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ABSTRACT
We propose a family of algorithms for processing nearest neighbor
(NN) queries in an integration middleware that provides federated
access to numerous loosely coupled, autonomous data sources
connected through the internet. Previous approaches for parallel
and distributed NN queries considered all data sources as relevant,
or determined the relevant ones in a single step by exploiting
additional knowledge on object counts per data source. We
propose a different approach that does not require such detailed
statistics about the distribution of the data. It iteratively enlarges
and shrinks the set of relevant data sources. Our experiments show
that this yields considerable performance benefits with regard to
both response time and effort. Additionally, we propose to use
only moderate parallelism instead of querying all relevant data
sources at the same time. This allows us to trade a slightly
increased response time for a lot less effort, hence maximizing the
cost profit ratio, as we show in our experiments. Thus, the
proposed algorithms clearly extend the set of NN algorithms
known so far.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases; Query processing; H.2.8 [Database Management]:
Database applications—Spatial databases and GIS; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval—Search process.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Data integration, distributed query processing, federated
database system, kNN, nearest neighbors, parallel query
processing.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GIS’04, November 12-13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-979-9/04/0011...$5.00.
1. INTRODUCTION
Various applications use spatial data: location-based services
show points-of-interest on a map, spatial data mining
applications look for the best place to establish a new shop,
and so forth. In most of these scenarios the spatial data is
investigated using two types of queries: window queries and
nearest neighbor (NN) queries.

Window queries take a spatial predicate (like intersects or
inside) and a query region (a rectangle or a polygon) as input
parameters. All objects qualify that satisfy the spatial predicate
comparing the query region to the object’s geometry (e.g., the
objects of a map region).

NN queries take as input parameters a reference point and the
number of results to return (commonly referred to as k). Only
the k objects closest to the reference point are returned (e.g.,
the five nearest gas stations).

1.1 Motivation
So far NN queries have been addressed to a single, in most
cases local, data set. In this paper we focus on querying a
loosely coupled set of autonomous spatial data sources where
we have no influence on the distribution of the data across the
sources. The result of a federated nearest neighbor query
(FNNQ) has to contain the k nearest objects from all available
data sources. The algorithm introduced in this paper uses a
minimized number of remote queries involving only a fraction
of the data sources to process a FNNQ and does not rely on
exact object counts and density statistics. This is an important
aspect, because it is difficult and expensive to keep such
statistics up-to-date due to the autonomy of the data sources.

Let’s take a look at a location-based services scenario to
highlight the benefits of an integrated NN query facility.
Numerous servers running spatial databases store data on
restaurants: each fast food restaurant chain has its own server,
local restaurants transfer their data to a web-hoster setting up a
logical server for each restaurant, a city’s yellow pages server
features restaurants, and local magazines offer restaurant
reviews on their servers. A hungry user does not want to
choose a particular server, or compare results from different
servers, but he wants to ask them all at once and receive an
integrated result.
Our algorithm uses a spatial directory, managing the list of all
available spatial data sources, to determine the relevant ones
for each query. The directory stores the name of a data source,
its connection parameters and its service area, which is a
region containing all spatial objects of the data source. As an
implementation of such a directory an OGC Catalog Service



[19, 20], the FGDC clearinghouse [11], or even a spatially
enabled web services directory service [21, 26, 28] can be
used.

Our algorithm is targeted at data integration scenarios, where
the data cannot be replicated locally due to at least one of the
following three reasons: 

• The size of the accumulated data is too large. 

• All data sources are autonomous and each one disallows
to replicate its contents, e.g., because of access
restrictions. 

• Propagating updates to local replicas is too expensive. 

In any of the above cases the preferable solution is to employ
an integration middleware that federates the participating data
sources.

1.2 Objectives and Contributions
In this paper we introduce new solutions to the problem of
processing NN queries in a federation of many loosely
coupled, remote spatial data sources, and we present and
analyze a family of algorithms in detail. The data is tied to the
sources and we cannot change its distribution. We compare
different granularities of statistics available to the integration
middleware: none, rough global density estimates, and detailed
object counts per data source. The data sources are accessed
using either remote NN queries or remote window queries. We
propose to use the degree of parallelism as a controlling
element to achieve either minimal response time or minimal
resource consumption. We define four performance metrics to
assess the efficiency of the algorithm: response time, effort,
iterations, and cost profit ratio. We ran experiments with
different characteristics on random data sets to show the
scalability of our approach. We can show that the cost profit
ratio improves up to 3.5 times over the best approach from
literature.

The remainder of this paper is organized as follows. In
Section 2 we describe the system environment of our algorithm
in detail and relate it to previous work on NN queries. We
present the core algorithm in Section 3 along with the helper
functions to calculate query range estimates and to query
remote servers. In Section 4 we describe the settings and the
parameters of the experiments and detail on the experiments’
results. The paper concludes with directions of future work.

2. PROBLEM SPACE
The problem space of k nearest neighbor (NN) queries1 can be
divided into four different categories. We first describe the
category of federated nearest neighbor queries (FNNQs) and
our data integration scenario in the next section. Thereafter, we
discuss the other categories (local NN queries, remote NN
queries, and distributed and parallel NN queries on declustered
data), and comment on their significance to our FNNQ
solution. We focus on 2D point objects, but our algorithms can
be easily generalized to process objects having an extent in
higher dimensional space.

2.1 Federated Nearest Neighbor Queries 
(FNNQ)

FNNQs look for the k nearest neighbors to a given reference
point within the data of many loosely coupled, remote spatial
data sources containing overlapping and complementary data.
Figure 1 shows several data sources containing similar objects
(e.g. information on restaurants). 

In this data integration scenario the user wants to find the
closest restaurants available in any data source. The algorithm
presented in Section 3 allows to maintain the facade of a single
data source while leaving the data at its origin. 

As shown in Figure 2, a system architecture for processing
FNNQs consists of three different types of components [17]:
spatial data sources, a spatial directory, and a federation
component.

The data sources offer at least one of the following two
interfaces: a remote window query or a remote NN query
interface. They are registered at the spatial directory with their
service area2 and the connection parameters necessary to
access their query interfaces.

The spatial directory is used by the federation component to
discover the relevant data sources for each query. For this, it
stores the service areas of all registered data sources (which is
comparable to storing the inner nodes of a global spatial index,

1 We focus on the general case to find k nearest neighbors and
neglect the special case where k = 1.

Figure 1. Restaurant objects distributed across several data 
sources (service areas may overlap, each object belongs to the 

data source inside whose service area it is located)

Figure 2. System architecture

2 The service area surrounds all objects stored in the data source.
Its shape may be any Simple Features geometry [18]. Typically,
it is a polygon following administrative boundaries of, e.g., a city
district or a state, or it is the convex hull around the data source’s
contents. The sizes of two data source’s service areas may differ
by several orders of magnitude.
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where the data sources represent the leaves). Depending on the
method to determine the initial query range, it additionally
stores a global object density estimate or the number of objects
managed by each data source. As the service areas change only
rarely, the spatial directory can be easily duplicated to achieve
scalability. This is less practical if it stores the more frequently
changing object counts.
The federation component runs the FNNQ algorithm. Towards
the applications it presents the interface of a simple NN query
[12, 16, 27]. It forwards queries to the remote spatial data
sources and integrates their results. It can be easily duplicated
for scalability as it does not store any data itself.
To assess the efficiency of our algorithm, we define two
optimization goals: minimal response time, as perceived by the
application, and minimal resource consumption, considering
the effort to calculate query results at the data sources and to
transmit them to the federation component. While an
application strives for minimal response time, a system
operator favors minimal resource consumption. We point out
how to achieve each goal and how to find a good tradeoff
between them.

2.2 Local Nearest Neighbor Queries
Local NN queries have direct and local access to the data and
its indexes. Previous work has concentrated on developing
algorithms either to efficiently traverse the nodes of an index
tree [5, 12, 13, 27], like an R*-Tree [4], and to prune nodes as
soon as possible, or to construct local indexes [1, 3, 6, 29]. See
[16] for an extensive discussion of local approaches. They are
restricted to a local processing and to a locally available index,
and therefore they are not extensible to remote data sources.
As mentioned in Section 1.1, a full copy of the data sources to
a local node for constructing an index is not viable either.
However, these approaches can be used within a data source to
process a remote NN query locally. 

2.3 Emulated Nearest Neighbor Queries
Emulated NN queries access a single remote spatial data
source using window queries to emulate a NN query [16]. The
goal is to minimize the number of window queries and the
number of retrieved objects by estimating the size of the query
window as precisely as possible. We employ their range
estimation methods, see Section 3.4 for details. 
Their approach can be easily adapted to a federated data
integration environment: In each iteration the window query is
first sent to the spatial directory and then to all relevant data
sources. Our RWQ_ObjDens and RWQ_ObjCnt variants
represent the outcome of this adaptation (see Section 3.5.2),
and we compare them to the variants using remote NN queries
in Section 4. In contrast to [16], which uses rectangular query
windows, we allow them to be regular n-corner polygons to
reduce surplus intermediate results. Additionally, we introduce
pruning mechanisms to skip distant servers and to shrink the
query window as soon as k results, but not the k closest ones,
have been found.

2.4 Distributed and Parallel Nearest Neighbor 
Queries

Previous work on distributed and parallel processing of
similarity queries has focussed on how to decluster the data [2,
7, 8, 9, 15, 22]: they partition the dataspace and distribute the

data cleverly to different disks, so that for any given query
most of the data can be fetched in parallel. 

In our scenario, we have neither influence on the distribution
of the data across the data sources nor on the shape of the
dataspace's partition covered by a data source. Also, partitions
may overlap. Only a fraction of the data sources contain
relevant data for a given query, and we focus on querying as
few of them as possible. In contrast to the above approaches,
which access all disks at the same time, we propose to control
our algorithm's parallelism by adapting the number of threads
used in each iteration. This serves as a controlling element to
make the algorithm run either with minimal response time, or
with minimal resource consumption, or to achieve a good
trade-off in between. Thus, the above approaches may be
employed to process NNQs locally at a data source, but not to
efficiently process NNQs in the federation component.

In [23, 25] several algorithms are proposed that aim at
minimizing the number of source databases to be queried and
the number of objects to be fetched from each system. They
use a distributed R-Tree approach where the upper part is
stored at the primary server and the leaves of the tree are stored
at source databases. However, they rely on object count
statistics to determine the set of relevant source databases, and
they query them either one at a time or all at once. They
provide no experimental results for a large-scale system (more
than 10 databases) where each database is responsible only for
a small portion of the dataspace. The RNNQ_ObjCnt variant
(see Section 3.3) represents these algorithms in our
experiments (see Section 4.2).

A similar primary server / source databases approach is
presented in [14]. They try to minimize the response time by
parallelizing the query processing as much as permitted by
network transmission throughput. For this, they determine the
optimal chunk size, corresponding to the size of clusters of
close-by objects that get stored on the same source database.
However, we have no influence on the data distribution, and
we seek to avoid activating all promising servers at the same
time.

In [24] the nodes of the R-Tree index structure are distributed
among several disks. In their terms, our distributed R-tree has
just two levels: the root node (spatial directory) and the leaf
nodes (source databases). When traversing the R-Tree all
relevant child nodes of the current node are accessed in
parallel. Thus, their algorithm provides no benefit in our
scenario. 

[10] addresses a scenario where an object's data itself is
partitioned and distributed to different systems. They aim at
minimizing the number of candidates fetched from each
system in order to find the globally most similar objects.
However, this algorithm is not applicable to our scenario as we
assume that all of an object's data is stored at a single system.

To put it in a nutshell, previous approaches address data
declustering, rely on object counts, access all data sources at
the same time, or target a different system architecture. In
contrast to this, our approach has no influence on the
distribution of data across servers, prefers object density
statistics, utilizes a moderate degree of parallelism, and – if
necessary – uses remote window queries to compensate for the
lack of NN query functionality at a data source. The
distinguishing features of our algorithm are summarized in
Table 1.



Our experiments in Section 4 will show that the most
influential parameters are:

• Parallelism: cost profit ratio improves up to 2.9 times.

• Determination of relevant sources: cost profit ratio
improves up to 2.5 times.

• Data access method: cost profit ratio improves up to 2.0
times.

3. FEDERATED NEAREST NEIGHBOR 
QUERY ALGORITHM

The FNNQ algorithm takes a reference point (RefPoint) and
the total number of results to retrieve (k) as input parameters. It
returns those k objects from all connected data sources that are
closest to the reference point. By adjusting the degree of
parallelism, the algorithm can be adapted to achieve an optimal
tradeoff between response time and resource consumption.

In our FNNQ algorithm we use the following external
functions:

• Basic geometry functions (DIST, BUFFER, CONTAINS,
INTERSECTS) as described in [18].

• A function to query a spatial directory which returns a list
of all servers (data sources) whose service area intersects
with the given query area.

3.1 The Three Phases Of The FNNQ 
Algorithm

Figure 3 demonstrates the operation of the core algorithm for
the case that no additional statistics are available. The core
algorithm consists of the following phases:

• The initial phase is the first iteration of the core loop
(Figure 4). An initial range is estimated and all data
sources with intersecting service areas to this range are
queried. We discuss four ways to get an initial range
estimate in Section 3.3.
In our example shown in Figure 3 the initial range is the
reference point itself. Hence, data source A is queried and
it returns objects 1 and 2. 

• In the expansion phase the query area is iteratively
enlarged until k objects are found. The density of the
objects fetched so far is used to determine the new query
range (see Section 3.4).
In Figure 3 the query range is enlarged. Data source B is
queried and it returns objects 3 and 4.

• The convergence phase is required if k objects have been
found and at least one of them is outside the query area
(like object 4). It looks for even closer objects than the
ones found so far. In this last iteration of the core loop the
query range is set to the most distant object in the result
queue and it shrinks when closer objects are found.
In Figure 3 the query area’s radius is enlarged to the
distance of object 4. Data sources C and D are queried and
return objects 5 and 8. Object 5 replaces object 4 in the
result queue, because it is closer.

Only the initial phase is mandatory, the other two can be
skipped under certain circumstances. 

Table 1. Distinguishing parameters of the FNNQ algorithm compared to other approaches

Parameter Other approaches from literature Proposed FNNQ algorithm

Data 
distribution

• optimal distribution calculated using declustering 
algorithm

• no influence on distribution (autonomous data sources)

Data access 
method

• all data items in the disk block associated to an index entry 
are read from disk

• remote NN queries

• remote NN queries
• remote window queries

Determination 
of relevant 
sources

• all sources are considered relevant as data is declustered to 
maximize parallel I/O

• object counts (which are expensive to keep up-to-date in 
our scenario) and service areas are used to determine the 
minimum set of sources guaranteeing to contain all results

• just service areas (to reduce the number of sources 
queried)

• service areas and global object density estimate (to 
additionally reduce the number of iterations)

Iterations • one, all relevant sources are determined in a single step • several, the set of relevant sources is iteratively refined

Parallelism • maximum: all relevant sources are queried at the same time
• none: sources are queried one after the other

• moderate degree of parallelism: reduces resource 
consumption while still minimizing the response time

Figure 3. The three phases of the FNNQ algorithm (k = 4)
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3.2 The FNNQ Algorithm Core Loop
Figure 4 shows a pseudo-code description of our FNNQ
algorithm. We describe the functions used in the algorithm in
the following sections.

3.3 Determining The Initial Query Areas 
(GETINITIALRANGE)

The initial query area is used in the first iteration of the core
loop. In our experiments we compare four different methods to
determine the initial query area. Two methods get along with
no additional information besides service areas:

• Zero. Use the reference point itself as query area in the
first iteration, i.e., the initial query range is zero. Possibly
no data sources are queried at all in the first iteration.

• Maximum. Use the infinite distance as query range. This
guarantees that all relevant data sources are queried in the

first iteration. Most of the approaches discussed in
Section 2.4 use this method as it maximizes parallelism
and promises the shortest response times.

The other two methods exploit additional metadata about the
data stored at the sources:

• Object Density. Use a global estimate of the density of all
objects in the dataspace to approximate the query range so
that statistically k objects are enclosed in the query area.
This method works best if the objects are uniformly
distributed across the dataspace. It leads to additional
iterations of the core loop if this assumption is not exactly
satisfied. [16] refers to this method as the “Density-Based
Method”.

• Object Count. Use the exact number of objects stored on
each data source to calculate the minimal query area that
guarantees that all objects are found in the first iteration.
For this, all data sources are ordered by the maximum
distance of their service area to the reference point. Then,
this list is traversed in increasing order and the data
sources’ object counts are added up. The traversal stops
when this sum gets larger than or equal to k. The
maximum distance of the last data source is taken as the
range of the initial query area. Besides being expensive to
keep the object counts up-to-date, this guaranteed single
iteration behavior leads to a lot of extra work. [16] refers
to this method as the “Bucket-Based Method”, [24] calls
this range the threshold distance, [23] uses this range in
the “Parallel Nearest Neighbor Finding Method”. 

We propose, that in our scenario only the Zero and the Object
Density methods are reasonable. The Maximum method is
inappropriate with a large number of servers, and the Object
Count method fails, because it is hardly conceivable that all
independent data sources publish exact and current object
counts. The requisites and characteristics of the four methods
are summarized in Table 2. 

3.4 Determining The Subsequent Query 
Areas (GETNEXTRANGE)

In the expansion phase, the density of the objects found in
previous iterations is used to calculate the query area for the
next iteration. Thus, the query area quickly adapts to the real
distribution of the qualifying objects, even in the case of
outdated statistics. If no objects have been found so far, the

FEDERATEDNEARESTNEIGHBORQUERY(RefPoint, k) 
: ResultsPQ

1 IterCounter := 0
2 // don’t ask these servers again:

MarkedServersList := new List()
3 // priority queue of result objects (ordered by distance to RefPoint):

ResultsPQ := new PriorityQueue(k)
4 // determine query area’s range in initial phase:

Range := GETINITIALRANGE(RefPoint, k)
5 do
6   IterCounter := IterCounter + 1
7   QueryArea := RefPoint.BUFFER(Range)
8       // query spatial directory for servers whose service areas intersect

      // with the query area, determine non-marked ones, and order
      // them by the distance of their service areas to the RefPoint 

     ServersPQ := SETUPSERVERSPQ(QueryArea,
             MarkedServersList, RefPoint)

9       // query these servers for objects and add objects to 
      // global result queue ResultsPQ

  QUERYSERVERS(RefPoint, k, QueryArea, 
     ServersPQ, ResultsPQ, MarkedServersList)

10       // termination conditions to prevent an endless loop:

  if ((MarkedServersList.size 
        >= TotalNumberOfServers) or
(QueryArea.CONTAINS(UnionedAreaOfAllServers))
      or (IterCounter >= MaxIters))

11     break
12   endif
13       // determine new range of the query area to use

      // in the next iteration:

  OldRange := Range
14   Range := GETNEXTRANGE(RefPoint, k,

                      ResultsPQ, OldRange)
15 // repeat the core loop while not enough objects are found 

// or the range is increasing:

while ((ResultsPQ.size < k) 
        or (Range > OldRange))

16 return ResultsPQ

Figure 4. FNNQ algorithm core loop

Table 2. Methods to determine the initial query area’s range 

Method Abbre-
viation Requisites Characteristics

Zero Zero None May not find any sources 
initially

Maximum
Max None Only one iteration, yields 

far too many relevant 
sources

Object 
Density

ObjDens Global density 
estimate

Tends to underestimate 
the set of relevant sources

Object 
Count

ObjCnt Object count 
per data source

Only one iteration with 
lots of relevant sources



previous range estimate is doubled. If the previous range
estimate is zero, a heuristically determined, fixed value is
used. 

The expansion phase ends when k objects are found. It is
skipped if the initial phase has already yielded k objects. If the
k-th object lies inside the last query area, the convergence
phase is skipped. Otherwise, the query area is enlarged to
include the k-th object and the core loop of the FNNQ
algorithm is executed one more time.

3.5 Querying The Data Sources 
(QUERYSERVERS)

The following two alternative algorithms assume the list of
servers to be queried (ServersPQ) to be sorted in ascending
order of their distance3 to the reference point. Note that the
result objects queue (ResultsPQ) is limited to k entries. If
more objects are added, the surplus objects at the end of the
queue are removed.

3.5.1 Using Remote Nearest Neighbor Queries 
(RNNQ)

For each server in ServersPQ, a local refinement of the query
parameter k is determined (LocalK). It indicates the maximum
number of objects this server can contribute to the final result.
LocalK is calculated by subtracting the number of those
objects in the result queue, that are closer to the reference point
than the server’s service area, from k. This pruning mechanism
considerably reduces the number of objects requested from a
server and minimizes the number of objects discarded later in
the processing. If LocalK is zero, a server cannot contribute
any objects. The server is skipped. Otherwise, this server is
queried for LocalK nearest objects and the new objects are
added to the result queue. The server is marked as queried
(added to MarkedServersList).

3.5.2 Using Remote Window Queries (RWQ)
If data sources do not support remote NN queries, instead, as
proposed in [16], remote window queries can be used. A query
for objects within the query area is sent to each server in
ServersPQ and the resulting objects are added to the result
queue. A local refinement of the query area is calculated, if
ResultsPQ contains at least k objects. Its range
(LocalRange) is equal to the distance of the k-th object. A
server is skipped if the minimum distance of its service area is
smaller than LocalRange. The server is marked as queried, if
its service area lies completely inside the query area.

This approach has two disadvantages. First, a server may be
queried multiple times until the query area is large enough to
contain all its objects. Secondly, a server may return far too
many objects.

3.5.3 Querying in parallel
The QUERYSERVERS function can be parallelized. We create a
pool of threads, each thread running the original QUERYSERVERS
function. More threads lead to a shorter total response time of
the QUERYSERVERs function, but also to less efficient pruning

mechanisms (LocalK and LocalRange), so that less servers
are skipped and more objects are fetched. Hence, the overhead
increases and more objects are needlessly retrieved. The
response time is minimal if all servers are queried
concurrently. On the other hand, the fewest resources are
consumed if the servers are queried successively, i.e., with
only one QUERYSERVERs thread. In Section 4.2 we detail on how
to achieve a good trade-off.

3.5.4 Querying incrementally
Retrieving nearest neighbors incrementally from each relevant
site and then performing a merge algorithm for the produced
objects until we have retrieved k result objects seems to be the
most straightforward algorithm to process FNNQs. However,
retrieving the next object (incrementally) from a remote data
source involves almost the same communication delays as
issuing an entire query and retrieving all results. As illustrated
in Section 4, communication delays provide a major
contribution to the overall response time. Already with small k
this approach involves prohibitively many interactions
between the federation component and data sources, greatly
increasing the response time. Hence, we refrain from using this
approach in our experiments.

4. EXPERIMENTS
In our experiments we demonstrate the performance of the
proposed algorithm under various conditions by varying the
query parameter k and by varying the number of threads in the
QUERYSERVERS function. The experiments are based on a
simulation approach where the algorithm runs in full detail and
the infrastructure is provided by local components simulating
the remote ones. We had to revert to the simulation approach
as we do not have enough real servers at our disposal to run
internet-scale experiments. We generate a load of 1000 queries
with random reference points. All diagrams show the mean
values measured with these queries. The characteristics of the
experiments are shown in Table 3. 
Unfortunately, no freely available real world data set is both
sufficiently large to run significant experiments and is divided
up into overlapping partitions resembling different providers
offering similar information. Also, using the US Census
Bureau's Tiger/Line data is not beneficial as we still have to
impose an artificial partitioning on the real data and distribute
it across different providers having overlapping service areas.
Thus, the scenario's characteristics are best reflected if the
simulated data sources store random data sets. Each data
source gets a randomly generated polygon as its service area.
The objects are uniformly distributed within the data space.
For each object all data sources with suitable service areas are
determined and one of them is randomly picked to host the
object. 
For each query its response time is calculated by adding up the
per query part, accounting for typical communication delays
and latency in the internet, and the per object part, accounting
for the local processing effort and transportation costs. In [23]
it is experimentally approved that this linear formula is a
reasonable approximation.
In the experiments we compare all combinations of the two
ways to query data sources (see Section 3.5) – using remote
NN queries (RNNQ) and using remote window queries (RWQ)
– with the four methods to get an initial query range estimate
(see Table 2) – zero (Zero), object density (ObjDens), object

3 A server’s distance refers to the distance of the closest point on
the boundary of its service area.



count (ObjCnt), and maximum (Max). We split the variants in
two groups: the RNNQ-based and the RWQ-based ones. We
analyze the behavior of the methods in each group and
compare the best method of both groups. RWQ_ObjDens and
RWQ_ObjCnt represent our adaptations to the algorithms
introduced in [16]. RNNQ_ObjCnt simulates the algorithms
presented in [23], while RNNQ_Max and RWQ_Max simulate
the behavior of the other approaches from literature discussed
in Section 2.4.
We use four metrics to assess the performance of the
algorithm: response time, effort, iterations, and cost profit
ratio. Response time is the sum of the response times of the
queried data sources in the longest running thread. We assume
that the processing effort within the federation component can
be neglected as long as the parameter k is small. The effort
metric4 quantifies the resource consumption. It is the weighted
sum of the queried data sources and all objects retrieved:

•

Relative response times and efforts are scaled to be multiples
of the minimum value for a particular k. The number of
iterations of the core loop is equivalent to the number of
queries to the spatial directory. The cost profit ratio is the
product of relative response time and relative effort:

•

•  

(less response time means more profit)

•  

(lower is better)

4.1 Experiment 1: Varying Query Size
In the first experiment we vary k between 1 and 1024 to show
how the proposed algorithm behaves with different query
sizes. We use 1+log threads in the QUERYSERVERS function (see
next section for an explanation). This already is an
optimization to the approaches from literature which query all
sources concurrently. The results of this experiment are shown
in Figures 5 and 6.  

In Figure 5 the response time and the effort scale better than
linearly when k increases. The number of iterations of the core
loop is little affected by k. The variants using the ObjCnt and
Max methods actually do find all result objects in the first
iteration. RWQ_Zero has problems in finding enough objects
to derive a reliable density estimate when k is large leading to
more iterations. 

Figure 6 clearly shows that (for RNNQ and RWQ) ObjDens is
the only choice for k ≤ 64 (up to 23% faster, up to 47% less
effort than ObjCnt, see arrows in Figure 6). Only for larger k,
ObjCnt and finally Max are faster, but ObjDens still has a
lower effort. Zero is second place for small k. For larger k the
performance degrades due to the following effect: initially
only few objects get found leading to a large increase of the
query range resulting in many data sources to query in the next
iteration. The ObjCnt and Max methods have high fixed costs
independent of k (see also the effort diagram in Figure 5). For
small k the effort of the Max method exceeds the other methods
by orders of magnitude. ObjCnt and Max consider many data
sources as relevant leading to many queries (= high effort) and
to an increased probability of having to query a slow data
source (= long response time). Only for large k the other
methods have similarly high costs, so that effort and response
time of the ObjCnt method get competitive.

For k ≤ 128, RNNQ is clearly faster (up to 29%) and less
resource consuming (up to 29%) than RWQ. Only for larger k
RWQ slightly surpasses RNNQ as it profits from the uniform
distribution of the objects and retrieves less unnecessary
candidate objects.

Table 3. Characteristics of the experiments

min max avg

Data space Germany (approx. 878 by 610 km)

Number of data sources 10,000

Service area size (logarithm of the size is uniformly distributed) 101.0 m2 225.3 km2 75.5 km2

Number of data sources having overlapping service areas 0 10 2.0

Total coverage of data space 74.34 %

Per query part of a data source’s response time (constant per data source, 
randomly assigned using a negative exponential distribution)

10 ms 1000 ms 100.0 ms

Per object part of a data source’s response time (constant per data source, 
randomly assigned using a negative exponential distribution)

0.3 ms 10 ms 1.0 ms

Number of objects (objects are uniformly distributed across the data space) 1,000,000

Number of objects per data source 20 452 100.0

Number of nearest neighbors (k) 1 1024 --

Number of threads 1-32, 25%-100%, 1+log, 2*log

4 See Table 3 for the values of avgPerQueryPartOfResponseTime
and avgPerObjectPartOfResponseTime.

effort avgPerQueryPartOfResponseTime
numberOfDataSourcesQueried×

(
)

avgPerObjectPartOfResponseTime
numberOfObjectsRetrieved×

(
)   

+

=

cost relativeEffort=

profit 1
relativeResponseTime
-----------------------------------------------------=

cost
profit
------------- relativeEffort relativeResponseTime×=



4.2 Experiment 2: Varying Parallelism
In the second experiment we vary the number of threads in the
QUERYSERVERS function to show the influence of parallel
queries to remote data sources on the performance of the
proposed algorithm. The number of threads is either statically
fixed between 1 and 32, or depends dynamically on the size of
the server queue: Then, the thread count is either a fraction of
the server queue size (25%, 33%, 50%, 100%) or proportional
to its logarithm (2*log, 1+log):

•

•

We set k to 64. The most promising approach from literature is
comparable to the RNNQ_ObjCnt variant querying all relevant
data sources concurrently (100%). This will serve as the
reference behavior for the discussion of our new approach. The
results of this experiment are shown in Figure 7. 

Figure 5. Scalability of our algorithm with increasing k (logarithmic x and y axes)

Figure 6. Ranking of the variants with increasing k (using 1+log threads); (the arrows indicate particular points of interest)
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Figure 7. Performance of our algorithm with varying number of threads (k = 64); (the arrows indicate particular points of interest)
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Obviously, using a single thread leads to long response times
and minimal resource consumption, while querying all data
sources at the same time (100%) leads to minimal response
times and maximal resource consumption. Calculating the
thread count from the logarithm of the server count (1+log)
achieves the best tradeoff. Generally, the response time is
lower the more threads are used. Only with Max it gets worse,
because of the higher probability of querying a slow data
source.

When using the ObjDens method few data sources are queried,
and thus the effort is only slightly affected by the thread count.
The reverse holds for the ObjCnt method (queries many data
sources by nature, and all of them in only one iteration) and for
the Zero method (range-over-estimation-effect). Using the Max
method with many threads leads to a horrendously high effort.
The RNNQ-based and the RWQ-based variants show a similar
behavior when the thread count is varied. When considering
individual methods, RNNQ always performs better than the
RWQ counterpart for k = 64.

To optimize the cost profit ratio, Figure 7 suggests to use one
of the following settings:

• 2 threads: Yields a low effort and slightly suboptimal
response time. However, the static number 2 depends on k
and the system environment. For example, 4 threads are
better for k = 256.

• 1+log Threads: Yields a close to optimal response time
and a slightly higher effort. This setting is independent of
k. It yields the best result of the dynamic settings.

• 25%: Is only advisable for the ObjCnt method. Yields a
low effort and slightly suboptimal response time
independent of k. For Zero and ObjDens this setting
effectively means to query the data sources sequentially.

• 100%: Is only advisable for the ObjDens method, as few
data sources are queried. Yields the best response time at
a remarkably low effort. The cost profit ratio is even
slightly better than for the 1+log setting (only in
conjunction with the ObjDens method).

4.3 Summary
Our experiments show that ObjDens is the best method to get
an initial query range estimate, as it outperforms all other
variants for k ≤ 64 (cost profit ratio up to 2.5 times better) and
still has the best effort for larger k while only depending on
relatively easy to get object density statistics. RNNQ is
preferable when offered by the data sources, as it is more
robust for non-uniform object distributions. Yet, using RWQ
for k ≤ 128 involves at most 29% response time and effort
degradation. The 1+log threads setting achieves the best trade
off between response time (at most 12% above the minimum at
100% threads) and effort (at most 79% above the minimum at
1 thread) and works equally well for all variants. Combining
all parameters, the RNNQ_ObjDens method using 1+log
threads outperforms the most promising approach from
literature (represented by RNNQ_ObjCnt using 100% threads)
by a factor of 3.5. If we take into account that for many
applications realistic k values are in the order of 10, and that
response times in the order of less than two seconds are well
acceptable, then our evaluation clearly shows that ObjDens
and also Zero are the preferred methods. Also, we have plenty

of room to trade in some response time in order to minimize
the overall resource consumption, which is crucial for a large-
scale system.

5. CONCLUSION
In this paper we address the problem of processing nearest
neighbor (NN) queries in a federated environment of spatial
data sources that are loosely coupled over the internet. We
present an algorithm to process such federated nearest
neighbor queries (FNNQs), discuss variants of it, and report on
experimental results. We pay special attention to minimizing
the number of queried data sources by dynamically enlarging
and shrinking the set of relevant sources. We show that
extending the set of parameters – using moderate parallelism,
and determining the relevant data sources by using service
areas and a global object density estimate – leads to
considerable performance improvements. Parallelization
serves as a controlling element to trade response time for
resource consumption. The experiments show that the
algorithm using remote NN queries, object density statistics,
and 1+log threads is the best variant to process FNNQs.
Previous approaches from literature can be employed to
implement the local processing of a NN query at a remote data
source. Nevertheless, the proposed algorithm can also do
without remote NN queries and use remote window queries
instead. The NN query problem in a federated environment
truly exceeds present knowledge on NN queries. 

Yet, some future work is conceivable:

• Increase the precision of determining the relevant sources:
consider size and placement of service areas, combine the
object density-based and the object count-based method,
exploit additional metadata, etc.

• Derivation of analytical formulas describing the behavior
of each variant, so that cost-based optimizers can
dynamically choose the right one.

Still, all those results would not change the reported
achievements.

6. ACKNOWLEDGEMENTS
The Nexus project was funded 1999-2002 by the German
Research Association (DFG) under grant 200989 and is now
continued as Center of Excellence (SFB) 627.

7. REFERENCES
[1] S. Arya: Nearest Neighbor Searching and Applications, Ph.D. 

thesis, Dept. of Computer Science, University of Maryland, 
College Park, MD, USA, 1995

[2] S. Berchtold, C. Böhm, B. Braunmüller, D. A. Keim, H.-P. 
Kriegel: Fast Parallel Similarity Search in Multimedia 
Databases, SIGMOD 1997, Proc. ACM SIGMOD 
International Conference on Management of Data, May 1997, 
Tucson, Arizona, USA, pp. 1-12

[3] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, T. Seidl: 
Fast Nearest Neighbor Search in High-dimensional Space, 
Proc. of the 14th Intl. Conf. on Data Engineering (ICDE’98), 
Orlando, Florida, Feb 1998



[4] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger: The 
R*-Tree: An Efficient and Robust Access Method for Points 
and Rectangles, Proc. of the 1990 ACM SIGMOD Intl. Conf. 
on Management of Data, Atlantic City, New Jersey, USA, 
ACM Press, 1990, pp. 322-331

[5] K. L. Cheung, A.W. Fu: Enhanced Nearest Neighbour Search 
on the R-tree, SIGMOD Record, vol. 27, no. 3, pp. 16-21, 
1998

[6] P. Ciaccia, A. Nanni, M. Patella: A Query-sensitive Cost 
Model for Similarity Queries with M-tree, Proc. of the 10th 
Australasian Database Conference (ADC’99), Auckland, 
New Zealand, Jan 1999, pp. 65-76

[7] H. Ferhatosmanoglu, D. Agrawal, A. El Abbadi: Concentric 
Hyperspaces and Disk Allocation for Fast Parallel Range 
Searching, Proceedings of the 15th International Conference 
on Data Engineering, ICDE 1999, March 1999, Sydney, 
Austrialia, pp. 608-615

[8] H. Ferhatosmanoglu, D. Agrawal, A. El Abbadi: Optimal 
Partitioning for Efficient I/O in Spatial Databases, Euro-Par 
2001: Parallel Processing: 7th International Euro-Par 
Conference Manchester, UK August 28-31, 2001, LNCS 
2150 / 2001, pp. 889-900

[9] C. Faloutsos, P. Bhagwat: Declustering Using Fractals, Proc. 
of the 2nd Intl. Conf. on Parallel and Distributed Information 
Systems (PDIS 1993),  San Diego, CA, USA, January 1993, 
pp. 18-25

[10] R. Fagin: Combining Fuzzy Information from Multiple 
Systems, Proc. of the 15th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 
PODS 1996, June 1996, Montreal, Canada, pp. 216-226

[11] The Federal Geographic Data Committee: The 
Clearinghouse, 
http://www.fgdc.gov/clearinghouse/clearinghouse.html

[12] G. R. Hjaltason, H. Samet: Ranking in Spatial Databases, 
Proc. of the 4th Symp. on Spatial Databases, Portland, Maine, 
USA, Aug. 1995, LNCS 951, pp. 83-95

[13] G. R. Hjaltason, H. Samet: Distance Browsing in Spatial 
Databases, ACM Transactions on Database Systems, vol. 24, 
no. 2, pp. 265-318, 1999

[14] N. Koudas, C. Faloutsos, I. Kamel: Declustering Spatial 
Databases on a Multi-Computer Architecture, Proc. of the 5th 
International Conference on Extending Database Technology, 
EDBT'96, Avignon, France, March 1996, pp. 592-614

[15] Y.-l. Lo, K. A. Hua, H. C. Young: A General 
Multidimensional Data Allocation Method for Multicomputer 
Database Systems, Database and Expert Systems 
Applications, 8th  International Conference, DEXA '97, 
Toulouse, France, September 1-5, 1997, pp. 357-366

[16] Dan-Zhou Liu, Ee-Peng Lim, Wee-Keong Ng: Efficient k 
Nearest Neighbor Queries on Remote Spatial Databases 
Using Range Estimation, Proc. of the 14th Intl. Conf. on 
Scientific and Statistical Database Management 
(SSDBM'02), Edinburgh, Scotland, July 2002, pp. 121-130

[17] D. Nicklas, M. Großmann, T. Schwarz, S. Volz, B. 
Mitschang: A Model-Based, Open Architecture for Mobile, 
Spatially Aware Applications, Proc. of the 7th Intl. Symp. on 
Spatial and Temporal Databases (SSTD01), Los Angeles, 
LNCS 2121, 2001, pp. 117-135

[18] Open GIS Consortium: OpenGIS Simple Features 
Specification for SQL, Revision 1.1, Open GIS Consortium 
(OGC), May 1999, http://www.opengis.org/docs/99-049.pdf

[19] Open GIS Consortium: The OpenGIS Abstract Specification - 
Topic 13: Catalog Services, Open GIS Consortium (OGC), 
March 1999, http://www.opengis.org/docs/99-113.pdf

[20] Open GIS Consortium: OpenGIS Catalog Services 
Specification, Open GIS Consortium (OGC), Dec. 2002, 
http://www.opengis.org/docs/02-087r3.pdf

[21] Open GIS Consortium: OWS1.2 UDDI Experiment, Open 
GIS Consortium (OGC), Jan 2003, 
http://www.opengis.org/docs/03-028.pdf

[22] S. Prabhakar, K. A. S. Abdel-Ghaffar, D. Agrawal, A. El 
Abbadi: Cyclic Allocation of Two-Dimensional Data, Proc. of 
the 14th Intl. Conf. on Data Engineering, ICDE 1998, 
February 1998, Orlando, Florida, USA, pp. 94-101

[23] A. Papadopoulos, Y. Manolopoulos: Parallel Processing of 
Nearest Neighbor Queries in Declustered Spatial Data, Proc. 
of the fourth ACM workshop on Advances in Geographic 
Information Systems, ACM-GIS 1996, Rockville, Maryland, 
United States, pp. 35-43

[24] A. Papadopoulos, Y. Manolopoulos: Similarity Query 
Processing Using Disk Arrays, SIGMOD 1998, Proc. ACM 
SIGMOD Intl. Conf. on Management of Data, June 1998, 
Seattle, Washington, USA, pp. 225-236

[25] A. Papadopoulos, Y. Manolopoulos: Distributed Processing 
of Similarity Queries, Distributed and Parallel Databases, 
Volume 9, Issue 1, January  2001, pp. 67 - 92

[26] H. Pinto, N. V. Boas, R. José, Using a private UDDI for 
publishing location-based information to mobile users, 
ICCC/IFIP 7th Intl. Conf. on Electronic Publishing 
(ElPub2003), Guimarães, Portugal, June 2003

[27] N. Roussopoulos, S. Kelley, F. Vincent: Nearest Neighbor 
Queries, Proc. of the 1995 ACM-SIGMOD Intl. Conf. on 
Management of Data, San Jose, CA, USA, May 1995, pp. 71-
79

[28] UDDI: The UDDI Technical White Paper, UDDI.org, Sept. 
2000, 
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf 

[29] C. Yu, B.C. Ooi, K.-L. Tan, H.V. Jagadish: Indexing the 
Distance: An Efficient Method to KNN Processing, Proc. of 
the 27th VLDB Conf., Roma, Italy, 2001


	On Efficiently Processing Nearest Neighbor Queries in a Loosely Coupled Set of Data Sources
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	1.1 Motivation
	1.2 Objectives and Contributions

	2. Problem Space
	2.1 Federated Nearest Neighbor Queries (FNNQ)
	2.2 Local Nearest Neighbor Queries
	2.3 Emulated Nearest Neighbor Queries
	2.4 Distributed and Parallel Nearest Neighbor Queries

	3. Federated Nearest Neighbor Query Algorithm
	3.1 The Three Phases Of The FNNQ Algorithm
	3.2 The FNNQ Algorithm Core Loop
	3.3 Determining The Initial Query Areas (getInitialRange)
	3.4 Determining The Subsequent Query Areas (getNextRange)
	3.5 Querying The Data Sources (queryServers)
	3.5.1 Using Remote Nearest Neighbor Queries (RNNQ)
	3.5.2 Using Remote Window Queries (RWQ)
	3.5.3 Querying in parallel
	3.5.4 Querying incrementally


	4. Experiments
	4.1 Experiment 1: Varying Query Size
	4.2 Experiment 2: Varying Parallelism
	4.3 Summary

	5. Conclusion
	6. Acknowledgements
	7. References


