate pure infrastructure-based systems and pure ad hoc-
based systems. In an infrastructure-based system, a special
context infrastructure is responsible for collecting, storing
and offering context information to application nodes. This
infrastructure is missing in ad hoc-based systems. Here
mobile application nodes access sensors in their vicinity
directly using short range communication technologies,
store the context information locally and distribute it
among other mobile devices while moving around. We will
provide a more detailed discussion of these two models in
the system model section.

To allow interoperability among the various sensor
sources, a common protocol is needed to uniformly access
sensor information provided via an infrastructure or via an
ad hoc system. In a large-scale project - the Nexus project
[7] - we are developing an infrastructure that provides
access to various kinds of information embedded in mod-
els of the real world ranging from simple models to highly

detailed 3D models. In order to access and model this
information we have developed two XML-based lan-
guages, AWQL and AWML - the Augmented World Query
Language and the Augmented World Modelling Language.
In parallel to that we investigate the information exchange
in plain ad hoc networks.

To evaluate the feasibility of using AWQL and AWML
for simple sensor devices, we have developed the Context-
Cube, an autonomous sensor device that is deployed in the
environment and offers context information. If a sensor
device provides access to its information using AW QL and
AWML, mobile devices can retrieve this information and
the device can also be easily integrated into the Nexus
infrastructure.

The paper is structured as follows. First, we will dis-
cuss requirements on a context-retrieving platform that can
feed infrastructures as well as ad hoc-based systems with
sensor information. After that, the design of the Context-
Cube is presented. We will discuss the integration of the
ContextCube into the two system models before related
work 1is presented. The paper closes with a conclusion.

2. Requirements

First we will discuss the two system models: infrastruc-
ture-based and ad hoc-based. Briefly, a hybrid system
model is sketched. Then the requirements on the integra-
tion of a context sensing device into these system models
are presented.

2.1 System Model

At two extremes, infrastructure-based and ad hoc-
based systems both provide a foundation for context-aware
computing. In both cases, we assume users to carry mobile

! Martin Bauer is funded by Microsoft Research, Cambridge, UK
2 Jorg Hahner is funded by the Gottlieb Daimler and Karl Benz Founda-
tion, Ladenburg, Germany

application devices, on which context-aware applications
are executed. Sensors, either placed in the environment or
attached to the mobile devices obtain sensor information.
In the future, we expect that sensors will be deployed in a
large number providing information about light, tempera-
ture, humidity and other environmental conditions. Manu-
factured in large quantities, they may become as cheap as
an electric bulb and may be installed in the same way.
Plugged into a power outlet, energy is not an issue and the
sensors can operate nearly maintenance-free.

In infrastructure-based systems, like Nexus [7], TEA
[4], or the Context Toolkit [3], a specialized context infra-
structure serves as a central access point for applications
and sensors. Applications access the infrastructure to
retrieve context information. Sensors are linked to the
infrastructure to provide it with their sensor information.
Using such an infrastructure allows applications to access
context information which has been captured by sensors far
away from their current position but requires mobile
devices and sensors to be connected to the infrastructure as
all communication takes place through the infrastructure.
This can become costly, e.g. in terms of energy usage.

In contrast to this, in an ad hoc-based system the con-
text information is retrieved directly from autonomous sen-
sors in the vicinity and stored on the mobile devices. To
obtain context information that is not available locally,
mobile devices have to exchange their stored sensor infor-
mation with other mobile devices. As a result, it 1s likely
that applications will only gain access to context informa-
tion that has been captured in their physical vicinity.

Note, that the context information which is captured
and made available immediately via an infrastructure can
be considered current. In an ad hoc setting it is hard to
ensure that the most recent state of a sensor observation is
propagated. For a detailed discussion of this matter, see e.g.
[9].

A hybrid system combines both approaches, infrastruc-
ture and ad hoc-based. Sensors are connected to the infra-
structure but can also be accessed by mobile devices.
Hence, the context information can be fed both into the
infrastructure and directly to mobile application devices.

In the following, we want to look at the requirements
resulting from the integration of sensor platforms into such
a hybrid system.

2.2 Context Provision

Let us now look at context capture and the provision of
context to mobile application nodes. In the infrastructure
case, the context is captured by sensors which are con-
nected to the infrastructure via a sensor/infrastructure-spe-
cific protocol. Nodes obtain the information through an
interoperability protocol supported by the infrastructure. In

an ad hoc case, the sensors may be located on the mobile
nodes themselves. In this case, the integration of context
capture can be achieved locally on the node, even with pro-
prietary means. However, in order to provide locally stored
sensor information to other nodes, some sort of interopera-
bility protocol regarding sensor data exchange has to be
established among nodes. The same is true to obtain sensor
information from external sensor devices placed in the
environment.

As mentioned above, it is likely that ad hoc and infra-
structure-based approaches will co-exist and a sensor plat-
form should be able to serve both worlds. In order to
support applications with as much context information as is
available, mobile nodes in ad hoc networks should be able
to retrieve context information from an infrastructure, if it
can be accessed, and context information collected in an ad
hoc network should be fed into the infrastructure whenever
possible.

To allow the interoperability of sensor information - or
more general context information - exchange, a common
representation and exchange protocol is required. This pro-
tocol should be suitable for both the integration of the Con-
textCube into an infrastructure and the use within an ad
hoc-based system. As we have already developed lan-
guages that allow the modelling and querying of informa-
tion within our Nexus infrastructure, we will present the
relevant aspects of these languages in the following and
discuss how they can be applied in the scope of our Con-
textCube, thus also exploring the suitability of the
approach in an ad hoc environment.

2.2.1 Integration into the Nexus Environment. As the
goal of the Nexus project is to provide a platform for con-
text-aware applications based on an augmented model of
the real world, we have developed the Augmented World
Modeling Language (AWML) for modeling the real world
and the Augmented World Query Language (AWQL) for
querying the Augmented World Model data.

The Augmented World comprises static real world
objects such as buildings, roads and rooms, mobile objects
such as people, cars and trains, but also virtual objects such
as virtual post-its and virtual advertising columns. With
these virtual objects information from existing information
spaces like the WWW can be attached to a location in the
real world, where they are relevant, e.g. the web page with
information about a historic site can be placed at the site
itself.

All the objects in the Augmented World are modelled in
AWML. There are attributes that describe the geometry of
an object relative to a coordinate systems, others provide a
symbolic description such as a name and an address and
others again model the relation between objects such as the
part-of relation.

The objects belong to classes that are structured in a
hierarchical class schema i.e. a church 1s a building, which
In turn is a static object and a Nexus object. In order to
include the information provided by the ContextCube into
our class schema, the different sensor classes have to be
modelled, so that the sensors can become part of the Aug-
mented World.

To query the Augmented World, we have developed
AWQL. The language allows the specification of restric-
tions on the objects and attributes to be returned. Such
restrictions can be spatial such as inside and overlaps,
require certain attribute values or specify the inclusion or
exclusion of objects and attributes. Restrictions can be
combined using the boolean operators and, or and not. A
more detailed description of AWML and AWQL can be
found in [10].

Client 1 Client 2 Client n

Area
Service

Integration Federation

P Query JRC Resuit 3
(Subqueries) CParti

Register

(Partial Results

Figure 1: The Nexus Architecture

Using AWQL and AWML or, as we will see, a subset of
these languages, for the interaction with the ContextCube
allows an easy integration of the ContextCube into the
Nexus platform. The Nexus platform is built on the
assumption that there are a large number of servers holding
some part of the Augmented World Model data. A federa-
tion layer integrates information from all these heteroge-
neous sources to provide the applications with a
homogeneous view of the Augmented World. This works
as follows (see Figure 1): An application queries a federa-
tion component (using AWQL). The federation component
checks the Area Service Register for the servers that have
relevant information for answering the query. It then sends
subqueries to all the sources (again using AWQL) and inte-
grates the results of the subqueries (in AWML) into a sin-
gle result (again in AWML), which is returned to the
application.

The ContextCube can now be integrated into the Nexus
platform by registering it with the Area Service Register,
providing its location and the available sensors. If the sen-
sor information is needed for answering a query, the feder-

ation component will find the ContextCube as a source
when checking the Area Service Register. It then simply
has to query the ContextCube using its standard query lan-
guage, AWQL, and will get an answer in AWML.

2.2.2 The ContextCube in an Ad Hoc Environment. In
an ad hoc environment mobile devices can communicate
directly with any ContextCube in their transmission range
using a wireless communication interface. Thus, sensors
which are also integrated in an infrastructure can be used
directly by devices nearby which do not have access to the
infrastructure or do not want to use it, because an uplink to
the infrastructure may be too costly, either financially or in
terms of energy consumption.

In such an environment we typically have a very heter-
ogeneous set of devices. Hence, interoperability plays an
important role and can be achieved by using an open proto-
col as provided by AWML and AWQL. Using the same
protocol for both, the infrastructure and the ad hoc mode
offers the advantage of only having to implement a single
interoperability protocol for the ContextCube.

3. ContextCube Prototype

This section describes the architecture of the Context-
Cube.

3.1 Hardware

The central hardware component of the ContextCube is
the TINI platform developed by Dallas Semiconductors
[13].

Figure 2: The ContextCube prototype

It 1s equipped with 1 MB of RAM and a multitude of
interfaces such as serial RS-232, 1-Wire [14], and multi-
purpose 1/O ports. The TINI platform includes a runtime
environment to execute JAVA applications and a class
library that provides access to all hardware interfaces. Fig-

ure 2 shows the prototype setup of the ContextCube, which
currently looks more like a flat square. However, it should
easily be possible to pack the components into a nice little
cube, if the ContextCube is to be produced in larger quanti-
ties. The 1-wire interface 1s a serial master-slave bus that
provides simple and robust means of connecting sensors to
the TINI. Each 1-wire device has a 64 bit globally unique
ID that is divided into a 48 bit serial number, an 8 bit
device family code, and an 8 bit CRC. The length of the 1-
wire bus can be extended to up to 200 m and up to 100
devices can be connected to a single master [14].

The prototype of the ContextCube currently contains
sensors for temperature, humidity, brightness, light fre-
quency (to detect artificial light), and sound level.

The network interfaces to query the sensors are an
[EEE 802.11b interface in ad-hoc mode connected to the
RS-232 port of the TINI and its integrated 802.3 interface.
The application protocol described in the next section runs
on top of the TCP/IP stack of both interfaces.

3.2 Software

The ContextCube supports only the subset of AWQL
that is necessary for querying the sensor information pro-
vided by its different sensors. Additional elements of
AWQL, e.g. eclements that are used to specity spatial
restrictions were omitted.

<awql>
<scope>
<ecs name="nexus://nexusschemas.org/
ContextCube" is="cCC"/>
</scope>
<restriction>
<equal>
<attr name="type"/>
<nexusdata>CC:temperatureSensor
</nexusdata>
</equal>
</restriction>
<filter>
<includes>
<attr name="value"/>
<attr name="accuracy"/>
<attr name="type"/>
</includes>
<excludeallother/>
</filter>
</awql>

Figure 3: AWQL Query

In Figure 3 an example AWQL query is shown that
queries the current temperature value provided by the tem-
perature sensor. As specialized sensors have not been

defined as part of the standard Nexus class schema (yet),
they had to be defined as an extension. The standard con-
cept in Nexus to create such an extension is to define an
extended class schema (ecs). In this case the ContextCube
ecs defines, for example, the temperature sensor, which
extends the general sensor class of the standard Nexus class
schema. In the AWQL query, the ContextCube ecs is refer-
enced in the scope element. Then, a restriction defines that
only objects of the type temperatureSensor are to be
returned. A filter specifies that only the attributes value,
accuracy and type are of interest. All other attributes. e.g.
the timestamp of the sensor reading, are excluded. In Fig-
ure 4 the AWML result to the query is shown. Again the
scope 1s specified. The NOL (Nexus Object Locator) is the

<awml>
<scope>
<ecs name="nexus://nexusschemas.org/
ContextCube" is="ccC" />
</scope>
<nexusobject type="CC:temperatureSensor"
NOL="nexus://dvs188:80/c0017141-ccl5-
7141-0001-00603500a570/c0017141-cc15
7141-0100-00603500a570">
<value>23.3 0C</value>
<accuracy>+- 1 0C</accuracy>
<dataSource>sensor</dataSource>
<type>temperature</type>
</nexusobject>
</awml>

Figure 4: AWML Resulit

unique ID of the temperature sensor within the Nexus plat-
form. As specified in the query, the values for value, accu-
racy and type are returned.

Now that we have presented an AWQL query and an
appropriate AWML result, we will give an overview of
how the ContextCube handles incoming AWQL queries
and returns the results (see Figure 5). An AWQL query is
wrapped 1n a SOAP message and sent to the ContextCube
using the http protocol, which is currently the standard way
of sending AWQL queries in Nexus. The http server run-
ning on the TINI [15] passes the request to the AWQL
servlet that first uses an XML parser [17] to extract the
query from the SOAP message. The AWQL request is then
passed to the AWQL parser component that ensures the
validity of the enquiry and converts it to a sensor request.
The sensor request in turn is passed to the sensor worker
component, which is able to access the sensors needed for
answering the request. The AWML composer receives the
sensor readings from the sensor worker and returns an
AWML message wrapped in a SOAP envelope to the serv-
let. The servlet now passes the response to the requesting

client.

In addition to the software components discussed
above, the ContextCube needs to support a service discov-
ery mechanism to allow devices entering its transmission
range to automatically detect it and request its sensor infor-
mation. There are a number of existing approaches for ser-
vice discovery available (see e.g. [16], [12]). An approach,
that 1s especially suitable for our purpose is UPnP [16], as
UPnP, like our system, is based on XML and SOAP, and
therefore enables us to reuse the corresponding software
components. We will omit a more detailed discussion of
the service discovery process in this paper. After the Con-
textCube has been discovered, AWQL requests are sent and
processed in exactly the same way as shown above.

Awml- Sensor-
Httrferver AwqiServlet Soap-Parser Awgl-Parser Compy Worker
Init
HTTP Start
Reg
Servlet Re
Soap-Awq|
Awql
Awql
SensorReq
-
Sensor Req Sensor
Req
Sensor
Soap-Awd| readings
Resp
Servlet
HTTP Response
Resp
<SP

Figure 5: Overview of the query process

4. Applications (Integration)

This section presents two application scenarios for the
ContextCube platform.

4.1 Ad Hoc Application

The ad hoc-based access to sensors makes context-
aware applications possible even on devices that do not
have any integrated sensors. The limited communication
range of the devices involved ensures that the requesting
device is in the vicinity of the ContextCube. In many cases
this allows the assumption that the environmental context
of the device 1s similar to the ContextCube’s context. Addi-
tionally, the ad hoc mode of the ContextCube can be used
to make the context information available to devices that
are in its vicinity but too far away to communicate directly.
For such situations it has been shown that a flooding-based
information dissemination process can effectively distrib-
ute information in an ad hoc network, see e.g. [6]. An
application that makes use of such mechanisms is the
Usenet-on-the-fly [2]. Here information that is grouped
according to topics is replicated on devices in the spatial
vicinity of the source.

4.2 Infrastructure-Based Application

As we have shown, a sensor platform like the Context-
Cube can easily be integrated into the Nexus platform, so
the sensor information can be accessed, embedded into a
rich model of the real world. For the infrastructure-based
case, we assume that the mobile device on which the appli-
cation is running has a wireless connection to the infra-
structure, e.g 802.11 or GPRS. The mobile device also has
some means to determine its current position, e.g. GPS out-
doors or an infrared-based system indoors - manual posi-
tioning by the user is another possibility. Given such an
environment, an application can make use of an infrastruc-
ture-based platform such as the Nexus platform that pro-
vides context information.

5. Related Work

In many research projects on context-aware computing
the target devices have been equipped with sensors that can
be accessed locally, e.g. see [11]. This means that every
device running a particular application has to be equipped
with the appropriate sensors. Our work focuses on provid-
ing context information to devices that are either not
equipped with appropriate sensors or devices that want to
access context information of areas that are out of their
sensing range.

The Context Toolkit [3] i1s a framework for context-
aware applications. It provides three main abstractions for
context information: context widgets, context interpreters,
and context aggregators. The context widgets are the repre-
sentation of low-level context information for applications.
Context interpreters allow different application-specific
interpretations of the same low-level context. The context
aggregators are used to combine two or more widgets into
higher-level contextual information.

In the TEA project [4] researchers have developed a
self-contained awareness device to capture context infor-
mation. The device is directly attached to a user’s device
and provides information to applications running on that
device. It can, for example, be attached to a palm top, a
mobile phone, or a wearable computer. The infrastructure
of TEA provides means for sensor fusion similar to the
Context Toolkit.

The ContextCube is not intended to be attached to a sin-
gle device, but serves as an information source for different
applications over time, both in close vicinity and from
remote locations. It can serve infrastructures like TEA or
the Context Toolkit as well as being used by mobile nodes
in an ad hoc network. This, however, requires an interoper-
ability protocol for the exchange of sensor data which is
not provided by most existing approaches with the excep-
tion of the Nexus platform [10]. The languages of the

Nexus platform have not originally been designed to be
interpreted on small devices, such as sensors. But as we
have shown, subsets of the languages are suitable for the
purpose and allow an easy integration.

The Smart-Its project (e.g. [4], [8]) aims at augmenting
and iterfacing everyday items. The goal is to provide a
small and unobtrusive platform with sensors that can easily
be attached to artifacts. These sensors can exchange infor-
mation with other Smart-Its. A supporting software infra-
structure or sensor interoperability protocol has - so far -
not been realized.

6. Conclusion

We have presented requirements on a sensor platform
that can serve two approaches to provide context informa-
tion to applications on mobile devices: infrastructure-based
and ad hoc. Since both approaches exist, sensor platforms
should be capable of serving both approaches. We have
shown the design of such a sensor platform - the Context-
Cube - and discussed the integration into an infrastructure
and an ad hoc-based approach. Subsets of the XML -based
languages of the Nexus platform can be successfully used
to integrate the ContextCube into Nexus as well as provide
its information to mobile nodes.

Acknowledgements

We want to thank our student Nikolaus Horr for his
work on the ContextCube and our project partners from the
Applications of Parallel and Distributed Systems group for
developing the AWQL and AWML languages.

References

[1] Bauer, M., Becker, C., and Rothermel, K.: Location Models
from the Perspective of Context-Aware Applications and
Mobile Ad Hoc Networks. In: Workshop on Location Model-
ing for Ubiquitous Computing, UBICOMP 2001, Atlanta,
2001.

[2] Becker, C., Bauer, M., and Hahner, J.: Usenet-on-the-fly:
supporting locality of information in spontaneous network-
ing environments. In: CSCW 2002 Workshop on Ad hoc
Communications and Collaboration in Ubiquitous Comput-
ing Environments, New Orleans, USA, 2002.

[3] Dey, A., Abowd, G., Salber, D.: A Context-Based Infrastruc-
ture for Smart Environments. In: 1st International Workshop

on Managing Interactions in Smart Environments (MANSE
'99), Dublin, Ireland, 1999.

[4] Gellersen, H.-W., Schmidt, A., Beigl, M.: Multi-Sensor Con-
text-Awareness in Mobile Devices and Smart Artifacts. In:
Journal on Mobile Networks and Applications, Special Issue
on Mobility of Systems, Users, Data and Computing in
Mobile Networks and Applications (MONET), Imrich
Chlamtac (Ed.), Oct 2002

[5] Horr, N.: Entwicklung eines Gerites zur Erfassung des
Umgebungskontextes - ContextCube (in german), Studienar-
beit (study thesis) Nr. 1849 at the Department of Computer
Science, IPVS, University of Stuttgart, Germany, 2002.

[6] Ho, C., Obraczka, K., Tsudik, G., and Viswanath, K.: Flood-
ing for Reliable Multicast in Multi-Hop Ah Hoc Networks.
In: Workshop on Discrete Algorithms and Methods for
Mobility at the Fifth Annual International Conference on
Mobile Computing and Networking (MobiCom'99), Seattle,
Washington, USA, 1999

[7] Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K. and
Schwehm, M.: Next Century Challenges: Nexus - An Open
Global Infrastructure for Spatial-Aware Applications. In:
Proceedings of the Fifth Annual International Conference on
Mobile Computing and Networking (MobiCom'99), Seattle,
Washington, USA, 1999

[8] Kasten, O., Langheinrich, M.: First Experiences with Blue-
tooth in the Smart-Its Distributed Sensor Network. In: Inter-
national Workshop on Ubiquitous Computing and
Communications at PACT 01, Barcelona, Spain, 2001.

[9] Rothermel, K., Becker, C., and Héhner, J.: Consistent Update
Diffusion in Mobile Ad Hoc Networks. Technical Report
2002-04, Computer Science Department, University of Stut-
tgart, Germany, 2002.

[10] Nicklas, D. and Mitschang, B.: The Nexus Augmented World
Model: An Extensible Approach for Mobile, Spatial-Aware
Applications, 7th International Conference on Object-Ori-
ented Information Systems, 2001

[11] Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to
context than location. In: Interactive Applications of Mobile
Computing (IMC), Rostock, Germany, 1998

[12] Waldo, J.: The Jini Architecture for network-centric comput-
ing. Communications of the ACM, pp. 76-82, July 1999

[13] TINI platform:
http://www.ibutton.com/TINI/index. html

[14] 1-wire information:
http://www.maxim-ic.com/appnotes.cfm/appnote_number/
857

[15] http server:
http://www.smartsc.com/tini/ TiniHttpServer/index.html

[16] Universal Plug and Play Device Architecture, Version 1.0:
http://www.upnp.org/download/UPnPDA10 20000613.htm

[17] XML parser: http://www.wilson.co.uk/xml/minml.htm

