
A Plugin-Based Architecture For Simulation In The
F2000 League

Alexander Kleiner
�

, Thorsten Buchheim
�

�

Institut für Informatik
�

Institut für Informatik
Universität Freiburg Universität Stuttgart

79110 Freiburg, Germany 70565 Stuttgart, Germany
kleiner@informatik.uni-freiburg.de buchheim@informatik.uni-stuttgart.de

Abstract. Simulation has become an essential part in the development process of
autonomous robotic systems. In the domain of robotics, developers often are con-
fronted with problems like noisy sensor data, hardware malfunctions and scarce
or temporarily inoperable hardware resources. A solution to most of the problems
can be given by tools which allow the simulation of the application scenario in
varying degrees of abstraction and the suppression of unwanted features of the
domain (like e.g. sensor noise). The RoboCup scenario of autonomous mobile
robots playing soccer is one such domain where the above mentioned problems
typically arise.
In this work we will present a flexible simulation platform for the RoboCup
F2000 league developed as a joint open source project by the universities of
Freiburg [14] and Stuttgart [8] which achieves a maximum degree of modular-
ity by a plugin based architecture and allows teams to easily develop and share
software modules for the simulation of different sensors, kinematics and even
complete player behaviors.
Moreover we show how plugins can be utilized to implement benchmark tasks
for multi robot learning and give an example that demonstrates how the generic
plugin approach can be extended towards the implementation of hardware inde-
pendent algorithms for robot localization.

1 Introduction

Simulation has become an essential part in the development process of autonomous
robotic systems. In the domain of robotics, developers often are confronted with prob-
lems like noisy sensor data, hardware malfunctions and scarce or temporarily inopera-
ble hardware resources. A solution to most of the problems can be given by tools which
allow the simulation of the application scenario in varying degrees of abstraction and
the suppression of unwanted features of the domain (like e.g. sensor noise).

The RoboCup scenario of autonomous mobile robots playing soccer is one such
domain where the above mentioned problems typically arise. In contrast to the the sim-
ulation league [6] where there is a predefined type of player with fixed action and per-
ception capabilities in the simulated environment, the F2000 league permits a great
diversity of robots in shape, kinematics and sensorics. Typically, teams in the F2000
league use multi sensor approaches to gather relevant information about their environ-
ment for the task of playing soccer. Here, all kind of local sensors, like ultrasonic or

infrared sensors, laser range finders, cameras or omni-vision sensors, may be used in
arbitrary combinations on the robot.

Existing simulation tools for the F2000 league usually are rather specialized for
a certain robot architecture of one team, restricted to a certain software language or
deeply interwoven within the team’s software structure [1] . Even if a certain adaptabil-
ity to different kinds of robot setups or robot control properties partially was considered
within some software designs [2], usually a lot of work still has to be spent to adapt
the software to the individual needs of one team without any general benefit for other
teams.

In this paper we present a flexible simulation platform for the RoboCup F2000
league developed as a joint open source project by the universities of Freiburg [14] and
Stuttgart [8]. The simulator is based on a client/server concept that allows the simulation
of diverse robots and also the simulation of team play.

The simulator achieves a maximum degree of modularity by a plugin based archi-
tecture. Software plugins are well known from the field of software engineering, par-
ticularly in the Internet context.They are basically dynamic libraries which extend the
functionality of an application while loaded at runtime. We introduce a generic plugin
concept for the simulation of the dynamic model and the sensors of an autonomous
robot. This concept makes it possible to easily develop and share modular software
components which can be re-used in various robot setups of different teams.

Furthermore we introduce plugins for robot behaviors. These are software compo-
nents which implement a full player behavior in the sense of reading and reacting on
sensor data while running as integrated module of the simulation. We show how they
can be utilized to implement benchmark tasks for multi robot learning.

Finally we give an example that demonstrates how the generic plugin approach can
be extended towards the implementation of hardware independent algorithms for robot
localization. The latest version of the simulator is freely available from our home page
[12].

The remainder of this paper is structured as follows. Section 2 gives an overview
of the server and section 3 of the client part of the simulator. The concept of plugins
which is used by both parts, will be described in more detail in Section 4. In section 5
we sketch some applications like localization and learning and in section 6 we give an
outlook to future developments.

2 Server architecture

The core of the server is a 2D physics simulation that continuously computes the state
of the world within discrete time intervals

���
. At time � , the simulation calculates the

subsequent world state for time ��� ���
by taking into account velocities of objects and

their modified internal states, like for instance committed motion commands to a robot.
As indicated in figure 1, the physics simulation is basically influenced by robot

objects existing on the server. Robots can either be controlled by clients connecting via
the message board over a TCP/IP socket or by a player plugin which is started within
the graphical user interface (GUI). In case a player plugin is created by the GUI, a robot

T
C

P/
IP

SIM
CFG

Physics
Simulation M

es
sa

ge
 B

oa
rdPlayer Plugins

Plugin Factory

control

World State

GUI

Referee

sensor data

control

control

connect

sensor data

Robot

Sensor
Container

Motion
Plugin

control

sensor
data

CFGCFGROB
CFG

Fig. 1. Overview of the server architecture

is created and assigned to the plugin. If created by the message board, the robot will be
controlled by the remote connected client.

To each robot there is a motion plugin and a sensor container associated. The mo-
tion plugin simulates the robot’s dynamics, whereas the sensor container aggregates
various plugins that implement the simulation of its sensors. The creation of the dif-
ferent plugins is done by a plugin factory which detects the available plugins at server
startup. A more detailed description of the plugins will be given in section 4.

The individual setup of a robot is defined by a robot configuration file which con-
tains information on its sensor and motion plugins. Furthermore the file includes a de-
scription of the robot’s geometry and manipulators.

Manipulators are designed as variable parts of the robot geometry which can be
switched between a set of states with differing geometric setups. Furthermore manipu-
lator states can contain an additional parameter describing their ability to accelerate the
ball which is needed for the definition of kicking devices.

Additionally, the state of the world can be influenced by the referee module. The
intention of this module is to implement a set of rules restricting the robots actions in
some way. At the current stage, however, the referee is limited to count the score, taking
the ball back into the game if crossing the field boundary and resetting the game when
a goal was marked. The physics simulation and the communication will be described in
more detail in the following section.

2.1 Physics Simulation

The physics simulation is carried out in the plane. Simulation parameters, such as fric-
tion, restitution and cycle time are configurable by the simulation configuration file.
The file also defines the setup of the environment which is described by a set of geo-
metric primitives like rectangles, ellipses and triangles which nearly any scenario can be
built from. As some domains may require three-dimensional information, each primi-
tive contains two optional parameters specifying their beginning and end within the� -plane. Robots are described by these primitives as well, but within their specific robot
configuration file. With a world described by primitives, a simulation of rigid body

C1

C2

ω1

ω2

v1

v2

m2

m1

A

r1

r1

r2

x

y

Fig. 2. An impact of two objects in the plane

collisions can be carried out. Unfortunately at the beginning of the simulator project
there was no open source package for this simulation available. Therefore we imple-
mented calculations based on ”Dynamics”, an old but enlightening book from Pestel
and Thomson [11].

Figure 2 points out the problem of calculating rigid body collisions in the plane:
Given two objects with centers of mass

�
������� �	��
 �
��� � ������� ����
 ��� , the velocities� ����� � ����� � ����� � ��� , rotations � ��� � � and masses � ��� � � that collided in � , compute the

velocities ����� ����� �!��� ��� and rotations " �	� " � after the collision. For a solution, we
need six equations to determine the six unknowns. By the law of conservation of mo-
mentum along each space axis we get:

� � � ��� �#� � � �!� � � � ��� �$� � ��� (1)

� � � ��� �#� � � ��� � � � ��� �#� � ��� (2)

The angular momentum of each body with respect to the origin is conserved. Due to
the restriction that the simulation is carried out in the plane the angular momentum is
one-dimensional and because there are two bodies, this results in two equations:

� ��%'& � �$� � ��� � � ���)(
 � � ��� �*� " ��%�& � �#� � ��� � ���+(
 � ��� � (3)

� �!%'& � �$� � ��� � � ���)(
 � � �!� �*� " ��%�& � �#� � ��� � ���+(
 � �!� � (4)

where & � and & � denote the moment of inertia of the two bodies. After Newton’s hy-
pothesis the ratio of the relative velocity in the � direction (if we assume the impact
is in � direction) before and after the collision equals a constant (�� , where � is the
elasticity (also known as restitution):

 ��� (��� � " ��%
 � (" ��%
 � � (�� � � ��� (� �!� �$� ��%
 � (� �!%
 � � (5)

In order to get the sixth formula, we have to make assumptions about the friction be-
tween the two bodies and thus about forces in the tangent plane. In the simulator so far,
we use a simple solution that interpolates between the two extremes ”stickiness” and
”no friction” , which has been introduced by John Henckel[5]. The shown calculation
can be generalized for the three dimensional case with little effort.

One difficulty in simulation is to determine the exact moment of collision. Usually
when a collision is detected the two objects involved overlap by some degree due to
a limited time scale resolution of the simulation. Hence the simulation calculates back
� time steps within the last cycle if a collision occurred. So far, the accuracy of the
collision detection suffices for a simulation in real-time and up to five times faster when
executed on a Pentium 3 600MHz computer. We look forward to improve the collision
detection to enable even faster simulations.

Another crucial component of robot simulation is a model of the robot’s dynamics.
Due to the rich set of existing models we decided to leave it open for the users to develop
plugins for specific robots. Nevertheless, the simulator currently includes basic models
for robots equipped with a differential or omnidirectional drive which will be further
described in section 4.

2.2 Communication

Robots can be controlled by clients connecting via a TCP/IP socket to the message
board. This has the advantage that clients can be programmed in any kind of language,
as long as they comply with the protocol. Clients programmed in C/C++ can be linked
directly with a provided client library and communicate with the server by function
calls.

In the sake of simplicity, the protocol is based on ASCII strings that start with a
unique command identifier followed by a list of parameters. Besides commands ma-
nipulating the state of the robot there are also commands to control the simulation, for
example to perform a reset of the simulation or to receive the current score of the game.

Due to the generic plugin architecture, the protocol between server and client does
not prescribe a format for the exchange of sensor data. Thus, plugins have to implement
two abstract methods, one for reading and one for writing an array of unsigned integers
respectively. This array, which represents the sensor’s current data, is then transmitted
together with a unique sensor identifier and a timestamp from the server to the client.
On the client side, the received array and timestamp are written into the appropriate
sensor plugin.

Since computer clocks are usually running asynchronously, we had to integrate a
time synchronization mechanism between server and client. This is done by exchanging

timestamps between server and client during the connection phase which are used to
calculate a time offset value. When transmitting sensor data to a client this offset is
added to the timestamp of the package.

In contrast to other simulation servers which broadcast the state of the world within
fixed time cycles [10] clients have to trigger the message board for receiving an update
of the world. This permits clients with individual cycle times to connect to the simu-
lation. The client framework currently handles the sensor updates in a separate thread
with a default cycle time of �����	��� .

The time duration until the world state is completely transmitted depends strongly
on the amount of data the client’s sensor plugins requests. We measured on our internal
network for a client requesting ����� beams of a Laser Range Finder (LRF) sensor, dis-
tance and angle to all lines, poles, and goals on the field, and odometry information, a
duration between 	 ��� and
 ��� .

The latency of the server, which depends on the number of simultaneously con-
nected clients, has been measured between � ��� and �	��� in the case of
 actively
operating clients.

3 Client architecture

User Control Program

C
om

m

CFG Parameters
Sensor Data
Container sensor

data

control

T
C

P/
IP

control

connect

sensor data

R
ea

l R
ob

ot
 I

F

Sensor
Thread

Control
Thread

GUI Plugin Factory

Fig. 3. Overview of the client architecture. Dashed components are optional

Figure 3 shows an overview of the client architecture. The client consists of a mod-
ule that manages the communication with the server (Comm), a module for parsing
and accessing information from the robot configuration file (Parameters) and a sensor
container holding sensor plugins which are created by the plugin factory.

The Parameters module parses the client’s robot configuration file which can then
be used for accessing information on the position of sensors or maximal velocity set-
tings. On the client side information on the sensor configuration is used for creating
the respective sensor plugins, for example the type of feature the created sensor plugin
provides. The file is also transmitted to the server during the server connection phase
and used there for the creation of an equivalent robot object in the simulation.

Sensor plugins created on the client side are equal to plugins created on the server,
but reduced of the ability to generate data. They can be considered as data buffers which
are filled by the communication module.

As indicated by the dashed modules in the figure, one could also fill the container us-
ing threads that process information from real sensors. This is particularly useful when
designing high-level algorithms based on the sensor container concept which work on
the generated features. In this case the algorithms can easily be evaluated both in the
simulation and on real robots.

The sensor plugins are automatically generated and inserted into the sensor con-
tainer which provides functionality to search for and access specific sensor data ob-
jects by certain characteristics. Within the container, sensor plugins are distinguished
by three identifiers:

1. The specific model of the sensor, for example DFW5001 or LMS2002

2. The type of the sensor, for example camera or LRF
3. The name of the particular feature, for example ballDistance or 180DegreeScan

In order to address a particular plugin, one can query the container by providing one
or more of the above identifiers. This has the advantage that features can be addressed
in a more abstract way by their functionality rather than by a specific sensor name. Thus
plugins that provide equal features, e.g. distanceToGoal from a vision or LRF plugin,
can be exchanged in the container without direct consequences for the user program.

Furthermore the client package provides an optional GUI module that can be used to
display information from the sensors or additional information generated by algorithms
on a higher level.

4 Plugin Architecture

The plugin concept was chosen since it offers the highest degree of flexibility and exten-
sibility while maintaining an independent and stable simulator core. The plugin concept
evolved in stages with the increasing need for a stronger modularity of certain parts of
the simulator until reaching the current state which, we hope, meets most of the expec-
tations and requirements for the teams of the F2000 league. Figure 4 shows the plugin
architecture for the sensorics and motion simulation which will be described in the fol-
lowing.

1 Firewire camera used by the University of Freiburg
2 SICK laser range finder used by the RoboCup teams of Freiburg and Stuttgart

SensorDataPlugin

Cycle

Comm

Message
Board

Sensor
Container

Cycle
Simulation

Sensor

SERVER
CLIENT

SensorDataPlugin

SensorPlugin

sendA
ndR

eceive

R
ob

ot
 C

lie
nt

 I
nt

er
fa

ce

Robot

access

setData

getOdometryData

update
generateData

getRelocation

getVelocity

setMotionCommand

getData

setData

MotionPlugin

State
World

Comm

Container

setMotionCommand

Fig. 4. Server/client view of the sensor and motion plugin concept

Sensor Plugins Usually the biggest discrepancies between robots of different teams
apart from the robot chassis are the sensors used on the robots and the data representa-
tion used by the data processing modules, like differing coordinate frames or a camera
image data format needed by a specific color segmentation algorithm. Consequently the
sensorics play a central role within the plugin architecture of the simulator.

Although sensor plugins were referred to as one plugin type in the previous chapters
for the sake of simplicity, the sensor concept consists of two separate plugin types, one
for data generation and one for data storage. Sensor plugins access the current world
state of the simulator to generate data of any desired form. This data is stored within
the second plugin type named sensor data plugin which is needed for a transparent
communication between server and client as well as for a data buffering on the client
side. One functionality of the sensor data plugins is the transformation of their specific
data representation to the data format required by the communication module and vice
versa. Therefore a sensor data plugin has to implement the abstract methods getData
and setData that return or take an array of unsigned integers, representing the current
data of the sensor.

On an update request from the client, sensor data plugin objects on the server side
are filled by the sensor plugins, transformed to the data transmission format, transferred
to the client and re-transformed to the original data format by the corresponding sensor

data plugin objects on the client side. This enables the replication of the sensor data
from the server on the client side and thereby yields a server/client transparency.

One major advantage of this concept is that sensor data processing can either be
done on the client or on the server side as both share the same view on the sensor data.
This can be extremely useful when the amount of data grows too large to transmit it to a
client in a reasonable amount of time like e.g. a rendered high resolution camera image.

To build a new sensor plugin basically one method generateData() has to be imple-
mented by the developer. Within this method the position of the sensor itself as well as
information about all other objects concerning position, color and geometric shape are
accessible by the framework within an absolute coordinate frame. This information can
then be used to create the data as usually provided by the real sensor. Optionally there
are auxiliary functions for simulating sensor noise or for two dimensional ray tracing.

(a) (b)

Fig. 5. Two screenshots from the plugin for generating artificial camera images: (a) an omnidi-
rectional view as seen by a perfect warp free omnidirectional camera using an isometric mirror
shape as proposed by [9]. (b) a conventional camera perspective.

Until now there exist several sensor plugins for different kinds of sensors based on
the sensor equipment used by the teams of Freiburg and Stuttgart:

– odometry sensor providing the current translational and rotational velocities and a
position within the odometry coordinate frame. Optionally it may supply additional
data from the motion plugins which will be described in the following section.

– camera for iconic data of ball, goal and corner posts considering a limited field of
view and a maximal view distance.

– iconic omnivision camera detecting field lines and goals, corner posts and the ball
in a
������ field of view

– laser range finder providing either raw distance data obtained by ray tracing or
iconic information about obstacles and an absolute position within the field

– ultrasonic sensor detecting the nearest obstacle within the opening angle of the
sensor

– camera image by 3D scene reconstruction delivers a 3D rendered view of the
scene as seen either by a commonly used 2D camera or a perfect omnivision sensor
using a warp free isometric mirror shape as shown in Figure 5.

Motion Plugins The integration of different kinematics and controller types is facil-
itated by a further plugin type of the architecture named motion plugin. Within the
simulator a robot’s motion is represented by a change of its pose ��� �!
 � � � within a cer-
tain interval of time. This change of pose (relocation) of the robot is requested from the
motion plugin within each update cycle of the simulation to update the robot’s pose in
the environment.

For the physics simulation the motion plugins must provide further information
about its current velocity vector and the rotational speed which is needed for the colli-
sion calculation.

To set motion commands motion plugins can either be addressed by a set of stan-
dard commands, such as setRotationalVelocity or setTranslationalVelocity, or by a � -
dimensional vector. The latter allows to address more complex motion models, as for
example implemented by the omni-directional motion plugin which is currently devel-
oped at the University of Dortmund.

Since a motion model may require to send data about its internal state back to the
client the motion plugin interface provides one further method to retrieve motion data
that is automatically invoked by the default odometry sensor plugin of the server which
makes the data available on the client side as well.

Currently there are three different motion plugins available. One model is based
on a neural network that basically predicts the robot’s state ��� ��
 � � � ��� � � � � at � � de-
pending on the previous state and velocity settings � �����

�� � �����
�

� � at �
	 and was trained
for Freiburg’s Pioneer hardware base. A small application is also available to train the
model for other robot bases by a log file recorded on the real robot while performing
representative motions. A similar method has also been used for state prediction by the
Agilo RoboCuppers [3,2].

A second model is a mathematical calculation of a two wheel differential drive
based on a a linear acceleration assumption and parameter tuned to realistically map
the behavior of the Nomadic Scout hardware base of the Stuttgart CoPs team. A third
implementation for a holonomic three wheel robot base was developed by the Univer-
sity of Dortmund.

Player Plugins After various experiments and applications of the simulation server, we
found it a useful feature to facilitate the implementation of simple robot behaviors that
run within the simulator without the overhead of a remote connected client. This turned
out to be useful to simulate opponent players like e.g. goalkeepers or for gathering
simulated robot sensor data to create an environment map which e.g. was used for a
Monte Carlo localization approach. For this kind of application the framework offers a
third type of so called player plugins which is shown in figure 6.

Each player plugin controls one robot which is created based on its configuration
file that is specified within the plugin. Its core functionality is implemented within a
method senseAndAct that retrieves sensor information from the sensor data plugins and
determines an action which usually is a command to the motion plugin or a triggering
of its robot manipulators. Alternatively a player plugin can access the world state of
the simulator directly and manipulate it if needed. This may either be useful when im-

PlayerPlugin Control

Player
manipulate

sensor data

World State
senseAndAct

motion control

Robot

broadcastMsg receiveMessages

Communication Channel

Fig. 6. Player plugin concept

plementing a perfect player behavior without limitations by its sensors or when certain
environment situations shall be created artificially.

Each player plugin is identified at the start of the server and selectable by a menu
entry within the graphical user interface of the server. Player plugins can be started and
stopped by the GUI but can also terminate by themselves when their task is accom-
plished. The player control module supervises all active player plugins and its assigned
robots. If either of them terminates or is deleted it assures the removal of its counterpart
from the simulator.

To model coordinated or cooperative group behaviors of different player plugins the
simulator provides a common communication channel for message broadcasts among
player plugins. Each player can thus broadcast and receive messages from other player
plugins to synchronize group actions.

Currently there are two player plugin types. A goalkeeper plugin which can be run
with different modes of varying difficulty intended for AI benchmarks and a plugin
to learn sensor data models for a Monte Carlo localization approach which will be
described in the following chapter.

5 Applications

5.1 A benchmark for Multiagent Learning

The proposed architecture comes with two crucial advantages that makes it valuable for
robot learning: Firstly, customized sensor and motion plugins allow for different kinds
of robots to be used within the same learning environment. Secondly, the usage of player
plugins on the server offers a modular way of designing and distributing benchmark
tasks while keeping the same setup.

Within the simulator framework, algorithms can be designed for learning on either
the client or server side. In both cases, the algorithm’s input is taken from a sensor data
container and the output is a command to a motion plugin. Due to the abstract inter-
faces it is possible that an algorithm can be applied to different robot types. As already
discussed in section 3, sensors are addressable by their specific model, their type or the
name of a feature they provide. By addressing the feature directly, e.g. DistanceToGoal,
the algorithm can be executed, regardless by which sensor the data was produced. Note

that this works for plugins that provide features with equal identifiers and equal data
format.

Another important issue is the evaluation of learning algorithms. Generally, this
turns out to be hard in the context of autonomous robots, where frequently occurring
changes in the environment make it nearly impossible to find the same testing conditions
twice.

Hence we introduced the player plugins for implementing unique benchmark situa-
tions. One plugin, which is included in the simulator package, implements the control of
a goalkeeper and can be started with different policies. The plugin can be used to eval-
uate the performance of an opponent (or a team), that learns policies to score against
the defending goalkeeper, that was started at a specific level of skill. The goalkeeper
plugin can be started with the policies not moving, randomly moving, moving by a pat-
tern, blocking the ball, intercepting the ball and mixed policy. The benchmark has re-
cently been introduced within the RoboCup Special Interest Group (SIG) on Multiagent
Learning.

Our own experiences with learning a complex control task have shown that behav-
iors learned in the simulation can be executed successfully on a real robot as well [7].
Even tricky tasks, such as dribbling and approaching the ball, were managed well by the
pre-trained robots that have been trained within games against hand-coded opponents or
against themselves. Also the team from the University of Stuttgart uses the simulation
for learning skills.

5.2 Plugin based localization

In this section we give an example that demonstrates how the plugin approach can be
extended towards hardware independent implementations of robot localization algo-
rithms. We extended the sensor plugin interface for the utilization of the well known
Monte Carlo Localization method (MCL)[13].

The key idea behind Markov localization is to maintain a belief � ��� � � � � of the cur-
rent robot pose � � . The belief is updated by successively integrating sensor readings �
and actions � executed by the robot:

� ��� � � � � ��� � � ��� � � � � �
	 � � � �
	 � � � �
	 � ���
�
��� � 	 � (6)

Under the assumption of independence between the sensor readings and executed ac-
tions, the belief can be updated for sensor readings by

� ��� � � � � ����� � � � � � � � � ��� � � �
	 � � (7)

where � denotes a normalization constant and � � � � � � � � the perceptual model, and for
executed actions by

� ��� � � � � ����� � � ��� � �
	 � � � �
	 � � � ��� � � �
	 � ��� � �
	 � (8)

where � � � ��� � �
	 � � � �
	 � � denotes the robot’s motion model.
MCL improves Markov localization by a more efficient representation of the belief� ��� � � � � . Instead of maintaining a belief for all poses, only a set of weighted samples is

updated by equation 7 and 8. Since the method has been well documented by several
other researchers [13,4], we will not discuss it in detail any further here. Instead, we
will focus on the perceptual model and its integration to the sensor container.

To implement MCL, one also needs to know the perceptional model � � � � � � . In the
case of containers, � is a vector of � features, where each feature is stored by a plugin in
the container. If we assume independence among the features with respect to the pose,
the perceptual model can be calculated by � � � ��� � � ����� � �� � ��� ��� � �� � ��� � � � � � ���� � � � .

We extended the abstract interface of the sensor data plugins by the two methods
learnProbability(� �) and getProbability(� �). These methods are supposed for learning
the sensors observation and accessing the perceptual model for the pose � � respec-
tively. It is defined that in case the sensor has an expectation for the queried pose,
getProbability(� �) returns a number between � and � and (� otherwise. There exists
also an interface getProbability(� � ���) that allows to weight a sample set � according
to the current sensor reading at pose � � . Note that it is assumed that there was either
a call of generateData or setData beforehand to assure that the latest observations are
available inside the plugin. The interface leaves open how the perceptual model has to

(a) (b)

Fig. 7. Calculating perceptual models: (a) the robots expectation of the features LRF Beam,
PoleDistance, PoleAngle, GoalDistance and GoalAngle (b) the mixed perceptual model of the
features distance and angle to the blue and yellow goal. Darker regions indicates a higher proba-
bility of the robot’s position. Sensor noise is modeled by a Gaussian distribution with 	�

�������
and 	�

��� for distances and angles respectively.

be represented. We used a common representation that separates the perceptual model
in two tables, one for the expectation of each pose and one for the sensor model it-
self [13]. In this case it is assumed that learnProbability is called with noise free data,
since the data is stored in the table of expectations. The second table is pre-calculated

from a Gaussian distribution that reflects the sensors noise. The return value of get-
Probability is then simply calculated by a nested lookup of the two tables. Figure 7(a)
shows the expectation of the features LRF Beam, PoleDistance, PoleAngle, GoalDis-
tance, GoalAngle, and 7(b) the mixed perceptual model of the latter two for the blue
and yellow goal.

The perceptual model can be learned at once for all features by a special player
plugin in the simulator. The plugin basically moves the robot to all poses on the field
and executes generateData and learnProbability for all Markov plugins found in the
container.

During localization, the MCL implementation executes getProbability on the con-
tainer for weighting the sample set representing the current belief. We are planning to
develop a similar interface for the motion plugins. By this, the localization algorithm
can be designed completely independent of the robot’s hardware.

6 Summary and outlook

In this paper we presented a modular and extendible multi-robot simulation environ-
ment for the F2000 league that is suitable for simulating sensors, robot control tasks
and cooperative team play. An open plugin architecture has been introduced that per-
mits teams to design their own robot models regarding sensor configuration and motion
control. With a growing community of teams using this simulator even full test matches
can be held on a regular basis without physical presence of the teams. Furthermore
we showed exemplarily, how the simulator framework can be utilized for Multiagent
learning.

Past experiences in robotics have shown that besides a good idea for e.g. a new
localization or feature extraction algorithm the concrete implementation plays an even
more important role. Unfortunately, there are only a few implementations freely avail-
able and those are in turn tailored for particular hardware or data structures.

One of the key motivation of our work is to foster the exchange of software for
autonomous robots. The proposed simulator architecture makes clear how this can be
achieved in the case of a robot simulation. Even more beneficial, however, can be the
exchange of software components of real robots. For accomplishing this goal, one has
to introduce a level of abstraction and to define standardized methods for accessing this
level.

We believe that the concept of sensor containers provides a good level of abstraction
on real robot systems due to the following reasons:

– In the same way, as the proposed sensor plugins generate data inside the simulation,
there can also be sensor plugins running on a robot that generate feature data from
real sensors. RoboCup teams using the same kind of sensors could then easily share
those components.

– As demonstrated by the MCL implementation in section 5.2, the abstract interface
of the plugins can be extended for localization algorithms. The example shows
generally how algorithms can be designed that operate on generic containers rather
than on specific implementations for sensor data processing. Algorithms that are

based on generic containers can easily be shared among teams that use the same
abstract interface.

– The concept allows to introduce ”virtual sensor” plugins that implement the com-
munication of high-level features among different teams.

The German research project SPP1152-RoboCup is concerned with certain aspects
regarding software architecture, system integration and learning. One aim is to find
a common description for sensor types and properties as well as robot geometry and
physics. We will adapt and contribute our approach to the project and look forward to
get one step closer to the goal of a common description of robots and more efficient
software development in the RoboCup domain.

References

1. A. Bredenfeld and G. Indiveri. Robot behavior engineering using DD-designer. In Proceed-
ings of the IEEE/RAS International Conference on Robotics and Automation (ICRA 2001).
IEEE, 2001.

2. S. Buck, M. Beetz, and T. Schmitt. M-ROSE: A multi robot simulation environment for
learning cooperative behavior. In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors,
Distributed Autonomous Robotic Systems, volume 5, Berlin, Heidelberg, New York, 2002.
Springer-Verlag.

3. S. Buck, R. Hanek, M. Klupsch, and T. Schmitt. Agilo robocuppers: Robocup team descrip-
tion. In RoboCup 2000: Robot Soccer World Cup IV, Berlin, Heidelberg, New York, 2000.
Springer-Verlag.

4. S. Enderle, M. Ritter, D. Fox, S. Sablatng, G. K. Kraetzschmar, and G. Palm. Vision-Based
Localization in Robocup Environments. In Peter Stone, Tucker Balch, and Gerhard K. Kraet-
zschmar, editors, RoboCup-2000: Robot Soccer World Cup IV, volume 2019 of Lecture Notes
in Artificial Intelligence. Springer Verlag, Berlin, 2001.

5. John Henckel. Simulation of rigid bodies. http://www.geocities.com/Paris/
6502/.

6. H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa, H. Matsubara, I. Noda,
and M. Asada. The RoboCup synthetic agent challenge,97. In International Joint Conference
on Artificial Intelligence (IJCAI97), 1997.

7. A. Kleiner, M. Dietl, and B. Nebel. Towards a life-long learning soccer agent. In Proc. Int.
RoboCup Symposium ’02. Fukuoka, Japan, 2002.

8. R. Lafrenz, M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann, M. Schanz,
M. Schulé, and P. Levi. Cops-team description. In A. Birk, S. Coradeschi, and S. Tadokoro,
editors, RoboCup-01: Robot Soccer World Cup V, pages S. 616 – 619. Springer Verlag, 2002.

9. Carlos Marques and Pedro Lima. A localization method for a soccer robot using a vision-
based omni-directional sensor. In Proceedings of EuRoboCup Workshop 2000, 2000.

10. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: a tool for research on multi-
agent systems. In Applied Artificial Intelligence, volume 12, pages 233–250, 1998.

11. E. C. Pestel and W. T. Thomson. Dynamics. McGraw-Hill, New York, 1968.
12. Simsrv. A robocup simulator for the F2000 league. http://www.informatik.

uni-freiburg.de/˜simsrv.
13. S. Thrun, D. Fox, W. Burgard, and Dellaert. F. Robust monte carlo localization for mobile

robots. Artificial Intelligence, 128(1-2), 2001.
14. T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner, and B. Nebel. CS-Freiburg: Coordinat-

ing robots for successful soccer playing. IEEE Transactions on Robotics and Automation,
18(5):685–699, 2002.

