
Abstract
Sensing the state of the environment is an important

source for context-aware applications. Several approaches

exist to provide sensor information to mobile application

nodes. As the extreme cases we have pure infrastructures

and pure ad hoc networks. In order to allow sensor

platforms to serve both of these approaches, we have

designed a universal sensor platform and integrated it into

an infrastructure-based approach as well as into ad hoc

networks. In this paper we discuss the requirements on

such a platform, the design, and the experiences.

1. Introduction

Sensing environmental conditions, such as tempera-

ture, humidity or light conditions, is - besides location

information - an important source of context information.

Several approaches exist to provide sensor information to

mobile application nodes. As the extreme cases we differ-

entiate pure infrastructure-based systems and pure ad hoc-

based systems. In an infrastructure-based system, a special

context infrastructure is responsible for collecting, storing

and offering context information to application nodes. This

infrastructure is missing in ad hoc-based systems. Here

mobile application nodes access sensors in their vicinity

directly using short range communication technologies,

store the context information locally and distribute it

among other mobile devices while moving around. We will

provide a more detailed discussion of these two models in

the system model section.

To allow interoperability among the various sensor

sources, a common protocol is needed to uniformly access

sensor information provided via an infrastructure or via an

ad hoc system. In a large-scale project - the Nexus project

[7] - we are developing an infrastructure that provides

access to various kinds of information embedded in mod-

els of the real world ranging from simple models to highly

detailed 3D models. In order to access and model this

information we have developed two XML-based lan-

guages, AWQL and AWML - the Augmented World Query

Language and the Augmented World Modelling Language.

In parallel to that we investigate the information exchange

in plain ad hoc networks.

To evaluate the feasibility of using AWQL and AWML

for simple sensor devices, we have developed the Context-

Cube, an autonomous sensor device that is deployed in the

environment and offers context information. If a sensor

device provides access to its information using AWQL and

AWML, mobile devices can retrieve this information and

the device can also be easily integrated into the Nexus

infrastructure.

The paper is structured as follows. First, we will dis-

cuss requirements on a context-retrieving platform that can

feed infrastructures as well as ad hoc-based systems with

sensor information. After that, the design of the Context-

Cube is presented. We will discuss the integration of the

ContextCube into the two system models before related

work is presented. The paper closes with a conclusion.

2. Requirements

First we will discuss the two system models: infrastruc-

ture-based and ad hoc-based. Briefly, a hybrid system

model is sketched. Then the requirements on the integra-

tion of a context sensing device into these system models

are presented.

2.1 System Model

At two extremes, infrastructure-based and ad hoc-

based systems both provide a foundation for context-aware

computing. In both cases, we assume users to carry mobile

ContextCube - Providing Context Information Ubiquitously

Martin Bauer1, Christian Becker, Jörg Hähner2, Gregor Schiele

University of Stuttgart, IPVS,
Universitätsstr. 38

70569 Stuttgart, Germany
+49 711 7816 (218 | 357 | 275 | 441)

{bauer | becker | haehner | schiele}@informatik.uni-stuttgart.de

1 Martin Bauer is funded by Microsoft Research, Cambridge, UK
2 Jörg Hähner is funded by the Gottlieb Daimler and Karl Benz Founda-

tion, Ladenburg, Germany

application devices, on which context-aware applications

are executed. Sensors, either placed in the environment or

attached to the mobile devices obtain sensor information.

In the future, we expect that sensors will be deployed in a

large number providing information about light, tempera-

ture, humidity and other environmental conditions. Manu-

factured in large quantities, they may become as cheap as

an electric bulb and may be installed in the same way.

Plugged into a power outlet, energy is not an issue and the

sensors can operate nearly maintenance-free.

In infrastructure-based systems, like Nexus [7], TEA

[4], or the Context Toolkit [3], a specialized context infra-

structure serves as a central access point for applications

and sensors. Applications access the infrastructure to

retrieve context information. Sensors are linked to the

infrastructure to provide it with their sensor information.

Using such an infrastructure allows applications to access

context information which has been captured by sensors far

away from their current position but requires mobile

devices and sensors to be connected to the infrastructure as

all communication takes place through the infrastructure.

This can become costly, e.g. in terms of energy usage.

In contrast to this, in an ad hoc-based system the con-

text information is retrieved directly from autonomous sen-

sors in the vicinity and stored on the mobile devices. To

obtain context information that is not available locally,

mobile devices have to exchange their stored sensor infor-

mation with other mobile devices. As a result, it is likely

that applications will only gain access to context informa-

tion that has been captured in their physical vicinity.

Note, that the context information which is captured

and made available immediately via an infrastructure can

be considered current. In an ad hoc setting it is hard to

ensure that the most recent state of a sensor observation is

propagated. For a detailed discussion of this matter, see e.g.

[9].

A hybrid system combines both approaches, infrastruc-

ture and ad hoc-based. Sensors are connected to the infra-

structure but can also be accessed by mobile devices.

Hence, the context information can be fed both into the

infrastructure and directly to mobile application devices.

In the following, we want to look at the requirements

resulting from the integration of sensor platforms into such

a hybrid system.

2.2 Context Provision

Let us now look at context capture and the provision of

context to mobile application nodes. In the infrastructure

case, the context is captured by sensors which are con-

nected to the infrastructure via a sensor/infrastructure-spe-

cific protocol. Nodes obtain the information through an

interoperability protocol supported by the infrastructure. In

an ad hoc case, the sensors may be located on the mobile

nodes themselves. In this case, the integration of context

capture can be achieved locally on the node, even with pro-

prietary means. However, in order to provide locally stored

sensor information to other nodes, some sort of interopera-

bility protocol regarding sensor data exchange has to be

established among nodes. The same is true to obtain sensor

information from external sensor devices placed in the

environment.

As mentioned above, it is likely that ad hoc and infra-

structure-based approaches will co-exist and a sensor plat-

form should be able to serve both worlds. In order to

support applications with as much context information as is

available, mobile nodes in ad hoc networks should be able

to retrieve context information from an infrastructure, if it

can be accessed, and context information collected in an ad

hoc network should be fed into the infrastructure whenever

possible.

To allow the interoperability of sensor information - or

more general context information - exchange, a common

representation and exchange protocol is required. This pro-

tocol should be suitable for both the integration of the Con-

textCube into an infrastructure and the use within an ad

hoc-based system. As we have already developed lan-

guages that allow the modelling and querying of informa-

tion within our Nexus infrastructure, we will present the

relevant aspects of these languages in the following and

discuss how they can be applied in the scope of our Con-

textCube, thus also exploring the suitability of the

approach in an ad hoc environment.

2.2.1 Integration into the Nexus Environment. As the

goal of the Nexus project is to provide a platform for con-

text-aware applications based on an augmented model of

the real world, we have developed the Augmented World

Modeling Language (AWML) for modeling the real world

and the Augmented World Query Language (AWQL) for

querying the Augmented World Model data.

The Augmented World comprises static real world

objects such as buildings, roads and rooms, mobile objects

such as people, cars and trains, but also virtual objects such

as virtual post-its and virtual advertising columns. With

these virtual objects information from existing information

spaces like the WWW can be attached to a location in the

real world, where they are relevant, e.g. the web page with

information about a historic site can be placed at the site

itself.

All the objects in the Augmented World are modelled in

AWML. There are attributes that describe the geometry of

an object relative to a coordinate systems, others provide a

symbolic description such as a name and an address and

others again model the relation between objects such as the

part-of relation.

The objects belong to classes that are structured in a

hierarchical class schema i.e. a church is a building, which

in turn is a static object and a Nexus object. In order to

include the information provided by the ContextCube into

our class schema, the different sensor classes have to be

modelled, so that the sensors can become part of the Aug-

mented World.

To query the Augmented World, we have developed

AWQL. The language allows the specification of restric-

tions on the objects and attributes to be returned. Such

restrictions can be spatial such as inside and overlaps,

require certain attribute values or specify the inclusion or

exclusion of objects and attributes. Restrictions can be

combined using the boolean operators and, or and not. A

more detailed description of AWML and AWQL can be

found in [10].

Using AWQL and AWML or, as we will see, a subset of

these languages, for the interaction with the ContextCube

allows an easy integration of the ContextCube into the

Nexus platform. The Nexus platform is built on the

assumption that there are a large number of servers holding

some part of the Augmented World Model data. A federa-

tion layer integrates information from all these heteroge-

neous sources to provide the applications with a

homogeneous view of the Augmented World. This works

as follows (see Figure 1): An application queries a federa-

tion component (using AWQL). The federation component

checks the Area Service Register for the servers that have

relevant information for answering the query. It then sends

subqueries to all the sources (again using AWQL) and inte-

grates the results of the subqueries (in AWML) into a sin-

gle result (again in AWML), which is returned to the

application.

The ContextCube can now be integrated into the Nexus

platform by registering it with the Area Service Register,

providing its location and the available sensors. If the sen-

sor information is needed for answering a query, the feder-

ation component will find the ContextCube as a source

when checking the Area Service Register. It then simply

has to query the ContextCube using its standard query lan-

guage, AWQL, and will get an answer in AWML.

2.2.2 The ContextCube in an Ad Hoc Environment. In

an ad hoc environment mobile devices can communicate

directly with any ContextCube in their transmission range

using a wireless communication interface. Thus, sensors

which are also integrated in an infrastructure can be used

directly by devices nearby which do not have access to the

infrastructure or do not want to use it, because an uplink to

the infrastructure may be too costly, either financially or in

terms of energy consumption.

In such an environment we typically have a very heter-

ogeneous set of devices. Hence, interoperability plays an

important role and can be achieved by using an open proto-

col as provided by AWML and AWQL. Using the same

protocol for both, the infrastructure and the ad hoc mode

offers the advantage of only having to implement a single

interoperability protocol for the ContextCube.

3. ContextCube Prototype

This section describes the architecture of the Context-

Cube.

3.1 Hardware

The central hardware component of the ContextCube is

the TINI platform developed by Dallas Semiconductors

[13].

It is equipped with 1 MB of RAM and a multitude of

interfaces such as serial RS-232, 1-Wire [14], and multi-

purpose I/O ports. The TINI platform includes a runtime

environment to execute JAVA applications and a class

library that provides access to all hardware interfaces. Fig-

Figure 1: The Nexus Architecture

Model
Server 2

Model
Server n

Area
Service
Register

...

Federation

Client 1

Query
Decomposition

Result
Integration

Subqueries Partial Results

Query Result

...Client 2 Client n

Model
Server 1

Model
Server 2

Model
Server n

Area
Service
Register

...

Federation

Client 1

Query
Decomposition

Result
Integration

Subqueries Partial Results

Query Result

...Client 2 Client n

Model
Server 1

Figure 2: The ContextCube prototype

ure 2 shows the prototype setup of the ContextCube, which

currently looks more like a flat square. However, it should

easily be possible to pack the components into a nice little

cube, if the ContextCube is to be produced in larger quanti-

ties. The 1-wire interface is a serial master-slave bus that

provides simple and robust means of connecting sensors to

the TINI. Each 1-wire device has a 64 bit globally unique

ID that is divided into a 48 bit serial number, an 8 bit

device family code, and an 8 bit CRC. The length of the 1-

wire bus can be extended to up to 200 m and up to 100

devices can be connected to a single master [14].

The prototype of the ContextCube currently contains

sensors for temperature, humidity, brightness, light fre-

quency (to detect artificial light), and sound level.

The network interfaces to query the sensors are an

IEEE 802.11b interface in ad-hoc mode connected to the

RS-232 port of the TINI and its integrated 802.3 interface.

The application protocol described in the next section runs

on top of the TCP/IP stack of both interfaces.

3.2 Software

The ContextCube supports only the subset of AWQL

that is necessary for querying the sensor information pro-

vided by its different sensors. Additional elements of

AWQL, e.g. elements that are used to specify spatial

restrictions were omitted.

In Figure 3 an example AWQL query is shown that

queries the current temperature value provided by the tem-

perature sensor. As specialized sensors have not been

defined as part of the standard Nexus class schema (yet),

they had to be defined as an extension. The standard con-

cept in Nexus to create such an extension is to define an

extended class schema (ecs). In this case the ContextCube

ecs defines, for example, the temperature sensor, which

extends the general sensor class of the standard Nexus class

schema. In the AWQL query, the ContextCube ecs is refer-

enced in the scope element. Then, a restriction defines that

only objects of the type temperatureSensor are to be

returned. A filter specifies that only the attributes value,

accuracy and type are of interest. All other attributes. e.g.

the timestamp of the sensor reading, are excluded. In Fig-

ure 4 the AWML result to the query is shown. Again the

scope is specified.The NOL (Nexus Object Locator) is the

unique ID of the temperature sensor within the Nexus plat-

form. As specified in the query, the values for value, accu-

racy and type are returned.

Now that we have presented an AWQL query and an

appropriate AWML result, we will give an overview of

how the ContextCube handles incoming AWQL queries

and returns the results (see Figure 5). An AWQL query is

wrapped in a SOAP message and sent to the ContextCube

using the http protocol, which is currently the standard way

of sending AWQL queries in Nexus. The http server run-

ning on the TINI [15] passes the request to the AWQL

servlet that first uses an XML parser [17] to extract the

query from the SOAP message. The AWQL request is then

passed to the AWQL parser component that ensures the

validity of the enquiry and converts it to a sensor request.

The sensor request in turn is passed to the sensor worker

component, which is able to access the sensors needed for

answering the request. The AWML composer receives the

sensor readings from the sensor worker and returns an

AWML message wrapped in a SOAP envelope to the serv-

let. The servlet now passes the response to the requesting

Figure 3: AWQL Query

<awql>

<scope>

<ecs name="nexus://nexusschemas.org/

ContextCube" is="CC"/>

</scope>

<restriction>

<equal>

<attr name="type"/>

<nexusdata>CC:temperatureSensor

</nexusdata>

</equal>

</restriction>

<filter>

<includes>

<attr name="value"/>

<attr name="accuracy"/>

<attr name="type"/>

</includes>

<excludeallother/>

</filter>

</awql>

Figure 4: AWML Result

<awml>

<scope>

<ecs name="nexus://nexusschemas.org/

ContextCube" is="CC" />

</scope>

<nexusobject type="CC:temperatureSensor"

NOL="nexus://dvs188:80/c0017141-cc15-

7141-0001-00603500a570/c0017141-cc15

7141-0100-00603500a570">

<value>23.3 0C</value>

<accuracy>+- 1 0C</accuracy>

<dataSource>sensor</dataSource>

<type>temperature</type>

</nexusobject>

</awml>

client.

In addition to the software components discussed

above, the ContextCube needs to support a service discov-

ery mechanism to allow devices entering its transmission

range to automatically detect it and request its sensor infor-

mation. There are a number of existing approaches for ser-

vice discovery available (see e.g. [16], [12]). An approach,

that is especially suitable for our purpose is UPnP [16], as

UPnP, like our system, is based on XML and SOAP, and

therefore enables us to reuse the corresponding software

components. We will omit a more detailed discussion of

the service discovery process in this paper. After the Con-

textCube has been discovered, AWQL requests are sent and

processed in exactly the same way as shown above.

4. Applications (Integration)

This section presents two application scenarios for the

ContextCube platform.

4.1 Ad Hoc Application

The ad hoc-based access to sensors makes context-

aware applications possible even on devices that do not

have any integrated sensors. The limited communication

range of the devices involved ensures that the requesting

device is in the vicinity of the ContextCube. In many cases

this allows the assumption that the environmental context

of the device is similar to the ContextCube’s context. Addi-

tionally, the ad hoc mode of the ContextCube can be used

to make the context information available to devices that

are in its vicinity but too far away to communicate directly.

For such situations it has been shown that a flooding-based

information dissemination process can effectively distrib-

ute information in an ad hoc network, see e.g. [6]. An

application that makes use of such mechanisms is the

Usenet-on-the-fly [2]. Here information that is grouped

according to topics is replicated on devices in the spatial

vicinity of the source.

4.2 Infrastructure-Based Application

As we have shown, a sensor platform like the Context-

Cube can easily be integrated into the Nexus platform, so

the sensor information can be accessed, embedded into a

rich model of the real world. For the infrastructure-based

case, we assume that the mobile device on which the appli-

cation is running has a wireless connection to the infra-

structure, e.g 802.11 or GPRS. The mobile device also has

some means to determine its current position, e.g. GPS out-

doors or an infrared-based system indoors - manual posi-

tioning by the user is another possibility. Given such an

environment, an application can make use of an infrastruc-

ture-based platform such as the Nexus platform that pro-

vides context information.

5. Related Work

In many research projects on context-aware computing

the target devices have been equipped with sensors that can

be accessed locally, e.g. see [11]. This means that every

device running a particular application has to be equipped

with the appropriate sensors. Our work focuses on provid-

ing context information to devices that are either not

equipped with appropriate sensors or devices that want to

access context information of areas that are out of their

sensing range.

The Context Toolkit [3] is a framework for context-

aware applications. It provides three main abstractions for

context information: context widgets, context interpreters,

and context aggregators. The context widgets are the repre-

sentation of low-level context information for applications.

Context interpreters allow different application-specific

interpretations of the same low-level context. The context

aggregators are used to combine two or more widgets into

higher-level contextual information.

In the TEA project [4] researchers have developed a

self-contained awareness device to capture context infor-

mation. The device is directly attached to a user’s device

and provides information to applications running on that

device. It can, for example, be attached to a palm top, a

mobile phone, or a wearable computer. The infrastructure

of TEA provides means for sensor fusion similar to the

Context Toolkit.

The ContextCube is not intended to be attached to a sin-

gle device, but serves as an information source for different

applications over time, both in close vicinity and from

remote locations. It can serve infrastructures like TEA or

the Context Toolkit as well as being used by mobile nodes

in an ad hoc network. This, however, requires an interoper-

ability protocol for the exchange of sensor data which is

not provided by most existing approaches with the excep-

tion of the Nexus platform [10]. The languages of the

Figure 5: Overview of the query process

In it

StartHTTP

Req

Servlet Req

Soap-Awql

Awql

Sensor Req Sensor

Req

Awql

Sensor Req

Soap-Awql

Resp
Servlet

ResponseHTTP

Resp

HttpServer AwqlServlet Soap-Parser Awql-Parser
Awml-

Composer

Sensor-

Worker

Sensor

readings

Nexus platform have not originally been designed to be

interpreted on small devices, such as sensors. But as we

have shown, subsets of the languages are suitable for the

purpose and allow an easy integration.

The Smart-Its project (e.g. [4], [8]) aims at augmenting

and interfacing everyday items. The goal is to provide a

small and unobtrusive platform with sensors that can easily

be attached to artifacts. These sensors can exchange infor-

mation with other Smart-Its. A supporting software infra-

structure or sensor interoperability protocol has - so far -

not been realized.

6. Conclusion

We have presented requirements on a sensor platform

that can serve two approaches to provide context informa-

tion to applications on mobile devices: infrastructure-based

and ad hoc. Since both approaches exist, sensor platforms

should be capable of serving both approaches. We have

shown the design of such a sensor platform - the Context-

Cube - and discussed the integration into an infrastructure

and an ad hoc-based approach. Subsets of the XML-based

languages of the Nexus platform can be successfully used

to integrate the ContextCube into Nexus as well as provide

its information to mobile nodes.

Acknowledgements

We want to thank our student Nikolaus Hörr for his

work on the ContextCube and our project partners from the

Applications of Parallel and Distributed Systems group for

developing the AWQL and AWML languages.

References

[1] Bauer, M., Becker, C., and Rothermel, K.: Location Models
from the Perspective of Context-Aware Applications and
Mobile Ad Hoc Networks. In: Workshop on Location Model-
ing for Ubiquitous Computing, UBICOMP 2001, Atlanta,
2001.

[2] Becker, C., Bauer, M., and Hähner, J.: Usenet-on-the-fly:
supporting locality of information in spontaneous network-
ing environments. In: CSCW 2002 Workshop on Ad hoc
Communications and Collaboration in Ubiquitous Comput-
ing Environments, New Orleans, USA, 2002.

[3] Dey, A., Abowd, G., Salber, D.: A Context-Based Infrastruc-
ture for Smart Environments. In: 1st International Workshop

on Managing Interactions in Smart Environments (MANSE
'99), Dublin, Ireland, 1999.

[4] Gellersen, H.-W., Schmidt, A., Beigl, M.: Multi-Sensor Con-
text-Awareness in Mobile Devices and Smart Artifacts. In:
Journal on Mobile Networks and Applications, Special Issue
on Mobility of Systems, Users, Data and Computing in
Mobile Networks and Applications (MONET), Imrich
Chlamtac (Ed.), Oct 2002

[5] Hörr, N.: Entwicklung eines Gerätes zur Erfassung des
Umgebungskontextes - ContextCube (in german), Studienar-
beit (study thesis) Nr. 1849 at the Department of Computer
Science, IPVS, University of Stuttgart, Germany, 2002.

[6] Ho, C., Obraczka, K., Tsudik, G., and Viswanath, K.: Flood-
ing for Reliable Multicast in Multi-Hop Ah Hoc Networks.
In: Workshop on Discrete Algorithms and Methods for
Mobility at the Fifth Annual International Conference on
Mobile Computing and Networking (MobiCom'99), Seattle,
Washington, USA, 1999

[7] Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K. and
Schwehm, M.: Next Century Challenges: Nexus - An Open
Global Infrastructure for Spatial-Aware Applications. In:
Proceedings of the Fifth Annual International Conference on
Mobile Computing and Networking (MobiCom'99), Seattle,
Washington, USA, 1999

[8] Kasten, O., Langheinrich, M.: First Experiences with Blue-
tooth in the Smart-Its Distributed Sensor Network. In: Inter-
national Workshop on Ubiquitous Computing and
Communications at PACT’01, Barcelona, Spain, 2001.

[9] Rothermel, K., Becker, C., and Hähner, J.: Consistent Update
Diffusion in Mobile Ad Hoc Networks. Technical Report
2002-04, Computer Science Department, University of Stut-
tgart, Germany, 2002.

[10] Nicklas, D. and Mitschang, B.: The Nexus Augmented World
Model: An Extensible Approach for Mobile, Spatial-Aware
Applications, 7th International Conference on Object-Ori-
ented Information Systems, 2001

[11] Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to
context than location. In: Interactive Applications of Mobile
Computing (IMC), Rostock, Germany, 1998

[12] Waldo, J.: The Jini Architecture for network-centric comput-
ing. Communications of the ACM, pp. 76-82, July 1999

[13] TINI platform:
http://www.ibutton.com/TINI/index.html

[14] 1-wire information:
http://www.maxim-ic.com/appnotes.cfm/appnote_number/
857

[15] http server:
http://www.smartsc.com/tini/TiniHttpServer/index.html

[16] Universal Plug and Play Device Architecture, Version 1.0:
http://www.upnp.org/download/UPnPDA10_20000613.htm

[17] XML parser: http://www.wilson.co.uk/xml/minml.htm

