
Distributed Emulation of Shared Media Networks

Daniel Herrscher, Steffen Maier, Kurt Rothermel
University of Stuttgart, Institute of Parallel and Distributed Systems (IPVS)

Universitätsstr. 38, D-70569 Stuttgart, Germany
herrscher@informatik.uni-stuttgart.de

Keywords: Network emulation, distributed emulation, per-
formance analysis, shared media, CSMA/CD.

Abstract
Comparative performance measurements of distributed appli-
cations and network protocols require the availability of ap-
propriate network environments. Network emulation
approaches offer a flexible way to mimic the properties of a
variety of networks. While there are several centralized and
distributed emulation tools available that can mimic the be-
havior of point-to-point links, shared media communication
can only be emulated by totally centralized tools so far. To
permit the emulation of large-scale mixed network scenarios,
the emulation of shared media networks has to be performed
in a distributed way also.

In this paper, we introduce several strategies to emulate
shared media networks in a distributed fashion. For one prom-
ising approach, the distributed emulation of carrier sensing,
we present a prototype implementation. Measurements show
the applicability and limitations of our solution.

I. INTRODUCTION

During the design and implementation of distributed applica-
tions and protocols, it is essential to analyze the impact of var-
ious network environments on their performance. While
mathematical analysis and simulations are commonly used in
early design stages, measurements have to endorse the theo-
retical results as soon as implementations become available.
These measurements should be conducted in various network
environments to facilitate comparative performance estima-
tions. Since it is very unlikely to have all these environments
available in real hardware, there is a strong need for synthetic
network environments that can be parametrized in order to re-
produce an original or fictitious network. The process of intro-
ducing network properties that differ from the actual
properties of the hardware in use is called network emulation.
A network emulation tool is software capable of altering net-
work traffic in a specified way. A facility consisting of a com-
bination of flexible networking hardware and suitable
emulation tools is called network emulation testbed.

There are two general approaches to network emulation:
centralized and distributed. In centralized emulation solu-

tions, all network traffic in a scenario is sent through a central
emulation tool, which can constitute a bottleneck. Therefore,
for larger scenarios, the emulation efforts have to be distribut-
ed. Various tools for distributed network emulation exist.
However, these tools focus on the emulation of point-to-point
links. Distributed emulation of networks with shared media
has not been addressed yet. While in wired networks, shared
media access protocols are becoming less important, the inter-
est in shared media wireless networking is growing. To facili-
tate the distributed emulation of complete scenarios consisting
of both point-to-point and shared media networks, we propose
several strategies for shared media network emulation to com-
plement existing emulation tools. We choose one promising
approach for a prototype implementation and provide mea-
surements that show the applicability of our solution.

The remainder of this paper is organized as follows: Section
II gives a systematic overview of the related work in network
emulation. In Section III, we discuss several possible ap-
proaches to distributed emulation of shared media networks.
Section IV explains in detail the architecture of our favorite
approach, namely the distributed emulation of carrier sensing,
and provides measurements. Section V concludes the paper.

II. RELATED WORK

All emulation approaches have in common that they connect
communicating software modules running on real machines to
certain, different positions within an emulated network sce-
nario. Since this scenario often consists of several network
links, there are two basic architectures to build the emulated
network: Either the whole scenario is emulated by one single,
central emulation entity, or several instances of an emulator
are connected together to form a comprehensive scenario,
each of them responsible for emulating its own part of the net-
work (usually, a single link).

A. Centralized Emulation
Since the simulation of complete network scenarios has been
addressed in great detail already [1], it stands to reason that
there are several efforts to reuse existing simulators for emu-
lation purposes. Simulators can work with complex network
models, including both exclusive links and shared media.

There are two basic problems to be solved to facilitate the
usage of an existing simulator core for emulation purposes.
First, common network simulators work with discrete event
schedulers. Events are processed as soon as the effects of all
prior events are evaluated. To interact properly with a real sce-
nario, however, the scheduler has to be modified to be syn-
chronized with real-time. Second, an interface for packet
capture and generation has to be provided. These issues have
already been addressed for the most common network simula-
tors [2, 3]. The real-time requirement appears to become a
problem when moving to realistic scenario sizes and band-
widths. To some extent, this can be addressed by parallelizing
the discrete event simulator [4]. Other similar approaches ex-
plicitly state that they aim at the emulation of low bandwidth
links in small scenarios only [5, 6].

B. Distributed Emulation
Since centralized emulation approaches are very limited in
terms of scenario size, it is common to distribute the emula-
tion efforts among several instances. A coherent idea is to par-
tition the emulation scenario according to the emulated
topology, leading to one emulation tool per emulated link in
the extreme case.

Most emulation tools change network properties by inter-
cepting, delaying or altering data in the protocol stack. Early
emulation attempts aim at the emulation of a single network
link only [7, 8, 9]. They differ in the parameters they can af-
fect, but have in common that the emulation parameters stay
constant during the experiments.

Recent approaches include dynamic parameter changes
[10], triggered by the replay of previously gathered measure-
ment data [11], or more generic models [12].

It is obvious that tools aiming at the emulation of a single
point-to-point link cannot be used for the realistic emulation
of shared media networks. Just connecting several instances of
separate link emulators is not sufficient, because the emulat-
ing tools would need to cooperate in order to maintain a com-
mon media model. Only with a common media model, effects
like bandwidth sharing and the dependence of throughput on
overall load can be emulated. To our knowledge, there are no
existing network emulation tools that provide the distributed
emulation of a shared medium.

C. Testbeds
Two connected machines equipped with network emulation
tools can help analyzing some aspects of e.g. a transport pro-
tocol. However, to perform measurements within more com-
plex network topologies, e.g. to analyze routing protocols,
more machines are necessary. With the growing number of
participating nodes, both the setup of the machines and the co-
ordination of the emulation tools becomes a problem, espe-

cially if the emulated scenario includes dynamic changes
during the experiment.

Emulation testbeds face these problems, as they ease the
setup and operation of emulation scenarios consisting of large
numbers of nodes and connections. “Netbed” [13] at the Uni-
versity of Utah consists of 168 PC nodes connected by a num-
ber of switches, working together as large “programmable
patchpanel” to create almost any virtual connection topology.
Special link properties can be introduced between the nodes.
Main focus of the netbed project is the efficiency and ease of
the setup process to facilitate the parallel, intensive use of the
resource by many different research groups at the same time.

The Network Emulation Testbed (NET) [10] at the Univer-
sity of Stuttgart consists of 64 PC nodes connected by both a
monolithic, programmable gigabit switch, and a separate ad-
ministration network for setup and control (see Fig. 1). Using
VLAN technology, the gigabit switch can create an arbitrary
connection topology between the nodes. Custom link emula-
tion software running on all nodes introduces the respective
link parameters. Currently, the main focus of the NET project
is the realistic emulation of high bandwidths, and real-time
link property changes.

The operation of any network testbed is based on suitable
emulation tools. Any improvement in the scope of these tools
will directly broaden the application area of network testbeds.

III. POSSIBLE ARCHITECTURES

In this chapter, we will investigate the possible architectures
for an emulation tool providing a shared media model.

A. Centralized Media Model
The straightforward way to manage a consistent media model
with several participants is to hold the model in one central in-
stance. One possible solution would be to send all transmis-
sion requests to an emulation tool instance dedicated to the

Figure 1. Hardware Architecture of the Network Emulation
Testbed at the University of Stuttgart.

E
m

ul
at

io
n

N
et

w
or

k

C
on

tr
ol

N
et

w
or

kV
LA

N
 1

V
LA

N
 2

... Node PC

Node PC

Node PC

...

1000-T

1000-T

1000-T

100-T

100-T

100-T

1000-T

1000-T
Router

Intranet
ConnectionAdministration PC

respective media. Since the central instance has the global
view of the medium, it can easily determine which transmis-
sion requests can be served at which time, and whether some
transmissions get lost. The central emulation tool could han-
dle the actual transmission to the target machine on its own
(see Fig. 2). However, because of two reasons, the originator
would need some feedback from the media model. First, some
kind of flow control is needed to facilitate back pressure to the
upper layers of the sender. Second, transmission errors that
can be detected by the sender have to be reported to the send-
ing process, e.g. if excessive collisions occur in the emulated
model.

For an exact frame-level emulation with this architecture, it
would be necessary to have perfectly synchronized clocks on
all clients. A sender that marks each outgoing frame with the
exact system time would enable the central emulation instance
to determine whether two frames from different clients have
been sent within the short time frame that would lead to a col-
lision. Clock synchronization with microsecond accuracy
would be needed to detect these effects. Clearly, this would be
an unrealistic requirement for common testbed hardware.

Existing testbeds use an emulation network featuring high
bandwidth and low latency [10, 13]. Therefore, it seems ac-
ceptable to neglect the actual transmission delays within the
emulation network, and mark the incoming frames at the cen-
tral instance with a timestamp using a reasonable accuracy.
Using this simplification, the approach appears still promising
to provide realistic results.

Apart from the inevitable additional transmission and pro-
cessing delay that is introduced by the central instance, an in-
trinsic limitation is constituted by the available bandwidth and
the processing power of this instance. However, in contrast to
the totally centralized emulation approaches mentioned in
Section II, this bottleneck would appear per shared media, not
for the whole emulation scenario.

B. Fine-Grained Centralized Media Model /
Distributed Emulation
The problem of having a bandwidth bottleneck at a central in-
stance can be faced by an approach using a central media
model, but performing the actual payload handling in a dis-

tributed fashion (cp. Fig. 3). Still, the central emulation in-
stance needs to be contacted for each medium access request.
However, the actual delivery of the frames is left to the respec-
tive sending instance.

With a combination of centralized model and distributed
emulation, the abovementioned problem of additional trans-
mission and processing delay remains. Worse yet, because the
central instance would need an additional message to signal
the media status back to a station that issued a media request,
the additional transmission delay would be doubled. The ben-
efit compared to the first approach would be the avoidance of
an upper bandwidth limit imposed by the central instance.

C. Coarse-Grained Centralized Media Model /
Distributed Emulation
The only way to take the advantages of a central media model
without introducing an excessive communication overhead is
to abandon the concept of a media model with frame level ac-
curacy. A more coarse-grained media model can also emulate
most of the characteristic effects of shared media networks,
like the correlation between load and throughput. For some
experiments (like throughput analysis), a realistic emulation
on frame level is not necessary to evaluate the typical perfor-
mance in a specific environment, but a realistic “mean” net-
work behavior will do.

Instead of keeping track of all media access requests, each
station is assigned a fraction of the available bandwidth, along
with the current values for typical medium access delay and
transmission failure probability. The local emulation tool in-
stances on each station are responsible to shape the outgoing
traffic according to these parameters. At all times, they also
keep track of the actual bandwidth usage, and whether the sta-
tion wants to send more than its currently assigned share. On
a regular basis ∆t (e.g., 100 ms), these data are sent to the cen-
tral instance. According to the gathered data and the respec-
tive media type to be emulated, the central instance can
compute a new fragmentation of the available bandwidth, and
communicate the updated emulation parameters to the respec-
tive local tools.

With this approach, the message overhead does not depend
on load and bandwidth of the emulated network, but only on

Figure 2. Centralized media model.

ACK

NACK

serverclient 1 client 2

payload

payload payload

Figure 3. Centralized media model, distributed payload
handling.

ACK

NACK

REQ

REQ

serverclient 1 client 2

payload

the parameter ∆t. This parameter can be selected according to
the required accuracy and the capability of the testbed.

While the average performance of a shared media can be
emulated with this approach, one must keep in mind that, if
observed at a fine time scale, the behavior of the emulated net-
work will differ significantly from the original. For example,
for a typical small LAN, it is a quite common situation that the
medium is idle for most of the time, with excessive bursts if
one of the participants issues a transfer. The real behavior the
sender on a medium with CSMA/CD access would experience
would be the instant allocation of the full media bandwidth.
With a coarse-grained media model like discussed above, each
potential sender will be assigned an equal share of the total
bandwidth initially while the medium is idle. It will take up to
∆t until the full bandwidth can be assigned to an exclusive
sender.

The collection of media access requests at the potential
senders appears to become another practical problem with this
approach. It would be ideal to know the media usage of a send-
er for the next ∆t period in order to get the appropriate band-
width share assigned. Of course, for an emulation tool
working at lower levels in the protocol stack, it is not straight-
forward to predict the bandwidth requirements of a sender. A
possible solution to this problem has been proposed in [14].

With this approach, it is guaranteed that the overall band-
width limitation of the emulated media will not be exceeded
at any time. On large time scales, the emulated bandwidth as-
signment will be realistic. On frame level, however, the traffic
patterns will differ significantly from the patterns observed in
reality.

D. Distributed Media Model
To overcome the limitations of a central emulation instance,
we will now propose an approach to hold the media model at
each station separately, and to emulate the media access algo-
rithms used in real shared media networks. Since the most
common approach in today’s shared media access technology
is CSMA, it stands to reason to propose an approach that em-
ulates CSMA behavior. While it would of course be possible
to emulate the behavior of distributed mutual exclusion algo-
rithms in a distributed fashion, we refrained from including
them because the technologies using these algorithms (e.g.
Token Ring and DQDB) are of decreasing importance in prac-
tice.

In the following, we describe an approach for CSMA/CD
emulation. However, we want to point out that the concept
would also be applicable to other CSMA versions.

The basic idea is to hold an up-to-date model of the emulat-
ed media at every participating station, and to keep the respec-
tive media models consistent. This can only be achieved if the
emulation tools on all stations listen to all transmissions on the
media, whether they are destined to the respective station or

not. In addition to that, again we have to assume that the trans-
mission delay in the emulation network can be neglected.

Given the above assumptions, it is possible for each local
emulation tool to maintain its own model of the emulated me-
dia. On the reception of a frame, the emulation tool can calcu-
late the time this frame would occupy the emulated media
(according to the bandwidth, which is given as parameter),
and update its local model accordingly. Frames that are des-
tined to the local machine are forwarded to upper layers, all
other frames can be discarded by the emulation tool. Frame
transmission requests by the local station are handled accord-
ing to the CSMA/CD algorithms, taking the emulated media
status into account. If an emulation tool receives an additional
transmission while its emulated media is in the “busy” status,
it can react accordingly and emulate the effects of a collision.

E. Summary
Entirely centralized emulation tools can cover the emulation
of shared media networks, but come with the well-known per-
formance problems.

The combination of a centralized model and distributed
payload management can solve these problems to some ex-
tent, but introduces additional artifacts for typical traffic pat-
terns.

The distributed emulation of CSMA/CD is most promising
to us, because it can emulate the typical characteristics of the
protocol family that is most relevant today.

IV. DISTRIBUTED CSMA/CD EMULATION

To show that shared media emulation with a distributed media
model is a feasible approach, we implemented a prototype
tool emulating the behavior of CSMA/CD.

In the remainder of this section, we will show in detail the
functionality and implementation of our tool “ethemu,” pro-
vide some measurements, and point out some practical limita-
tions.

A. Architecture
Ethemu is a software module that can emulate the behavior of
a CSMA/CD network with certain parameters, while running
on PCs that are actually connected to a high-speed networking
infrastructure.

Similar to the related approaches Dummynet [9] and Net-
shaper [10], we inserted an additional “emulation layer” into
the protocol stack of the operating system. The additional lay-
er can be logically viewed as an additional, virtual medium ac-
cess sublayer inside the actual link layer. Because it is
completely transparent to upper layers, it facilitates the perfor-
mance testing of protocols on layer 3 and above without hav-
ing to modify the subject on investigation.

We implemented the additional emulation layer by adding a
module to the Linux operating system kernel (version 2.4.18).
Using a kernel module instead of directly manipulating the
networking code in the kernel makes it possible to dynamical-
ly load and unload the emulation tool, without having to re-
boot the system. Furthermore, users of the emulation tool do
not have to compile and install a special kernel. A standard
kernel (e.g. like shipped with Red Hat Linux) will do.

B. Basic Functionality
Since the existing emulation testbeds use high-speed switched
ethernet as underlying physical network, first of all we must
ensure that every station that is logically attached to an emu-
lated shared medium gets all frames that are sent. For that rea-
son, ethemu encapsulates every frame into a broadcast frame,
including the original frame header, before it is passed down
to the actual device. On the receiving side of each station that
gets the broadcast, ethemu strips off the encapsulating broad-
cast header again.

According to the specified emulation parameters (first of
all: the bandwidth) and the current traffic observations,
ethemu maintains a private model of the emulated shared me-
dia at each station. As long as all stations get the transmissions
at the same time, the media model is consistent among the sta-
tions. Using the current media model, ethemu can emulate the
behavior of the CSMA/CD media access scheme, resulting in
a delayed frame delivery, and occasionally frame loss.

C. Sending Frames
On the sending side, the module appears as a virtual Ethernet
device driver, and is treated like a real device by the network
layer. The emulation device is named “ethemu0” in Fig. 4. It
receives out-bound frames from the network layers, according
to routing table entries associated with its device ID. If a frame
is not being dropped due to emulated excessive collisions, it is
encapsulated in a broadcast frame and gets sent out as soon as
the emulated media access scheme allows. An attached real
network device like e.g. “eth0” in Fig. 4 is used for the physi-
cal communication.

D. Receiving Frames
On the receiving side, the module intercepts incoming emula-
tion broadcast frames. It does so by registering as a virtual net-
work layer implementation using an otherwise unused
Ethernet protocol type (cp. Fig. 5). All emulation broadcast
frames are marked with this special protocol type. This ap-
proach assures that the module is able to exclusively handle all
incoming emulation frames, and thus hook into the reception
data path without further interference with other network pro-
tocol implementations. Note that, although logically ethemu
works between layer 2 and 3, it is implemented at layer 2 on
sending side, and at layer 3 on receiving side.

If a frame was not already dropped because of an emulated
collision, it finally gets delivered as soon as the emulated me-
dia access scheme allows. Delivery is realized by again acting
like a network device driver and reinserting the frame as if it
was just received from a device.

E. Media Model
Core of the emulation tool is a model of the emulated shared
media. It was developed with the objective to emulate the me-
dia access scheme of IEEE 802.3 as precisely as possible. The
respective media access algorithm that is usually carried out
by network device hardware is re-implemented within our
software module.

Fig. 6 shows both the control and data flow, as well as im-
portant side effects in the state machine emulating the media
access algorithm. The status is held in a set of local variables:
Two timestamp variables keep track of the carrier on the em-
ulated shared media. The beginning of the carrier is denoted
by ts, whereas tsr denotes the time when the carrier disap-
pears. The local system time is denoted by t. A boolean flag
named sending indicates whether a station is currently trans-
mitting a frame. A frame that is currently being sent or re-
ceived by a station is called an active frame. A pointer to its
respective data buffer is held in a local variable. The term t_s
in the figure denotes the propagation delay between the sender
of a certain frame and the receiver.

The data flow basically consists of immediate enqueueing,
and delayed dequeuing of frames both on the sending and the
receiving side. Note that all frames keep their FIFO ordering.

Figure 4. Hooking into the send data path.

routing tables

IPXIP . . .

eth1 . . .eth0ethemu0

physical ethernet device

pr
ot

oc
ol

 la
ye

rs

network

link

send

Figure 5. Hooking into the receive data path.

L3 protocol MUX

. . .IPXIPethemu

pr
ot

oc
ol

 la
ye

rs

eth1eth0 . . .

physical ethernet device

network

receive

link

Time-based triggering is controlled by a send and a receive
timer, respectively.

When a send request occurs, the station enqueues the frame
into the send waiting queue and sets the send timer, if it was
not already set for another, earlier frame. The trigger time is
either immediately or tsr, if a carrier is sensed (i.e.,
holds true). On send timer activation, local variables are up-
dated at first. If the station is already sending, it adjusts the
send timer to tsr to serialize transmissions according to 1-per-
sistence. The same procedure applies to a sensed carrier be-
longing to a frame in transmission by another station. If a
collision is already predictable because a frame is on its way
to the station, but the transmission delay has not yet passed,
the outbound frame is sent out to inform all other stations of
the upcoming collision. Additionally, the send timer is set for
a retransmission according to the binary exponential backoff
algorithm. Finally, if there is no carrier sensed and no collision
predictable, a copy of the frame is sent through the actual net-
work device. Determination of send success is not time critical
and thus left to the next update of local variables.

On reception of a frame, again the local variables are updat-
ed at first. If the carrier of the received frame does not overlap
with an already present carrier, delivery is scheduled by en-
queueing the frame into the receive waiting queue, and adjust-
ing the receive timer to the time when both transmission and
serialization delay have passed. Otherwise, an emulated colli-
sion will occur, and the received frame is discarded. If the sta-
tion was actively involved in the collision because of an
outgoing transmission, a retransmission is scheduled through
the send timer according to the binary exponential backoff al-
gorithm. If another station is causing the collision, the frame

which was in progress of being received is discarded from the
delivery waiting queue. If a frame was not involved in a colli-
sion until receive timer activation, it finally gets dequeued and
delivered.

F. Limitations
The exactness of our emulation results is directly influenced
by the timer granularity provided by the operating system. The
accuracy of the send timer is most important: Its task is to trig-
ger serialized frame transmissions according to 1-persistence,
as well as scheduled retransmissions after collisions. In order
to conduct these tasks, very short periods of time need to be
permanently measured to determine possible collisions by
overlapping carriers. For most realistic emulation results, a
time granularity corresponding to the duration of one trans-
mitted bit would be necessary. The bit duration is recipro-
cal proportional to the transfer rate b: . Given the
timer granularity, it is possible to determine the transfer rate
that can be emulated perfectly, ensuring e.g. that every colli-
sion can be recognized, even if carriers overlap by just one sin-
gle bit. In the following, we call this transfer rate the “safe
rate”.

By default, timer interrupts are handled periodically every
10 milliseconds in the Linux kernel. It is possible to reason-
ably lower that value by an order of magnitude by recompiling
the kernel with different timer settings [9]. However, even
with millisecond accuracy, the resulting granularity is far from
being precise enough for 10 MBit/s. Nevertheless, it is always
possible to run the emulation with transfer rates higher than
the “safe rate.” As one consequence, overlapping frames may
not be recognized as collisions any more.

Figure 6. Schematic functionality of ethemu.

t>=tsr?
update
outdated
local variables

discard
frame

sending? 1−persistence

t<ts or t>=tsr?

t<ts?
backoff
binary exponential

send copy of frame

deliver frame

t+t_s>=tsr?
update
outdated
local variables

t+t_s<tsr?
schedule
delivery

drop
received frame

sending?

drop
active frame

backoff
binary exponential

send success?

waiting queue

flow of control
side effect
flow of data

key:

yes

no

set timer

send timer receive timer

no

yes

set timer

carrier detected

collision

yes

yes

no

yescarrier
no

yes

no

collisionyes

send

receive

passively no

yes

set timer

actively
involvedset timer

involved

predictable

predictable

ts t tsr<≤

tB
tB 1 b⁄=

G. Measurements
By means of extensive measurements, we will show to what
extent the abovementioned problems are actually relevant for
operation, and how precisely we are able to emulate Ethernet.

The performance comparison between real Ethernet and our
emulation approach is done on the basis of the characteristic
curve which plots network throughput versus network load.
The experimentally derived characteristic curve of a real
3-node 10Base2-Ethernet with shared media serves as refer-
ence plot. The ethemu measurements were conducted using 3
Pentium III PCs, connected by a Fast-Ethernet switch. We
used a load generator injecting varying frame bursts of differ-
ent sizes on link layer. The resulting characteristic curves for
different emulated transfer rates compared to the reference
curve are shown in Fig. 7. In the figures, “load” refers to the
ratio of overall bandwidth requests to the available bandwidth,
i.e. a load of 3 on a 10 MBit/s media would mean three stations
try to send 10 MBit/s each. The throughput is normalized to
the available bandwidth.

At a timer granularity of 10 milliseconds, the “safe rate” ac-
cording to the above formula would be only 100 Bit/s. Be-
cause of practical limitations, we started our measurements at
800 Bit/s, however. Conducting measurements at lower speed

with a reasonable amount of transferred data would simply
take too long (several days).

The measurements at 800 Bit/s and 8 kBit/s show a con-
vincing similarity to the reference curve. At 80 kBit/s, the re-
sults start to show a deviation; beginning at 800 kBit/s, the
throughput stays clearly below the reference. This can be ex-
plained as follows: If a station wants to start sending exactly
when a busy medium is free again (1-persistence), the respec-
tive emulation tool has to rely on an exact timer. If the timer
triggers too late, the medium remains unused, although there
was data to send, which results in a lower throughput. The
higher the bandwidths, the smaller the timeframes, and the
higher the relative errors due to coarse timers. There is also the
converse effect that with higher timer errors, less collisions
can be discovered, which would lead to a higher throughput.
On a quantitative basis, however, the first effect prevails by far.

From these measurements, we derive that we are able to rea-
sonably emulate Ethernet with transfer rates of at least 2 or-
ders of magnitude higher than the “safe rate.”

H. Improvements
The gap to emulation of practically relevant transfer rates can
be closed with the help of a finer time granularity. This aim is
achieved by both using a more granular local clock for times-
tamps and time comparison, as well as more precise timers.

Figure 7. Throughput versus load for emulated bandwidths from 800 Bit/s to 8 MBit/s.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

th
ro

ug
hp

ut

load

key
10Base2

Ethemu 800 Bit/s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 1 10 100 1000

th
ro

ug
hp

ut

load

key
10Base2

Ethemu 8 kBit/s

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10 100 1000

th
ro

ug
hp

ut

load

key
10Base2

Ethemu 80 kBit/s
0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10 100 1000

th
ro

ug
hp

ut

load

key
10Base2

Ethemu 800 kBit/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

th
ro

ug
hp

ut

load

key
10Base2

Ethemu 8 MBit/s

The first can be easily accomplished by using time stamp
counter registers which are common in current processor
types. Implementations for more precise timers in the Linux
kernel are freely available, e.g. from the University of Karlsru-
he [15]. This implementation uses the local advanced pro-
grammable interrupt controller in recent Intel-compatible
processors, which is triggered by the processor bus clock fre-
quency. Assuming a bus clock frequency of 100 MHz, we
would gain 5–6 orders of magnitude over the standard timer
frequency of 100–1000 Hz. Transferred to measurement re-
sults, this would push the “safe rate” for bit-precise emulation
up to 10 MBit/s. Given that our measurements have also
shown that emulation works for rates 2 orders of magnitude
higher than the “safe rate,” the emulation of existing practical-
ly relevant CSMA/CD technologies is assured. We are cur-
rently in progress of adapting our prototype to use fine-
grained timers, and we do not expect fundamental problems
with that. However, additional measurements have to ensure
that the compute power of the emulation nodes is still suffi-
cient to run the emulation tool at high transfer rates.

The current implementation aims at the reproduction of
CSMA/CD, and is thus able to emulate those parts of the
IEEE 802.3 family dealing with shared media. In this regard,
it is certainly interesting to look into the distributed emulation
of similar media access schemes like CSMA/CA, especially
because the emulation of wireless LANs is becoming more
and more relevant to the community. Since the basic idea of
having a private model of the shared media at every participat-
ing station can be also used for CSMA/CA emulation, we are
confident that it is possible to adapt our existing tool with rea-
sonable effort.

V. CONCLUSION

Network emulation is essential for comparative performance
measurements of distributed applications and protocols. For
larger scenarios and higher bandwidths, emulation efforts
have to be distributed. Existing approaches to distributed net-
work emulation focus on the emulation of single network
links. The distributed emulation of shared media networks has
not been addressed before.

In this paper, we identified several possible approaches to
realize the emulation of shared media networks in a distribut-
ed fashion. For a promising approach, the distributed emula-
tion of CSMA/CD, we provided a prototype implementation.

Currently, our prototype tool has limitations concerning the
maximum emulated transfer rate, but shows qualitatively real-
istic results. We identified the operating system timer granu-
larity as reason for this limitation, and proposed possible
workarounds.

The resulting emulation tool “ethemu” clearly broadens the
scope of emulation testbeds, and is already in use in the “Net-

work Emulation Testbed” at the University of Stuttgart. With
the growing possibilities of emulation tools and testbeds, we
believe that emulation is likely to gain more importance for
performance analysis as complement to simulation and live
testing.

REFERENCES

[1] Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.
Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. 2000. “Advances
in Network Simulation.” IEEE Computer, 33(5):59–67.

[2] Fall, K. 1999. “Network Emulation in the Vint/NS Simulator.” In Pro-
ceedings of the Sixth International Symposium on Modeling, Analysis
and Simulation of Computer Telecommunication Systems, (Red Sea,
Egypt), 244–250.

[3] Ke, Q., D.A. Maltz, and D.B. Johnson. 2000. “Emulation of Multi-Hop
Wireless Ad Hoc Networks.” In Proceedings of the 7th International
Workshop on Mobile Multimedia Communications (MoMuC 2000),
(Tokyo, Japan).

[4] Simmonds, R. and B. Unger. 2001. “Towards Scalable Network Emu-
lation.” In Proceedings of SPIE Vol. 4526 (2001): Scalability and Traf-
fic Control in IP Networks, (Denver, August), 252–262.

[5] Davies, N., G.S. Blair, K. Cheverst, and A. Friday. 1995. “A Network
Emulator to Support the Development of Adaptive Applications.” In
Proceedings of the 2nd USENIX Symposium on Mobile and Location
Independent Computing, (Ann Arbor, April), 47–55.

[6] Kojo, M., A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and K. Raati-
kainen. 2001. “Seawind: A Wireless Network Emulator.” In Proceed-
ings of 11th GI/ITG Conference on Measuring, Modelling and
Evaluation of Computer and Communication Systems, (Aachen, Ger-
many, September).

[7] Carson, M. “NISTNet Network Emulator.” available from http://www-
x.antd.nist.gov/nistnet/.

[8] Ingham, D.B. and G.D. Parrington. 1994. “Delayline: A Wide-Area
Network Emulation Tool.” Computing Systems, USENIX, 7(3):313–
332.

[9] Rizzo, L. 1997. “Dummynet: A simple approach to the evaluation of
network protocols.” ACM Computer Communication Review,
27(1):31–41

[10] Herrscher, D. and K. Rothermel. 2002. “A Dynamic Network Scenario
Emulation Tool.” In Proceedings of the 11th International Conference
on Computer Communications and Networks (ICCCN ’02), (Miami),
262–267

[11] Noble, B.D., M. Satyanarayanan, G.T. Nguyen, and R.H. Katz. 1997.
“Trace-Based Mobile Network Emulation.” In Proceedings of the
ACM SIGCOMM ’97, (Cannes, France, September), 51–61.

[12] Herrscher, D., A. Leonhardi, and K. Rothermel. 2002. “Modeling
Computer Networks for Emulation.” In Proceedings of the 2002 Inter-
national Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’02), (Las Vegas), 1725–1731.

[13] White, B., J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. 2002. “An Integrated Experimen-
tal Environment for Distributed Systems and Networks.” In Proceed-
ings of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI ’02), (Boston), 255–270.

[14] Dudkowski, D. 2002. “Emulation Concepts for Mobile and Ad Hoc
Networks.” Diploma Thesis No. 2004, IPVS, University of Stuttgart.

[15] Oberle, V. “APIC timer module for Linux.” University of Karlsruhe,
Germany, available from http://www.telematik.informatik.uni-karlsru-
he.de/forschung/apic/apic_timer-index.html.

http://www.telematik.informatik.uni-karlsruhe.de/forschung/apic/apic_timer-index.html
http://www.telematik.informatik.uni-karlsruhe.de/forschung/apic/apic_timer-index.html
http://www-x.antd.nist.gov/nistnet/
http://www-x.antd.nist.gov/nistnet/

	Distributed Emulation of Shared Media Networks
	Keywords: Network emulation, distributed emulation, performance analysis, shared media, CSMA/CD.
	Abstract
	I. Introduction
	II. Related Work
	A. Centralized Emulation
	B. Distributed Emulation
	C. Testbeds

	III. Possible Architectures
	A. Centralized Media Model
	B. Fine-Grained Centralized Media Model / Distributed Emulation
	C. Coarse-Grained Centralized Media Model / Distributed Emulation
	D. Distributed Media Model
	E. Summary

	IV. Distributed CSMA/CD Emulation
	A. Architecture
	B. Basic Functionality
	C. Sending Frames
	D. Receiving Frames
	E. Media Model
	F. Limitations
	G. Measurements
	H. Improvements

	V. Conclusion
	References

