
Extending Web Service Technology towards an
Earth Observation Integration Framework

Marcello Mariucci1,2,* and Bernhard Mitschang2

1 European Space Research Institute, European Space Agency,
00040 Frascati (RM), Italy

2 Institute of Parallel and Distributed Systems, University of Stuttgart,
70569 Stuttgart, Germany

{mariucci, mitsch}@informatik.uni-stuttgart.de

Abstract. In this paper we describe the implementation of a service-based ap-
plication integration solution for the complex domain of Earth Observation
(EO) application systems. The presented approach is based on an EO integra-
tion framework. It supports the concatenation of disparate software applica-
tions to flexible EO process chains. Resulting EO services are provided to end
users by means of Web Service technology. We demonstrate that current stan-
dard technology is not sufficient to dynamically publish and interactively in-
voke EO services over the Web. We describe necessary extensions and adapta-
tions.

1 Introduction

An Earth Observation (EO) integration framework is a service-based application
integration approach for the interdisciplinary domain of EO application systems [1].
It facilitates the development and execution of EO services by supporting the integra-
tion of disparate applications to EO process chains. EO services are based on the
intensive use of large data sets from space. They process raw EO data sets into in-
creasingly specialized products until a certain level of quality is achieved. This proc-
essing requires the tight cooperation of several distributed experts, and intensive
computation across a coordinated sequence of both, interactive and automatic proc-
essing steps. Appropriate examples for such EO services are the generation of
weather forecasts, forest fire detection, and oil slick monitoring. Fig. 1 illustrates a
simplified process flow of a representative EO service. It depicts the generation and
use of forest fire observation products.

Radar images and meteorological vectors are regularly sensed and acquired by re-
lated acquisition stations �. Data Providers monitor the creation of these EO data
sets, and ensure their correct ingestion into the Central Server �. The Central Server
pre-processes the received data for fire detection purposes, and forwards them to an

1 Work was done while the author was visiting the European Space Agency (ESA/ESRIN).



appropriate EO imagery expert. This so-called Value Adder analyzes, filters, maps,
and merges the processed data, and eventually extracts fire observation parameters
like burned area contour and perimeter �. Analysis results are then sent back to the
Central Server where they are packaged into thematic products. Generated thematic
products are sent to Operational Users �, who assess and validate them by using
locally available information �. Based on these results, they can initiate and coordi-
nate operative actions, such as fire-fighting and rescue operations�.

The example scenario shows that the seamless processing of EO services requires
the integration of heterogeneous tools and management systems. That is, transitions
between processing steps have to be automated and coordinated. Furthermore, data
set representations have to be based on a common model. The European Space
Agency has approached with mainly two research directions the implementation of
such an integration solution. In the following Section 2 we briefly outline and ana-
lyze these initiatives. In Section 3 we present our solution of an EO integration
framework. We introduce the service-based application integration approach, and
highlight the related integration model. In Section 4 we describe the realization of
our integration framework. We emphasize the use of Web service technology, and
present necessary extensions and adaptations to dynamically publish and interac-
tively invoke EO services over the Web. Section 5 summarizes and concludes the
paper with an outlook to further work.

2 Related Work

The European Space Agency (ESA) has approached with mainly two activity direc-
tions the development of an EO integration framework. On the one side it has pur-
sued a top-down approach, which has analyzed the extension of an existing EO
application infrastructure towards a generic, multi-application platform. On the other
side, it has investigated a bottom-up approach, which has developed an interoperable

Fig. 1. Oversimplified EO Service for Forest Fire Detection

Central Server
Value Adder

Data Provider

1

2

3

Operational
User

4

5

Thematic Product

Acquisition
Stations

Central Server
Value Adder

Data Provider

11

22

33

Operational
User

44

55

Thematic Product

Acquisition
Stations



protocol environment for coupling interdisciplinary EO facilities to integrated solu-
tions.

ESA's top-down initiative is introduced and analyzed in [1]. The basic idea of this
approach is to reuse generic functions of an already implemented EO application
systems, and to build up a common framework for EO application systems. The
architecture is based on a modular, object-oriented CORBA design, and deploys
function modules on geographically distributed computing machines. EO services
are created by combining appropriate modules to thematic process chains. Missing
modules are added to the framework on demand. Corresponding process descriptions
are hard-coded within so-called server modules, and provided as EO services via
CORBA protocols. Analyses of this approach turned out that the infrastructure is
extremely inflexible and not particularly suitable to form an EO integration frame-
work. The creation of EO services represents a huge overhead, leading to twisted and
hardly manageable software systems. Furthermore, appropriate process control and
metadata management facilities are missing [1].

ESA's bottom-up approach is related to the development of a Multiple Application
Support Service (MASS) protocol environment [2]. It defines an interoperable infra-
structure that aims at coupling clients, tools, and management systems. Basically,
MASS protocols extend the functionality of CORBA protocols and services for the
purpose of EO application systems. Analyses concerning the suitability of this ap-
proach to form an EO integration framework revealed performance and flexibility
problems. Furthermore, they emphasized that the MASS infrastructure is lacking of
an information base and development environment for managing system resources
and structures. The infrastructure does not provide a comprehensive overview of
software elements available in the system. MASS information bases are restricted to
interface specifications. Further information like architectural design of the system
or deployment information of software elements are either hard-coded in the single
software products or written in some documents. This makes it difficult for EO ser-
vice developers to choose the right components during EO service creation and ex-
tension.

Based on experiences gained in assessing ESA's approaches, we designed and im-
plemented an alternative solution for an EO integration framework. The following
section briefly introduces our service-based integration approach.

3 Service-based Application Integration Approach

Our EO integration framework provides an open software infrastructure for support-
ing the inherent complexity of EO application systems. It facilitates the coordinated
integration of disparate tools and management systems along EO process chains. In
addition, it exposes related EO services over the Web by applying Web service tech-
nology. As depicted in Fig. 2, EO services are published and registered in a UDDI
service directory �. End users can discover EO services they are interested in by
enquiring the UDDI �. The information they retrieve from the directory suffices to
localize and use the EO service �. For each EO service a related process flow de-



scription is available. It is used by a process management system to execute the re-
quest EO service, and to coordinate related processing steps�.

Our service-based application integration approach is divided into three phases,
i.e. design time, development time, and run time (see Fig. 3). The core element of
the integration process is a shared integration model. It structures metadata about
any resource, activity, and process of the framework, and represents the source from
which documentation and code generation can be directly derived. The model is
based on UML, and intended for process-oriented application integration purposes
within EO integration frameworks. The main value of the model-driven EO integra-
tion framework is its flexibility and technological independency. By truly decoupling
software specifications from implementation details, heterogeneous realizations of
singe software products are abstracted. Thus, software products are integrated into
flexible EO process chains, which can be dynamically reconfigured and customized
as the environment changes.

At design time the focus is on the creation of the integration model. It is designed
by integration architects once at the beginning of the integration process. The model
specifies the structure of integration artifacts for the persistent storage of related
instantiations. Development begins after the integration model is made available.
Integration developers use client tools to collaboratively instantiate the integration
model. Applications are thus registered, linked to their respective implementations,
and assembled to combined EO services. The integration model is then used to gen-
erate appropriate code for EO service publication and execution. At run time, end
users employ browser tools and proprietary clients to discover, locate, and invoke EO
services. Requests are forwarded to the execution engine, which orchestrates the
corresponding EO service processing.

4 Prototype Implementation

Based on the presented service-based integration approach, we implemented an EO
integration framework as part of the ARSENAL project [3]. The project aimed at the

Fig. 2. Service-based EO Integration Framework

UDDIWeb Portal

Process Management
System

Application Application Application

Discover
EO Service

Localize
EO Service

Publish
EO Service

End User

1

23

4

UDDIWeb Portal

Process Management
System

Application Application Application

Discover
EO Service

Localize
EO Service

Publish
EO Service

End User

11

2233

44



design and implementation of a framework infrastructure for the flexible integration
of applications within the EO domain. The main requirements were the dynamic
reuse of application functions, the life cycle management of EO service structures,
and the ubiquitous access to and controlled execution of EO service instances. Fur-
thermore, the infrastructure had to be built upon commercial products, in order to
guarantee best possible system stability, reliability, and low development costs. In
this section, we evaluate middleware technologies regarding their use within our
framework prototype. Then, we describe each integration phase in detail, and evalu-
ate commercial middleware technologies regarding their use within our framework
prototype. We emphasize selected implementation issues required for the seamless
combination of those middleware products.

4.1 Middleware Technology Analysis

Metadata created during the integration process needs to be consistently stored and
managed during the entire software life cycle. Its right treatment seriously enhances
the integration process in terms of dynamics, flexibility, and adaptability to the con-
stantly changing business environment. Repository is a technology that deals with
the whole spectrum of metadata management. It provides a centralized, persistent
storage, helps in reducing redundancies and inconsistencies, and improves reuse.
Besides basic database management functions, the repository provides functions for
the seamless management of metadata throughout the entire software life cycle (e.g.
versioning, configurations). Furthermore, it offers indispensable functions for the
collaborative management of system metadata (e.g. workspaces, contexts). The main
value of the repository technology, and its functions are summarized in [4].

EO services describe process flows between applications within the EO domain.
Different forms of middleware have been introduced by the computing community to
enable integration and automation of processes. In general, a Process Management
System (PMS) provides a central point of control for defining process flows and or-
chestrating their execution. It records the execution state of the process, and routes
requests to applications to execute tasks [5]. In order to unify the access to applica-
tions and EO services standard interface definitions are required. Finally, Web Ser-

Fig. 3. Application Integration Process

Integration Model

Integration Developers
collaboratively instantiate the

Integration Model

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

Integration Architects
create the

Integration Model

End Users
discover, localize, and invoke

EO services

Integration Model

Integration Developers
collaboratively instantiate the

Integration Model

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

Integration Architects
create the

Integration Model

End Users
discover, localize, and invoke

EO services



vices define techniques for describing, discovering, and locating software compo-
nents on a global network. These techniques are programming language- and proto-
col-neutral, and provide ubiquitous and transparent access to system resources [6].

The introduced middleware technologies basically meet the requirements on our
EO integration framework infrastructure. In the following sections we discuss the
use of related commercial technology products in the EO integration framework. We
emphasize additional 'glue' components required for coupling these tools to seam-
lessly support EO application systems. Fig. 4 illustrates the ARSENAL implementa-
tion architecture. White boxes identify Commercial Off-The-Shelf (COTS) tools,
whereas grey boxes identify 'glue' components. The figure represents the big picture
for the remainder of this chapter.

4.2 Design Time Support

Our EO framework prototype is based on the object-oriented repository of Microsoft's
SQL Server 2000 Meta Data Services (see Fig. 4). The repository provides a power-
ful API for the information model definition and management during the entire
software life cycle. In addition, it supplies a Model Installer, and a Model Develop-
ment Kit (MDK) for the Rational Rose Modeling Tool. Both tools facilitate the in-
stallation of UML models into the repository. By means of these features, integration
architects initially define the integration model by using UML, export it as a Reposi-
tory Distributable Model (RDM) file, and install it in the integration repository. This
procedure is done once at the beginning of the integration process.

4.3 Development Time Support

At development time, integration developers are supported to collaboratively instan-
tiate the integration model. The Application Integrator tool (see Fig. 4) supports

Fig. 4. ARSENAL Implementation Architecture

UML 
Modeling Tool

(Rational Rose)
Application Integrator

Web Browser
(Microsoft Internet

Explorer)

Client 
Application

Repository 
Installer

(Microsoft Model
Installer & MDK)

WSDL+ Parser
Web Portal

(Apache HTTP Server &
Jakarta Tomcat)

RDM

API/ODBC

WSDL+ FDL HTML SOAP
envelope

XML

JDBC JDBC

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

JDBC

Workflow Engine
(IBM MQSeries

Workflow)

Integration Repository
(Microsoft SQL Server 2000 Metadata Services)

UDDI v3+ Directory

UML 
Modeling Tool

(Rational Rose)
Application Integrator

Web Browser
(Microsoft Internet

Explorer)

Client 
Application

Repository 
Installer

(Microsoft Model
Installer & MDK)

WSDL+ Parser
Web Portal

(Apache HTTP Server &
Jakarta Tomcat)

RDM

API/ODBC

WSDL+ FDL HTML SOAP
envelope

XML

JDBC JDBC

Design TimeDesign Time Development TimeDevelopment Time Run TimeRun Time

JDBC

Workflow Engine
(IBM MQSeries

Workflow)

Integration Repository
(Microsoft SQL Server 2000 Metadata Services)

UDDI v3+ Directory



integration developers to collaboratively create EO services. It provides a user-
friendly GUI, and uses the repository API to create, navigate, and manipulate the
integration model content, basically by inserting, deleting, and updating object in-
stances. In addition, it enables asynchronous collaborative work by employing Mi-
crosoft's repository features, such as version, configuration, and workspace manage-
ment. The Application Integrator tool also supports the generation of appropriate,
technology-specific code for publishing and executing EO services. For EO service
execution purposes, it creates a Flow Definition Language (FDL) file, and exports it
to the workflow engine. For EO service publishing purposes, it generates an ex-
tended Web Service Definition Language (WSDL+) file. This WSDL+ file is then
parsed and imported into the UDDI v3+ registry. Extensions regarding the WSDL
and the UDDI specifications are required for the interactive Web service invocation,
and for the automatic registration of EO services into the UDDI registry. They are
described in detail in the following subsections.

UDDI Extensions for Interactive Web Service Invocation. EO services interfaces
are described as Web services and published in a private UDDI registry. This UDDI
registry is a database infrastructure that enables end users and their client
applications to quickly and easily find EO services [7]. It links each EO service
description to its corresponding WSDL interface definition file, which abstractly
describes related access structures. By means of this file, end users can integrate the
EO service within their application code, and locate and invoke it through remote
procedure calls.

Besides this standard form of invoking EO services, the ARSENAL prototype fa-
cilitates the interactive invocation of EO services from within a Web browser tool.
That is, end users are not forced to retrieve the corresponding WSDL interface defi-
nition file to access the EO service, but are enabled to directly and interactively in-
voke the EO service from within their standard Web browsers.

businessEntity

businessService

Contact

categoryBag tModel

tModelInstanceInfobindingTemplate

businessServiceParameter

businessServiceDataStructure businessServiceDataField

1

0..*

1 1

1 0..*

1

1..*

1

0..*

1

0..*

1
0..*

1

0..*

0..*

1..*

1 0..*

0..*1
Composition

Uni-directional Association

Bi-directional Association

Aggregation

Fig. 5. UDDI v3+ Data Model



Two approaches were analyzed to implement this feature within the ARSENAL
prototype. The first approach was related to the enhancement of the Web portal to
process WSDL interface definition files. As soon as an end user requests an EO
service invocation, the Web portal parses the corresponding WSDL file, and dynami-
cally generates a Web page requesting the EO service input parameters. It then sends
the request together with its parameters to the corresponding port to automatically
launch the EO service execution. However, this solution resulted to be too time-
consuming, since the WSDL file is processed and parsed at run time. Consequently,
the second approach regarded the extension of the UDDI registry to additionally
manage WSDL interface definitions. That is, the UDDI registry is enhanced to en-
able the storage and retrieval of EO service access structures. In this way, WSDL
files can be parsed at development time, and EO service interface definitions directly
used to dynamically generate a Web page requesting the EO service input parame-
ters. Although this approach extends the UDDI standard in a proprietary fashion, the
performance and response time of the Web portal is enormously enhanced.

The ARSENAL prototype implements the second approach, and, therefore, ex-
tends the UDDI registry with EO service access structures. Fig. 5 illustrates the en-
hanced UDDI data model. It refers to the UDDI v3 standard and extends it by three
entities, namely:
• businessServiceParameter for the specification of the EO service parameters,
• businessServiceDataStructure for the specification of EO service parameter data

types, and
• businessServiceDataField for the specification of complex data types.

These three additional entities are highlighted in Fig. 5. The resulting UDDI reg-
istry is called UDDI v3+ registry.

Automatic Registration of EO Services into UDDI v3+. Our prototype
implementation provides the feature to automatically generate both, WSDL interface
and WSDL implementation files for EO services. Based on EO service descriptions
stored in the repository, appropriate WSDL files are generated, parsed, and
registered into the UDDI v3+ registry. Usually, the registration of Web services in a
UDDI registry is performed in interactive mode, i.e. the service provider connects to
the UDDI registry via a Web browser, registers its business entity, and describes all
provided Web services. Since our repository includes all required information, we
additionally support automatic registration of EO services in the UDDI v3+ registry.
For this purpose, we had to appropriately extend the WSDL implementation file by
'business entity' and 'category bag' specifications. Fig. 6 lists a fragment of an
exemplary WSDL+ implementation file. Extensions are highlighted.

The WSDL+ implementation file is sent to the WSDL+ parser. The WSDL+
parser is based on Apache's Xerces DOM parser, and verifies the syntactical correct-
ness of the WSDL+ file. In addition, it inserts related entries into the UDDI v3+
registry.



Generation of a Business Process Definition File. The Application Integrator tool
is capable of exporting workflow specifications of EO services to a FDL file. This file
includes instructions for the workflow engine to properly execute EO services at run
time. To prepare EO service executions, such a file is generated and imported into
the respective BPMS. FDL is a proprietary workflow specification format of IBM.
However, the Application Integrator tool is open and flexible enough to adapt its
code generation procedure to other workflow description formats, such as the
emerging BPEL [8] format.

4.4 Run Time Support

At run time, end users discover, locate, and invoke EO services by applying Web
service technology. By means of a Web browser, end users query the UDDI v3+
registry to retrieve information about available EO services and their access loca-
tions. More specifically, the Web browser connects to the Web portal and requests an
appropriate Java Server Page (JSP). The request is forwarded to the Servlet engine
which executes corresponding processing steps, queries the UDDI v3+ registry, and
sends related information back to the end user via the Web portal. The UDDI v3+
registry provides descriptive information about EO service interfaces and access
points. End users use this data to locate EO services, and to invoke them by specify-
ing related parameters.

EO services are offered through the SOAP (Simple Object Access Protocol) [9].
SOAP messages for the invocation of EO services are either created by client appli-
cations, or automatically generated by the Web portal for interactive EO service
invocations. They are then sent to the corresponding access point by using the HTTP
post protocol. Through this access point the message is forwarded to the SOAP
adapter, which processes it, and sends corresponding execution instructions to the

Fig. 6. WSDL+ Implementation File

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
<documentation> ... </documentation>
<import ... />
<businessEntity>

<name>Space Data Technology, Inc.</name>
<description>Satellite Data Provider</description>
<contacts>
<contact useType="Organization Manager">

<personName>Marcello Mariucci</personName>
<details>mariucci@spacedatatech.com</details>

</contact>
</contacts>
<categoryBag>
<keyedReference tModelKey="UUDI:C1AD242-9343-2321" keyName="Earth Science" keyValue="Data"/>
<keyedReference tModelKey="UUDI:D4EG343-3534-2316" keyName="Data" keyValue="Provider"/>

</categoryBag>
</businessEntity>
<service ...>

<documentation> ... </documentation>
<categoryBag>
<keyedReference tModelKey="UUDI:D3ER342-2345-6545" keyName="Data" keyValue="Ingestion"/>

</categoryBag>
<port ... > ... </port>

</service>
</definitions>



workflow engine. Execution instructions are coded in the Extensible Markup Lan-
guage (XML) format [10]. The workflow engine provides a reliable and robust infra-
structure for the orchestration of EO services related process chain. Results are sent
back to the Web portal, which either forwards them to the client application, or sends
them via email to the end user. In the reminder of this section, we briefly describe
the dynamic invocation of EO services via SOAP messages.

Dynamic SOAP Adapter for a Workflow Management System. As described
above, end users can send SOAP request messages to an access point in order to
initialize EO service executions. For that purpose, the Web portal integrates a
dynamic SOAP adapter, which is able to parse SOAP messages and to forward
related execution instructions to the workflow engine. Our SOAP adapter is based on
Apache SOAP, which per se provides a SOAP handler to parse SOAP messages and
to map requests to static Java classes. Unfortunately, this implementation approach
does not meet our demands, as in our integration infrastructure Web services are
dynamically created, and, thus, Web service related Java classes do not exist in
advance. A new dynamic SOAP handler, which additionally adapts to a workflow
management system, was implemented. Fig. 7 depicts a UML sequence diagram
regarding the invocation of EO services via SOAP in our EO integration framework.

The end user sends a SOAP message to the HTTP Server �, which forwards the
requests via Servlet engine � to the SOAP adapter �. The SOAP adapter verifies
the request. In order to check whether the service parameters are correct and whether
the client is authorized to execute the EO service, the adapter interacts with the inte-
gration repository �. This connection is also used to get service execution instruc-
tions. The SOAP adapter generates XML statements about these execution instruc-

Fig. 7. UML Sequence Diagram for EO Service Invocation Handling

: End User HTTP-Server Servlet Engine SOAP Adapter Integ ration
Repository

Workflow
Engine

Appli cat ion A Application B

Invoke EO Service

Forward SOAP Request
Verifyauthorization

Generate XML message

Put XML message on XML queue

Execute application function

Execute application function

Put XML message on XML queue

Read XML message

Send SOAP Responce

1

2
3

4

5

6

7

8

9

: End User HTTP-Server Servlet Engine SOAP Adapter Integ ration
Repository

Workflow
Engine

Appli cat ion A Application B

Invoke EO Service

Forward SOAP Request
Verifyauthorization

Generate XML message

Put XML message on XML queue

Execute application function

Execute application function

Put XML message on XML queue

Read XML message

Send SOAP Responce

11

22
33

44

55

66

77

88

99



tions along with the service parameters �, and sends them via XML queues to the
workflow engine �. The workflow engine starts the EO service among the involved
applications �. At the end, it sends a status report back to the SOAP adapter �,
which forwards it to the end user via SOAP	. 

5 Conclusions and Future Work

In this paper we presented a flexible EO integration framework for supporting the
inherent complexity of EO application systems. We focused on a service-based appli-
cation integration approach and its realization. We emphasized our prototype im-
plementation, which integrates and adapts COTS tools for workflow management,
repository, and Web services technology. The prototype infrastructure has been suc-
cessfully applied in real EO environments, which proves that flexible application
integration could be achieved by the right composition and adaptation of existing
technology. Up to now, the EO integration framework infrastructure is limited on a
few scientific applications and a selective user community. However, visions concern
the use of such frameworks to foster commercial EO applications, and to build up a
market for EO data and application providers.

In our approach, Web service technology is not used to link applications inside the
EO integration framework. Since Web service technology products are still in an
experimental fashion, we preferred to use more expensive, but proven and reliable,
products. Future work regards the employment of Web service technology for inte-
grating internal key systems. Further future work is concerned to emerging Grid
technologies [11]. As of now, Grid technology is perceived as an orthogonal issue.
Coupling Grid with our EO integration framework offers the possibility of transpar-
ently executing application functions on best possible resource allocation configura-
tions. Furthermore, security solutions of local applications could be maintained, and
intensive computation applications executed on dynamic high performance re-
sources. The employment of Grid would greatly simplify the sharing and dissemina-
tion of applications, and enhance the quality, effectiveness and efficiency of our
application integration approach.

References

1. Mariucci, M., Mitschang, B.: On Making RAMSES an Earth Observation Application
Framework. In: Smari, W.W., Melab, N., Chen, S.-C. (eds.): The 2nd International Confer-
ence on Information Systems and Engineering. The Society for Modeling and Simulation
International, Vol. 34, Nr. 2. San Diego (2002) 67–72.

2. Doherty, C., Usländer, T., Landgraf. G.: Multiple Application Support Services. An ESA
Protocol for EO Application Clients. In: Earth Observation & Geo-Spatial Web and Inter-
net Workshop. Committee on Earth Observation Satellites. London (2000).
http://webtech.jrc.it.



3. European Space Agency, University of Stuttgart: ARSENAL Project. Official Homepage.
http://www.informatik.uni-stuttgart.de/ipvs/as/projekte/arsenal/index_engl.html.

4. Bernstein, P.A., Dayal, U.: An Overview of Repository Technology. In: Bocca, J.B., Jarke,
M., Zaniolo, C. (eds.): 20th International Conference on Very Large Data Bases. Santiago
(1994) 705-713.

5. Dayal, U., Hsu, M., Ladin, R.: Business Process Coordination: State of the Art, Trends,
and Open Issues. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao,
K., Snodgrass, R. (eds.): 27th International Conference on Very Large Data Bases. Rome
(2001) 3-13.

6. Leymann, F.: Web Services: Distributed Applications without Limits – An Outline. In:
Weikum, G., Schöning, H., Rahm, E. (eds.): 10th BTW 2003 Datenbanksysteme für Busi-
ness, Technologie und Web. Leipzig (2003) 2-23.

7. Belwood, T., et al.: UDDI 3.0. UDDI Spec Technical Committee Specification.
http://www.uddi.org.

8. Leymann, F., Roller, D.: Business processes in a Web service world. A quick overview of
BPEL4WS. IBM report. http://www-106.ibm.com.

9. World Wide Web consortium (W3C): Simple Object Access Protocol (SOAP) 1.1. W3C
Note 08 May 2000. http://www.w3.org/TR/SOAP

10.World Wide Web consortium (W3C): Extensible Markup Language (XML).
http://www.w3c.org/XML/.

11.Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann (1999).


