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Abstract

Pervasive computing environments are characterized by
an additional heterogeneity compared to existing comput-
ing infrastructures. Devices ranging from small embedded
systems to full-fledged computers are connected via sponta-
neously formed networks. In this paper we analyze require-
ments of applications and system software to cope with the
dynamically changing execution environment. Based on our
micro-broker-based middleware BASE a component frame-
work for pervasive computing supporting application adap-
tation is proposed.

1. Introduction

In the recent past, middleware platforms have been the
target of researchers in order to provide flexibility with re-
spect to the configuration of the middleware itself. Re-
quirements on such reconfigurable middleware systems
arose mainly from the domain of Quality of Service (QoS)
management. Different application requirements on non-
functional aspects, such as QoS, lead to mechanisms of the
middleware to ensure a distinct QoS property.

The vision of ubiquitous or pervasive computing adds
new complexity. Our everyday environment becomes pop-
ulated with smart ’everyday items’. That is, processors are
integrated into the environment and allow to access infor-
mation related to the real-world as well as to control distinct
functionality. The end systems in such scenarios are far
more heterogeneous than in classical computing environ-
ments. Sensors will only need limited computing and com-
munication capabilities and other devices will be dedicated
to a single purpose, i.e. a presentation system in a video
projector might contain a full-fledged computer but its soft-
ware is specialized for presentation management. Besides
the involved devices, the communication technology will
differ as well, ranging from infrared connections over radio

links to computers connected via static links. The result-
ing network topologies will frequently change due to user
and device mobility. Information and services available are
bound to the location of the device, e.g. temperature in-
formation or a presentation system at a far away place are
typically less interesting than those available nearby.

As a result, the requirements on adaptation and configu-
ration of the underlying middleware as well as those from
the applications change compared to those requirements al-
ready present in classical middleware systems. In this paper
we will present an example scenario, derive and motivate
requirements on middleware configuration support and ap-
plication adaptation. Our approach to support these require-
ments via a micro-broker based middleware – BASE – and
a component model based on an application framework is
then presented. After a discussion of related work the paper
closes with a summary and outlook on future work.

2. System Model

This section will first present a pervasive computing sce-
nario and two possible applications before the system model
is defined.

2.1. Scenario

Let us consider a scenario as it is common in the en-
visioned pervasive computing systems. Present in such a
scenario are embedded and specialized devices, e.g. sen-
sors providing information about temperature, position of
users or specialized systems, such as the before mentioned
presentation system. All these devices are equipped with
wireless communication. Along with these stationary de-
vices, mobile devices which are typically carried by users
are present. Such devices could be handheld devices, such
as personal digital assistants (PDAs) or cell phones, but in
the future there might be smart clothes as well. The comput-
ing environments of today will not vanish or be substituted



by these devices but complement such systems. In order to
motivate the use of such environments to applications two
possible applications are sketched:

1. Support of senior citizens: in order to support the life
of the elderly in their home, their body functions and
positions might be captured and evaluated at a desig-
nated home server. If a change in the health condi-
tion occurs, information how to behave is presented
through audio or video devices in the room where the
person currently is located. In serious health condi-
tions an ambulance is called and provided with the
health status of the person.

2. Office support: the status of rooms and objects could
be monitored by sensors and propagated into the vicin-
ity. Users nearby are thus provided with environmental
information as well as vacancies of meeting rooms etc.
Additionally, locally available services become acces-
sible when a user is nearby, e.g. a presentation system
is only of use, when the user is in the same room to
make use of its output.

Before we will derive requirements from these scenarios
the underlying system model will be presented.

2.2. System Model

Pervasive computing environments can be classified by
the involved devices and the network characteristics. Fur-
thermore, applications depend on the abstractions provided
by the underlying operating system or middleware – which
is referred to as system software. We will briefly sketch the
characteristics of these three topics in the remainder of this
subsection.

2.2.1. Devices. As stated above, devices range from sen-
sors over specialized systems to full fledged computers and
mobile devices. Besides their processing and storage prop-
erties – which may differ widely – devices provide different
capabilities which can be used by applications running on
these devices. Examples are sensors, e.g. temperature as
well as positioning, display or input capabilities, or some
controlling capability, such as dimming the light or adjust-
ing the blind of a window.

The availability of a device capability might be restricted
in space and time. A GPS sensor is not likely to work within
a building and at night sensors based on daylight will stop
operating.

2.2.2. Network. The wireless connections between the
devices differ with respect to the underlying technology and
their characteristics. The most profound difference to clas-
sical computing environments is the spontaneous nature of

such networks, which are formed by nodes which are tem-
porarily in each others communication range. Obstacles,
user mobility, and power saving are common events which
lead to a reconfiguration of a spontaneous network.

As a result, services located on a device that is not in the
current spontaneous network of a client, are not available.
This prevents the usage of centralized lookup or trading ser-
vices. During the interaction with a service, the device pro-
viding the service might leave the network. Since devices
can be equipped with different network interfaces, sponta-
neous networks will overlap, i.e. some devices might be
reachable via more than one network interface at a time.

2.2.3. System software. The support of system software
clearly may differ widely. Specialized operating systems for
embedded devices, common operating systems with mid-
dleware support, or completely proprietary solutions are
present. From an application point of view, the abstractions
how to interact with remote services – a typical middle-
ware responsibility – and how to access device capabilities,
which is an operating system task, are important in order to
be comprehensive and yet easy to use.

Another relevant issue in distributed systems in general
is interoperability which is typically achieved by relying on
interoperability protocols.Interoperability protocols reflect
the communication model of the application as it is sup-
ported by a middleware. Remote method invocations are
reflected by request/response messages while events can be
realized by one-way messages containing the event. Re-
quirements on the underlying transport, such as an error-
free connection-oriented channel, lead to a restricted usage
if only one-way communication – via an optical link, or
connection-less communication – is available.

3. Requirements

In this section we will derive requirements on the adapta-
tion of applications and its support by system software and
component models.

Applications are considered to be executed in a dis-
tributed way. Standalone applications could require adapta-
tion support as well, e.g. when a device capability becomes
unavailable (a GPS sensor indoor), but these kinds of adap-
tation requirements are a subset of the more general ones of
distributed applications.

3.1. Application Adaptation Requirements

Applications in a spontaneous networking environment
have to cope with:

Changing service and device capability availability:
With devices becoming available their services should be



used by an application. As well, if a service becomes un-
available, an alternative service should be selected. This
will only work, if applications are composed of services
with clear dependencies. If alternative levels of an applica-
tion are defined which require different services the appli-
cation can continue as long as at least one set of services is
available. Clearly, this cannot be supported by the middle-
ware alone but requires an appropriate framework for ap-
plications. The same mechanisms can be used to address
fluctuating sensor availability on a device.

Different abstractions for programming of device ca-
pabilities: Middleware and operating system abstractions
for remote services and device capabilities are typically dif-
ferent, e.g. proxy objects vs. system calls. This hardens
adaptation, since the switch of a local to a remote device
capability cannot be done with the same programming in-
terface.

3.2. System Software Adaptation Requirements

System software in a spontaneous networking environ-
ment has to support:

Device lookup and service discovery for spontaneous
networks: The device lookup depends on the underlying
network characteristics and thus requires distinct lookup
mechanisms for each supported network interface. Ad-
ditionally, services might require distinct interoperability
protocols which also depend on the network interface and
hence the service lookup will have to take this into account.
The detection of lost devices and thus the unavailability of
all services in use on that devices have to be signalled to the
application or an application framework.

Flexible protocol support and selection: If a network in-
terface looses its connection to another device, communica-
tion should be upheld if other network interfaces can pro-
vide a communication channel. Switching between differ-
ent interoperability protocols over networks with different
characteristics however requires adaptation if the underly-
ing transport does not fulfill requirements of the interop-
erability protocol, e.g. IIOP requires connection-oriented
error-free/signalling communication.

Decoupling of application communication model and in-
teroperability communication model: In order to allow
different communication links for outgoing and incoming
messages, the application communication model, e.g. RPC
or events, should be kept independent from the communi-
cation model of the possible interoperability protocols. For
example this allows communication over infrared via send-
ing out a request as an event and receiving the reply as a

reply message over an RPC interoperability protocol based
on TCP and IEEE 802.11.

Uniform abstraction for device capabilities and services:
This allows applications to access remote capabilities in the
same way as local ones. Moreover, a uniform abstraction to
access services and device capabilities allows to mask the
heterogeneity of devices.

Flexible integration of adaptation mechanisms: Since
different application requirements will need support
through mechanisms, e.g. to migrate a component to a
remote host to increase the application performance or to
migrate it to the local node in order to save energy, differ-
ent mechanisms should be easily integrated, configured, and
used either directly by an application above the system soft-
ware or by an application framework.

A system software offering the above mentioned support
is not sufficient to help application programmers to conquer
the heterogeneity and dynamics of pervasive computing en-
vironments. Instead of programming towards middleware
mechanisms and selecting distinct mechanisms manually,
application programmers should rely on high level policies
which will result in combinations of mechanisms of the
system software. Examples for such policies are ’Energy-
Saving’, leading to fostering local execution of applica-
tion components and restricting radio communication that
is costly in terms of energy, or ’Increasing-Availability’,
which would make extensive use of remote services in order
to allow the application execution – as a trade-off to energy.

What is needed in addition to a middleware supporting
the requirements stated above is an application framework
that will provide benign abstractions for choosing appropri-
ate adaptation policies. In order to support such a frame-
work, we have developed a micro-broker-based middle-
ware, BASE [2], which meets these requirements. Currently
we are developing a component system based on BASE
which will allow the specification of component dependen-
cies.

In the following we will sketch the design of BASE and
the component system, which we are currently developing.

4. BASE a Micro-broker based Middleware

Our middleware BASE is intended to be a minimal plat-
form suitable for small embedded systems but extensible to
make use of abstractions available on resource-rich environ-
ments. BASE provides application programmers with suit-
able abstractions to conquer the heterogeneity in pervasive
computing environments. Another objective of BASE is to
form a foundation for an adaptation supporting component



framework. We will briefly sketch the overall architecture
of BASE. More detailed information is available in [2].

The major design decision in BASE was to choose a
micro-broker design. Device capabilities as well as local
and remote services are uniformly accessible via invocation
objects, which carry the target object, method-name, param-
eters, and a service context indicating special handling of
the invocation, such as QoS parameters. The micro-broker
takes incoming invocations and dispatches them to either a
local service via a skeleton, a remote service via a trans-
port module which connects the local and remote device, or
to a device-local device capability. Hence, remote device-
capabilities can be accessed as services as well.

Invocation objects can be created manually or – if a ser-
vice provides a stub object – through a proxy (stub object)
as conventional middleware systems typically provide. The
micro-broker is responsible for synchronizing the caller and
issue invocations and receive possible replies as well as
an invocation. This allows the application to choose dif-
ferent communication models, such as remote-procedure-
calls (RPC), deferred synchronous RPCs, or events via
stub objects. Furthermore, the utilization of different in-
teroperability protocols becomes possible. Interoperability
protocols typically reflect the applications communication
model. However, since the micro-broker maps the appli-
cation communication model to an exchange of invocation
objects, different protocols can be used as long as they ac-
cept an invocation object and transfer it. Using the same
interoperability protocol for out-going and incoming invo-
cations is not necessary, since the micro-broker keeps track
of expected responses (modelled as invocations as well). A
scenario where a node uses two communication technolo-
gies for the out-going request and the incoming reply is de-
picted in Figure 1.

BASE allows the integration of transport plug-ins during
runtime. The dynamic invocation creation along with local
service registries provide a simple reflection mechanism.

The BASE prototype has been implemented in Java,
making it suitable for a variety of Java-enabled embedded
systems, e.g. mobile phones or the TINI-Board. A mini-
mal configuration of BASE requires 130 KBytes of mem-
ory. Due to buffer usage this can increase to a maximum
of about 400 KBytes. Still, this makes BASE suitable for
many small embedded Java-based systems. The extensi-
bility of the micro-broker allows the integration of features
available on resource-rich computing environments.

5. PCOM

The functionality provided by BASE offers a basic ab-
straction to ease application development. Still, additional
mechanisms on top of BASE are needed to enable the au-
tomatic adaptation of applications during runtime in order
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Figure 1. Request / response interaction in
BASE

to react to the changing availability of services or device
capabilities according to the current application execution
policy, e.g. to minimize the energy usage or to maximize
the dependability of an application.

To achieve this, we propose an application model based
on a component system (named PCOM). The application
model specifies the architectural building blocks (modelled
by components) and their interdependencies (modelled by
contracts between components). At runtime, this specifi-
cation is mapped to a concrete set of component instances
where all mandatory contracts are fulfilled. Hence, PCOM-
components offer a distinct functionality via contractually
specified interfaces (following the definition of [16]). The
functional properties of the contract are modelled in the
interface itself whereas additional properties, e.g. depen-
dency on another component, QoS requirements, or behav-
ioral contracts via pre- and post-conditions, are explicitly
modelled as contract types. This concept has been pro-
posed in the realm of traditional component systems, e.g.
[4, 17]. Contract types are templates for contract instances
as well as the components are templates for component in-
stances. When components are instantiated, contract types
are mapped to concrete contracts which either offer the de-
sired property, e.g. negotiate a distinct QoS property or bind
to another component, or indicate a contract violation. An
application is modelled via a special component (the so-



called application anchor) which specifies the set of nec-
essary sub-components. These components depend on each
other according to the specified contract types.

<energy policy>

size & resolution

C

application
presentation

application logic

health
monitoring

anchor
system

Figure 2. A health monitoring application in
PCOM.

A simplified example for this is given in Figure 2. Here,
a health monitoring application is shown, which outputs
information and advices whenever a suitable display is in
the vicinity. This application is formed by its application-
anchor and three sub-component instances:

Thehealth monitoringcomponent is used to retrieve sen-
sor information such as blood pressure, pulse, etc.

The presentation systemcomponent is responsible for
presenting advices for certain health conditions, e.g. to calm
down, take a distinct kind of medicine, on a display nearby.

Theapplication logiccomponent depends on these two
components. It receives sensor information from the health
monitoring component and derives advices, which it sends
to the presentation system component. For simplicity, only
the dependency between the application logic and the pre-
sentation component is shown. It is modelled as a contract
which requires distinct size and resolution of the presenta-
tion system.

Additionally, a policy regarding energy consumption is
shown, which is assigned to the application.

The application specification has to be mapped to in-
stances on devices which realize the components. The dif-
ferent components are mapped to specific services residing
on potentially different devices. Contracts between compo-
nents have to be negotiated when a binding is established.
For an example, before using or acquiring the display com-
ponent a negotiation ensures that the resolution and size ful-
fill the contract.

The policy specifying the energy consumption is taken
into account by the underlying framework when tasks that
need a lot of energy, e.g. performing calculations or access-
ing remote components, are executed. The policies lead to
configurations of the underlying BASE which will enforce
them, e.g. in selecting the transport requiring the least en-
ergy.

The mapping of application policies, the contracts, and
the binding of components deployed across different de-
vices shall be provided by the framework. Currently, we
have implemented BASE and designed the above sketched
application model. Our next steps involve the design of the
underlying framework as well as the mapping of contracts
and policies to the services and mechanisms provided by
BASE.

The overall framework will allow adaptation of appli-
cations by activating those applications where the applica-
tion anchor contract is satisfied. That is, all dependencies of
the applications can be fulfilled according to the application
policies and contracts involved. Adaptation is supported
by the mechanisms of the underlying middleware and the
selection of alternative contracts. The execution context
of an application is determined by the services available
on nearby devices and the associated component instances
from the application specification.

6. Related Work

6.1. Middleware Systems

In the past, a multitude of different middleware systems
has been developed (e.g. [8, 15]) shielding application pro-
grammers not only from distribution of services but also
different operating systems or hardware architectures. Con-
ventional middleware systems are designed for mostly sta-
ble environments, in which service unavailability can be
treated as an error, making these systems unsuitable for
spontaneous networking environments.

The latter can be achieved by extending conventional
middleware systems to dynamically reconfigurable middle-
ware systems (e.g. [1, 5, 12]), which are able to adapt their
behavior at runtime, e.g. how marshalling is done. Still,
most existing reconfigurable middleware systems concen-
trate on powerful reconfiguration interfaces and not on sup-
porting small, resource-poor devices.

The resource restrictions of such devices prohibit the ap-
plication of a full-fledged middleware system. One way to
address this is to restrict existing systems and provide only a
functional subset (e.g. [9, 13]) leading to different program-
ming models or a subset of available interoperability proto-
cols. Another option is to structure the middleware in mul-
tiple components, such that unnecessary functionality can
be excluded from the middleware dynamically. One exam-
ple is the Universally Interoperable Core (UIC) [12]. Like
BASE, UIC is based on a micro-kernel that can be dynam-
ically extended to interact with different existing middle-
ware solutions. However, different communication models
or different protocols for outgoing and incoming messages
are not supported.



6.2. Component Systems and Pervasive Computing

Component systems strive for independence of software
components from underlying platform properties in order
to allow their re-use. One way to achieve this is to model
explicit context-dependencies, e.g. via contracts between
components or contracts between the component container,
such as in J2EE [14]. Typically, the inter-component con-
tracts can be negotiated and various solutions exist, to ease
the integration into the application framework, such as the
aspect-oriented programming paradigm [1, 3]. While such
approaches can be appropriately used to handle the inter-
component contracts the component-container contract typ-
ically relies on a fixed common abstraction, making it un-
feasible for pervasive computing environments where the
container contract can change.

In the realm of ubiquitous computing the first approaches
for component based systems are emerging. While Pebbles
[10] is at a stage where it is hard to judge which require-
ments will be met, the Aura project [6] proposes a compo-
nent framework similar to ours. The resource dependency
of the Aura system is not addressed by the underlying mid-
dleware but by hand tailored resource monitors. Hence,
only a comprehensive support of adaptation at the applica-
tion layer, not on the middleware layer, is intended. Sim-
ilar to Aura, One.world [7] and the Gaia system [11] shift
the complexity of application adaptation to the programmer.
Support of the underlying middleware is only provided with
respect to communication issues.

7. Conclusion and Outlook

Pervasive computing environments differ from existing
ones in the increasing heterogeneity of devices and net-
works. The spontaneous networking leads to situations,
which are treated as errors in classical computing, but re-
quire distinct precautions since they can happen regularly.
Based on typical scenarios we have derived a system model
for pervasive computing and the support from system soft-
ware and application adaptation. We have presented an ex-
tensible middleware platform which already provides ba-
sic abstractions to ease application development. The au-
tomatic adaptation of applications should be supported by a
component model based on a framework. The basic abstrac-
tions of our middleware BASE can be used to build a frame-
work for a component model. A contract concept is not only
used to specify required properties for component interac-
tion but also to indicate application configurations leading
to a component-based application model. Adaptation of ap-
plications is reduced to validating required contracts and ac-
tivating applications where all contracts are fulfilled. Con-
tract enforcement and mechanisms to adapt are provided by
BASE.

Currently, we have designed and implemented BASE.
We are building prototypes for applications using BASE in
order to gain experience on how the framework can support
our application model. In the next steps of our work we will
aim at completing the framework.
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