
A Library for Managing Spatial Context Using Arbitrary Coordinate Systems

Thomas Schwarz, Nicola Hoenle, Matthias Grossmann, Daniela Nicklas
Institute of Parallel and Distributed Systems, Universitätsstr. 38, 70569 Stuttgart, Germany

<firstname>.<lastname>@informatik.uni-stuttgart.de

Abstract

Since location is an important part of context, the
management of spatial information is important for many
context-aware applications, e.g. the position or the extent
of users, sensors, rooms or buildings. Coordinates always
have a coordinate system (CS) associated to them. Numer-
ous CSs exist and a lot of them are commonly used, thus
conversion becomes a necessity. We introduce a library
that implements the OGC Simple Feature Specification and
can dynamically cope with different CSs, enabling interop-
erability between applications, middleware components
and data providers. We illustrate functions and features,
describe a common CS determination algorithm and point
out our lessons learned: avoid transformations, use exist-
ing standards but dare to extend them when needed.

1. Motivation

Context information is vital for ubiquitous computing
applications. Especially location is an important part of

context information: applications need to know about the
position or the spatial relations of users, devices, sensors
and actuators [1], [2]. This information comes from differ-
ent sensors or external models, and the application embeds
it in its local model. The representation of location can be
symbolic (just names), topological (explicit modeling of
spatial relations) or geographical (coordinates). A geomet-
ric or geographical model is most flexible: with spatial
predicates and queries, lots of tasks can be solved (inside,
overlap, nearest neighbor), and symbolic or topological
information can easily be embedded into the model. Thus,
the management of spatial information is a common build-
ing block for context-aware applications and middleware
components.

Coordinates always have a coordinate system (CS)
associated with them, see Figure 1. Numerous CSs exist
and many of them are commonly used, e.g. WGS84 or
NAD83. Indoor applications often use a local CS whose
origin is a point within the room or building. Outdoors, the
position can be obtained from a Global Positioning System
(GPS) sensor in WGS84 format. Spatial databases, geo-
graphical information systems or map data use even more

Figure 1. Various data sets may utilize different coordinate systems (CSs). CSs are the nodes in
the transformation graph, linked by transformation rules (e.g. projection).

CSs, e.g. one of the 2824 different CSs contained in the
EPSG database [10].

This heterogeneity of coordinate systems becomes a
problem, when you

• want to have two or more applications to interoperate,
• want to integrate different location sensors (like infra-

red beacons, GPS),
• want to integrate data from different sources (spatial

databases, directories,...), that are surveyed by differ-
ent people, organizations and providers,

• want to build a middleware for context-aware appli-
cations (see above points).

We ran into this problem while developing a distrib-
uted middleware for context-aware applications, that con-
sists of several different components, and applications for
it [3]. After two years, there were five different packages to
represent and manage geographic data. To harmonize this,
we looked for a standard library for geo data, and found the
Java Topology Suite (JTS) [8] implementing the Simple
Features Specification (SFS) of the Open GIS Consortium
(OGC) [5]. Unfortunately, this library does not care about
different CSs. Using a single global CS for all spatial data
provided by the platform does not solve this problem. All
cartesian CSs are only usable within a small area on the
earth’s surface (see Section 2.2), so the global CS had to be
geographic, which is not supported by the JTS library.

Our solution was to develop a library for geodata man-
agement based on the JTS, that fully implements the OCG
standard and furthermore allows an easy and transparent
usage of different CSs in parallel. The conversion policy
for coordinates is "as seldom, as late as possible" and orig-
inal data is always kept as long as possible. This library can
be used in applications and middleware components and
leads to better interoperability and maintainability.

In this paper, we illustrate the functions and features of
the library (Section 2), describe a common coordinate sys-
tem determination algorithm in Section 3 and give a con-
clusion on the lessons learned and the next steps.

2. Functions and Features

The library is based on the OGC SFS for Corba [4]
which defines geometric data types, functions and opera-
tions on them, and spatial reference systems. Points can be
used for objects with no relevant extent, e.g. users or small
items like sensors or actuators. Polygons represent areas,
like the extent of a room or the transmission range of an
infrared beacon. Routing information or roads can be mod-
eled using linestrings. In this chapter, we will describe the
functions and features of the library.

2.1. Basic geometry types and functions

Geometry data can be categorized by its dimension:
Points are zero-dimensional, curves are one-dimensional,
and surfaces are two-dimensional. Three and more dimen-
sional geometric values are not considered in the SFS.
Beside simple geometries like individual points, curves,
and surfaces geometry collections are defined. Geometry
collections are generally heterogeneous, however there are
specialized subclasses restricting the entries to a specific
single geometry type. We implemented this class hierarchy
in Java. Our internal representation of geographic objects
includes the geometry itself (geometry type and coordi-
nates), the associated coordinate system (CS) in which the
coordinates are defined, and optionally the last created JTS
object (see next section) and the CS associated to the JTS
object. All coordinates can be given in three dimensions.
However, the third coordinate is ignored by all computa-
tional geometry algorithms of the JTS.

For geometries, there are functions testing spatial rela-
tionships like Equals, Disjoint, and Overlaps, based on
Egenhofer's Nine Intersection Model [6]. New geometries
can be computed using spatial operators like Intersection,
Difference, and Union.

In our implementation, all geometry calculations are
delegated to the JTS. Input geometries for JTS methods
have to be in the same cartesian CS. Our wrapper satisfies
this requirement by choosing a cartesian CS, converting the
geometry data to the selected CS if necessary, and con-
structs JTS objects from the converted geometry data
before calling JTS methods. If more than one geographic
object takes part in the same geometric operation (e.g.
Intersection), the same CS must be chosen for all objects.
The created JTS objects are cached within the geographic
objects for further calculations. Choosing the right CS and
converting the geometry data into this CS is hidden from
the applications.

2.2. Coordinate Systems

Because the SFS is targeted at representing geometries
of real world objects, there are two main spatial reference
system types: Geographic CSs approximate the shape of
the earth as an ellipsoid. The coordinates are specified by
latitude and longitude (e.g. WGS84). Projected CSs define
a cartesian coordinate plane. Points on the earth's surface
are mapped to points on the plane using the projection rule
associated with this projected coordinate system (e.g.
DHDN/Gauss-Kruger zone 3). Indoor applications often
use a local cartesian CS which can be seen as a special case
of a projected one.

2.3. Coordinate transformations

The transformation between our current coordinate
systems WGS84 and DHDN/Gauss-Kruger zone 3 is cal-
culated by a transformation from WGS84 into the DHDN
geographic CS, followed by a projection of the DHDN
geographic CS into the DHDN/Gauss-Kruger zone 3 pro-
jected CS.

Projections and transformations are reversible, but not
without loss, i.e. there are slight differences between the
original coordinates and the result coordinates after one
forward and one backward conversion step. Figure 2 shows
this deviation between the original point and the round-trip
converted point depending on the longitude of the point.
All points have the same latitude of 51° North, and at other
latitudes a similar deviation can be observed. In this figure
we can see two things: first, every conversion inevitably
incurs some imprecision, the lowest attainable deviation
being about 1 millimeter. Secondly, only within each pro-
jected CS's core area of use is the deviation minimal. Out-
side this core area the deviation increases exponentially.
Within the peripheral area of use the deviations are tolera-
ble.

Conversions should be computed rarely. Therefore we
compute conversions as late as possible and the system
caches converted versions of geometries after comparisons
or calculations for further operations on them.

Additional CSs, transformations and projections can
be defined by adapting the relevant classes, e.g. for inte-
grating an indoor local CS.

2.4. Input and output of geometries

Geometry data can be serialized in order to export or
import data. We do not use the Java serialization mecha-

nism because the serialized objects are not compatible with
systems such as spatial databases.

The input and output format of geometries in our
library is Well Known Text (WKT) and the XML-based
Geographic Markup Language (GML) [7].

In GML, the identifier of the coordinate system is part
of the geometry:

<gml:Point srsName="4326">
<gml:coordinates> 10 20

</gml:coordinates> </gml:Point>

WKT is also part of the SFS specification and a stan-
dard for geo data exchange, all databases with SFS-compli-
ant spatial extensions support WKT, e.g. DB2 Spatial
Extender and Oracle Spatial. The WKT format encodes
only the coordinates of the geometries but not their CS.
Therefore we enclose WKT geometries into an XML ele-
ment <wkt>, which has an attribute srs to denote the CS:

<wkt srs="4326"> POLYGON (10 10, 10 20,
20 20, 20 15, 10 10) </wkt>

3. Common coordinate system
determination algorithm

As we introduced in Section 2.1, geometries need to
be converted to a common cartesian coordinate system in
order to be processed or compared by the JTS library. At
first glance this seems to be trivial, but after further consid-
eration this involves two nontrivial tasks: First, to deter-
mine the most suitable common CS, and secondly, to
transform both geometries into this CS.

In [10], a list of CSs and rules for direct transforma-
tions between pairs of CSs is maintained, but transforma-
tion rules are defined only for a few pairs of CSs. The list
of transformation rules can be interpreted as a graph with
CSs as the nodes and existing transformation rules as the
edges, see Figure 1. It is possible to calculate a transforma-
tion from a source CS into a target CS, if a path in the
transformation graph between the two CSs exists. If more
than one path exists, the shortest path should be chosen
because transformation calculations always incur impreci-
sions.

A local CS can be easily incorporated into this trans-
formation graph by defining a transformation rule relating
it to a well-known projected CS. Such a transformation rule
can be composed of a translation, a rotation and a scaling
factor to map local coordinates to projected ones. If this is
not sufficient, our library allows to include custom trans-
formation code as well. Now, coordinates in a local CS
(e.g. Smart Room) can be compared to coordinates in a dif-
ferent local CS (e.g. Floor 2), or to coordinates in any other
CS (e.g. WGS84) that is reachable in the transformation
graph starting from the local CSs node.

Figure 2. Deviations at varying longitudes after
round-trip conversion:

WGS84 -> DHDN/Gauss-Kruger zone 3/4 ->
WGS84

3.1. Choosing a common CS

Projected, and therefore cartesian, coordinate systems
are more convenient for the calculation of geometric predi-
cates, e.g. if two polygons are overlapping. Efficient algo-
rithms for computing the spatial predicates exists, and also
(Java-) implementations for these algorithms. We are using
the JTS, which requires the coordinates to be cartesian. We
want to minimize the number of conversions, because con-
versions always lead to imprecisions.

Parameters of projected CSs are determined to get the
best attainable precision for a specific section of the earth's
surface. Outside of this specific section the precision
decreases constantly (and distortions increase). Thus a pro-
jected CS is characterized by a core and a peripheral area
of use, with little projection errors in the core area, tolera-
ble errors in the peripheral area, and significant errors out-
side the peripheral are. In Figure 2 the core area of use of
the DHDN/Gauss-Kruger zone 3 CS is between 7°30’ and
10°30’ East (and between 47° and 56° North). Core and
peripheral areas of use are given as bounding boxes in
WGS84 coordinates.

A common cartesian CS for two given objects is cho-
sen as follows: If the two objects already have a common
cartesian CS (original or cached), then this CS is the com-
mon CS and no transformations are necessary.

If this fails, then check if the original or cached CS of
one object can be used. This CS has to be cartesian, and the
other object has to lie within the peripheral area of this CS.
If more than one original or cached CS fulfill these require-
ments: Select the original CS.

If this fails also, determine a new common cartesian
CS. For each object build a list of suitable cartesian CSs in
the following four incremental steps

1. Start with all CSs where the object lies inside the
core area.

2. Add all CSs where the object overlaps with the core
area.

3. Add all CSs where the object lies inside the periph-
eral area.

4. Add all CSs where the object overlaps with the pe-
ripheral area.

After each step check if both lists contain a common
CS. Continue with next step if none is found. If more than
one common CS is found, choose the one with the shortest
path in the transformation graph. If after these four steps
still no common CS has been found, no such one is avail-
able for these two objects. Throw an error.

A possible extension of this algorithm is to consider
the preferences of an application while choosing the com-
mon CS.

 Up to now we use only two CSs as described above,
so DHDN/Gauss-Kruger zone 3 is always chosen as the
common cartesian CS. But we want to extend our system
to import databases with CSs and transformation rules as
for example defined in [10].

4. Related work

There exist several other Java-based implementations
of the SFS, JTS and deegree being the most complete ones.
The JTS implements only the geometry part of the SFS,
including all the computational geometry functions. It
lacks, however, any capability to deal with different CSs.

The deegree project [9] is the successor of the
sfcorba2java project. While the latter one intended to
implement the geometry part of the SFS, the deegree
project now implements several of the newer web stan-
dards proposed by the OGC like the Web Map Service
Implementation Specification (WMS) and the Web Feature
Service Implementation Specification (WFS). Some pack-
ages of this project provide a functionality that is quite sim-
ilar to what is specified in the SFS. This includes the
geometry package, the feature package, the CSs package,
and the coordinate transformation package. The class hier-
archy within the geometry package resembles the SFS
structure, however, the only supported computational
geometry operation is "intersects". Geometries having dif-
ferent CSs are not automatically converted into a common
one. Not even an error is thrown in such a case which
essentially allows one to compare apples and pears.
Instead, the application itself needs to initiate all conver-
sion work, and it also needs to find a suitable common CS
by itself. We are currently investigating if we can include
their coordinate transformation package into our library, in
a similar way as we did with the JTS.

In the Spatial Part of the SQL99 standard the function
ST_Transform is defined, which is supposed to perform
arbitrary coordinate conversions. However, it is not always
implemented like this. IBM’s Spatial Extender, e.g., can
only do (inverse) projections, but not transform from one
geographic CS into another one. Local CSs can be used in
the database, but they exist in isolation and cannot be
related to any other CS.

The transformation policy is rather simple. Functions,
which take two geometries as arguments usually convert
the second geometry into the CS of the first.

5. Conclusion

Support for different coordinate systems (CSs) and
transformations between them is an important feature of
location-based applications. It simplifies the adoption of
existing spatial data, because no transformation into a glo-

bal CS is necessary, as well as the acquisition of new data,
e.g. by allowing the definition of a CS that is specifically
tailored to a building whose rooms are to be acquired. Still
each spatial object is comparable to every other one even if
their CSs are different, if appropriate CS transformations
are used.

Especially for representing the floors and rooms of a
building, a topological approach would be even more suit-
able. In that approach, objects like floors and rooms are not
represented by shapes with geographical coordinates, but
the inclusion relationships between them are explicitly
modeled. In conjuction with a symbolic naming scheme for
spatial objects, this allows spatial queries to be processed
without any geographical information.

The topological approach is very convenient for indoor
scenarios, but for outdoor scenarios, the situation is differ-
ent: a mature positioning system (GPS) which uses geo-
graphic coordinates is available, as well as data sets
containing shapes of countries, cities or even buildings
using geographical coordinates. Thus, for a universal plat-
form for location-based services supporting both types of
coordinates would be beneficial. The seamless integration
of symbolic coordinates and topological relations with geo-
graphical coordinates is subject to ongoing research.

Adopting the OGC SFS turned out to be a great advan-
tage. This allowed us to use the existing JTS library instead
of implementing all geographical operations ourselves,
thus reducing the implementation effort by around 72% of
lines of code.

With the library, it is now possible to integrate data of
any CS even dynamically without changing the applica-
tion. This becomes especially important when your appli-
cation should work at the borderline of different
geographical zones, e.g. indoor and outdoor, or across state
borders. This offers better flexibility of the application, if
you want to transfer your application out of your test-bed
to another environment.

The SFS is sufficient for modeling spatial aspects of
context-aware applications. The only drawback is the lack
of circles. Circles have some benefits: it is a straight-for-
ward way to model accuracy of points, and as long as you
stick on circles and points, inside and overlap predicates
are easily computed. But if you start to mix circles with
polygons, things are getting tricky: the result of the inter-
section of a circle and a polygon is none of both. A solution
for this problem is to introduce a datatype circle that is con-
verted into an approximated polygon if necessary. For this
conversion, a similar conversion policy as for coordinate
reference systems can be used.

We found that the library is a common building block
for context-aware applications, middleware components
and data providing services. It ensures interoperability and
flexibility.

6. References

[1] Weiser, M.: The Computer for the Twenty-First Century.
Scientific American, pp. 94-100, September 1991.
[2] Dey, A., Abowd, G.: Towards a better understanding of context
and context-awareness. Georgria Tech GVU Technical Report,
GIT-GVU-99-22, 1999.
[3] Nicklas, D., Grossmann, M., Schwarz, T., Volz, S., Mitschang,
B.: A Model-Based, Open Architecture for Mobile, Spatially
Aware Applications. Proceedings of the 7th International
Symposium on Spatial and Temporal Databases: SSTD 2001;
Redondo Beach, CA, USA, July 12-15, 2001
[4] Open GIS Consortium: Simple Features Specification for
Corba. Version 1.0, 1998. http://www.opengis.org/
techno/sfr1/sfcorba_rev_1_0.pdf
[5] Open GIS Consortium: Simple Features Specification for SQL.
Version 1.1, 1999. http://www.opengis.org/techno/
specs/99-049.pdf
[6] Egenhofer, Max J.; Herring, John R.: Categorizing Binary
Topological Relationships Between Regions, Lines, and Points in
Geographic Databases. Technical Report, Department of
Surveying Engineering, University of Maine, Orono, ME, 1991.
[7] Open GIS Consortium: Geography Markup Language (GML)
Implementation Specification. Version 2.0, 2001.
http://www.opengis.net/gml/01-029/GML2.html
[8] Vivid Solutions: Java Topology Suite. Version 1.2, 2002.
http://www.vividsolutions.com/jts/jt-
shome.htm
[9] Deegree Java framework for geospatial solutions, founded by
the GIS and Remote Sensing unit of the Department of
Geography, University of Bonn, and lat/lon.
http://deegree.sourceforge.net/
[10] European Petroleum Survey Group (EPSG) Geodesy
Parameters V 6.3. http://www.epsg.org/

