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Abstract— Wireless home automation networks are one exam-
ple of how wireless technologies may soon become part of our
daily life, yet security in existing products is woefully inadequate.
An important problem in this area is the question of secure key
distribution. In this paper we present a key-distribution scheme
geared towards home automation networks, but applicable to
other networks with related properties as well. Our approach uses
a decentralized scheme that is designed to work on resource-poor
devices, allows easy addition and removal of devices and limits
the workload on the end user while guaranteeing the secrecy of
the exchanged keys even in the presence of subverted nodes.

I. I NTRODUCTION

In the near future, many common devices at home will have
computational power and wireless communication capabilities.
One of the possible applications are wireless networks for
home automation. Imagine a private home equipped with
motion-, light-, temperature- and other sensors and actuators
for opening the door, dimming the light, controlling the heating
and so on. These sensors/actuators can be used in order to
enhance the individual’s lifestyle, e.g. the heating is turned on
automatically when the owner of the house comes home and
the light is switched on in rooms where motion is detected.
Although there are existing solutions for home automation
(i.e. [1], [2], [3]), most of them do not address security aspects
in an appropriate way (if at all). At the same time, security
in those systems is a crucial factor since having these new
technologies at home provides many new ways for adversaries
to invade an individual’s personal life. An example of an
attacker that would be motivated to do so might be a thief
that wishes to gather information about when or if there is
somebody at home.

In order to counteract this threat, we need to secure the
communication with mechanisms that provide secrecy, au-
thenticity, integrity and freshness of messages. Encrypting the
communication will provide secrecy while integrity can be
provided by the use of secure hash functions and freshness by
the use of counters. For authenticity, either digital signatures or
pairwise unique shared keys will be needed. It follows that the
main need is to place unique encryption keys on the devices
and that these keys must be distributed over a secure channel.

In order to do so, we emphasize a decentralized solution,
i.e. the devices can establish keys without referring to a
central authority. This approach avoids a single point of trust,
thus even when a device is subverted by an attacker, the
key exchange for the remainder of the network will remain

secure. In this work, we present a parametrized solution which
guarantees the secrecy of a key exchange as long as there are
less thans subverted devices, wheres can be chosen according
to the actual security requirements.

The remainder of this paper is organized as follows: Section
II introduces the properties of home automation networks.
With theses properties in mind we discuss in sectionIII
existing approaches for key exchange in wireless and ad
hoc networks. SectionIV will then describe our system and
adversary model while our approach will be presented in
sectionV. The correctness of our approach will be proven
in sectionVI , and sectionVII discusses the properties of our
approach and compares them to the requirements. We present
an extension to our scheme in sectionVIII and conclude in
sectionIX with some thoughts about future work.

II. PROPERTIES OFHOME AUTOMATION NETWORKS

Typical home automation networks consist of many small
devices (sensors and actuators) which, in order to perform their
automation tasks securely, need to communicate in a secure
way.

The devices of such an network must be inexpensive. This
gives rise to two problems: There is no way to make the
devices absolutely tamper resistant [4] and the devices will
only have limited resources. An example controller for such
a device might be the Atmel AT90S2313, whose memory is
limited to 512 byte RAM and 2 kbyte flash memory, only part
of which will be available for security purposes.

With the above properties of home automation networks in
mind, the following requirements can be stated:

• The key distribution scheme must be decentralized –
it should not rely on the tamper resistance or theft
protection of any single device.

• Since we are dealing with mostly resource-poor devices,
asymmetric cryptography is problematic [5]. Hence, we
propose to use symmetric cryptography (see the next
section for alternative approaches).

Another aspect of home automation networks is that these
networks usually grow over time when the user buys addi-
tional devices. Also, some older device might get removed or
replaced. Therefore, any security solution for such a network
must allow to add or remove devices and the corresponding
keys easily.



Lastly, we also emphasize the need for a solution that is
easy to install and use for the end user.

III. R ELATED WORK

Existing approaches for home automation can be divided in
two categories according to the communication media used.
The first one is based on wired networks ([1], [3]) and the
second on wireless networks ([2], [3]). None of the systems
we analyzed provide security in any meaningful way, i.e. these
systems are completely open to an attacker who has access to
the communication media. Therefore, especially the wireless
technologies are extremely vulnerable.

Some solutions for this problem exist for wireless ad hoc
networks or sensor networks. Such networks usually can be
pre-configured and it is a priori known how big the network
is, or how big it might get. These approaches usually do not
address the issue of easy addition or removal of devices.

The existing solutions for wireless ad hoc networks can be
grouped in four different categories, based on whether they
employ symmetric cryptography or asymmetric cryptography,
and whether they follow a centralized or a decentralized
approach.

a) Centralized asymmetric approaches:A straightfor-
ward solution is to use certificates issued by a central cer-
tification authority. A central server thereby stores and signs
the public keys of the individual devices. The major problems
with this approach are the limited resources of the devices and
the need for a central (potentially vulnerable) authority itself.

b) Decentralized asymmetric approaches:Since a cen-
tralized authoritative device is a single point of failure, asym-
metric decentralized approaches have been proposed. Such de-
signs can be achieved by distributing the certification authority
over the participating devices [6], [7].

Both asymmetric approaches share a common problem: If
for instance small sensor devices are included – even with the
use of supporting high performance nodes [8] – the use of
asymmetric cryptography is often not possible due to delay
and energy constraints. On a Palm Pilot, for example, the
generation of a signature with a 1024 bit RSA key requires
approximately 36 seconds [5].

c) Centralized symmetric approaches:Due to the dif-
ficulties of the asymmetric approaches, the use of symmetric
cryptography is proposed in many recent publications. Similar
to the asymmetric approaches, one possible solution is the use
of a centralized server, acting as an intermediary for pairwise
secure channel establishments [9]. The common centralized
symmetric approach for fixed networks would be Kerberos
[10].

d) Decentralized symmetric approaches:The final ap-
proach, and the one that most appropriately addresses our
requirements, is the use of symmetric cryptography in a
decentralized fashion. To the best of our knowledge, the
following approaches have been published:

A simple approach was shown by Basagni et al. in [11].
However, their approach assumes tamper-resistant devices, a
notion that we consider problematic in the present context.

A different approach was examined by Chan et al. [12].
This approach uses a randomly predistributed set of keys. The
authors present several schemes that allow to establish shared
keys after deployment of the devices. The main drawback of
their design is that due to the random predistribution of keys,
two arbitrary nodes might not be able to establish a shared key
at all, i.e. the design cannot guarantee the key establishment
functionality.

The third decentralized symmetric approach by Zhu et
al. [13] – published concurrently to [12] – proposes a similar
scheme. It also uses a predistributed set of random keys.
This way, devices cannot be integrated in a network without
preparing it using a common programming device. Other than
[12], Zhu et al. are proposing a pairwise key establishment
protocol using multiple logical paths, as proposed in [14].
This way, a key can be split over multiple untrusted paths
and resistance against subverted nodes is improved. Due to
the random predistribution, the actual existence of different
paths in the network is not assured in any way.

IV. SYSTEM AND ADVERSARY MODELS

Our network consists of independent devices, communicat-
ing over a wireless channel. The channel itself is insecure,
i.e. anyone can listen and send to the channel. The number
of nodes is not predetermined or constrained in any way, as
it may change due to the introduction of new devices to the
network or node failures. We assume a non-partitioned net-
work, therefore communication between two arbitrary nodes
is always possible.

Since we consider the use in a home environment, we make
the assumption that an attacker might physically manipulate a
new or already integrated device. Since tamper resistance is in
principle hard to achieve [4], and due to the reasons discussed
in sectionII , we need to take the possibility into account that
a small number of devices gets subverted by an attacker.

We categorize attackers (or subverted devices) in two
classes:

1) The eavesdropping attacker. This attacker is only in-
terested in learning about secrets on other devices,
e.g. newly established keys. The objective of the attacker
is to eavesdrop on communications between other de-
vices.

2) The denial-of-service attacker. This attacker acts in
order to cease the functionality of the network. Note
that we do not consider denial of service on the physical
layer (e.g. jamming the frequency).

When a device gets subverted we assume for the purpose of
this work that the attacker is primarily interested in eavesdrop-
ping.

V. OUR APPROACH

Overall, our objective is to establish a shared key between
any pair of devices in the network, without giving an eaves-
dropping attacker the possibility to learn the newly established
key. Additional objectives are ease of setup from a user’s



standpoint and the ability to cope with the limited amount
of key storage space on the nodes.

In order to set up the home automation network (and
introduce new devices to it), we follow the principle of
physical contact [15]. Such physical contact establishes a new
shared key between two devices. Obviously it is impractical
to establish physical contact between each pair of devices in
the network, both in practical terms and in terms of the size
of the necessary key storage. Hence, it will be necessary to
limit the number of physically exchanged keys and establish
additional shared keys between devices as necessary.

A. Network Model

Before we describe our approach in detail, we define a
formal representation of our network, as follows:

A network is represented as an undirected graphG =
(V, E), where V is the set of devices in the network, and
E represents the set of shared keys between devices where
{v1, v2} ∈ E iff the nodesv1 andv2 share a symmetric key.
We will use the termdevice to indicate the physical device
and the termnodeto indicate the representation of that device
in the graph.

B. Setting up the Network

In order to set up the network and whenever a new device
is added to the network, a certain number keys has to be
exchanged through physical contact. We require that each
device that is added to the network shares a physically
exchanged key with at leasts devices that are already part of
the network and refer tos as thesecurity levelof the network.
The actual procedure is given in algorithm1, using the formal
representation of the network.

Per algorithm1, for the firsts+1 nodes, the network will be
represented by a fully connected graph and for each additional
node introduced, a key needs to be physically exchanged with

Algorithm 1 Introducing a new node to the graph

1: Given a graphG = (V, E) with n = |V | with nodes
vi ∈ V andei ∈ E and a new nodevn+1

2: V := V ∪ {vn+1};
3: if s ≥ n then
4: {device corresponding tovn+1 createsn new keys}
5: for i = 1 to n do
6: E = E ∪ {vn+1, vi};
7: {establish a new key through physical contact}
8: end for
9: else

10: V ′ := random subset ofV − {vn+1} with |V ′| = s;
11: {device corresponding tovn+1 createss new keys}
12: for i = 1 to s do
13: E = E ∪ {vn+1, vi} with vi ∈ V ′;
14: {establish a new key through physical contact}
15: end for
16: end if
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INTRODUCING NEW NODES TO THE NETWORK GRAPH(s = 3)

s other devices in the network, i.e.s new edges from the new
node to previously existing nodes will be added.

For example, consider fig.1: For a desired security level of
s = 3, steps (a) through (d) build a fully connected graph. As
soon as there are more thans nodes already in the graph, new
nodes will be connected to the graph by exactlys new edges
(steps (e) and (f)).

C. Establishing a New Shared Key

Obviously, there is no need to establish additional shared
keys for networks with up tos + 1 devices, since the corre-
sponding network graph will always be fully connected. Thus,
for the following discussion we only consider cases where
|V | > s + 1.

We will first describe how two devices can establish a new
shared key between them. In order to establish al-bit key, a
device randomly generatess l-bit sharesk1, . . . ks, and sends
them overs device-disjoint paths (i.e. paths that do not share
common devices) to the destination device (fig.2). On each
hop of a path, the key share is transmitted in an encrypted
fashion using the existing appropriate shared key. The final
key k is then calculated byk = k1 ⊕ k2 ⊕ . . .⊕ ks, where⊕
is the bitwise XOR operation.

It should be clear that without having access to all key
shares, an attacker does not stand a chance to recover the
key. If it can be assured that the key shares are communicated
over s node-disjoint paths of the network graph, an attacker
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L INK ESTABLISHMENT (s = 3)

will need to subvert at leasts nodes (one on each path) to
compromise the newly established key. In sectionVI , we will
show that our construction does ensure this property. Thes
different paths can then be discovered using standard methods,
e.g. through bounded depth-first search. Note, that due to
the pairwise symmetric keys devices are authenticated against
each other and therefore an single attacker device cannot force
itself on multiple paths.

VI. PROOF OFCORRECTNESS

It will now be shown that the construction of the network
graph described in sectionV-B will always result ins disjoint
paths between any pair of nodes for all network graphs(V,E)
with |V | > s + 1.

We use the following definition from graph theory:

Definition 1 (k-connected graph):A graph G = (V, E) is
said to bek-connectedif and only if for any setW ⊆ V with
|W | < k, the subgraph induced byV −W is still connected.

Theorem1 (Menger’s Theorem [16]): In a k-connected
graph, there always existk node-disjoint paths between any
pair of non-neighboring nodes.

Proof: See, for instance, [17].

Theorem2: Any graphG = (V,E) as constructed using
algorithm1, with |V | ≥ s will be s-connected.

Proof: (By induction over|V |). For |V | = s + 1, the
graph will be fully connected, so it follows trivially that the
graph is alsos-connected.

Now consider an alreadys-connected graph. We add a new
node v using algorithm1. So, we haves new edges into
the existing graph. Since the original graph was alreadys-
connected, after adding new edges, it will still bes-connected.
And, in order to disconnect the new node, we would need to
remove at leasts other nodes. Sos-connectivity cannot be
violated by detaching the new nodev either.

Theorem3: In any graphG = (V, E) as constructed using

algorithm 1, with |V | ≥ s + 1, there will always bes node-
disjoint paths between any pair of nodes.

Proof: Follows directly from theorems1 and2.

VII. PROPERTIES OFOUR APPROACH

Our approach to key distribution has the following proper-
ties:

• For the “skeleton” graph constructed in sectionV-B,
i.e. the graph containing only the edges for keys that
were established through physical contact, each device
needs, on average, space to store2s keys. This is easy to
see, since each new device requires at mosts keys (less
for the first s nodes), each of which will be stored on
two devices. Withn devices, this leaves us with space
for 2ns keys for the whole network, so if the keys are
evenly distributed, each device will hold2s keys. Since
the network size does not influence the necessary storage
space, the parameters can be chosen according to the
security requirements of the system, the susceptibility of
the devices to tampering and the available memory on
each device.

• The key distribution scheme remains safe as long as an
attacker cannot subvert more thans − 1 devices at the
same time. As long as this property holds, neither can
the communication between two non-subverted devices
be overheard by an attacker nor can an attacker fool a
node about the origin of a message.

• Existing shared keys between untampered devices remain
secure. Devices that forwarded key shares can immedi-
ately discard them afterwards.

• This scheme is still vulnerable against the second in-
troduced type of attacker, the denial-of-service attacker.
The straightforward solution to deal with this problem is
the introduction of some redundancy into the network,
i.e. in order to deal with a denial-of-service attacker that
has compromised up tor nodes we need to establish a
(s+ r)-connected graph in the beginning. Thus, between
any pair of nodes, there exist(s+ r) node-disjoint paths.
If a node detects that a newly established key does not
work, it chooses an alternative set ofs paths to the other
node and tries the key establishment again. A complete
analysis of this mechanism is beyond the scope of this
paper and will be discussed in future work.

Therefore, our approach provides a decentralized solution
to the key-distribution problem based on symmetric keys
that in the presence of only eavesdropping attackers can be
guaranteed to work. There is no restriction on the addition
of new devices and the memory required for key storage is,
on average, constant for each device. Also, adding a new
device only requires the user to touch it to max.s (or s + r)
already existing devices, which is in line with our requirement
regarding ease of use. What remains to be discussed is how a
device can be removed from the network.



VIII. C ONTROLLED REMOVAL OF DEVICES

One problem remains to be solved: How can devices be
removed from the network without destroying the property
that the corresponding “skeleton” graph iss-connected? We
assume that the removal of a device occurs as a controlled
shutdown, i.e. a device has the time to announce its impending
departure from the network and make all necessary arrange-
ments. Algorithms2 and 3 then describe the procedure for
removing a device from the network.

Our solution is based on pretending that the device that
is to be removed had never been there in the first place and
replacing existing shared keys accordingly. If the device is still
present when this procedure is performed, keys can be replaced
automatically, using the procedure described in sectionV-C.

To see why our algorithms work, let the graph under
consideration beG = (V, E) with V = {v1, v2, . . . vn} where
a nodevi was thei-th node added to the graph according to
our construction. Let the node that is to be removed from the
graph bevj . We need to consider three cases:

1) If |V | ≤ s + 1, removal is not an issue, since the
resulting graph after removal of a node would remain
fully connected.

2) |V | > s + 1 and j > s. Now, when vj was added
to the graph,s edges were established with already
existing nodes. We call the set of these nodesA =
{vA1, . . . , vAs}, where each indexAi is less thanj
(i.e. all nodes inA are older thanvj). Also there is a
(possibly empty) set of nodes that were added to the
graph aftervj and that, when they were introduced,
established an edge withvj . We call this setB, and all
nodes inB are newer thanvj (fig. 3). In the algorithms
2 & 3, the variableFirstDevicesrepresents the setA.
If node vj is removed, each nodew ∈ B will be
missing one of its original edges, possibly violating the
s-connectedproperty. In order to replace this edge, we
need to establish a new link, and this link needs to be
with a node that did already exist whenw was added
to the graph. Fortunately, since the setA has exactlys
elements andw now shares at mosts − 1 edges with
older nodes of the graph, hence also at mosts−1 edges
with elements ofA, such a node can always be found
in A.

3) What now remains to be examined is the case where
|V | > s + 1 and j ≤ s, i.e. the node to be removed is
among the firsts nodes in the graph. In this case, we

Algorithm 2 Leaving the network
1: FirstDevices:= first s known devices (setA);
2: MyDeviceList:= the set of devices for which we have a

shared key;
3: for all Device∈ MyDeviceListdo
4: sendto(Device, LeavingIntention{FirstDevices});
5: end for
6: wait for all ACKs;

Algorithm 3 Action of a neighboring device
1: onReceiveLeavingIntention(Sender, DeviceList);
2: MyDeviceList:= the set of devices for which we have a

shared key;
3: Candidates:= DeviceList− MyDeviceList;
4: if Candidates6= ∅ then
5: Device:= pick randomly one fromCandidates;
6: establish a new shared key withDevice;
7: updateMyDeviceListby replacing Senderwith Device;
8: else
9: MyDeviceList:= MyDeviceList− {Sender};

10: end if
11: sendto(Sender,“ACK”);

defineA := {vi|1 ≤ i ≤ s + 1 ∧ i 6= j}, B as in the
previous case and proceed as before. After this is done,
vs+2 will share links with all s nodes inA, therefore
A∪{vs+2} will be fully connected. Also, allw ∈ B−A
will have established a new link with a node inA, so
the s-connectedproperty will be repaired.

It is necessary that every node is able to determine the
elements of setA – even if the above algorithms are executed
multiple times, i.e. the consecutive removal of multiple nodes.
This can be achieved by maintaining a linear list of all
neighbor-devices in the order of which they have become
known to the device. When a device gets removed, two cases
for processing this list have to be considered:

1) Candidates6= ∅ (see algorithm3), i.e. the node is an
element of the setB: The newly established key must
replace the key which belongs to the leaving node.

2) Candidates= ∅, i.e. the node is element of the setA:
The key for the leaving device is deleted and the rest of
the list is shifted.

As an example, consider figure4. Device C is to be
removed. It sends a message to all neighbors announcing its
impending departure and includes the firsts devices it has
physically exchanged keys with (A, B,D). NodesA,B and
D already share keys with each other, so they will not need
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REMOVING NODES FROM THE NETWORK GRAPH(s = 3)

to act. NodeE, however, learns that it needs to establish a
new key and the only option is to do so withB. A new key
is established betweenE and B. After all other nodes have
acknowledged,C can then leave the network.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach for key
distribution in home automation networks based on symmetric
cryptography. In contrast to the related work, we have pro-
posed an algorithm for key distribution which guarantees the
ability for an arbitrary pair of devices to exchange a key in a
secure fashion, provided that the number of devices an attacker
is able to subvert is not higher than the security levels of
the network. We achieved this without prior knowledge of the
maximum network size. Additionally, we do not require any
pre-configuration of the devices.

The network can grow incrementally and also shrink if
devices are removed in a controlled fashion. Adding a new
device to the network only requires the user to physically
connect it withs other devices to perform the key exchange,
fulfilling our “ease of use” requirement.

The implementation of our approach is underway. Further-
more, we are working on mechanisms to discover the device-
disjoint paths. Additional work includes a detailed analysis

of node failures and denial-of-service attacks, algorithms for
autonomous graph reconnection after node failures and key
revocation schemes. In the near future, we plan to conduct
performance evaluations on our approach.
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