
A Novel Approach to Evaluating
Implementations of Location-Based Software

Daniel Herrscher, Steffen Maier, Jing Tian*, Kurt Rothermel
University of Stuttgart, Institute of Parallel and Distributed Systems (IPVS)

Universitätsstr. 38, D-70569 Stuttgart, Germany
herrscher@informatik.uni-stuttgart.de

Keywords: performance analysis, network emulation, loca-
tion-based software, positioning devices, mobile ad hoc net-
works.

Abstract
There are two main approaches to measuring the performance
of location-based software for mobile ad hoc networks: live
testing and measurements in an emulation testbed. The
former is problematic because of high resource costs and low
reproducibility. The latter offers the advantage of reproduc-
ible network conditions in the laboratory. In addition, loca-
tion-based software has to be provided with appropriate
location information. We develop virtual devices that mimic
the interface and functionality of actual positioning devices,
and integrate these into an existing network emulation test-
bed. The combination of mobile network emulation and posi-
tioning device emulation facilitates the evaluation of
location-based software in different scenarios. We provide
sample measurements using an existing location-based ad-
hoc routing protocol implementation for inter-vehicle com-
munication in a scenario with 50 emulated cars. The results
are in good agreement with the available simulations.

I. INTRODUCTION
During the development of software for mobile devices, it is
essential to analyze the impact of different scenario parame-
ters on performance. These parameters usually include move-
ment characteristics and network properties, such as
communication range and bandwidth. In early design stages,
performance is compared by mathematical analysis and sim-
ulation. Measurements are used to check the theoretical re-
sults as soon as implementations become available.

Comparative performance measurements in real environ-
ments are considered problematic for two reasons. First, in
scenarios with mobile nodes and wireless networking, it is
hard to obtain multiple comparable measurement runs. The
node movements have a strong impact on the quality of wire-
less communication, and having several nodes exactly follow
a predefined choreography is not straightforward. Secondly,

resource requirements prohibit measurements in larger sce-
narios.

Network emulation testbeds allow these measurements to
be conducted in the laboratory. These testbeds consist of a
number of PC nodes connected by an emulated network. Spe-
cial testbeds for mobile ad-hoc network (MANET) emulation
control the network properties according to virtual node posi-
tions. The reproduction of the desired network properties is
performed by network emulation tools running on each test-
bed node.

However, current testbeds are not suitable to evaluate loca-
tion-based software. Software that needs location informa-
tion has to access a positioning device, which is not
physically present in a testbed. In this paper, we propose to in-
tegrate a virtual positioning device to an existing MANET
emulation testbed. The virtual device exactly mimics the in-
terface and functionality of a real positioning device. Soft-
ware running on testbed nodes can access the virtual device
through a serial interface, just like a real device. The position
information that is provided by the emulated device matches
the virtual position of the testbed node according to the emu-
lation scenario. This facilitates the evaluation of location-
based software in emulated environments in the laboratory.

To show the applicability of our approach, we present mea-
surements with an existing location-based routing protocol
implementation designed for inter-vehicle communication
[1]. For a scenario with 50 cars driving around in a typical city
center, we measure the overall delivery ratio for different
transmission ranges. The results are in good agreement with
the available simulations.

The remainder of this paper is organized as follows: Relat-
ed work is presented in Section II. In Section III, we briefly
present our approach to MANET emulation. Section IV de-
scribes the integration of the emulated positioning devices in
our emulation infrastructure. Section V provides sample
measurements. Section VI summarizes the paper.

* Jing Tian is funded by the European Project CarTalk2000, contract number IST-2000-28185

II. RELATED WORK
The evaluation of location-based software in real MANET
environments suffers from two problems: Limited repeatabil-
ity and high resource costs. To alleviate the repeatability
problem, [2] proposes a MANET testbed consisting of sever-
al notebooks equipped with wireless network interfaces. Ac-
cording to a predefined choreography, the notebooks display
movement commands to be followed by students carrying the
notebooks. Although the original paper does not mention it,
the approach would also be suitable for the analysis of loca-
tion-based software if the notebooks were equipped with po-
sitioning devices. While the approach does provide
repeatable node movements with limited accuracy, the re-
peatability of the resulting network properties is still not guar-
anteed due to other influences that cannot be eliminated. Of
course, the resource cost problem remains.

Therefore, it is reasonable to build MANET testbeds that
do not require to distribute the nodes physically. The basic
challenge is to mimic the influence of virtual node mobility
on the actual network properties. Hardware-based approaches
use wireless networking devices with additional hardware to
control signal attenuation, and thus to emulate the changing
communication quality of the respective nodes [3, 4]. Be-
cause of the special resource requirements of these approach-
es, the software-based emulation of MANET properties is
much more common.

Software-based MANET emulation approaches can be
classified into two sub-categories: Centralized and distribut-
ed. The centralized approaches require all traffic in a testbed
to be sent to a central instance. This instance maintains a node
mobility model and decides which transmissions can be suc-
cessfully delivered, based on the position and the transmis-
sion range of the emulated MANET nodes. The existing
solutions for centralized MANET emulation [5, 6, 7] differ in
the complexity of the network and signal propagation model
that is considered by the central instance, but have in common
that this instance constitutes a performance bottleneck limit-
ing the overall network traffic in a scenario.

In distributed MANET emulation, there is still a central in-
stance that maintains a mobility model, but the traffic pro-
cessing is done by local emulation tools directly on the
respective testbed nodes. This allows for much larger scenar-
ios without traffic limitations. Both the central model and the
local tools have impact on the realism of the emulation. Some
approaches simply use the built-in firewall of the operating
system as emulation tool [8, 9]. Because firewalls can be con-
figured to drop frames depending on the sender address, this
is sufficient to model the changing connectivity in a MANET.
The introduction of dedicated emulation tools that run inside
the communication stack facilitates to control more parame-
ters, such as loss probabilities and delay [10]. Even the im-

pact of collisions on a shared media network can be
considered by some tools [11].

While one of the approaches to MANET emulation makes
the virtual position information available on the nodes [9],
this information is not accessible for user programs. The po-
sition information is only intended to be used by processes
belonging to the emulation infrastructure, e.g. location-based
load generators. To our knowledge, there is no existing posi-
tioning device emulation in network emulation testbeds.

III. MANET EMULATION
In this section, we briefly describe our approach to MANET
emulation. We use a testbed running a software-based distrib-
uted emulation approach with a versatile emulation tool.
First, we give an overview of the testbed architecture. Then,
we explain the basic functionality of our MANET emulation
tool.

A. Architecture
The testbed we use for the emulation of MANET environ-
ments consists of 64 Linux PC nodes connected by Gigabit
Ethernet. For detailed information about the testbed architec-
ture, please refer to [12]. Each PC node represents one mobile
node in a MANET scenario and serves as execution environ-
ment for software to be evaluated. A custom emulation tool
runs on each node. The tool inserts an additional emulation
layer into the communication stack. This layer mimics the be-
havior of a wireless network, including the properties of both
the wireless networking device and the underlying wireless
channel.

A central scenario controller that runs on a dedicated high-
performance PC is responsible for setting up and maintaining
the scenario. It simulates the node mobility in real time ac-
cording to a movement trace. Typical node movement traces
for MANET scenarios can be generated on the basis of mo-
bility models [13]. Since most available mobility model im-
plementations generate movement traces in the file format
used by the simulator ns-2 [14], we use the same format as in-
put for our emulation scenarios.

The network properties for each node are calculated based
on the nodes’ virtual positions. Currently, we use a simplified
model to derive the network properties: If two nodes are with-
in a fixed transmission range, they can communicate via an
emulated channel with parameters that are specified before-
hand. If their distance exceeds the threshold, the connection
is cut off completely. This model assumes uniform free-space
radio propagation, which is the basis for most other approach-
es modelling MANET communication characteristics [15, 8].

We are currently investigating the integration of more sophis-
ticated wave propagation models that consider spatial infor-
mation, such as buildings or streets [16].

Because the scenario controller does not process the actual
traffic in the emulation scenario, we cannot consider the ef-
fects of traffic on the network properties here, namely inter-
ference and collisions. These effects have to be addressed by
the distributed emulation tools. In other words, the central in-
stance computes which nodes have the chance to communi-
cate based on their position. Depending on the actual traffic
in a specific area, the emulation tools have to determine if an
actual transmission can be received successfully.

The central scenario controller sends the current network
parameters to a configuration daemon running on each node.
We use simple UDP messages to send the parameter updates.
An additional separated administration network connects the
control PC to all testbed nodes to ensure that the frequent up-
date messages do not interfere with traffic inside the emula-
tion scenario. Upon reception of a parameter update, the
daemon configures the actual emulation tool by I/O control
calls (IOCTL) to the kernel.

The central scenario control eases the setup and manage-
ment of scenarios and synchronizes the emulation tools,
while the actual traffic processing is done in a distributed
fashion. Thus, our architecture is scalable in terms of network
traffic and number of nodes.

B. Emulation Layer
In order to emulate the properties of the physical layer and the
medium access sublayer (MAC) of the data link layer, our
emulation tool offers the same service abstraction as the
MAC layer, i.e. an unreliable datagram service (see Fig. 1).

Starting with logical link control (LLC), the layers above
the emulation layer experience the emulated network proper-
ties. For these layers, we can choose to use the original proto-
col implementations of Linux, or replace them with
experimental implementations. The presence of the emula-
tion layer is completely transparent to the above layers.

The emulation tool processes both egress and ingress traf-
fic. According to the desired network parameters, the tool
limits the bandwidth of egress traffic and adds delay to the

frames. Ingress traffic is subject to a frame loss ratio, which
can be specified separately for each sender address. As a con-
sequence, it is possible to emulate the limited propagation
range of a transmission in a MANET. A broadcast transmis-
sion issued by node N is physically delivered to all other
nodes in the emulation testbed. On nodes within N’s propaga-
tion range, the drop rate for N is set to 0%, and therefore in-
coming transmissions from N are passed to the upper layers.
On nodes that are too far away from N according to the sce-
nario, the emulation tool is configured to drop 100% of N’s
transmissions. This way, it is straightforward to implement
“neighbor tables” on each node. Furthermore, intermediate
loss rates can also be used to model the changing signal qual-
ity, depending on node distance and other factors affecting the
quality (obstacles, etc.).

The current version of our MANET emulation tool does not
yet consider the effects of interference and collisions. There-
fore, the behavior of the emulated MANET is only realistic
for scenarios with low network load. However, we are cur-
rently developing an improved version that can mimic these
effects, based on an emulation of the MAC protocol specified
in the IEEE 802.11b standard. In prior work, we already
proved that the software-based emulation of a MAC protocol
is feasible [11].

IV. VIRTUAL POSITIONING DEVICE
The emulation testbed described in Section III facilitates the
performance analysis of distributed applications and proto-
cols designed to run in MANET environments. However, if
the software under test is location-based, it needs to access a
positioning device. We cannot assume that this resource is
physically present in a testbed. Instead, we have to provide
the software under test with a virtual positioning device. The
device provides position data that is consistent with the virtu-
al node position according to the emulation scenario.

Figure 1. Location of the emulation layer in the protocol stack.

transport layer

network layer

LLC sublayer

MAC sublayer

physical layer

affected by emulation layer
original implementations,

hardware

softwareemulation layer

user space

kernel space

applicationconfig daemon

IO
C

T
L

ca
ll

A. Interface
There are many positioning and tracking technologies that a
MANET node could use in reality to obtain its position. Be-
cause of its general availability, however, most existing sys-
tems for outdoor use rely on GPS as positioning system. The
standard application interface for GPS devices has been de-
fined by the National Marine Electronics Association
(NMEA), and is referred to as the “NMEA 0183 standard”
[17].

Most GPS devices can be connected to a serial port. Even
devices designed as interface card for PCI or PCMCIA slots
are accessed by (virtual) serial ports. For that reason, we pro-
vide a virtual GPS device implementing the NMEA 0183
standard that talks through a virtual serial port. This way, we
exactly implement the interface of a real GPS device. Conse-
quently, existing location-based applications can interact with
our virtual GPS device just like with any other GPS device.

B. Implementation
As described in Section III, we maintain a model of the node
positions to derive the network properties. Therefore, we can
use the same position information as input for the virtual po-
sitioning devices. Because we use movement traces in ns-2
format to specify node movement, we work with the same rel-
ative node coordinates as ns-2. By defining an offset for this
coordinate system, we map the relative coordinates to mean-
ingful absolute positions in the global WGS84 format used by
GPS.

Similar to the real-time updates of the emulated network
parameters, the administrative network of our testbed is used
to send the position information from the central model to the
respective nodes via UDP packets (Fig. 2). On each node, an
instance of the virtual device processes the position updates.
To applications, this instance behaves exactly like an actual
GPS device that is connected to a serial port. The virtual de-

vice outputs NMEA 0183 messages including the current po-
sition and other information (time, speed, etc.) at a regular
time basis.

GPS devices do not only output information in
NMEA 0183 messages, they can also process configuration
messages that are sent to the device. These messages include
subscription information for special NMEA 0183 messages,
the setting of waypoints, etc. Our virtual device can handle a
superset of NMEA 0183 messages that are considered by sev-
eral real GPS devices.

Our primary implementation goal for the virtual position-
ing device was to act exactly like a real positioning device,
i.e. output and process NMEA 0183 messages on a serial
port. In UNIX like operating systems, such as Linux, serial
ports are accessed through character device special files in
the “/dev” directory. We created a special file looking like a
serial port, and configured it to redirect all accesses to this
pseudo file to our virtual device implementation (Fig. 3). By
this technique, any software accessing the virtual device per-
ceives exactly the same behavior as with a real device.

V. SAMPLE MEASUREMENTS
In order to test the applicability of our emulation environment
for performance evaluation of location-based software, we
conducted measurements with a location-based routing pro-
tocol that was developed as part of the CarTalk 2000 project
[1]. The routing protocol especially addresses inter-vehicle
communication. During the development process, first of all
a simulation model for ns-2 has been implemented. After
simulations with ns-2, the protocol was implemented on the
Linux platform. Preliminary tests were conducted using five
cars with laptops, IEEE 802.11b wireless LAN adapters, and
GPS receivers. Finally, we used our emulation testbed to eval-
uate the performance of the implementation in a larger sce-
nario with 50 emulated cars.

Figure 2. Network parameter and location updates.

movement
trace

movement relative

reproduction node

derivation
of network
properties
for each

node

virtual
GPS

server

Scenario Control

network
parameter

update
message

location
update

Node PC

network
emulation

config
daemon

virtual
GPS

device

ns-2 format

configuration
request

positions

In this section, we briefly explain the routing algorithm,
greedy location-based routing, and show some implementa-
tion issues. Then, we describe the scenario for our measure-
ments. Finally, we present the measurement results we
obtained from our testbed, and compare them to the perfor-
mance predictions from the ns-2 simulation model.

A. Greedy Location-Based Routing
A number of special routing algorithms exist for MANETs.
While it is possible to do MANET routing without using lo-
cation information, the efficiency in highly mobile scenarios
can be improved significantly by using the node location as
additional information [18].

The nodes participating in location-based routing deter-
mine their own positions through positioning devices. Each
node issues local broadcasts with its position (“beacons”) pe-
riodically. Based on the beacons that a node receives, it can
maintain an up-to-date neighbor table including the positions
of the neighbors.

In contrast to traditional routing strategies that are based on
symbolic addresses, the destination location forms the basis
for the packet forwarding strategy. The sender has to use a lo-
cation service to resolve symbolic addresses to locations.

Greedy forwarding with MFR (Most Forward within Radi-
us) is a widely used forwarding strategy for location-based
routing [19]: From the set of current direct neighbors, the pro-
tocol selects the node that is geographically closest to the des-
tination as the next hop. Admittedly, greedy forwarding is not
the ideal strategy for location-based inter-vehicle routing.
The forwarding efficiency can be further improved by using
additional spatial environment information [21].

B. Implementation
Greedy location-based routing with MFR has been imple-
mented as part of the CarTALK 2000 project [20]. The rout-
ing protocol implementation runs on standard Linux in user
space, and uses raw sockets to send and receive frames direct-
ly on data link layer. Each node obtains its current position
from a GPS device. The routing core makes the packet for-
warding decision based on the packet’s destination position

and the local neighbor table, which is constantly updated by
a beaconing process. If a unicast packet queued for transmis-
sion by a local application does not have a destination loca-
tion yet, the protocol queries a location service. The current
location service implementation uses simple flooding to dis-
seminate location request messages. The destination sends
back location reply messages by location-based unicast to the
original sender. To minimize the expensive flooding opera-
tions, each node maintains a location cache.

C. Sample Scenario
We set up a sample scenario with 50 cars, moving around in
the city center of Stuttgart (2500m × 1800m) according to a
graph-based mobility model [13]. Initially, the cars are placed
randomly on the graph. During the scenario run time of
5 minutes, they move to a random target point on the graph,
with a speed ranging from 5 to 20m/s. After a random pause
time of up to 20s, they move to the next target point. Each car
randomly selects a communication partner and sends constant
bitrate traffic to it (one 64-byte packet per second). We mea-
sured the overall delivery ratio while we varied the transmis-
sion range between 50m and 400m.

D. Results
Fig. 4 shows the measurement results we obtained from our

emulation testbed, compared to the performance predictions
from the ns-2 simulation model. Each point in the figure rep-
resents the mean value of three simulation or emulation runs,
respectively. Because the connectivity of the nodes and there-
fore the delivery ratio highly depends on the node movement,
we generated three different movement patterns for the three
runs, and used the same set of movement traces for emulation
and simulation. The results reveal that the implementation
shows the same qualitative behavior as predicted by the sim-
ulation model. However, the delivery ratio of the actual im-
plementation stays below the values of the simulation. This
can be explained by implementation details that were not part
of the idealized simulation model. For example, the imple-
mentation uses a location service based on flooding, while the

Figure 3. How to mimic a GPS device.

location-

Node PC

based
software

NMEA 0183
messages

virtual
serial port
/dev/ttyS1

NMEA 0183
messages

virtual
GPS

device

location
update

message

configuration
request

message

simulation model queries an omniscient location service ob-
ject for that reason.

Our conclusion from the sample measurements is that per-
formance evaluations in emulated network environments pro-
duce reasonable results for implementations which are
comparable to the results simulators produce on the basis of
simulation models.

VI. SUMMARY
Performance evaluation of location-based software in real
MANETs hardly provides reproducible results and makes
high resource demands. Therefore, it is reasonable to run the
evaluations in an emulated environment. While existing em-
ulation testbeds can emulate the characteristic network prop-
erties of a MANET to some extent, location-based software
needs to access a positioning device, which is not physically
present in the testbed.

In this paper, we proposed an approach to mimic both the
interface and the functionality of a positioning device. The
emulated positioning device is seamlessly integrated into a
MANET testbed, i.e. network emulation and positioning de-
vice emulation work on the same node movement model. The
virtual device can be accessed through a serial port exactly
like a real device, and outputs and understands NMEA 0183
messages, which is the standard format for GPS devices.
Thus, to an application, it is completely transparent that the
device is not real.

To show the applicability of our approach, we measured the
performance of an existing implementation for location-
based inter-vehicle routing, and compared the results to the
predictions of a simulation model. The promising experienc-
es from the sample measurements in our testbed lead us to the
conclusion that our approach to performance evaluation of lo-

cation-based software is a valuable complement to the tradi-
tional approaches simulation and live measurement.

REFERENCES

[1] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and W.
Schulz, “CarTALK 2000 – Safe and Comfortable Driving
Based Upon Inter-Vehicle-Communication,” in Proceedings
of the IEEE Intelligent Vehicle Symposium, Versailles, France,
June 2002.

[2] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordström, and C.
Tschudin, “A Large-scale Testbed for Reproducible Ad hoc
Protocol Evaluations,” in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC 2002),
pp. 412–418, Orlando, 2002.

[3] J. Kaba and D. Raichle, “Testbed on a Desktop: Strategies and
Techniques to Support Multi-hop MANET Routing Protocol
Development,” in Proceedings of the 2nd ACM International
Symposium on Mobile Ad Hoc Networking & Computing (Mo-
biHoc’01), pp. 164–172, Long Beach, CA, Oct. 2001.

[4] E. Hernandez and A. Helal, “RAMON: Rapid-Mobility Net-
work Emulator,” in Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks (LCN’02), pp. 809–
817, Tampa, Florida, Nov. 2002.

[5] Q. Ke, D. Maltz, and D. Johnson, “Emulation of Multi-Hop
Wireless Ad Hoc Networks,” in Proceedings of the 7th Inter-
national Workshop on Mobile Multimedia Communications
(MoMuC 2000), Tokyo, Japan, 2000.

[6] J. Flynn, H. Tewari, and D. O’Mahony, “A Real-Time Emula-
tion System for Ad Hoc Networks,” in Proceedings of the
Communication Networks and Distributed Systems Modeling
and Simulation Conference (CNDS 2002), pp. 115–120, San
Antonio, Texas, Jan. 2002.

[7] T. Lin, S. Midkiff and J. Park, “A Dynamic Topology Switch
for the Emulation of Wireless Ad Hoc Networks Using a
Wired Network,” in Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks (LCN’02) (Wireless
Local Network Workshop), pp. 791–798, Tampa, Florida, Nov.
2002.

[8] Y. Zhang and W. Li, “An Integrated Environment for Testing
Mobile Ad-Hoc Networks,” in Proceedings of the Third ACM
International Symposium on Mobile Ad Hoc Networking &
Computing (MobiHoc’02), pp. 104–111, Lausanne, Switzer-
land, June 2002.

[9] W. Chao, J. Macker, and J. Weston, “NRL Mobile Network
Emulator,” Naval Research Lab Formal Report 5523--03-
10,054, Feb. 2003.

[10] W. Liu and H. Song, “Research and Implementation of Mobile
Ad Hoc Network Emulation System,” in Proceedings of the
International Workshop on Smart Appliances and Wearable
Computing (IWSAWC’02), Vienna, Austria, 2002.

[11] D. Herrscher, S. Maier, and K. Rothermel, “Distributed Emu-
lation of Shared Media Networks,” in Proceedings of the 2003
International Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS 2003),
pp. 226–233, Montréal, Canada, July 2003.

[12] D. Herrscher and K. Rothermel, “A Dynamic Network Sce-

Figure 4. Performance in simulation model vs. performance
in emulated environment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400

D
el

iv
er

y
R

at
io

Transmission Range in Meters

Greedy Location-Based Routing

Implementation
Simulation Model

nario Emulation Tool,” in Proceedings of the 11th Internation-
al Conference on Computer Communications and Networks
(ICCCN’02), pp. 262–267, Miami, Oct. 2002.

[13] J. Tian, J. Hähner, C. Becker, I. Stepanov, and K. Rothermel,
“Graph-based Mobility Model for Mobile Ad Hoc Network
Simulation,” in Proceedings of the 35th Annual Simulation
Symposium (ANSS-35 2002), pp. 337–344, San Diego, Cali-
fornia, Apr. 2002.

[14] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu,
“Advances in Network Simulation,” in IEEE Computer,
vol. 33, no. 5, pp. 59–67, May 2000.

[15] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Per-
formance Comparison of Multi-Hop Wireless Ad Hoc Net-
work Routing Protocols,” in Proceedings of the 4th Annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom’98), pp. 85–97, Dallas, Texas,
Oct. 1998.

[16] F. M. Landstorfer, “Wave propagation models for the planning
of mobile communication networks,” in Proceedings of the
29th European Microwave Conference, vol. 1, pp. 1–6, Mu-
nich, Germany, Oct. 1999.

[17] National Marine Electronics Association, “The NMEA 0183
Interface Standard, Version 3.01,” available from NMEA,
7 Riggs Ave., Severna Park, MD 21146, USA, http://
www.nmea.org, Jan. 2002

[18] M. Mauve, J. Widmer, and H. Hartenstein, “A survey on posi-
tion-based routing in mobile ad hoc networks,” in IEEE Net-
work Magazine, vol. 15, no. 6, pp. 30–39, Nov. 2001.

[19] H. Takagi and L. Kleinrock, “Optimal transmission ranges for
randomly distributed packet radio terminals,” in IEEE Trans-
actions on Communications, vol. 32, no. 3, pp. 246–257,
Mar. 1984.

[20] J. Tian, C. Maihoefer, M. Nelisse, M. Provera, I. Dagli, M.
Tepfenhart, and C. Brenzel, “CarTalk2000 Deliverable D7:
Routing Protocol Implementation,” available from http://
www.cartalk2000.net, Oct. 2003

[21] J. Tian, L. Han, K. Rothermel, and C. Cseh, “Spatially Aware
Packet Routing for Mobile Ad Hoc Inter-Vehicle Radio Net-
works,” in Proceedings of the 6th IEEE International Confer-
ence on Intelligent Transportation Systems (ITSC 03),
pp. 1546–1551, Shanghai, China, Oct. 2003.

	A Novel Approach to Evaluating Implementations of Location-Based Software
	Keywords: performance analysis, network emulation, location-based software, positioning devices, ...
	Abstract
	I. Introduction
	II. Related Work
	III. MANET Emulation
	A. Architecture
	B. Emulation Layer

	IV. virtual positioning device
	A. Interface
	B. Implementation

	V. Sample Measurements
	A. Greedy Location-Based Routing
	B. Implementation
	C. Sample Scenario
	D. Results

	VI. Summary
	References

