
ARSENAL: Model-driven
Earth Observation Integration Framework

Marcello Mariucci Frank Wagner Gunter Martens Jens Künzl
(University of Stuttgart, Germany) 1

An Earth Observation (EO) integration framework is an application integration solution for sup-
porting the development and execution of EO services. EO services are based on the intensive use
of large data sets from space. They process raw EO data sets into increasingly specialized products
until a certain level of quality is achieved. This processing requires the tight cooperation of several
distributed experts, and intensive computation across a coordinated sequence of both, interactive
and automatic processing steps. Appropriate examples for such EO services are the generation of
weather forecasts, forest fire detection, and oil slick monitoring. EO services can be characterized
as highly flexible structures, which constantly need to be adapted to evolving spacecraft and proc-
essing technologies. We suggest a model-driven EO integration framework solution that adequately
copes with the flexible development, customization, and execution of reusable EO services. Our
prototype includes a comprehensive integration model that accurately handles system metadata
throughout the software life cycle, and significantly enhances the EO service development process
in terms of quality, reuse, and adaptability. The prototype employs repository technology for man-
aging model related issues, as well as workflow and Web service technology for execution pur-
poses. It is mainly built upon commercial products, which are seamlessly combined by appropriate
'glue' components.

1. Introduction

Earth Observation (EO) application systems are characterized by the provision of thematic, value-
adding services, which are based on the intensive use of EO data from space. An appropriate exam-
ple is the RAMSES system. RAMSES is an operational, Web-based EO application system that
provides oil spill detection and monitoring services based on satellite technology [1]. Figure 1 illus-
trates a simplified RAMSES process flow.

Radar images of the sea surface and related meteorological vectors are regularly acquired and
sent to the RAMSES server . The RAMSES server pre-processes the received EO data for oil
slick detection purposes, and forwards them to an appropriate EO imagery expert. This so-called
value adder analyzes the processed data to detect, and eventually extracts oil slick parameters like
contour, perimeter, and development forecasts . Analysis results are then sent back to the
RAMSES server, which generates an appropriate status report. In addition, if the value adder de-
tected an oil slick, it creates related oil slick observation products. Reports and observation products
are then sent to operational users , who assess and validate them by using locally available tools
and data . Based on these results, users might decide to take operative actions, such as cleaning
operations, or sending out airplanes to trap polluters . Finally, the operational users send feedback
and eventual on-site reports to the RAMSES server for statistical reasons .

1 Work was done while the first author was visiting the European Space Research Institute (ESA/ESRIN)



RAMSES ServerValue Adder

Acquisition Stations
(Data Provider)

1

2

3

Operational User

4
7

Feedback

6

Control and
Prosecution

5

RAMSES ServerValue Adder

Acquisition Stations
(Data Provider)

11

22

33

Operational User

44
77

Feedback

66

Control and
Prosecution

55

The RAMSES example shows that the processing of EO data requires a coordinated sequence of
both, interactive and automatic processing steps, and involves several organizations. These entities
are typically geographically distributed, focused on well-defined core competences, and independ-
ently organized with their own application systems. By assembling these application functions,
value-adding EO services are created, published, and marketed. EO application systems are cur-
rently made up of various isolated tools and management systems, which offer insufficient interop-
erability. These software products optimally support experts in performing their specific tasks,
however, they hardly provide any facilities to interoperate with other tools. The purpose of an EO
integration framework is to provide a reusable software infrastructure for supporting the inherent
complexity of EO application systems. It assists users to collaboratively create, process, and moni-
tor EO services during the entire software life cycle. In addition, it facilitates the flexible integration
of disparate tools and management systems along related EO process chains. Our demo presents an
implementation of an operational EO integration framework prototype.

In [2] we analyzed requirements on an EO integration framework, and identified several character-
istics that are crucial for the seamless management of EO services. The main issue concerns the
flexible support of collaborative, on-demand changes and extensions to EO services. Our prototype
implements a highly flexible EO integration framework, which enables collaborative adaptation of
EO services to the continuously improving spacecraft and data processing technologies. Further-
more, it allows the use of EO services in an experimental fashion, i.e. EO services can be initially
built, tested, and incrementally enhanced. This evolution cycle can be iterated until a certain level of
quality is achieved. To provide the required flexibility and manageability, our prototype is based on
an integration model. It structures metadata about any resources, activity, and process of the
framework, and represents the source from which documentation and code generation can be di-
rectly derived. In addition, it accurately treats metadata throughout the software life cycle, which
significantly enhances the integration process in terms of quality, flexibility, and adaptability to the
constantly changing situation.

The integration model represents the core element of our application integration approach. Its main
idea is to describe the structure of applications, and to express how their functions are combined via
control and data connectors to constitute EO services. In this way, the sequence of interoperation
between applications can be defined, and the related data exchange specified. Furthermore, the inte-
gration model serves as template from which EO services are instantiated through the Web, i.e. EO
service interface descriptions and workflow specifications are generated. The integration model

Figure 1: Oversimplified EO Service for the Detection and Prevention of Forest Fires



Integration Model

Collaborative Instantiation of the
Integration Model

Design TimeDesign Time
(Integration Architect)(Integration Architect)

Development TimeDevelopment Time
(Integration (Integration DeveloperDeveloper))

Run TimeRun Time
(End User)(End User)

Creation of the
Integration Model

Execution of the
Business Process

Integration Model

Collaborative Instantiation of the
Integration Model

Design TimeDesign Time
(Integration Architect)(Integration Architect)

Development TimeDevelopment Time
(Integration (Integration DeveloperDeveloper))

Run TimeRun Time
(End User)(End User)

Creation of the
Integration Model

Execution of the
Business Process

metadata is continuously used during the entire integration process. As depicted in Figure 2, our
model-driven integration process is divided into three phases, i.e. design time, development time,
and run time. At design time the focus is on the creation of the integration model. It is designed by
integration architects, who use artefacts tools to specify the structure of integration artefacts. The
model management has to provide for persistent storage and continuous metadata support. Devel-
opment begins after the integration model is made available. Integration developers use tools to
collaboratively instantiate the integration model. Applications are thus registered, linked to their
respective implementations, and assembled to combined EO services. The integration model is then
used to generate appropriate code for EO service invocation and execution. At run time, end users
employ browser and proprietary client tools to discover, locate, and invoke EO services through the
Web. Requests are forwarded to the execution engine, which orchestrate corresponding EO service
processing.

2. Architecture and Technology

In this section, we present the building blocks of our prototype and show how they are used and
combined to support users during the entire integration process.

2.1. Design Time Support

Our EO framework prototype is based on the object-oriented repository of Microsoft's SQL Server
2000 Meta Data Services. The repository provides a powerful API for the information model defini-
tion and management during the entire software life cycle. In addition, it supplies a Model Installer,
and a Model Development Kit (MDK) for the Rational Rose Modeling Tool. Both tools facilitate
the installation of UML models into the repository. By means of these features, the integration ar-
chitect initially defines the integration model using UML, exports it as a Repository Distributable
Model (RDM) file, and installs it in the integration repository (see Figure 3).

2.2. Development Time Support

At development time, integration developers are supported to collaboratively instantiate the integra-
tion model. Figure 4 depicts the prototype architecture during development time. White boxes of the
implementation architecture identify Commercial Off-The-Shelf (COTS) tools. Grey boxes repre-
sent 'glue' components required for coupling those tools and providing specific EO framework func-
tionality. The Application Integrator supports integration developers to collaboratively manage EO

Figure 2: Model-driven Application Integration Process



Integration Repository
(Microsoft SQL Server 2000 

Meta Data Services)

Integration 
Architect

UML 
Modelling Tool

(Rational Rose 
+ MDK)

RDM

RDBMS & 
Meta Data 
Services

Model 
Installer A

P
I

Integration Repository
(Microsoft SQL Server 2000 

Meta Data Services)

Integration 
Architect

UML 
Modelling Tool

(Rational Rose 
+ MDK)

RDM

RDBMS & 
Meta Data 
Services

RDBMS & 
Meta Data 
Services

Model 
Installer A

P
I

WSDL+BPD

Asynchronous, Collaborative 
Work

Business Process 
Management System

(IBM MQSeries Workflow)

Integration Developer

Integration Developer

Application Integrator

Application Integrator

Application Integrator

Integration Developer

Integration Repository
(Microsoft SQL Server 2000 Meta Data Services)

UDDI v3+ Registry

WSDL+ Parser

1

2

3

4

2 2

5

6

WSDL+BPD

Asynchronous, Collaborative 
Work

Business Process 
Management System

(IBM MQSeries Workflow)

Integration DeveloperIntegration Developer

Integration DeveloperIntegration Developer

Application Integrator

Application Integrator

Application Integrator

Integration DeveloperIntegration Developer

Integration Repository
(Microsoft SQL Server 2000 Meta Data Services)

UDDI v3+ Registry

WSDL+ Parser

11

22

33

44

22 22

55

66

framework metadata . It provides a user-friendly GUI, and uses the repository API to create,
navigate and manipulate the integration model content, basically by insertion, deletion and updating
object instances . In addition, it enables asynchronous collaborative work by employing Micro-
soft's repository features such as version, configuration and workspace management. The Applica-
tion Integrator also supports the generation of appropriate, technology-specific code for publishing
and executing EO services. In order to prepare for EO service execution, an appropriate Business
Process Definition (BPD) file is generated and exported to the BPMS . However, in order to
publish designed EO services, related interface specifications are exported to an extended Web Ser-
vice Definition Language (WSDL+) file . This WSDL+ file is then parsed and imported into the
UDDI v3+ registry in order to publish the EO service. Extensions regarding WSDL and UDDI
specifications are required for the interactive Web service invocation, and for the automatic regis-
tration of EO services into the UDDI registry.

2.3. Run Time Support

At run time, end users discover, locate, and invoke EO services by applying Web service technol-
ogy. Figure 5 depicts the prototype architecture for run time usage. Again, white boxes identify
COTS tools, and grey boxes represent 'glue' components. By means of a Web browser, end users
query the UDDI v3+ registry to retrieve information about available EO services and their access
locations. In detail, the Web browser connects to the HTTP server and requests an appropriate Java
Server Page (JSP) . The request is forwarded to the Servlet engine , which executes correspond-
ing processing steps, queries the UDDI v3+ registry, and sends related information back to the end

Figure 3: Prototype for Design Time Support

Figure 4: Prototype for Development Time Support



SOAP-Requests

XML

Service Provider

Meteo Model

IBM MQSeries

End UserEnd User
HTTP-Request

Business Process 
Management System

(IBM MQSeries Workflow)

System Operator

On-Line Storage
Accounting

System
Processing

System

Grid Infrastructure

Application 
Connectors

Client ApplicationWeb Browser

Web Portal

SOAP Adapter

UDDI v3+ JSPsHTTP-Server
(Apache HTTP Server)

Servlet Engine
(Jakarta Tomcat)

Integration
Repository

UDDI v3+
Registry

1 3

2

4

5

6 8

7

9SOAP-Requests

XML

Service Provider

Meteo Model

IBM MQSeries

End UserEnd User
HTTP-Request

Business Process 
Management System

(IBM MQSeries Workflow)

System Operator

On-Line Storage
Accounting

System
Processing

System

Grid Infrastructure

Application 
Connectors

Client ApplicationWeb Browser

Web Portal

SOAP Adapter

UDDI v3+ JSPsHTTP-Server
(Apache HTTP Server)

Servlet Engine
(Jakarta Tomcat) SOAP Adapter

UDDI v3+ JSPsHTTP-Server
(Apache HTTP Server)

Servlet Engine
(Jakarta Tomcat)

Integration
Repository

UDDI v3+
Registry

11 33

22

44

55

66 88

77

99

user via the HTTP server . The UDDI v3+ registry includes descriptive information about EO
service interfaces and access points. End users use this data to locate EO services and to invoke
them by specifying related parameters. EO services are provided through SOAP (Simple Object
Access Protocol). SOAP messages for the invocation of EO services are created by client applica-
tions, and sent to the appropriate access point by using the HTTP post protocol . Through this
access point the message is forwarded to the SOAP adapter , which processes it and sends corre-
sponding execution instructions to the BPMS via XML . Our BPMS is implemented by IBM's
MQSeries Workflow Management System, which provides a reliable and robust infrastructure for
the orchestration of EO services and its application function interrelations . Results are sent back
to the Web portal , which are then forwarded to the client application .

3. Contribution

Our prototype is a flexible EO integration framework that controls the inherent complexity of inte-
grating applications within the EO domain. We focused on the management of a metadata model
and its role during the application integration process. Our prototype implementation integrates and
adapts COTS tools for workflow management, repository, and Web service implementations. The
prototype infrastructure has been successfully applied in real EO environment test cases, which
proves that flexible application integration can be achieved by the right composition and adaptation
of existing technology. Up to now, the EO integration framework infrastructure is limited to a few
scientific applications and a selective user community. However, visions concern the use of such
frameworks to foster commercial EO applications, and to build up a market for EO data and appli-
cation providers.

References

[1] MARIUCCI M.; et al. 2000. "RAMSES: An Operational Thematic EO-Application on Oil Spill
Monitoring. System description". In Proceedings of the Earth Observations & Geo-Spatial
Web and Internet Workshop 2000 Conference (London, UK, April 17-19). EOGEO 2000.

[2] MARIUCCI M.; B. Mitschang. 2002. "On Making RAMSES an Earth Observation Application
Framework". In Proceedings of the 2nd International Conference on Information Systems and
hEngineering (San Diego, USA, July 14-18). ISE 2002.

Figure 5: Prototype for Run Time Support


